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Abstract

Comparison of Semi-parametric and Parametric Maximum Likelihood Estimators under

Random Censoring

Mavis Amoa-Dadzeasah

In the presence of censored data, selecting an appropriate estimation method is critical for obtaining

reliable parameter estimates. This thesis compares the performance of the parametric maximum

likelihood estimator (MLE) and a modified, semi-parametric MLE under random censoring. The

comparison focuses on estimator of variance, mean squared error, and confidence regions, using

theoretical derivations and simulation studies. We examine various combinations of continuous

distributions for the event and censoring variables, including Exponential, Weibull, Gamma, Beta,

and Pareto models. Our findings show that the modified estimator performs comparably to or

better than the parametric estimator, particularly at low censoring rates and for specific distribu-

tional configurations. In cases with high censoring, the parametric estimator largely yielded lower

variances. These results provide practical guidance for applied statisticians working with randomly

censored data, especially in fields such as medical research, reliability engineering, and finance.
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Chapter 1

Introduction

1.1 Background

The maximum likelihood estimator has been long recognized as a useful and reliable tool in statis-

tical inference and analysis. It has been widely applied across diverse areas, including regression

analysis, model selection in machine learning, Bayesian decision theory, and parameter estimation

in time series models. Beyond traditional statistical domains, its applications extend to fields such

as biotechnology and health research. As a result of its desired properties like efficiency, consistency

and asymptotic normality, many researchers and statisticians use this method as a benchmark to

make comparisons. In this thesis, we employ maximum likelihood estimation to compare two like-

lihood approaches for randomly censored data in survival analysis. This area of statistics and its

methodologies are particularly important due to their relevance in medical research, engineering,

finance, and the social sciences. See the references Cramer and Cramer (1989); Smith, Phillips,

Luque-Fernandez, and Maringe (2023).

1.2 Preliminaries

In this section, we present definitions, notation, and distributional forms that will be used through-

out the thesis. The focus is on the probability density functions and survival functions of the event

and censoring variables considered in the subsequent chapters. These include the Exponential,

Weibull, Gamma, Beta, and Pareto distributions. Additionally, we present select theorems and

1



results from statistical theory that are instrumental in the derivations and theoretical analyses.

1.2.1 Exponential Distribution

The probability density function (pdf) of an exponential distribution is

f(x | θ) =


θe−θx, x ≥ 0

0, x < 0

where the parameter, θ > 0. The survival function of this distribution, which is the complement of

the cumulative distribution function is also given by

F̄ (x | θ) = e−θx, x ≥ 0

We write X ∼ Exponential(1/θ) or X ∼ Exp(1/θ) to represent a random variable X that has this

distribution, where 1/θ is the mean of X.

1.2.2 Weibull Distribution

The pdf of the Weibull distribution with shape parameter p, and scale parameter θ, is given as

f(x | θ, p) =


pθxp−1e−θxp

, x ≥ 0

0, x < 0

where θ > 0, p > 0. The survival function of this distribution, is also given by

F̄ (x | θ, p) = e−θxp
, x ≥ 0

The notation X ∼ Weibull(θ, p) is used to represent a random variable X which follows Weibull

distribution.

1.2.3 Beta Distribution

A beta random variable X with shape parameters α and β is denoted as X ∼ Beta(α, β), and has

pdf

2



f(x | α, β) =


Γ(α+ β)
Γ(α)Γ(β) x

α−1(1 − x)β−1, 0 ≤ x ≤ 1

0, elsewhere

where α > 0, β > 0, and Γ(s) =
∫∞

0 ts−1e−sdt. The survival function is

F̄ (x | α, β) = Γ(α+ β)
Γ(α)Γ(β)

∫ 1

x
tα−1(1 − t)β−1dt, 0 ≤ x ≤ 1

1.2.4 Gamma Distribution

A gamma random variable X with shape parameter α, and scale parameter θ is denoted as X ∼

Gamma(α, θ), and has the probability density function

f(x | α, θ) =


xα−1 e− x

θ

Γ(α) θα
, x ≥ 0

0, x < 0

where α > 0, θ > 0. The corresponding survival function is given as

F̄ (x | α, θ) = 1
Γ(α) Γ

(
α,
x

θ

)
, x ≥ 0

where
Γ
(
α,
x

θ

)
=
∫ ∞

x
θ

tα−1 e−tdt

1.2.5 Pareto Distribution

If X is a random variable with Pareto distribution having shape parameter λ and scale parameter

θ, the pdf of X is

fX(x) =


λ θλ

(θ + x)λ+1 , x ≥ 0

0, x < 0

where λ > 0, θ > 0, and the survival function is

F̄X(x) =
(

θ

θ + y

)λ

, x ≥ 0

3



Denoted as X ∼ Pareto(λ, θ), this distribution is mostly used as a censoring distribution in this

thesis.

See Walck et al. (2007), Forbes, Evans, Hastings, and Peacock (2011), and Ross (2014) as references

for these distributions.

1.2.6 Supporting Theorems

Theorem 1.1. (The Central Limit Theorem) If X1, . . . Xn are independent and identically dis-

tributed (iid) with finite mean Eθ(Xi) = µ(θ), and finite variance V arθ(Xi) = σ2(θ) > 0, then as

n → ∞,
X̄n − µ(θ)
σ(θ)/

√
n

=
√
n(X̄n − µ(θ))

σ(θ)
d−−→ N (0, 1)

where d−−→ denotes convergence in distribution. See Section 4.2 of Hogg, McKean, and Craig (2018).

Theorem 1.2. (Slutsky’s Theorem) If Xn, An, Bn are random variables, a and b are constants,

where An
d−−→ a, Bn

d−−→ b, and Xn
d−−→ X, then it follows that An +BnXn

d−−→ a + bX.

Note that for a constant a,An
d−−→ a is equivalent to An

P−−→ a, where P−−→ denotes convergence in

probability. See Section 5.2 of Hogg et al. (2018).

Theorem 1.3. Suppose X has a Nk(µ,Σ) distribution, where Σ is positive definite. Then the

random variable Y = (X − µ)⊤ Σ−1 (X − µ) has χ2(k) distribution.

See Section 3.5 of Hogg et al. (2018).

1.3 Maximum Likelihood Estimator without Random Censoring

We provide a brief overview of the maximum likelihood estimator (MLE) without random censoring,

which would later be useful in establishing the limiting variance of the semi-parametric estimator

we propose. The maximum likelihood estimator of an unknown parameter θ of a probability

distribution is that value θ̂ of θ which maximizes the probability or probability density of an

observed sample from that distribution, Lehmann and Casella (2006). Let X1, . . . , Xn be iid random

variables which follow a regular model (see Appendix A for the definition and some details of the

regular model) with a common probability density function (pdf) or mass function (pmf) f(x | θ),

4



where θ ∈ Θ, the parameter space. It follows that the likelihood function, or the joint probability

distribution and its log are given by

L(θ | X) =
n∏

i=1
f(Xi | θ) (1.1)

lnL(θ | X) =
n∑

i=1
ln f(Xi | θ) (1.2)

The MLE maximizes Equation 1.2. In regular models (see Appendix A) where the lnL(θ | X) is

differentiable and the maxima occurs at an interior point of Θ, the derivative of the log-likelihood

function, also known as the score function is equal to zero at θ̂, i.e. θ̂ is obtained as the solution of

θ such that
d

dθ
lnL(θ | X) = 0.

Suppose θ ∈ Θ is the true parameter value. Then, the score function S(θ | X), defined as

S(θ | X) =
n∑

i=1

d

dθ
ln f(Xi | θ) , (1.3)

has the following properties in a regular model, as seen in Hogg et al. (2018):

1. S(θ̂ | X) = 0, since θ̂ maximizes the log-likelihood.

2. Its expectation is zero, i.e. Eθ[S(θ | X)] = 0.

3. The negative expectation of the first derivative of d

dθ
ln f(X | θ) gives the Fisher Information

I(θ).

I(θ) = −Eθ

[
d2

dθ2 ln f(X | θ)
]

(1.4)

The asymptotic distribution of θ̂ is derived using a Taylor series expansion of the score function

around the true parameter θ:

S(θ̂ | X) = S(θ | X) + (θ̂ − θ) dS(θ | X)
dθ

∣∣∣∣
θ=θ̂

S(θ̂ | X) ≈ S(θ | X) + (θ̂ − θ) dS(θ | X)
dθ

5



dS(θ | X)
dθ

≈ −nI(θ) since I(θ) = lim
n→∞

− 1
n

n∑
i=1

d2

dθ2 ln f(Xi | θ)

0 ≈ S(θ | X) − (θ̂ − θ) nI(θ)

(θ̂ − θ) ≈ S(θ | X)
nI(θ)

By the Central Limit Theorem, S(θ | X) is asymptotically normally distributed, where θ is the

true parameter value.
S(θ | X)√

n
d−−→ N (0, I(θ)) .

Therefore, the limiting distribution of the maximum likelihood estimator θ̂ under regularity condi-

tions is
√
n(θ̂ − θ) d−−→ N

(
0, I−1(θ)

)
. (1.5)

The regularity conditions are outlined in Appendix A. The likelihood function used to obtain the

MLE above is the specific case of an uncensored data. In survival analysis, we are interested in

studying the time until some population survives or experiences an event of interest. However,

many factors could prevent the entire population from experiencing the event. This results in

censored data. Therefore, censoring is said to have occurred when information on the start or end

of some event of interest is missing, Turkson, Ayiah-Mensah, and Nimoh (2021) and Kalbfleisch

and Prentice (2002). Generally, observed data comprises both censored and uncensored data, thus,

the probability distribution of this kind of data has a different form than the case without random

censoring.

1.4 Maximum Likelihood Estimator under Random Censoring

The statistical inference methods employed in this research are based on likelihood functions derived

from the observed data. Let Xi be the lifetime of observed data, which characterizes the time

between entry into the study and the event, with density function f(x | θ), and cumulative density

function F (x | θ). Let Yi be the random censoring variable independent of Xi, Stute (1995),

which characterizes the time from entry into the study and the end of the study, with density

function g(y), and cumulative density function G(y). We define the lifetime random variable as

Z = min(X,Y ), zi, i = 1, . . . , n is similarly defined. We also define a censoring indicator δi as

6



δi = I(Xi ≤ Yi) such that

δ =


1, if X ≤ Y i.e. uncensored

0, if X > Y i.e. censored

The joint distribution h(δ, z | θ) is based on the probability distribution of (δi, zi):

h(δ, z | θ) =


P[δ = 1, X] = Ḡ(x) f(x | θ)

P[δ = 0, Y ] = F̄ (y | θ) g(y)

=
(
Ḡ(x) f(x | θ)

)δi
(
F̄ (y | θ) g(y)

)1−δi
, see Lawless (2011).

where z = min(x, y), and, Ḡ(.) and F̄ (.) are the respective survival functions corresponding to G(.)

and F (.), respectively. Therefore, the likelihood function is given as

L(θ | δ, Z) =
n∏

i=1
h(δi, Zi | θ)

L(θ | δ, Z) =
n∏

i=1
f(Zi | θ)δi Ḡ(Zi)δi g(Zi)1−δi F̄ (Zi | θ)1−δi (1.6)

lnL(θ | δ, Z) =
n∑

i=1

[
δi ln Ḡ(Zi) + δi ln f(Zi | θ) + (1 − δi) ln F̄ (Zi | θ) + (1 − δi) ln g(Zi)

]
(1.7)

See Kalbfleisch and Prentice (2002) and Klein and Moeschberger (2003). If the data is en-

tirely uncensored, we note that δi = 1 ∀i and although g(y) does not appear in the likelihood,

Ḡ(x) = P(Y > x) still appears since Y > X always. Thus, even in uncensored cases, the cen-

soring distribution matters in the likelihood through Ḡ(x). The MLE under this likelihood solves
d

dθ
lnL(θ | δ, Z) = 0. That is,

1
n

n∑
i=1

δi
d

dθ
ln f(Zi | θ) + 1

n

n∑
i=1

(1 − δi)
d

dθ
ln F̄ (Zi | θ)

∣∣∣∣
θ=θ̂

= 0

Given that S(θ | δ, Z) = d

dθ
lnL(θ | δ, Z), using a Taylor series expansion around θ gives

(θ̂ − θ) ≈ − S(θ | δ, Z)
1
n

∑n
i=1

(
δi
d2

dθ2 ln f(Zi | θ) + (1 − δi)
d2

dθ2 ln F̄ (Zi | θ)
) = An

Bn

√
n (An) d−−→ N (0, IRC(θ)) and Bn

d−−→ IRC(θ)

7



Thus, by Slutsky’s Theorem, the limiting distribution of θ̂ under random censoring is
√
n(θ̂ − θ) d−−→ N

(
0 , I−1

RC(θ)
)

(1.8)

where IRC(θ) is the Fisher information under random censoring:

IRC(θ) =


Eθ

(
δ
d

dθ
ln f(Z | θ) + (1 − δ) d

dθ
ln F̄ (Z | θ)

)2

− Eθ

(
δ
d2

dθ2 ln f(Z | θ) + (1 − δ) d
2

dθ2 ln F̄ (Z | θ)
) (1.9)

Properties of S(θ | δ, Z) include:

1. The expectation of the score function is equal to zero, i.e. Eθ[S(θ | δ, Z)] = 0.

2. The negative expectation of its first derivative gives the Fisher Information, i.e.

E
(
d2

dθ2 ln h(δ, Z | θ)
)

= −E
(
d

dθ
ln h(δ, Z | θ)

)2

Proofs of these properties are shown in Section 1.4.1 below.

1.4.1 Further proofs

First, we show that the expectation of the score function in the uncensored data case equals 0.

Proof of Eθ[S(θ | X)] = 0.

Recall that for a pdf f(x | θ), ∫
f(x | θ) dx = 1

d

dθ

∫
f(x | θ) dx = 0

∫ d

dθ
f(x | θ)

f(x | θ) · f(x | θ) dx = 0∫ (
d

dθ
ln f(x | θ)

)
f(x | θ) dx = 0

∴ Eθ

[
d

dθ
ln f(X | θ)

]
= 0

Similarly, we can show that the expectation of the score function in the censored case is zero.
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Proof of Eθ[S(θ | δ, Z)] = 0.

Eθ

δ
d

dθ
f(Z | θ)

f(Z | θ) + (1 − δ)

d

dθ
F̄ (Z | θ)

F̄ (Z | θ)

 = 0

That is,

∫
I(X ≤ Y ) ·

d

dθ
f(x | θ)

f(x | θ) · f(x | θ) g(y) dx dy +
∫

I(X > Y ) ·

d

dθ
F̄ (y | θ)

F̄ (y | θ)
· f(x | θ) g(y) dx dy = 0

Since the joint distribution h(δ, z | θ) is a pdf,

1∑
δ=0

∫
h(δ, z | θ) dz = 1

i.e.,
∫
Ḡ(x) f(x | θ) dx +

∫
F̄ (y | θ) g(y) dy = 1, for all θ (1.10)∫

Ḡ(x) d

dθ
f(x | θ) dx +

∫
d

dθ
F̄ (y | θ) g(y) dy = 0, for all θ (1.11)

Hence for all θ, and for all r ≥ 1,

∫
Ḡ(x) dr

dθr
f(x | θ) dx +

∫
dr

dθr
F̄ (y | θ) g(y) dy = 0 (1.12)

Eθ[S(θ | δ, Z)] can be further expressed as

Eθ[S(θ | δ, Z)] =
∫
Ḡ(x) · d

dθ
f(x | θ) dx+

∫
d

dθ
F̄ (y | θ) · g(y) dy

Then, it follows from Equation 1.11 that Eθ[S(θ | δ, Z)] = 0.

Proof of E
(
d2

dθ2 ln h(δ, Z | θ)
)

= −E
(
d

dθ
ln h(δ, Z | θ)

)2
.

We start by taking the derivative of the score function, and show that its expectation is equal to

the right hand side.
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d

dθ

δ
d

dθ
f(z | θ)

f(z | θ) + (1 − δ)

d

dθ
F̄ (z | θ)

F̄ (z | θ)

 =

= δ


f(z | θ) d2

dθ2 f(z | θ) −
(
d

dθ
f(z | θ)

)2

f2(z | θ)

+ (1 − δ)


F̄ (z | θ) d2

dθ2 F̄ (z | θ) −
(
d

dθ
F̄ (z | θ)

)2

F̄ 2(z | θ)



=
∫

I(X ≤ Y ) ·
f(x | θ) d2

dθ2 f(x | θ) −
(
d

dθ
f(x | θ)

)2

f2(x | θ) · f(x | θ) g(y) dx dy +

∫
I(X > Y ) ·

F̄ (y | θ) d2

dθ2 F̄ (y | θ) −
(
d

dθ
F̄ (y | θ)

)2

F̄ 2(y | θ)
· f(x | θ) g(y) dx dy

= −
∫ (

d

dθ
f(x | θ)

)2

f2(x | θ) · f(x | θ) Ḡ(x) dx−
∫ (

d

dθ
F̄ (y | θ)

)2

F̄ 2(y | θ)
· F̄ (y | θ) g(y) dy

= −
∫ (

d

dθ
ln f(x | θ)

)2
f(x | θ) Ḡ(x) dx−

∫ (
d

dθ
ln F̄ (y | θ)

)2
F̄ (y | θ) g(y) dy

= − E
[
δ ·
(
d

dθ
ln f(Z | θ)

)
+ (1 − δ) ·

(
d

dθ
ln F̄ (Z | θ)

)]2

= −E
(
d

dθ
ln h(θ | δ, Z)

)2

hence the proof.

1.4.2 Censoring Rate

One can find the random censoring rate by finding the probability that δ = 0, or alternatively, the

failure rate as the probability δ = 1. Therefore, the random censoring probability is P[δ = 0] =

P(X > Y ).

P(X > Y ) =
∫

P(X > y) g(y) dy

=
∫
F̄ (y | θ) g(y) dy

The probability of failure, P[δ = 1] = P(X ≤ Y ) = P(X < Y ) since X and Y are continuous.
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P(X < Y ) =
∫

P(Y > x) f(x | θ) dx

=
∫
Ḡ(x) f(x | θ) dx

1.5 Research Objectives and Methods

In this research, we consider two likelihoods: the full parametric model as outlined above, and a

semi-parametric one based on the Non-Parametric Maximum Likelihood Estimator by Kaplan and

Meier (1958). The latter will be referred to as “compact” likelihood or “modified” estimator (de-

fined in Section 2.1), and the former as “parametric” estimator. The compact likelihood modifies

the fully parametric model by incorporating Kaplan–Meier (KM) weights (defined in Section 2.1)

in place of the censoring indicators. We evaluate the performance of the maximum likelihood

estimators of these two likelihoods by examining their limiting variances and confidence regions

where applicable. The limiting variances are obtained using the main result of Stute (1995). We

study which estimator performs better under varying censoring probabilities and distributional se-

tups. We would also gain more insights on conditions under which comparable results are obtained.

Other researchers have also explored alternative estimation procedures to the traditional maximum

likelihood estimator in the presence of censoring. In particular, weighted likelihood methods and

semi-parametric approaches have been developed (Murray (2001); Ren (2008); Zhou and Liang

(2011); Ren and Lyu (2024)) which have shown promise in reducing bias and improving efficiency.

This thesis builds upon such methodologies.

To carry out this analysis effectively, we consider a variety of distributions for the event variable X

along with corresponding distributions for the censoring variable Y . For each distributional pair

(X,Y ), the limiting variances of the estimators are evaluated both theoretically and via simulation.

The behavior of the variances are assessed under varying censoring rates, controlled by the parame-

ter values from the censoring distribution. Both single-parameter distributions (e.g., Exp(1/θ)) and

two-parameter distributions (e.g., Gamma(α, θ)) for X are considered. All computational analyses

were performed using R version 4.5.1.
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1.6 Plan of the Thesis

The rest of the thesis is organized as follows. A comprehensive analysis of the single parameter

case of X is outlined in Chapter 2. This includes a detailed derivation of the limiting variances

of the MLEs for both the parametric and compact likelihood cases, based on general forms of X

and Y . This chapter also explores specific sampled distributions for X and Y . Chapter 3 extends

the discussion to the multi-parameter case, providing generalized forms of the vectorized likelihood

functions and corresponding MLEs. As in Chapter 2, selected distributions are analyzed. Addi-

tionally, this chapter revisits key concepts from the multivariate normal distribution, which serves

as the foundation for evaluating the limiting variance-covariance matrices. The thesis concludes

with a summary of key findings in Chapter 4. Regularity conditions based on which the theory

of the maximum likelihood estimators are established, and complementary results are outlined in

Appendix A and Appendix B respectively.
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Chapter 2

Single Parameter Case

This chapter begins with an introduction to the compact likelihood. Unlike the fully parametric

likelihood discussed in Section 1.4, which incorporates the censoring indicator δ, the compact

likelihood, LM (θ | Z) replaces these indicators with Kaplan–Meier weights Win, as seen in Stute

(1995).

lnLM (θ | Z) =
n∑

i=1
Win ln f(Zi | θ)

d

dθ
lnLM (θ | Z) =

n∑
i=1

Win
d

dθ
ln f(Zi | θ)

where,
Win = δi

n− i+ 1

i−1∏
j=1

(
1 − δj

n− j + 1

)
(2.1)

The modified likelihood above is motivated by the fact that a sample average of the form

n−1∑n
i=1 φ(Xi) based on an uncensored sample, is to be replaced by

∑n
i=1Winφ(Zin) in a censored

sample, where Zin, 1 ≤ i ≤ n, are the order-statistics of the censored sample. The MLE of θ for

this likelihood, θ̂M is obtained at d

dθ
lnLM (θ | Z)

∣∣∣∣
θ=θ̂M

= 0.

Proceeding as in the case of uncensored data, we have

√
n
(
θ̂M − θ

)
≈

√
n

∑n
i=1Win

d

dθ
ln f(Zi | θ)

−
∑n

i=1Win
d2

dθ2 ln f(Zi | θ)
= AM

n

BM
n
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Further, using Theorem 1 of Stute (1995),

AM
n

d−−→ N
(
0, σ2(θ)

)
and BM

n
d−−→ I(θ)

where

σ2(θ) = Eθ

[
δ
φθ(Z)
Ḡ(Z)

+ (1 − δ)γφθ
(Z) − Γφθ

(Z)
]2

(2.2)

and,

φθ(z) = d

dθ
ln f(z | θ)

γφθ
(z) = 1

F̄ (z | θ) Ḡ(z)
·
∫

I(t > z)φ(t) f(t | θ) dt

Γφθ
(z) =

∫ I(z > s) d

dθ
F̄ (s | θ)

F̄ (s | θ) Ḡ2(s)
· g(s) ds

Section 2.2.2 describes in detail the terms in Equation 2.2 above. By Slutsky’s Theorem,

√
n
(
θ̂M − θ

)
d−−→ N

(
0, σ

2(θ)
I2(θ)

)
(2.3)

2.1 Non-Parametric Maximum Likelihood Estimator

The Kaplan-Meier estimator, as proposed by Kaplan and Meier (1958) is also interpreted as a non-

parametric maximum likelihood estimator (NPMLE), Rodrıguez (2005). This estimator assumes

that the censored and uncensored subjects have the same chances of survival at any time, censoring

probabilities are the same for all subjects regardless of their entry time into the study, and events

occur exactly at the recorded times, with no lag, see Goel, Khanna, and Kishore (2010). The

Kaplan-Meier estimate of the ith order statistic, F̄ (Zi:n) is defined as

F̄ (Zi:n) =
i∏

j=1

(
1 − δj

n− j + 1

)
, 1 ≤ i ≤ n

where Zi:n are the order-statistics.

Hence, if δ1 = · · · = δn = 1, then F̄ (Zi:n) =
(

1 − 1
n

)(
1 − 1

n− 1

)
. . .

(
1 − 1

n− i+ 1

)
=⇒ F̄ (Zi:n) = n− i

n
when δ1 = · · · = δn = 1.

Note that,

14



F̄ (Zi:n) =
i∏

j=1

(
1 − δj

n− j + 1

)
=⇒ F̄ (Zi:n) =

(
1 − δi

n− i+ 1

) i−1∏
j=1

(
1 − δj

n− j + 1

)
Thus,

F̄ (Zi−1:n) − F̄ (Zi:n) =
i−1∏
j=1

(
1 − δj

n− j + 1

)
−
(

1 − δi

n− i+ 1

) i−1∏
j=1

(
1 − δj

n− j + 1

)

=
i−1∏
j=1

(
1 − δj

n− j + 1

)[
1 −

(
1 − δi

n− i+ 1

)]

=
i−1∏
j=1

(
1 − δj

n− j + 1

)[
δi

n− i+ 1

]

Therefore as seen in Stute (1995), Win = F̄ (Zi−1:n) − F̄ (Zi:n) = δi

n− i+ 1

i−1∏
j=1

(
1 − δj

n− j + 1

)
.

2.2 Limiting Distribution of Estimators

One way to assess the efficiency of an estimator is by examining its variance, Saleem, Sanaullah,

Al-Essa, Bashir, and Al Mutairi (2023). Given that maximum likelihood estimators (MLEs) are

asymptotically normal, we compute the limiting variances of the two estimators as a basis for

comparison. The variance provides insight into an estimator’s performance, with lower variance

generally indicating greater efficiency, thus being more desirable, Lehmann and Casella (2006).

These variances can be evaluated analytically by computing the integrals presented in the subse-

quent sections for specific choices of the event and censoring distributions. Generally, desirable

results are said to be obtained when the limiting variance of the modified estimator, V arM (θ)

is less than, or approximately equal to that of the parametric estimator, V arP (θ), i.e. where

V arM (θ) ≤ V arP (θ), and where V arM (θ) ≈ V arP (θ). Nonetheless, we will also present cases

where this is not achieved.

To support the theoretical results, we carry out a computational analysis. This involves selecting

a family of distributions for the event variable X by varying the parameter θ across a specified

range, while holding the parameter λ of the censoring variable Y fixed at several points within that

range. We then compute the variance for each (θ, λ) pair across the entire range of θ, capturing the

behavior of the estimators under varying censoring rates and parameter values. Additionally, we

simulate 1000 datasets each of size 100 from the specified distributions and evaluate the estimators
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by comparing the mean squared errors (MSEs) of the maximum likelihood estimators, DeGroot

and Schervish (2012), defined as

MSE = 1
n

n∑
i=1

(θi − θ̂i)2

where θ̂i is the maximum likelihood estimate for the ith simulation, and n is the number of datasets

simulated.

2.2.1 Parametric Estimator

From expression 1.8, the limiting variance of θ̂ under random censoring is:

V arP (θ) = 1
IRC(θ) (2.4)

where,

IRC(θ) = Eθ

(
δ
d

dθ
ln f(Z | θ) + (1 − δ) d

dθ
ln F̄ (Z | θ)

)2

We showed in Section 1.4.1 that

−IRC(θ) = −
∫ (

d

dθ
f(x | θ)

)2

f2(x | θ) · f(x | θ) Ḡ(x) dx−
∫ (

d

dθ
F̄ (y | θ)

)2

F̄ 2(y | θ)
· F̄ (y | θ) g(y) dy

=⇒ IRC(θ) =
∫ (

d

dθ
ln f(x | θ)

)2
f(x | θ) Ḡ(x) dx+

∫ (
d

dθ
F̄ (y | θ)

)2

F̄ (y | θ)
· g(y) dy

Thus, the limiting variance in the parametric likelihood case is the multiplicative inverse of the

integral above.

2.2.2 Modified Estimator

From expression 2.3, the limiting variance of the modified estimator is given as

V arM (θ) = σ2(θ)
I2(θ) (2.5)

where I(θ) is the inverse of the limiting variance in the non-censored case as outlined in Equation 1.5.
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From Stute (1995),

σ2(θ) = Eθ

[
δ
φθ(Z)
Ḡ(Z)

+ (1 − δ)γφθ
(Z) − Γφθ

(Z)
]2

, where φθ(z) = d

dθ
ln f(z | θ)

φθ(.) and φ(.) are used interchangeably to denote the same function, i.e., φθ(.) = φ(.).

σ2(θ) = Eθ

[
δ
φ2(Z)
Ḡ2(Z)

+ (1 − δ) γ2
φ(Z) + Γ2

φ(Z) − 2 δ φ(Z)
Ḡ(Z)

· Γφ(Z) − 2 (1 − δ) γφ(Z) Γφ(Z)
]

= Eθ

[
φ2(X)
Ḡ(X)

]
︸ ︷︷ ︸

A

+
∫
F̄ (y) γ2

φ(y) g(y) dy︸ ︷︷ ︸
B

+ Eθ

[
Γ2

φ(Z)
]

︸ ︷︷ ︸
C

− 2Eθ [φ(X) Γφ(X)]︸ ︷︷ ︸
D

− 2Eθ

[
F̄ (Y ) γφ(Y ) Γφ(Y )

]
︸ ︷︷ ︸

E

where,

γφ(y) = Sφ(y)
H̄(y)

= 1
H̄(y)

·
∫

I(t > y)φ(t) f(t) dt, H̄(y) = F̄ (y) Ḡ(y),

Sφ(y) =
∫

I(t > y)φ(t) dF (t) =
∫

I(t > y)φ(t) f(t)dt

Γφ(Z) =
∫∫

I(z > s) · I(t > s)φ(t) f(t)
H̄(s) Ḡ(s)

·g(s) ds dt =
∫ I(z > s)Sφ(s)

H̄(s) Ḡ(s)
· g(s) ds, H̄(s) = F̄ (s) Ḡ(s)

Term-wise, we have that:

A: E
[
φ2(X)
Ḡ(X)

]
=
∫
φ2(x) · f(x)

Ḡ(x)
dx

B:
∫
F̄ (y) γ2

φ(y) g(y) dy =
∫
F̄ (y) ·

S2
φ(y)

H̄2(y)
· g(y) dy =

∫
S2

φ(y)
F̄ (y) Ḡ2(y)

· g(y) dy

C: E
[
Γ2

φ(Z)
]

= E
[∫∫

I(Z > s) · Sφ(s)
H̄(s) Ḡ(s)

· I(Z > w) · Sφ(w)
H̄(w) Ḡ(w)

· g(s) g(w) ds dw
]

=
∫∫

H̄(s ∨ w)
H̄(s) H̄(w)

· Sφ(s)
Ḡ(s)

· Sφ(w)
Ḡ(w)

· g(s) g(w) ds dw

=
∫∫ 1

H̄(s)
· Sφ(s)
Ḡ(s)

· Sφ(w)
Ḡ(w)

· g(s) g(w) ds dw +∫∫ 1
H̄(w)

· Sφ(s)
Ḡ(s)

· Sφ(w)
Ḡ(w)

· g(s) g(w) ds dw
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D: 2E [φ(X) Γφ(X)] = 2
∫∫

φ(x) I(x > s) · Sφ(s)
H̄(s) Ḡ(s)

· g(s) f(x) ds dx

= 2
∫

S2
φ(s)

H̄(s) Ḡ(s)
· g(s) ds

= 2
∫

S2
φ(s)

F̄ (s) Ḡ2(s)
· g(s) ds

E: 2E
[
F̄ (Y ) γφ(Y ) Γφ(Y )

]
= 2

∫∫
F̄ (y) · Sφ(y)

H̄(y)
I(y > s) · Sφ(s)

H̄(s) Ḡ(s)
· g(y) g(s) dy ds

= 2
∫∫

Sφ(y)
Ḡ(y)

· I(y > s) · Sφ(s)
Ḡ(s)

· g(y) g(s) dy ds

A + B + C − D − E = E
(
φ2(X)
Ḡ(X)

)
− E

(
F̄ (Y )γ2

φ(Y )
)

=
∫
φ2(x) · f(x)

Ḡ(x)
dx−

∫
S2

φ(y)
F̄ (y) Ḡ2(y)

· g(y) dy

Sφ(y) =
∫

I(t > y) d

dθ
ln f(t | θ) · f(t | θ) dt =

∫
I(t > y)

d f(t|θ)
dθ

f(t | θ) f(t | θ) dt

=⇒ Sφ(y) = d

dθ
F̄ (y | θ)

∴ σ2(θ) =
∫ (

d

dθ
ln f(x | θ)

)2 f(x | θ)
Ḡ(x)

dx−
∫ (

d

dθ
F̄ (y | θ)

)2

F̄ (y | θ)Ḡ2(y)
g(y)dy (2.6)

As mentioned in Section 2.2 above, desirable results are obtained if V arM (θ) ≤ V arP (θ). Therefore,

we can find conditions on which this is attained by finding parameter values at which

σ2(θ)
I2(θ) ≤ 1

IRC(θ) (2.7)

⇐⇒ σ2(θ)
I(θ) ≤ I(θ)

IRC(θ)

⇐⇒ σ2(θ)
I(θ) ≤ 1

IRC(θ)/I(θ)

Note that for uncensored data Ḡ(x) = 1 and g(x) = 0 for all x ≥ 0, hence σ2(θ) = I(θ) = IRC(θ).
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V arM (θ) ≤ V arP (θ) resolves to:

1
I(θ)

∫ (
d

dθ
ln f(x | θ)

)2 1
Ḡ(x)

f(x | θ) dx− 1
I(θ)

∫ (
d

dθ
F̄ (y | θ)

)2

F̄ (y | θ)
1

Ḡ2(y)
g(y)dy

≤ 1

1
I(θ)

∫ (
d

dθ
ln f(x | θ)

)2
Ḡ(x)f(x | θ) dx+ 1

I(θ)

∫ (
d

dθ
F̄ (y | θ)

)2

F̄ (y | θ)
g(y)dy

2.3 Exponentially Distributed Event

Generally, we select continuous distributions for both the event variable X and the censoring vari-

able Y such that integrability conditions are satisifed, particularly for the variance of the modified

estimator. Therefore, in the case where X ∼ Exp(1/θ), as in other cases we consider, we ensure

that σ2(θ) remains finite by choosing Y such that the survival function Ḡ(x) has a heavier tail than

f(x | θ), and such that the ratio f(x | θ)
Ḡ(x)

remains finite.

We begin by computing the theoretical variances, followed by the estimation of the maximum

likelihood estimators (MLEs).

f(x | θ) = θe−θx, x > 0, θ > 0

ln f(x | θ) = ln θ − θx

d

dθ
ln f(x | θ) = 1

θ
− x

F̄ (x | θ) = e−θx, θ > 0

ln F̄ (x | θ) = −θx
d

dθ
ln F̄ (x | θ) = −x

2.3.1 Exponentially Distributed Censoring

Under f(x | θ) = θe−θx, θ > 0, we take g(y) = λe−λy, λ > 0 and Ḡ(y) = e−λy.

Computing all relevant integrals including σ2(θ), IRC(θ), and I2(θ) from the simplified expressions

above, we have
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I(θ) = −E
[
d2

dθ2 ln f(X | θ)
]

= −E
[
− 1
θ2

]
= 1
θ2

=⇒ I2(θ) = 1
θ4

σ2(θ) = θ

∫ ∞

0

(1
θ

− x

)2
e(λ−θ)x dx− λ

∫ ∞

0
y2e(λ−θ)y dy

= 1
θ

∫ ∞

0
e−(θ−λ)xdx− 2

∫ ∞

0
xe−(θ−λ)xdx+ θ

∫ ∞

0
x2e−(θ−λ)xdx− λ

∫ ∞

0
y2e−(θ−λ)ydy

= 1
θ(θ − λ) − 2

(θ − λ)2 + 2θ
(θ − λ)3 − 2λ

(θ − λ)3

σ2(θ) = 1
θ(θ − λ) , θ > λ

Hence,

σ2(θ)
I2(θ) =

1
θ(θ − λ)

1
θ4

σ2(θ)
I2(θ) = θ3

(θ − λ)

IRC(θ) = θ

∫ ∞

0

(1
θ

− x

)2
e−(θ+λ)x dx+ λ

∫ ∞

0
y2e−(θ+λ)y dy

= 1
θ

∫ ∞

0
e−(θ+λ)xdx− 2

∫ ∞

0
xe−(θ+λ)xdx+ θ

∫ ∞

0
x2e−(θ+λ)xdx− λ

∫ ∞

0
y2e−(θ+λ)ydy

= 1
θ(θ + λ) − 2

(θ + λ)2 + 2θ
(θ + λ)3 − 2λ

(θ + λ)3

IRC(θ) = 1
θ(θ + λ)

Notice that as λ → 0, V arM (θ) ≈ V arP (θ), as σ2(θ) → I(θ), and IRC(θ) → I(θ). Additionally, we

find that Equation (2.7) holds when

σ2(θ)
I2(θ) ≤ 1

IRC(θ)
θ3

(θ − λ) ≤ θ(θ + λ)
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θ3 ≤ θ(θ + λ)(θ − λ)

θ3 ≤ θ(θ2 − λ2)

θ3 ≤ θ3 − θλ2

θλ2 ≤ 0

λ ≤ 0 (2.8)

Since λ > 0, we conclude that V arM (θ) ≰ V arP (θ), and that the modified estimator attains

minimal variance as the censoring rate approaches 0. The censoring rate is:

P(X > Y ) = λ

∫ ∞

0
e−(θ+λ)y dy = λ

e−(θ+λ)y

−(θ + λ)

∣∣∣∣∞
0

= λ

θ + λ

Computationally, we examine 0 < θ < 20, with the condition θ > λ to identify regions where com-

parable results are observed for λ ∈ {0.5, 1, 2, 3}. The corresponding results are presented below.

While these graphs support the theoretical results, they also illustrate how close the variances of

the estimators are, particularly as λ → 0. Similarly, as λ → ∞, the difference in variance increases,

with a more pronounced gap observed at θ → 0. The graphs of the MSEs obtained from the

simulated data further confirm these results (see Figure 2.3). These observations were made at a

decreasing censoring rate.

Figure 2.1: Variance of Estimators for X ∼ Exp(1/θ), Y ∼ Exp(1/λ)
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For all values of λ, the random censoring rate steadily decreases as θ increases, from approximately

0.5 to 0. As P(δ = 0) → ∞, the variances of both estimators also approach zero. Throughout

this range, the variance of the modified estimator is slightly higher than that of the parametric

estimator, as shown in Figure 2.2. Notably, the modified estimator exhibits a sharp increase in

variance toward high censoring rates. This behavior corresponds to the wider variance gap observed

as θ → 0 in Figure 2.1.

Figure 2.2: Comparison by Censoring Rates for X ∼ Exp(1/θ), Y ∼ Exp(1/λ)

Additionally, we simulated data from the respective distributions and computed the MLEs of the

estimators as follows:

Parametric MLE

n∑
i=1

[
δi

(1
θ

− zi

)
+ (1 − δi)(−zi)

]
= 0

n∑
i=1

[
δi

θ
− δizi − zi(1 − δi)

]
= 0

1
θ

n∑
i=1

δi −
n∑

i=1
zi = 0

∴ θ̂P =
∑n

i=1 δi∑n
i=1 zi

Semi-parametric MLE

n∑
i=1

Win

(1
θ

− zi

)
= 0

n∑
i=1

Win
1
θ

−
n∑

i=1
Winzi = 0

1
θ

n∑
i=1

Win =
n∑

i=1
Winzi

∴ θ̂M =
∑n

i=1Win∑n
i=1Winzi

The mean squared errors of the MLEs were thus computed and compared in Figure 2.3.
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Figure 2.3: Mean Squared Error Comparison when X ∼ Exp(1/θ), Y ∼ Exp(1/λ)

Similar to the graphs from the theoretical computations, the two estimators are comparable as

λ → 0.

2.3.2 Pareto Distributed Censoring

We also consider Y to have a Pareto distribution with shape parameter = λ and scale = 1, i.e.

g(y) = λ

(1 + y)λ+1 , λ > 0 and Ḡ(y) = 1
(1 + y)λ

. The theoretical variances are computed as

σ2(θ) =
∫ ∞

0

(1
θ

− x

)2
θe−θx(1 + x)λ dx−

∫ ∞

0
y2e−θy λ(1 + y)λ−1 dy

= θ

( 1
θ3 + λ

θ3

∫ ∞

0
e−θx(1 + x)λ−1dx+ λ

θ

∫ ∞

0
x2e−θx(1 + x)λ−1dx

)
−

λ

∫ ∞

0
y2e−θy(1 + y)λ−1dy

= 1
θ2

(
1 + λ

∫ ∞

0
e−θx(1 + x)λ−1dx

)
, let u = 1 + x, x = u− 1, du = dx

= 1
θ2

(
1 + λ

∫ ∞

1
e−θ(u−1)uλ−1du

)
= 1
θ2

(
1 + λeθ

∫ ∞

1
e−θuuλ−1du

)
let t = θu, dt = θdu

= 1
θ2

(
1 + λeθ

∫ ∞

θ
e−t · t

θ

λ−1dt

θ

)
= 1
θ2

(
1 + λeθ

θλ

∫ ∞

θ
e−t · tλ−1dt

)

σ2(θ) = 1
θ2

(
1 + λeθ

θλ
Γ(λ, θ)

)
, where Γ(λ, θ) is the upper incomplete gamma function.

i.e.

Γ(λ, θ) =
∫ ∞

θ
tλ−1e−tdt .

23



For the modified estimator,

σ2(θ)
I2(θ) =

1
θ2

(
1 + λeθ

θλ
Γ(λ, θ)

)
1
θ4

= θ2
(

1 + λeθ

θλ
Γ(λ, θ)

)

For the parametric estimator, the theoretical variance is the reciprocal of IRC(θ):

IRC(θ) =
∫ ∞

0

(1
θ

− x

)2 θe−θx

(1 + x)λ
dx+

∫ ∞

0
y2e−θy λ

(1 + y)λ+1 dy

= 1
θ2 − λ

θ2

∫ ∞

0
e−θx(1 + x)−(λ+1)dx

with random censoring rate,

P(X > Y ) =
∫ ∞

0
e−θy λ

(1 + y)λ+1 dy = λ

∫ ∞

0
e−θy(1 + y)−(λ+1)dy

These integrals are solved computationally using R. The corresponding results from this case are

included below.

We find that the theoretical variances of the two estimators are fairly similar, especially as λ → 0.

However, we do not find intervals of θ where V arM (θ) ≤ V arP (θ). Additionally, we noticed that

P(δ = 0) → 0 as θ → ∞ and as P(δ = 0) → ∞, variances also approach 0; Figure 2.5 shows that the

variance of the modified estimator is only marginally higher than that of the parametric estimator.

Figure 2.4: Variance of Estimators for X ∼ Exp(1/θ), Y ∼ Pareto(λ, 1)
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Figure 2.5: Comparison by Censoring Rates for X ∼ Exp(1/θ), Y ∼ Pareto(λ, 1)

The comparability of the estimators as λ → 0, as shown in Figure 2.4, is confirmed by the simulated

data results with the MLEs (Figure 2.6).

Figure 2.6: Mean Squared Error Comparison when X ∼ Exp(1/θ), Y ∼ Pareto(λ, 1)

Generally for X ∼ Exponential(1/θ), we saw that V arM (θ) ≈ V arP (θ) for small λ, and despite

the gap in variance at θ → 0, the estimators behave more closely as θ → ∞.

2.4 Weibull Distributed Event

We also consider the event variable to have a Weibull distribution with scale = θ, and shape = 2.

Some distributions of Y include Weibull(θ, 2), and Pareto(λ, 1). Let

f(x | θ) = 2θxe−θx2
, x > 0, θ > 0
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ln f(x | θ) = ln 2 + ln θ + ln x− θx2

d

dθ
ln f(x | θ) = 1

θ
− x2

F̄ (x | θ) = e−θx2
, x > 0

ln F̄ (x | θ) = −θx2

d

dθ
ln F̄ (x | θ) = −x2

2.4.1 Weibull Distributed Censoring

Under f(x | θ) = 2θxe−θx2
, θ > 0, we consider g(y) = 2λye−λy2

, λ > 0 and Ḡ(y) = e−λy2 , which is

also the specific case of the shape parameter, p = 2. However, to show that ∀p the variances do not

change, we will solve the theoretical variances for a general p. These results support the findings

for X ∼ Exp(1/θ), Y ∼ Exp(1/θ), which is the case when p = 1. Let f(x | θ) = pθxp−1e−θxp and

g(y) = pλyp−1e−λyp .

σ2(θ) = pθ

∫ ∞

0

(1
θ

− xp
)2
xp−1e(λ−θ)xp

dx− pλ

∫ ∞

0
y3p−1e(λ−θ)yp

dy

= pθ

( 1
θ2

∫ ∞

0
xp−1e−(θ−λ)xp

dx− 2
θ

∫ ∞

0
x2p−1e−(θ−λ)xp +

∫ ∞

0
x3p−1e−(θ−λ)xp

)
−

pλ

∫ ∞

0
y3p−1e−(θ−λ)yp

dy

= pθ

(
θ − λ

θ2

∫ ∞

0
x2p−1e−(θ−λ)xp

dx− 2
θ

∫ ∞

0
x2p−1e−(θ−λ)xp

dx+
∫ ∞

0
x3p−1e−(θ−λ)xp

)
−

pλ

∫ ∞

0
y3p−1e−(θ−λ)yp

dy

= pθ

(
−(θ + λ)(θ − λ)

2θ2

∫ ∞

0
x3p−1e−(θ−λ)xp

dx+
∫ ∞

0
x3p−1e−(θ−λ)xp

)
−

pλ

∫ ∞

0
y3p−1e−(θ−λ)yp

dy

= pθ
(
θ2 + λ2)
2θ2

∫ ∞

0
x3p−1e−(θ−λ)xp − pλ

∫ ∞

0
y3p−1e−(θ−λ)yp

dy

= p(θ − λ)2

2θ

∫ ∞

0
x3p−1e−(θ−λ)xp

dx

Let u = (θ − λ)xp, x =
(

u

θ − λ

) 1
p

, du = p(θ − λ)xp−1dx

= p(θ − λ)2

2θ

∫ ∞

0

(
u

θ − λ

) 3p−1
p e−u du

p(θ − λ)
1
p u

p−1
p
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= p(θ − λ)2

2θ · 1

(θ − λ)
3p−1

p

· 1
p(θ − λ)

∫ ∞

0
u

3p−1
p · 1

u
p−1

p

e−u du

= p(θ − λ)2

2θ · 1

p(θ − λ)
1
p

+ 3p−1
p

∫ ∞

0
u
( 3p−1

p
− p−1

p

)
e−u du = p(θ − λ)2

2θ · p(θ − λ)3

∫ ∞

0
u2 e−u du

= Γ(3)
2θ (θ − λ) = 1

θ(θ − λ)

σ2(θ) = 1
θ(θ − λ) , θ > λ

Hence,

σ2(θ)
I2(θ) =

1
θ(θ − λ)

1
θ4

σ2(θ)
I2(θ) = θ3

(θ − λ)

IRC(θ) = pθ

∫ ∞

0

(1
θ

− xp
)2
xp−1e−(θ+λ)xp

dx+ pλ

∫ ∞

0
y3p−1e−(θ+λ)yp

dy

= pθ · θ
2 + λ2

2θ2

∫ ∞

0
x3p−1e−(θ+λ)xp

dx+ pλ

∫ ∞

0
y3p−1e−(θ+λ)yp

dy

=
(
p (θ2 + λ2)

2θ + pλ

)∫ ∞

0
x3p−1e−(θ+λ)xp

dx

= p(θ + λ)2

2θ

∫ ∞

0
x3p−1e−(θ+λ)xp

dx

= p(θ + λ)2

2θ · 1

p(θ + λ)
1
p (θ + λ)

3p−1
p

∫ ∞

0
u2e−u du

= p(θ + λ)2

2θ · Γ(3)
p(θ + λ)3

= p(θ + λ)2

2θ · 2
p(θ + λ)3

IRC(θ) = 1
θ(θ + λ)

=⇒ I−1
RC(θ) = θ(θ + λ)

Since λ > 0, we conclude that V arM (θ) ≰ V arP (θ), see breakdown in Equation 2.8. However,

we remark that comparable results are obtained from the computational analysis. We examine

0 < θ < 20, θ > λ for λ ∈ {0.5, 1, 2, 3}.
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Figure 2.7: Variance of Estimators for X ∼ Weibull(θ, 2), Y ∼ Weibull(λ, 2)

The same observations made for X ∼ Exp(1/θ), Y ∼ Exp(1/θ) are replicated here with random

censoring rate

P(X > Y ) = pλ

∫ ∞

0
yp−1e−(θ+λ)yp

dy = pλ
1

p(θ + λ)
p−1

p
+ 1

p

∫ ∞

0
e−u du = λ

θ + λ

Figure 2.8: Comparison with Censoring Rates for X ∼ Weibull(θ, 2), Y ∼ Weibull(λ, 2)

Censoring rates increase with decreasing variance, with variance of the modified estimator being

slighly greater than the parametric estimator. The MLEs used to compute the mean squared errors

from simulated data are outlined as follows:
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Parametric MLE

n∑
i=1

[
δi

(1
θ

− z2
i

)
+ (1 − δi)(−z2

i )
]

= 0

n∑
i=1

[
δi

θ
− δiz

2
i − z2

i (1 − δi)
]

= 0

1
θ

n∑
i=1

δi −
n∑

i=1
z2

i = 0

∴ θ̂P =
∑n

i=1 δi∑n
i=1 z

2
i

Semi-parametric MLE

n∑
i=1

Win

(1
θ

− z2
i

)
= 0

n∑
i=1

Win
1
θ

−
n∑

i=1
Winz

2
i = 0

1
θ

n∑
i=1

Win =
n∑

i=1
Winz

2
i

∴ θ̂M =
∑n

i=1Win∑n
i=1Winz2

i

See Balakrishnan and Kateri (2008). The mean squared errors of the MLEs were thus computed

and compared in Figure 2.9.

Figure 2.9: Mean Squared Error Comparison when X ∼ Weibull(θ, 2), Y ∼ Weibull(λ, 2)

The estimators are comparable as λ → 0. These results confirm the theoretical computations and

Figure 2.7.

2.4.2 Pareto Distributed Censoring

Considering Y ∼ Pareto(λ, 1), g(y) = λ

(1 + y)λ+1 and Ḡ(y) = 1
(1 + y)λ

.

The relevant integrals are evaluated computationally. The outcomes obtained are included below.
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σ2(θ) = 2θ
∫ ∞

0

(1
θ

− x2
)2
xe−θx2(1 + x)λ dx− λ

∫ ∞

0
y4e−θy2 (1 + y)λ−1 dy

IRC(θ) = 2θ
∫ ∞

0

(1
θ

− x2
)2 xe−θx2

(1 + x)λ
dx+ λ

∫ ∞

0

y4e−θy2

(1 + y)λ+1 dy

P[X > Y ] =
∫ ∞

0
e−θy2 λ

(1 + y)λ+1 dy

Whilst V arM (θ) ≰ V arP (θ), we observe that V arM (θ) ≈ V arP (θ) particularly as λ → 0, as shown

in Figure 2.10. As λ → ∞, the variance gap between the two estimators widen, with the modified

estimator’s variance being marginally higher. With respect to the random censoring rate, little to

no difference in variance is detected for small λ. Furthermore, P(δ = 0) → 0 as θ → ∞, and as

P(δ = 0) → ∞, the variances of both estimators approach zero as well (see Figure 2.11).

Figure 2.10: Variance of Estimators for X ∼ Weibull(θ, 2), Y ∼ Pareto(λ, 1)

Figure 2.11: Comparison by Censoring Rates for X ∼ Weibull(θ, 2), Y ∼ Pareto(λ, 1)

The difference in the MSEs of the estimators is negligible for small values of λ. Contrary to the case

where X ∼ Exponential(1/θ) and Y ∼ Pareto(λ, 1), as θ → ∞, very little difference is observed
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in the MSEs. These results (Figure 2.12) further confirm the comparability of the estimators as

λ → 0, consistent with the observations in Figure 2.10.

Figure 2.12: Mean Squared Error Comparison when X ∼ Weibull(θ, 2), Y ∼ Pareto(λ, 1)

For X ∼ Weibull(θ, p = 2) and Y ∼ Weibull(θ, p = 2), we observed a strong similarity with the case

X ∼ Exponential(1/θ) and Y ∼ Exponential(1/θ), as the latter corresponds to the special case

where p = 1. Consequently, similar patterns and observations were found in both scenarios. More

desirable results were obtained when X ∼ Weibull(θ, p = 2) and Y ∼ Pareto(λ, 1), compared to

the combination X ∼ Exponential(1/θ) and Y ∼ Pareto(λ, 1). In this case, comparability between

the estimators was evident even at λ = 1.

2.5 Beta Distributed Event

Fixing one shape parameter, we consider X ∼ Beta(α = θ, β = 1) which allows us to explore

several choices for the distribution of Y specifically at 0 ≤ y ≤ 1. Let

f(x | θ) = θxθ−1, 0 ≤ x ≤ 1, θ > 0

ln f(x | θ) = ln θ + (θ − 1) ln x
d

dθ
ln f(x | θ) = 1

θ
+ ln x

F̄ (x | θ) = 1 − xθ, 0 ≤ x ≤ 1

ln F̄ (x | θ) = ln(1 − xθ)
d

dθ
ln F̄ (x | θ) = −xθ ln x

1 − xθ
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2.5.1 Exponentially Distributed Censoring

Under f(x | θ) = θxθ−1, 0 ≤ x ≤ 1, we take g(y) = λe−λy, λ > 0 and Ḡ(y) = e−λy .

σ2(θ) = θ

∫ 1

0

(1
θ

+ ln x
)2
xθ−1eλx dx− λ

∫ 1

0

y2θ ln2 y · eλy

1 − yθ
dy

IRC(θ) = θ

∫ 1

0

(1
θ

+ ln x
)2
xθ−1e−λx dx+ λ

∫ 1

0

y2θ ln2 y · e−λy

1 − yθ
dy

I(θ) = 1
θ2 , =⇒ I2(θ) = 1

θ4

P[X > Y ] = λ

∫ 1

0
(1 − yθ)e−λy dy

These integrals are evaluated computationally.

Figure 2.13: Variance of Estimators for X ∼ Beta(θ, 1), Y ∼ Exp(1/λ)

Figure 2.14: Comparison by Censoring Rates for X ∼ Beta(θ, 1), Y ∼ Exp(1/λ)

The modified and parametric estimators have similar variances especially when λ → 0. In contrast

to the cases where X follows an exponential or Weibull distribution, P(δ = 0) exhibits a positive
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relationship with θ. Likewise, the variances increase with increasing censoring rates. When λ ≤ 1,

there is no significant difference between the variances as P(δ = 0) → ∞. However, for larger values

of λ, the modified estimator exhibits moderately higher variances.

Computing the MLE of X ∼ Beta(θ, 1) requires numerical methods, especially for the parametric

estimator owing to the form of d

dθ
ln F̄ (x | θ).

Parametric MLE

n∑
i=1

(
δi
d

dθ
ln f(zi | θ) + (1 − δi)

d

dθ
ln F̄ (zi | θ)

)
= 0

n∑
i=1

[
δi

(1
θ

+ ln zi

)
+ (1 − δi)

(
−zθ

i ln zi

1 − zθ
i

)]
= 0

n∑
i=1

(
δi

θ
+ δi ln zi − zθ

i ln zi

1 − zθ
i

+ δiz
θ
i ln zi

1 − zθ
i

)
= 0

No explicit solution exists for θ̂P .

Semi-parametric MLE

n∑
i=1

Win

(1
θ

+ ln zi

)
= 0

n∑
i=1

Win
1
θ

+
n∑

i=1
Win ln zi = 0

1
θ

n∑
i=1

Win = −
n∑

i=1
Win ln zi

∴ θ̂M = −
∑n

i=1Win∑n
i=1Win ln zi

The inbuilt R uniroot function was used to find the roots of the score function where explicit

expressions were not found. On examining the mean squared errors, the estimators were highly

comparable as λ → 0. See Figure 2.15.

Figure 2.15: Mean Squared Error Comparison when for X ∼ Beta(θ, 1), Y ∼ Exp(1/λ)

33



2.5.2 Weibull Distributed Censoring

Taking g(y) = 2λye−λy2 and Ḡ(y) = e−λy2 :

σ2(θ) = θ

∫ 1

0

(1
θ

+ ln x
)2
xθ−1eλx2

dx− 2λ
∫ 1

0

y2θ+1 ln2 y · eλy2

1 − yθ
dy

IRC(θ) = θ

∫ 1

0

(1
θ

+ ln x
)2
xθ−1e−λx2

dx+ 2λ
∫ 1

0

y2θ+1 ln2 y · e−λy2

1 − yθ
dy

P[X > Y ] = 2λ
∫ 1

0
(1 − yθ)y e−λy2

dy

Figure 2.16: Variance of Estimators for X ∼ Beta(θ, 1), Y ∼ Weibull(λ, 2)

Figure 2.17: Comparison by Censoring Rates for X ∼ Beta(θ, 1), Y ∼ Weibull(λ, 2)

Figures 2.16 – 2.18 display similar results to the previous scenarios, where the estimators are

comparable at small values of λ, and random censoring rate increases with increasing θ. The MSEs

further corroborate these findings.
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Figure 2.18: Mean Squared Error Comparison when X ∼ Beta(θ, 1), Y ∼ Weibull(λ, 2)

2.5.3 Pareto Distributed Censoring

Finally for X ∼ Beta(θ, 1), we let g(y) = λ

(1 + y)λ+1 and Ḡ(y) = 1
(1 + y)λ

.

σ2(θ) = θ

∫ 1

0

(1
θ

+ ln x
)2
xθ−1(1 + x)λ dx− λ

∫ 1

0

y2θ ln2 y

1 − yθ
(1 + y)λ−1 dy

IRC(θ) = θ

∫ 1

0

(1
θ

+ ln x
)2 xθ−1

(1 + x)λ
dx+ λ

∫ 1

0

y2θ ln2 y

(1 − yθ)(1 + y)λ+1 dy

P[X > Y ] = λ

∫ 1

0

(1 − yθ)
(1 + y)λ+1 dy

See the results from this distribution appended below.

Figure 2.19: Variance of Estimators for X ∼ Beta(θ, 1), Y ∼ Pareto(λ, 1)

This case yields the most desirable results for the modified estimator so far. No significant differ-

ences are noticed between the estimators, except at large values of θ, where the modified estimator
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exhibits a moderately higher variance. As shown in Figure 2.21, the MSE comparison highlights

the strong comparability of the estimators. Moreover, the curves in Figure 2.19, representing the

theoretical variances, are nearly indistinguishable.

Figure 2.20: Comparison by Censoring Rates for X ∼ Beta(θ, 1), Y ∼ Pareto(λ, 1)

Figure 2.21: Mean Squared Error Comparison when X ∼ Beta(θ, 1), Y ∼ Pareto(λ, 1)

The two MLEs yielded identical results from the simulated data. Consequently, there was little to no

distinction in the curves of the estimators, which explains the absence of the red curve corresponding

to the modified estimator in the graph. Given the outcome of the theoretical computations, these

results are entirely consistent and expected.

2.6 Summary

In this chapter, we examined three continuous distributions for the event variable, and some distri-

butions for the censoring variable. Integrability and finiteness were key in making suitable choices
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for Y . Therefore, combinations such as (X ∼ Exp(1/θ), Y ∼ Weibull(θ, 2)), (X ∼ Beta(θ, 1), Y ∼

Uniform(0, 1)) and (X ∼ Weibull(θ, p), Y ∼ Weibull(θ, q), p ̸= q) were excluded. In cases where

both X and Y followed the same distribution, as in Sections 2.3.1 and 2.4.1, finiteness was ensured

by choosing the same shape parameters where applicable, and by fixing the scale parameters such

that θ > λ. Although in these cases V arM (θ) ≰ V arP (θ), the estimators exhibited similar behavior

across the range of θ for small values of λ. Overall, the estimates derived from the compact and

full parametric likelihoods were found to be comparable for small λ, typically λ ≤ 1. A higher

comparability was also observed at small θ values.

For X ∼ Exponential and X ∼ Weibull, the random censoring rates were negatively correlated

with the parameter being estimated. In contrast, for X ∼ Beta(θ, 1), the random censoring rate

increased as θ → ∞. Moreover, as P(δ = 0) → ∞, the difference in variances between the two

estimators became negligible. In a few instances, the modified estimator exhibited a slightly higher

variance with increasing censoring rate. The most notable results in the single-parameter case were

observed in the case of X ∼ Beta(θ, 1) and Y ∼ Pareto(λ, 1), discussed in Section 2.5.3, where

no significant distinction was seen between the estimated variances across censoring rates, and the

mean squared errors of the two maximum likelihood estimators were identical.
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Chapter 3

Multiparameter Case

In the previous chapter, we discussed and illustrated the performance of the full parametric and

modified estimators for the special case of the observed variable X which depends only on a single

parameter. This chapter extends the discussion to consider observed distributions with mutliple

parameters to be estimated. We begin the chapter with an introduction to maximum likelihood

estimation in the absence of random censoring.

Let X1, . . . , Xn be a random sample from uncensored data with common pdf or pmf f(x | θ), where

θ = (θ1, . . . , θk)⊤, θ ∈ Θ ⊆ Rk, the parameter space. The likelihood function and its logarithm are

defined by

L(θ | X1, . . . , Xn) =
n∏

i=1
f(Xi | θ)

ln L(θ | X1, . . . , Xn) =
n∑

i=1
ln f(Xi | θ)

The regularity conditions assumed for this theory are detailed in Appendix (A). The maximum

likelihood estimator of θ, θ̂ is the value of θ that miximizes the likelihood or log-likelihood function.

Potential candidates for the MLE are values of (θ1, . . . , θn) obtained by solving

∂

∂θj
ln L(θ | X1, . . . , Xn) = 0, 1 ≤ j ≤ k (3.1)

The solutions to Equation 3.1 are potential maxima because one needs to verify if they are indeed

the maxima. Another approach to determining the MLE is the direct maximization method. This
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method involves finding a global upper bound on the likelihood function and then proving that

there is a unique point for which the upper bound is attained, see Casella and Berger (2024).

In the single parameter case, we established that the expectation of the score function is zero, and

that the negative expectation of its derivative gives the Fisher Information. In the multiparameter

case, the Fisher Information becomes a matrix with element Iij(θ) given below, see Lehmann and

Casella (2006).

Iij(θ) = E
(
∂

∂θi
ln f(X | θ) · ∂

∂θj
ln f(X | θ)

)
, 1 ≤ i, j ≤ k (3.2)

An alternative and simpler expression for the Information may be obtained using the expression:

Iij(θ) = −E
(
∂2 ln f(X | θ)

∂θi∂θj

)

We consider the specific case where k = 2, so that θ = (θ1, θ2)⊤. The Fisher Information matrix is

I(θ) =


−E

(
∂2 ln f(X|θ)

∂θ2
1

)
−E

(
∂2 ln f(X|θ)

∂θ1∂θ2

)

−E
(

∂2 ln f(X|θ)
∂θ2∂θ1

)
−E

(
∂2 ln f(X|θ)

∂θ2
2

)


Performing a multivariate Taylor series expansion of the score function S(θ | X), around the true

parameter θl, we have

0 = ∂

∂θj

1
n

n∑
i=1

ln f(Xi | θ) +
k∑

l=1
(θ̂l − θl)

∂2

∂θl∂θj

1
n

(
n∑

i=1
ln f(Xi | θ)

)
︸ ︷︷ ︸

B̂(θ)

, 1 ≤ j ≤ k

Let B̂(θ) be the matrix identified in the above equation. Then,

B̂(θ) ≈ − I(θ), since I(θ) = lim
n→∞

− ∂2

∂θl∂θj

1
n

(
n∑

i=1
ln f(Xi | θ)

)
by law of large numbers.

0 ≈ S(θ | X) + B̂(θ) (θ̂l − θl), where S(θ | X) =
[
∂

∂θj

n∑
i=1

ln f(Xi | θ), 1 ≤ j ≤ k

]
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is the score vector, as in Equation (3.1). This implies,

− B̂(θ) (θ̂l − θl) ≈ S(θ | X)

I(θ) (θ̂l − θl) ≈ S(θ | X)

Therefore, the limiting distribution of the θ̂ when k = 2 is:

√
n I(θ)

θ̂1 − θ1

θ̂2 − θ2

 −→ N2 (0, I(θ))

√
n

θ̂1 − θ1

θ̂2 − θ2

 −→ N2


0

0

 , I−1(θ) I(θ) I−1(θ)



∴
√
n

θ̂1 − θ1

θ̂2 − θ2

 −→ N2


0

0

 , I−1(θ)


See Pawitan (2001) and Bickel and Doksum (2015) for a comprehensive overview of the limiting

distribution.

3.1 Multivariate Normal Distribution and Confidence Ellipsoid

To assess the performance of the above estimators in terms of their limiting Normal distribution,

we make use of so-called confidence ellipsoids. Let X = (X1, . . . , Xk) have a k-variate Normal

distribution, Nk(µ,Σ). Now, define Z by

Z = Σ−1/2(X − µ)

where Σ−1/2 is the square-root matrix of Σ, i.e., Σ−1/2Σ−1/2 = Σ. Then Z has Nk(0, Ik) distribu-

tion, where Ik is the k × k identity matrix. Let Y = (X − µ)⊤ Σ−1 (X − µ), then from the above

Y = Z⊤ Σ1/2Σ−1Σ1/2Z = Z⊤Z =
k∑

i=1
Z2

i

Since Z1, . . . , Zk are iid N (0, 1), Y has χ2 distribution with k degrees of freedom, see Section B.4

– B.7 of Bickel and Doksum (2015). Hence we have
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Theorem 3.1. Suppose X has a Nk(µ,Σ) distribution, where Σ is positive definite. Then the

random variable Y = (X − µ)⊤ Σ−1 (X − µ) has χ2(k) distribution.

See Section 3.5 of Hogg et al. (2018). Since the limiting ditribution of θ̂ (the MLE of θ) is N2, we

have that X⊤Σ−1X ∼ χ2
2 where X =

√
n(θ̂ − θ). A 100(1 − α)% confidence region for θ is given

by

X⊤Σ−1X ≤ χ2
2,α

where χ2
2,α is the upper α quantile of the χ2

2 distribution, that is P
(
χ2

2 > χ2
2,α

)
= α. This confidence

region will be the interior of the ellipse:

x2
1 Σ−1

11 + x2
2 Σ−1

22 + 2 Σ−1
12 x1x2 ≤ χ2

2,α

where we denote the entries of Σ−1 by Σ−1
ij , 1 ≤ i, j ≤ 2. Here, we consider the significance level

α = 0.01, and 0.05. Note that the boundary of such an ellipse is also a constant-density contour of

the corresponding bi-variate Normal density:

f(x) = 1
2π|Σ|

exp
(

−1
2(x − µ)⊤ Σ−1 (x − µ)

)
, for x, µ ∈ R2

where |Σ| = det Σ = σ1σ2
√

1 − ρ2. In this chapter, we propose to use this confidence ellipsoid as a

graphical illustration of the performance of θ̂.

From Bickel and Doksum (2015), when k = 2,

x1

x2

 ∼ N


µ1

µ2

 ,
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2




Thus, the inverse of the variance-covariance matrix

Σ−1 = 1
σ2

1σ
2
2(1 − ρ2)

 σ2
2 −ρσ1σ2

−ρσ1σ2 σ2
1


ρ is the correlation between x1 and x2. If x1 and x2 are independent then ρ = 0. If ρ = 0, and

σ2
1 = σ2

2, the eigenvalues would also be equal, and a circle will be obtained instead of an ellipse.

If ρ > 0, then the major axis of the ellipse will have a positive slope. Likewise, if ρ < 0, then the

major axis will have a negative slope. Further, the lengths of the two axes are proportional to
√
λj ,

41



where λj , j = 1, 2, are the eigenvalues of Σ. Note that,

λ1 + λ2 = σ2
1 + σ2

2.

3.1.1 Parametric Estimator

In the multiparameter case under random censoring, the score function is given as a vector. Specif-

ically for k = 2,

S(θ | δ, Z) =

 ∂
∂θ1

[
δ ln f(Z | θ) + (1 − δ) ln F̄ (Z | θ)

]
∂

∂θ2

[
δ ln f(Z | θ) + (1 − δ) ln F̄ (Z | θ)

]


This yields a 2 × 2 Fisher information matrix, where each entry IRC(θ)ij is given by:

IRC(θ)ij =
∫
∂ ln f(x | θ)

∂θi
· ∂ ln f(x | θ)

∂θj
· f(x | θ)Ḡ(x)dx +

∫ ∂F̄ (y|θ)
∂θi

· ∂F̄ (y|θ)
∂θj

F̄ (y | θ)
· g(y)dy

The limiting variance-covariance matrix would be symmetric, which implies that IRC(θ)12 =

IRC(θ)21, with elements given to be,

IRC(θ)11 =
∫ (

∂ ln f(x | θ)
∂θ1

)2
· f(x | θ) Ḡ(x)dx +

∫ (
∂F̄ (y|θ)

∂θ1

)2

F̄ (y | θ)
· g(y)dy

IRC(θ)22 =
∫ (

∂ ln f(x | θ)
∂θ2

)2
· f(x | θ) Ḡ(x)dx +

∫ (
∂F̄ (y|θ)

∂θ2

)2

F̄ (y | θ)
· g(y)dy

IRC(θ)12 =
∫
∂ ln f(x | θ)

∂θ1
· ∂ ln f(x | θ)

∂θ2
· f(x | θ) Ḡ(x)dx +

∫ ∂F̄ (y|θ)
∂θ1

· ∂F̄ (y|θ)
∂θ2

F̄ (y | θ)
· g(y)dy

The limiting distribution of θ̂ is

√
n

θ̂1 − θ1

θ̂2 − θ2

 −→ N2


0

0

 , I−1
RC(θ)

 , where

I−1
RC(θ) = 1

IRC(θ)11 IRC(θ)22 − IRC(θ)2
12

 IRC(θ)22 −IRC(θ)12

−IRC(θ)12 IRC(θ)11


and,
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Σ = I−1
RC(θ)

=⇒ Σ−1 = IRC(θ) =

IRC(θ)11 IRC(θ)12

IRC(θ)12 IRC(θ)22


3.1.2 Modified Estimator

The limiting distribution of θ̂ under the compact likelihood is derived as follows. Performing a

multivariate Taylor series expansion around the true parameter, we have

0 =
n∑

i=1
Win

∂

∂θ1
ln f(Zi|θ) + (θ̂1 − θ1)

n∑
i=1

Win
∂2

∂θ2
1

ln f(Zi|θ) + (θ̂2 − θ2)
n∑

i=1
Win

∂2

∂θ1∂θ2
ln f(Zi|θ)

0 =
n∑

i=1
Win

∂

∂θ2
ln f(Zi|θ) + (θ̂1 − θ1)

n∑
i=1

Win
∂2

∂θ2∂θ1
ln f(Zi|θ) + (θ̂2 − θ2)

n∑
i=1

Win
∂2

∂θ2
2

ln f(Zi|θ)

And the MLE of θj is obtained at

Sj(θ | Z) =
n∑

i=1
Win

∂

∂θj
ln f (Zi | θ)

∣∣∣∣
θj=θ̂j

= 0 , j = 1, 2.

For φ(Zi) =


∂

∂θ1
ln f (Zi | θ)

∂

∂θ2
ln f (Zi | θ)

, we have that

√
n

n∑
i=1

Win φ(Zi) −→ N2 (0, D(θ)) (3.3)

where,

D(θ) =

D11(θ) D12(θ)

D21(θ) D22(θ)



To determine the entries of D(θ) we use Cramèr-Wold device, i.e., consider an arbitrary linear

combination
∑n

i=1 Win φ(Zi), so that

n∑
i=1

Win

[
c1

∂

∂θ1
ln f(Zi | θ) + c2

∂

∂θ2
ln f(Zi | θ)

]
−→ N

(
0, c⊤D c

)
,

where,
c⊤D c = c2

1D11 + c2
2D22 + 2c1c2D12 .
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Expression for the terms is found by applying Equation (2.6) to the function

φ(Z) = c1
∂

∂θ1
ln f(Z | θ) + c2

∂

∂θ2
ln f(Z | θ)

We thus get

D11(θ) =
∫ (

∂ ln f(x | θ)
∂θ1

)2
· f(x | θ)
Ḡ(x)

dx−
∫ (

∂F̄ (y|θ)
∂θ1

)2

F̄ (y | θ) · Ḡ2(y)
· g(y)dy

D22(θ) =
∫ (

∂ ln f(x | θ)
∂θ2

)2
· f(x | θ)
Ḡ(x)

dx−
∫ (

∂F̄ (y|θ)
∂θ2

)2

F̄ (y | θ) · Ḡ2(y)
· g(y)dy

D12(θ) = D21(θ) =
∫

∂ ln f(x | θ)
∂θ1

· ∂ ln f(x | θ)
∂θ2

· f(x | θ)
Ḡ(x)

dx−
∫ ∂F̄ (y|θ)

∂θ1
· ∂F̄ (y|θ)

∂θ2

F̄ (y | θ) · Ḡ2(y)
· g(y)dy

We are able to find that,

√
n I(θ)

θ̂1 − θ1

θ̂2 − θ2

 −→ N2 (0, D(θ))

=⇒
√
n

θ̂1 − θ1

θ̂2 − θ2

 −→ N2


0

0

 , I−1(θ) D(θ) I−1(θ)


Here, Σ = I−1(θ) D(θ) I−1(θ), so that Σ−1 = I(θ)D−1(θ) I(θ).

Let the elements of I(θ) =

a b

c d

, where:

a = I11 = −E
[
∂2 ln f(X | θ)

∂θ2
1

]

d = I22 = −E
[
∂2 ln f(X | θ)

∂θ2
2

]

b = c = I12 = I21 = −E
[
∂2 ln f(X | θ)

∂θ1∂θ2

]

so that I−1(θ) = 1
ad− b2

 d −b

−b a

, since b = c.
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Now, let the elements of matrix D(θ) =

e f

f g

, so that the limiting variance-covariance matrix,

CovM (θ) = I−1(θ) D(θ) I−1(θ):

CovM (θ) = 1
(ad− b2)2

 d −b

−b a

×

e f

f g

×

 d −b

−b a



= 1
(ad− b2)2

 de− bf df − bg

−be+ af −bf + ag

×

 d −b

−b a



CovM (θ) = 1
(ad− b2)2

 d(de− bf) − b(df − bg) −b(de− bf) + a(df − bg)

d(−be+ af) − b(−bf + ag) −b(−be+ af) + a(−bf + ag)


where,

(ad− b2)2 = (I11I22 − I2
12)2

d(de− bf) − b(df − bg) = D11I2
22 − 2I12I22D12 +D22I2

12

−b(de− bf) + a(df − bg) = −I12I22D11 +D12I2
12 + I11I22D12 − I11I12D22

d(−be+ af) − b(−bf + ag) = −I12I22D11 + I11I22D12 +D12I2
12 − I11I12D22

−b(−be+ af) + a(−bf + ag) = D11I2
12 − 2I11I22D12 +D22I2

11

3.2 Weibull Distributed Event

Under this case, we consider X ∼ Weibull(θ, p) and Y ∼ Pareto(λ, 1). We begin by computing

the theoretical variances, followed by the maximum likelihood estimation of the scale parameter, θ

and the shape parameter, p.

f(x | θ, p) = pθxp−1e−θxp
, x > 0, p > 0, θ > 0

ln f(x | θ, p) = ln p+ ln θ + (p− 1) ln x− θxp

∂

∂θ
ln f(x | θ, p) = 1

θ
− xp

∂2

∂θ2 ln f(x | θ, p) = −1
θ

∂2

∂θ∂p
ln f(x | θ, p) = −xp ln x
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∂

∂p
ln f(x | θ, p) = 1

p
+ ln x− θxp ln x

∂2

∂p2 ln f(x | θ, p) = − 1
p2 − θ xp ln2 x

F̄ (x | θ, p) = e−θxp
, x > 0, θ > 0, p > 0

ln F̄ (x | θ, p) = −θxp

∂

∂θ
ln F̄ (x | θ, p) = −xp

∂

∂p
ln F̄ (x | θ, p) = −θxp ln x

Let g(y) = λ

(1 + y)λ+1 and Ḡ(y) = 1
(1 + y)λ

. The components of the variance-covariance matrices

are computed below.

For I(θ):
I11 = −E

[
∂2 ln f(X | θ, p)

∂θ2

]
= 1
θ2

I12 = −E
[
∂2 ln f(X | θ, p)

∂θ∂p

]
= E[Xp lnX]

E[Xp lnX] =
∫ ∞

0
xp ln x · pθxp−1e−θxp

dx, let z = xp, dz = pxp−1dx

= θ

∫ ∞

0
z ln z

1
p · p · xp−1 · e−θz dz

pxp−1 , since x = z
1
p , dx = dz

pxp−1

= θ

p

∫ ∞

0
z ln ze−θz, let u = θz, z = u

θ
, dz = du

θ

= θ

p

∫ ∞

0

u

θ
· ln u

θ
· e−u du

θ
= 1
pθ

∫ ∞

0
u(ln u− ln θ) e−udu

= 1
pθ

[∫ ∞

0
u ln u e−udu− ln θ

∫ ∞

0
ue−udu

]
=⇒ E[Xp lnX] = 1

pθ
(1 − γ − ln θ) , where γ is the Euler-Mascheroni constant.

∴ I12 = 1
pθ

(1 − γ − ln θ)

I22 = −E
[
∂2 ln f(X | θ, p)

∂p2

]
= 1
p2 + θE

[
Xp ln2X

]

E
[
Xp ln2X

]
=

∫ ∞

0
xp ln2 x · pθxp−1e−θxp

dx, let z = xp, dz = pxp−1dx

= θ

p

∫ ∞

0
z ln2 z e−θz, let u = θz, z = u

θ
, dz = du

θ
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E
[
Xp ln2X

]
= θ

p

∫ ∞

0

u

θ
·
(

ln u
θ

)2
· e−u du

θ

= 1
pθ

[∫ ∞

0
u ln2 u e−udu− 2 ln θ

∫ ∞

0
u ln u e−udu+ ln2 θ

∫ ∞

0
u e−udu

]
= 1

pθ

(
π2

6 − 2γ + γ2 − 2 ln θ · (1 − γ) + ln2 θ

)

Hence,
I22 = 1

p2 + 1
p

(
π2

6 − 2γ + γ2 − 2 ln θ · (1 − γ) + ln2 θ

)

Recall that

[σ2(θ)]ij =
∫
∂ ln f(x | θ)

∂θi
· ∂ ln f(x | θ)

∂θj
· f(x | θ)
Ḡ(x)

dx−
∫ ∂F̄ (y|θ)

∂θi
· ∂F̄ (y|θ)

∂θj

F̄ (y | θ)Ḡ2(y)
· g(y) dy

[IRC(θ)]ij =
∫
∂ ln f(x | θ)

∂θi
· ∂ ln f(x | θ)

∂θj
· f(x | θ)Ḡ(x) dx+

∫ ∂F̄ (y|θ)
∂θi

· ∂F̄ (y|θ)
∂θj

F̄ (y | θ)
· g(y) dy

Thus,

σ2(θ)11 = pθ

∫ ∞

0

(1
θ

− xp
)2

· xp−1e−θxp(1 + x)λ dx− λ

∫ ∞

0
x2pe−θxp(1 + x)λ−1 dx

σ2(θ)12 = pθ

∫ ∞

0

(1
θ

− xp
)(1

p
+ ln x− θxp ln x

)
xp−1e−θxp(1 + x)λ dx −

λθ

∫ ∞

0
x2p ln x · e−θxp(1 + x)λ−1 dx

σ2(θ)22 = pθ

∫ ∞

0

(1
p

+ ln x− θxp ln x
)2
xp−1e−θxp(1 + x)λ dx −

λθ2
∫ ∞

0
x2p ln2 x · e−θxp(1 + x)λ−1 dx

IRC(θ)11 = pθ

∫ ∞

0

(1
θ

− xp
)2
xp−1e−θxp(1 + x)−λ dx+ λ

∫ ∞

0
x2pe−θxp(1 + x)−λ−1 dx

IRC(θ)12 = pθ

∫ ∞

0

(1
θ

− xp
)(1

p
+ ln x− θxp ln x

)
xp−1e−θxp(1 + x)−λ dx +

λθ

∫ ∞

0
x2p ln x · e−θxp(1 + x)−λ−1 dx

IRC(θ)22 = pθ

∫ ∞

0

(1
p

+ ln x− θxp ln x
)2
xp−1e−θxp(1 + x)−λ dx +

λθ2
∫ ∞

0
x2p ln2 x · e−θxp(1 + x)−λ−1 dx

with censoring rate,

P(X > Y ) = λ

∫ ∞

0

e−θyp

(1 + y)λ+1 dy

The integrals are evaluated computationally using software. The variance-covariance matrices
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obtained from this case produced the following results.

Table 3.1: Numerical Results from Weibull Distributed Event at significance level α = 0.01

p θ λ
Parametric Ellipse Area Modified Ellipse Area Censoring RateTheoretical Estimated Theoretical Estimated

1 0.1 0.5 4.939092 5.026896 0.127872 0.134701 0.5944349
1 0.1 1 9.393342 9.436232 0.387559 0.401798 0.7985357

0.75 0.25 0.5 7.925077 8.053711 1.153352 1.221890 0.5007178
0.75 0.25 1 12.85312 12.68529 3.120171 2.973647 0.6950513

1 0.5 0.5 16.48671 16.49241 8.133768 8.184578 0.3443205
1 0.5 1 22.87485 22.86229 13.45165 13.58318 0.5385447

0.5 0.1 0.5 3.986597 3.961047 0.172574 0.173800 0.7490133
0.5 0.1 1 8.370920 8.249199 2.511489 2.299068 0.8708996
0.5 1 0.5 15.16020 15.22512 17.07878 17.39303 0.2453899
0.5 1 1 18.75805 18.80608 30.21760 30.04615 0.3785504

Due to the complexity of graphing multiple ellipses across a range of parameter values, we selected

a sample of values for θ and p at λ = 0.5 and λ = 1. For each combination (or triple), we computed

the corresponding variance-covariance matrices and plotted the resulting confidence ellipses. The

parameter values are listed in Table 3.1 above. Comparisons are made based on the area covered,

calculated as

Area = πab, where a, b are the half lengths of the ellipse.

Figure 3.1: Theoretical Ellipse Comparison for Weibull(p = 0.5, θ = 1) at λ = 0.5

We observed that ellipses associated with the modified estimator generally covered smaller areas

than those of the parametric estimator across different censoring rates. This suggests that, for

the selected (p, θ, λ) triples, the modified estimator tends to yield lower variance in the maximum

likelihood estimates. This observation was consistent across all examined combinations, with the

exception of the case p = 0.5, θ = 1. Graphical illustrations of some triples are included below.
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Figure 3.2: Estimated Ellipse Comparison for Weibull(p = 0.5, θ = 1) at λ = 0.5

Figure 3.3: Theoretical Ellipse Comparison for Weibull(p = 1, θ = 0.5) at λ = 1

Figure 3.4: Estimated Ellipse Comparison for Weibull(p = 1, θ = 0.5) at λ = 1

The maximum likelihood estimators used to generate the ellipses in Figures 3.2 and 3.4 are shown

below. In both likelihoods, no closed-form expressions was obtained for the shape parameter.

Consequently, the uniroot function in R was employed to numerically solve for the roots of the

respective score functions.
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For p̂

Parametric MLE

n∑
i=1

[
δi

(1
p

+ ln zi − θzp
i ln zi

)
+ (1 − δi)(−θzp

i ln zi)
]

= 0

n∑
i=1

[
δi

p
+ δi ln zi − θzp

i ln zi

]
= 0

Semi-parametric MLE

n∑
i=1

Win
∂

∂p
ln f(zi | θ) = 0

n∑
i=1

Win

(1
p

+ ln zi − θzp
i ln zi

)
= 0

For θ̂

Parametric MLE

∂

∂θ

n∑
i=1

[
δi ln f(zi | θ) + (1 − δi) ln F̄ (zi | θ)

]
= 0

n∑
i=1

[
δi

(1
θ

− zp
i

)
+ (1 − δi)(−zp

i )
]

= 0

1
θ

n∑
i=1

δi −
n∑

i=1
zp

i = 0

θ̂P =
∑n

i=1 δi∑n
i=1 z

p
i

Semi-parametric MLE

n∑
i=1

Win
∂

∂θ
ln f(zi | θ) = 0

n∑
i=1

Win

(1
θ

− zp
i

)
= 0

1
θ

n∑
i=1

Win =
n∑

i=1
Winz

p
i

θ̂M =
∑n

i=1Win∑n
i=1Winz

p
i

Table 3.2 below provides the maximum likelihood estimates and their corresponding mean squared

errors for p̂ and θ̂, based on 10,000 simulations drawn from the specified distributions.

Table 3.2: MLE Results for Weibull Distributed Event at significance level α = 0.01

p̂ θ

λ p p̂P p̂M MSEP MSEM θ θ̂P θ̂M MSEP MSEM

0.5 1 1.00630 1.00670 0.00004 0.00004 0.1 0.10208 0.10216 0.00000 0.00000
1 1 1.00999 1.01120 0.00010 0.00013 0.1 0.10043 0.10249 0.00000 0.00001

0.5 0.75 0.75858 0.75998 0.00007 0.00010 0.25 0.25329 0.25533 0.00001 0.00003
1 0.75 0.73879 0.73875 0.00013 0.00013 0.25 0.24709 0.24224 0.00001 0.00006

0.5 1 1.00752 1.00960 0.00006 0.00009 0.5 0.49614 0.49979 0.00001 0.00000
1 1 0.99868 1.00276 0.00000 0.00001 0.5 0.50043 0.50201 0.00000 0.00000

0.5 0.5 0.50107 0.50412 0.00000 0.00002 0.1 0.09855 0.10092 0.00000 0.00000
1 0.5 0.49053 0.51270 0.00009 0.00016 0.1 0.09427 0.10388 0.00003 0.00002

0.5 0.5 0.50089 0.50494 0.00000 0.00002 1 1.00366 1.01087 0.00001 0.00012
1 0.5 0.50262 0.49589 0.00001 0.00002 1 0.99590 0.98768 0.00002 0.00015
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The observed similarity in the mean squared errors accounts for the consistency between the theo-

retical and estimated confidence ellipses.

3.3 Gamma Distributed Event

In the second scenario, we let X ∼ Gamma(α, θ) and Y ∼ Pareto(λ, 1).

f(x | α, θ) = xα−1 e− x
θ

Γ(α) θα
, x > 0, α > 0, θ > 0

ln f(x | α, θ) = (α− 1) ln x− x

θ
− ln Γ(α) − α ln θ

∂

∂θ
ln f(x | α, θ) = x

θ2 − α

θ
∂2

∂θ2 ln f(x | α, θ) = α

θ2 − x

θ3

∂2

∂θ∂α
ln f(x | α, θ) = −1

θ
∂

∂α
ln f(x | α, θ) = ln x− ψ(α) − ln θ

∂2

∂α2 ln f(x | α, θ) = −ψ′(α)

F̄ (x | α, θ) = 1
Γ(α) Γ

(
α,
x

θ

)
ln F̄ (x | α, θ) = ln Γ

(
α,
x

θ

)
− ln Γ(α)

∂

∂θ
ln F̄ (x | α, θ) = ∂

∂θ
ln Γ

(
α,
x

θ

)
∂

∂θ
ln F̄ (x | α, θ) =

∂
∂θ Γ

(
α, x

θ

)
Γ
(
α, x

θ

)
∂

∂θ
ln F̄ (x | α, θ) = 1

Γ
(
α, x

θ

) · xα

θα+1 · e− x
θ

∂

∂α
ln F̄ (x | α, θ) =

∂
∂αΓ

(
α, x

θ

)
Γ
(
α, x

θ

) − ψ(α)

where

ψ(α) = d

dα
ln Γ(α) = Γ′(α)

Γ(α) , and ψ′(α) = d2

dα2 ln Γ(α) = d

dα

Γ′(α)
Γ(α) , Kalbfleisch and Prentice (2002)

Simplification of ∂

∂θ
ln F̄ (x|α, θ) and ∂

∂α
ln F̄ (x|α, θ) are provided below:

∂

∂θ
ln F̄ (x|α, θ) = 1

Γ
(
α, x

θ

) · ∂
∂θ

Γ
(
α,
x

θ

)
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Recall that the upper incomplete Gamma function is defined as:

Γ
(
α,
x

θ

)
=
∫ ∞

x
θ

tα−1 e−tdt, let u = x

θ
,
du

dθ
= − x

θ2

Applying the Leibniz integral rule which says:

d

dx

∫ b(x)

a(x)
f(x, t)dt = f(x, b(x)) · d

dx
b(x) − f(x, a(x)) · d

dx
a(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t)dt

since u = u(θ), we get
d

dθ

∫ ∞

u(θ)
h(t)dt = −h(u(θ)) d u(θ)

dθ
.

In this case,

h(t) = tα−1e−t, and du

dθ
= − x

θ2

That implies,

∂

∂θ
Γ
(
α,
x

θ

)
= −

(
− x

θ2

)
·
(
x

θ

)α−1
e− x

θ = x

θ2 ·
(
x

θ

)α−1
e− x

θ = xα

θα+1 · e− x
θ

Hence,
∂

∂θ
ln F̄ (x|α, θ) = 1

Γ
(
α, x

θ

) · xα

θα+1 · e− x
θ

∂

∂α
ln F̄ (x|α, θ) = ∂

∂α
ln Γ

(
α,
x

θ

)
− ∂

∂α
ln Γ(α)

∂

∂α
ln F̄ (x|α, θ) = 1

Γ
(
α, x

θ

) · ∂

∂α
Γ
(
α,
x

θ

)
− ψ(α)

We see that, ∂

∂α
Γ
(
α,
x

θ

)
=
∫ ∞

x
θ

∂

∂α
tα−1 e−tdt =

∫ ∞

x
θ

tα−1 ln t · e−tdt

For f(x | α, θ) = xα−1 e− x
θ

Γ(α) θα
, we only consider Y to be Pareto with shape = λ and scale = 1., i.e.

g(y) = λ

(1 + y)λ+1 and Ḡ(y) = 1
(1 + y)λ

. The information matrix for X ∼ Gamma(α, θ) in the

non-censored case, I(α, θ) is known and given as

I(α, θ) =

ψ(1)(α) θ−1

θ−1 αθ−2

 ,
where ψ(1)(α) is the trigamma function, the first derivative of the digamma function ψ(α), see
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Lehmann and Casella (2006). Some relevant integrals include:

[σ2(θ)]11 =
∫ ∞

0
(ln x− ψ(α) − ln θ)2 · xα−1e− x

θ

Γ(α)θα
(1 + x)λ dx

−
∫ ∞

0

(
∂

∂αΓ
(
α, y

θ

)
− Γ

(
α, y

θ

)
ψ(α)

Γ(α)

)2

· Γ(α)
Γ
(
α, y

θ

) · λ (1 + y)2λ

(1 + y)λ+1 dy

= 1
Γ(α)θα

∫ ∞

0
(ln x− ψ(α) − ln θ)2 · xα−1 e− x

θ (1 + x)λ dx

− λ

Γ(α)

∫ ∞

0

(
∂

∂αΓ
(
α, y

θ

)
− Γ

(
α, y

θ

)
ψ(α)

)2

Γ
(
α, y

θ

) · (1 + y)λ−1 dy

[σ2(θ)]12 =
∫ ∞

0

(
x

θ2 − α

θ

)
(ln x− ψ(α) − ln θ) · xα−1e− x

θ

Γ(α)θα
(1 + x)λ dx

−
∫ ∞

0

ye− y
θ

Γ(α) θ2 ·
(
y

θ

)α−1
·

∂
∂αΓ

(
α, y

θ

)
− Γ

(
α, y

θ

)
ψ(α)

Γ(α) · Γ(α)
Γ
(
α, y

θ

) · λ (1 + y)2λ

(1 + y)λ+1 dy

= 1
Γ(α)θα

∫ ∞

0

(
x

θ2 − α

θ

)
(ln x− ψ(α) − ln θ) · xα−1 e− x

θ (1 + x)λ dx

− λ

Γ(α)θα+1

∫ ∞

0
yα e− y

θ ·
∂

∂αΓ
(
α, y

θ

)
− Γ

(
α, y

θ

)
ψ(α)

Γ
(
α, y

θ

) · (1 + y)λ−1 dy

[σ2(θ)]22 =
∫ ∞

0

(
x

θ2 − α

θ

)2
· xα−1e− x

θ

Γ(α)θα
(1 + x)λ dx

−
∫ ∞

0

(
1

Γ(α) · −y
θ2

(
y

θ

)α−1
e− y

θ

)2

· Γ(α)
Γ
(
α, y

θ

) · (1 + y)2λ · λ

(1 + y)λ+1 dy

= 1
Γ(α)θα

∫ ∞

0

(
x

θ2 − α

θ

)2
· xα−1 e− x

θ (1 + x)λ dx

− λ

Γ(α)θ2α+2

∫ ∞

0
y2α e− 2y

θ · (1 + y)λ−1

Γ
(
α, y

θ

) dy

For the parametric likelihood,

[IRC(θ)]11 =
∫ ∞

0
(ln x− ψ(α) − ln θ)2 · xα−1e− x

θ

Γ(α)θα (1 + x)λ
dx

+
∫ ∞

0

(
∂

∂αΓ
(
α, y

θ

)
− Γ

(
α, y

θ

)
ψ(α)

Γ(α)

)2

· Γ(α)
Γ
(
α, y

θ

) · λ

(1 + y)λ+1 dy

= 1
Γ(α)θα

∫ ∞

0
(ln x− ψ(α) − ln θ)2 · xα−1 e− x

θ

(1 + x)λ
dx

+ λ

Γ(α)

∫ ∞

0

(
∂

∂αΓ
(
α, y

θ

)
− Γ

(
α, y

θ

)
ψ(α)

)2

Γ
(
α, y

θ

) · 1
(1 + y)λ+1 dy

53



[IRC(θ)]12 =
∫ ∞

0

(
x

θ2 − α

θ

)
(ln x− ψ(α) − ln θ) · xα−1e− x

θ

Γ(α)θα (1 + x)λ
dx

+
∫ ∞

0

ye− y
θ

Γ(α) θ2 ·
(
y

θ

)α−1
·

∂
∂αΓ

(
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θ

)
− Γ

(
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θ
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Γ(α) · Γ(α)
Γ
(
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θ
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Γ(α)θα

∫ ∞
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x
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θ
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∫ ∞
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− Γ
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[IRC(θ)]22 =
∫ ∞
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θ
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∫ ∞
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(
1

Γ(α) · y
θ2
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y
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(
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∫ ∞
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x
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θ
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+ λ

Γ(α)θ2α+2

∫ ∞

0
y2α e− 2y

θ · 1
Γ
(
α, y

θ

)
(1 + y)λ+1 dy

and censoring rate is also given as

P(X > Y ) =
∫
F̄ (y | α, θ) g(y) dy

=
∫ ∞

0

Γ
(
α, y

θ

)
Γ(α) · λ

(1 + y)λ+1 dy

= λ

Γ(α)

∫ ∞

0

Γ
(
α, y

θ

)
(1 + y)λ+1dy

Table 3.3 below shows results of the ellipses obtained from the theoretical computation of the

variance-covariance matrices of the likelihoods for selected values of α, θ, and λ.

Table 3.3: Numerical Results from Gamma Distributed Event at significance level = 0.01

α θ λ
Parametric Ellipse Area Modified Ellipse Area Censoring RateTheoretical Estimated Theoretical Estimated

0.5 0.1 0.5 2.439091 2.448590 2.440983 2.450497 0.02264331
0.5 0.1 1 2.488794 2.536911 2.496540 2.545101 0.04391339
1 0.1 0.5 3.729703 3.714726 3.734178 3.719167 0.04391339
1 0.1 1 3.856470 3.865999 3.875031 3.884613 0.08436666

0.2 0.2 0.5 2.877299 2.860837 2.882318 2.864727 0.01728026
0.2 0.2 1 2.945821 3.042820 2.966536 3.065323 0.03308677
0.5 0.25 0.5 6.257164 6.210355 6.278819 6.229643 0.05039196
0.5 0.25 1 6.536152 6.660282 6.627420 6.749412 0.09464590
0.1 0.1 0.5 0.967690 1.035191 0.968106 1.035714 0.00464514
0.1 0.1 1 0.978154 0.933697 0.979930 0.935235 0.00907924
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The confidence ellipses generated by the two estimators were highly comparable at low censoring

rates. However, as the censoring rate increased, the ellipses corresponding to the modified estimator

exhibited substantially larger areas than those of the parametric estimator. The comparability at

low censoring rates was consistently observed across all (α, θ) pairs evaluated at λ = 0.5 and 1.

Graphical illustrations of some sampled cases are presented below.

Figure 3.5: Theoretical Ellipse Comparison for Gamma(α = 0.2, θ = 0.2) at λ = 0.5

Figure 3.6: Estimated Ellipse Comparison for Gamma(α = 0.2, θ = 0.2) at λ = 0.5

Figure 3.7: Theoretical Ellipse Comparison for Gamma(α = 0.5, θ = 0.25) at λ = 1
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Figure 3.8: Estimated Ellipse Comparison for Gamma(α = 0.5, θ = 0.25) at λ = 1

In Figures 3.5 - 3.8, the ellipses largely overlap such that there is minimal to no distinction between

the interior regions. A negative correlation between the shape and scale parameters was also evi-

dent across all parameter combinations examined. In addition, the maximum likelihood estimates

and their corresponding mean squared errors are presented in Table 3.4. The derivations for the

MLEs are outlined below.

A closed-form expression was obtained only for θ̂M , while the remaining estimators required nu-

merical methods for their computation.

Semi-parametric MLE

For α̂

n∑
i=1

Win
∂

∂α
ln f(zi | θ) = 0

n∑
i=1

Win (ln zi − ψ(α) − ln θ) = 0
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n∑
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n∑
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n∑
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(
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θ

)
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1
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n∑
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Win zi = α

θ

n∑
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∑n

i=1Win zi

α
∑n
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Parametric MLE

For α̂
∂

∂α

n∑
i=1

[
δi ln f(zi | θ) + (1 − δi) ln F̄ (zi | θ)

]
= 0
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[
δi (ln zi − ψ(α) − ln θ) + (1 − δi)

(
∂

∂α
ln Γ

(
α,
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θ

)
− ψ(α)

)]
= 0
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n∑
i=1

δi ln zi −ψ(α)
n∑

i=1
δi − ln θ
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δi +
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∂
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δi

zα
i

θα+1 · e− zi
θ

Γ
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1
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n∑
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α
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Table 3.4: MLE Results for Gamma Distributed Event at significance level = 0.01

α̂ θ

λ α α̂P α̂M MSEP MSEM θ θ̂P θ̂M MSEP MSEM

0.5 0.5 0.50287 0.50287 0.00001 0.00001 0.1 0.10004 0.10004 0.00000 0.00000
1 0.5 0.49554 0.49554 0.00002 0.00002 0.1 0.10241 0.10241 0.00001 0.00001

0.5 1 0.98954 0.98954 0.00011 0.00011 0.1 0.10024 0.10024 0.00000 0.00000
1 1 1.01155 1.01155 0.00013 0.00013 0.1 0.09954 0.09954 0.00000 0.00000

0.5 0.2 0.19947 0.19950 0.00000 0.00000 0.2 0.19917 0.19909 0.00000 0.00000
1 0.2 0.20018 0.20018 0.00000 0.00000 0.2 0.20621 0.20621 0.00000 0.00000

0.5 0.5 0.50107 0.50127 0.00000 0.00000 0.25 0.24788 0.24775 0.00000 0.00000
1 0.5 0.49110 0.49163 0.00008 0.00007 0.25 0.25719 0.25677 0.00005 0.00005

0.5 0.1 0.10190 0.10190 0.00000 0.00000 0.1 0.10583 0.10583 0.00003 0.00003
1 0.1 0.10179 0.10179 0.00000 0.00000 0.1 0.09464 0.09464 0.00003 0.00003

In Table 3.4, we observe that the estimates produced by both estimators are identical in most cases,

with only minimal differences in the remaining instances. This explains the substantial overlap of

the confidence ellipses observed in almost all scenarios in this case. Consequently, for small values

of the parameters and λ, the variances of the estimators are almost indistinguishable.
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3.4 Summary

This chapter began with an introduction to the maximum likelihood estimation of multiple param-

eters in the absence of random censoring, with a focus on the two-parameter case estimation. We

explored the estimation of the variance-covariance matrix using confidence ellipses derived from

the bivariate normal distribution. This concept was also applicable in the censored data case.

Considering X ∼ Weibull(p, θ) and X ∼ Gamma(α, θ), both paired with Y ∼ Pareto(λ, 1), we

identified some triples of the scale parameter (θ), shape parameter (p or α), and the parameter of

the censoring distribution (λ) where comparisons were particularly insightful.

Motivated by findings from the single-parameter case, we focused on relatively small parameter

values. Thus, we examined the shape-scale pairs of the event variable at λ = 0.5 and λ = 1. For

X ∼ Weibull(p, θ), random parameter combinations were tested across a range of censoring rates.

Among the sampled triples, the modified estimator generally demonstrated better efficiency, with

the exception of (p = 0.5, θ = 1), where the estimators were comparable at λ = 0.5. Notably, the

case (p = 1, θ = 0.1) yielded especially favorable results for the modified estimator (see Table 3.1

and B.3).

In the case of X ∼ Gamma(α, θ), high censoring rates were associated with large confidence

ellipse areas for the modified estimator. As such, our comparisons focused on scenarios where

P(δ = 0) → 0. Across all triples examined, the estimators showed highly comparable performance,

particularly at λ = 0.5. The maximum likelihood estimates obtained from simulated data showed

strong similarity between the estimators, as evidenced by identical mean squared errors in most

cases.
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Chapter 4

Conclusion

The aim of this research was to compare two maximum likelihood estimators under random cen-

soring. Specifically, we sought to examine the traditional maximum likelihood estimator of the

fully parametric likelihood and a modified likelihood estimator constructed by replacing the cen-

soring indicators in the parametric model with Kaplan-Meier-type weights. The study considered

various estimation scenarios, including both single-parameter and multi-parameter cases. For each

scenario, appropriate distributions were specified for the event and censoring variables. Generally,

suitable choices were made to ensure finiteness and integrability in the variance components. The

comparison was conducted from a theoretical perspective and further supported by simulated data.

Therefore, variances and mean squared errors were the primary tools for evaluating and contrasting

the performance of the estimators.

In the single parameter case, we observed that although the variance of the modified estimator

was not consistently smaller than that of the parametric estimator, the two estimators exhibited

strong comparability at lower parameter values. The most notable similarity was observed at

λ ≤ 1 in nearly all three cases of the event variable X. In particular, when X ∼ Beta(θ, 1) and

Y ∼ Pareto(λ, 1), the estimators produced identical mean squared errors for λ ∈ {0.5, 1, 2, 3}.

Comparisons in the multi-parameter case were based on confidence ellipses, as the focus was on

estimating k = 2 parameters. Remarkably, when X ∼ Weibull(θ, p), the modified estimator con-

sistently produced confidence ellipses with smaller areas than those of the parametric estimator

across most of the randomly selected parameter triples at different censoring rates. This suggests
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that the modified estimator produces more precise estimates than the parametric estimator at those

triples. On top of that, comparable ellipses were produced under X ∼ Gamma(α, θ) with minimal

differences in area. This similarity was further supported by the fact that both estimators produced

identical maximum likelihood estimates for the shape and scale parameters.

This research posed a few challenges, particularly in selecting appropriate distributions for both the

single and multi-parameter scenarios, due to the varying shapes and characteristics of the candidate

distributions. Another challenge was estimating the shape parameters in the parametric models,

particularly in the multi-parameter cases, where closed-form solutions were largely unattainable.

Nonetheless, these challenges presented the opportunity to apply novel and numerical techniques in

solving statistical problems. A limitation of this study is that, in instances where the relevant in-

tegrals were not explicitly solved, the comparisons were made at selected ranges of the parameters.

Future research could extend the analysis to wider parameter ranges to provide a more compre-

hensive evaluation. Moreover, it would be valuable to validate these findings using real-world data.

The observation of high comparability between the estimators in the case of X ∼ Gamma(α, θ)

at very low censoring rates may also inspire future studies to explore similar comparisons in the

absence of random censoring.
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Appendix A

Regular Model

Let the density of X be f(x | θ), where θ ∈ Θ ⊂ Rn, the parameter space. Here, X can be a vector

in Rn or a scalar. Let I(θ) be the n × n Fisher information matrix. From Hogg et al. (2018), a

model is said to be regular if the following regularity conditions are satisfied:

1. The cumulative density functions are distinct, that is, for θ ̸= θ′, it follows that F (xi | θ) ̸=

F (xi | θ′).

2. The probability density functions share a common support ∀ θ.

3. The point θ0 lies in the interior of the parameter space Θ.

4. f(x | θ) is twice differentiable.

5.
∫
f(x | θ) dx is twice differentiable under the integral sign as a function of θ.

6. ∃ an open subset Θ0 ⊂ Θ such that θ0 ∈ Θ0 and the third partial derivatives of f(x | θ)

exists ∀θ ∈ Θ0.

7. The expectation of the score function is zero, and the information matrix is the negative

expectation of the second derivative of the log-likelihood function.

8. ∀θ ∈ Θ0, the information matrix I(θ) is positive definite.

9. ∃ functions Mjkl(x) such that
∣∣∣∣ ∂3

∂θj∂θk∂θl
log f(x | θ)

∣∣∣∣ ≤ Mjkl(x), ∀θ ∈ Θ0 and Eθ0(Mjkl) <

∞, ∀j, k, l ∈ 1, ..., n.
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Appendix B

Complementary Results

This section contains additional results and figures. Below are some graphs from the multi-

parameter case.

Figure B.1: Estimated Ellipse Comparison for Weibull(θ = 0.25, p = 0.75) at λ = 0.5

Figure B.2: Estimated Ellipse Comparison for Weibull(θ = 0.1, p = 0.5) at λ = 0.5
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Figure B.3: Estimated Ellipse Comparison for Weibull(θ = 0.1, p = 1) at λ = 0.5

Figure B.4: Estimated Ellipse Comparison for Gamma(α = 0.5, θ = 0.1) at λ = 0.5

Figure B.5: Estimated Ellipse Comparison for Gamma(α = 0.1, θ = 0.1) at λ = 0.5
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