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Abstract

Comparison of Semi-parametric and Parametric Maximum Likelihood Estimators under

Random Censoring

Mavis Amoa-Dadzeasah

In the presence of censored data, selecting an appropriate estimation method is critical for obtaining
reliable parameter estimates. This thesis compares the performance of the parametric maximum
likelihood estimator (MLE) and a modified, semi-parametric MLE under random censoring. The
comparison focuses on estimator of variance, mean squared error, and confidence regions, using
theoretical derivations and simulation studies. We examine various combinations of continuous
distributions for the event and censoring variables, including Exponential, Weibull, Gamma, Beta,
and Pareto models. Our findings show that the modified estimator performs comparably to or
better than the parametric estimator, particularly at low censoring rates and for specific distribu-
tional configurations. In cases with high censoring, the parametric estimator largely yielded lower
variances. These results provide practical guidance for applied statisticians working with randomly

censored data, especially in fields such as medical research, reliability engineering, and finance.
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Chapter 1

Introduction

1.1 Background

The maximum likelihood estimator has been long recognized as a useful and reliable tool in statis-
tical inference and analysis. It has been widely applied across diverse areas, including regression
analysis, model selection in machine learning, Bayesian decision theory, and parameter estimation
in time series models. Beyond traditional statistical domains, its applications extend to fields such
as biotechnology and health research. As a result of its desired properties like efficiency, consistency
and asymptotic normality, many researchers and statisticians use this method as a benchmark to
make comparisons. In this thesis, we employ maximum likelihood estimation to compare two like-
lihood approaches for randomly censored data in survival analysis. This area of statistics and its
methodologies are particularly important due to their relevance in medical research, engineering,
finance, and the social sciences. See the references Cramer and Cramer (1989); Smith, Phillips,

Luque-Fernandez, and Maringe (2023).

1.2 Preliminaries

In this section, we present definitions, notation, and distributional forms that will be used through-
out the thesis. The focus is on the probability density functions and survival functions of the event
and censoring variables considered in the subsequent chapters. These include the Exponential,

Weibull, Gamma, Beta, and Pareto distributions. Additionally, we present select theorems and



results from statistical theory that are instrumental in the derivations and theoretical analyses.

1.2.1 Exponential Distribution

The probability density function (pdf) of an exponential distribution is

fx]0)=
0, x <0

where the parameter, # > 0. The survival function of this distribution, which is the complement of

the cumulative distribution function is also given by
Fx|0)=e% >0

We write X ~ Exponential(1/6) or X ~ Exp(1/0) to represent a random variable X that has this
distribution, where 1/6 is the mean of X.
1.2.2 Weibull Distribution

The pdf of the Weibull distribution with shape parameter p, and scale parameter 0, is given as

phzP~le 07" 2 >0
f(z|0,p) =

0, z <0
where 6 > 0, p > 0. The survival function of this distribution, is also given by

Fx|0,p)=e x>0

The notation X ~ Weibull(,p) is used to represent a random variable X which follows Weibull

distribution.

1.2.3 Beta Distribution

A beta random variable X with shape parameters « and 3 is denoted as X ~ Beta(a, ), and has

pdf



I'a+ p)
fz|a,B) =4 F@I(B)

0, elsewhere

11 —-2)ft 0<a <1

where o > 0, 8> 0, and I'(s) = [;°t*"'e~*dt. The survival function is

I'a+ p)

Flalod) = roirm)

1
/ 1 -t ldt, 0<z<1

1.2.4 Gamma Distribution

A gamma random variable X with shape parameter «, and scale parameter 6 is denoted as X ~

Gamma(a, ), and has the probability density function
f(@|a,0) = Tle) 6

where a > 0, § > 0. The corresponding survival function is given as

F(w!a,Q):F(la)FQy,g), 23>0

where x o0
r (a, 0) :/ L e~tdt
9

1.2.5 Pareto Distribution

If X is a random variable with Pareto distribution having shape parameter A and scale parameter

0, the pdf of X is
DA

fx(x) _ (9 + x))\-‘rl ;
0, z <0

where A > 0, 6 > 0, and the survival function is

_ 6 \*
Fx(@)= (g4=) + 020



Denoted as X ~ Pareto(\, 0), this distribution is mostly used as a censoring distribution in this

thesis.

See Walck et al. (2007), Forbes, Evans, Hastings, and Peacock (2011), and Ross (2014) as references

for these distributions.

1.2.6 Supporting Theorems

Theorem 1.1. (The Central Limit Theorem) If X1,...X, are independent and identically dis-
tributed (iid) with finite mean Eg(X;) = p(0), and finite variance Varg(X;) = o(8) > 0, then as
n — oo,

Xo i) _ VlEn —l0) 4, g,y

a(0)/v/n a(6)

where —% denotes convergence in distribution. See Section 4.2 of Hogg, McKean, and Craig (2018).

Theorem 1.2. (Slutsky’s Theorem) If X,,, Ay, By, are random variables, a and b are constants,

where A, 4, a, By 4, b, and X, <, X, then it follows that A, + B, X, < q + bX.

d . . P P .
Note that for a constant a, A, — a is equivalent to A, — a, where — denotes convergence in

probability. See Section 5.2 of Hogg et al. (2018).

Theorem 1.3. Suppose X has a Ny(u,X) distribution, where ¥ is positive definite. Then the

random variable Y = (X — p) " 27N (X — p) has x2(k) distribution.

See Section 3.5 of Hogg et al. (2018).

1.3 Maximum Likelihood Estimator without Random Censoring

We provide a brief overview of the maximum likelihood estimator (MLE) without random censoring,
which would later be useful in establishing the limiting variance of the semi-parametric estimator
we propose. The maximum likelihood estimator of an unknown parameter 6 of a probability
distribution is that value 6 of 6 which maximizes the probability or probability density of an
observed sample from that distribution, Lehmann and Casella (2006). Let X1, ..., X,, be iid random
variables which follow a regular model (see Appendix A for the definition and some details of the

regular model) with a common probability density function (pdf) or mass function (pmf) f(x | 0),



where 6 € ©, the parameter space. It follows that the likelihood function, or the joint probability

distribution and its log are given by

LX) = ﬁ F(Xi | 0) (1.1)

InL(O|X) = Z f(X;10) (1.2)
=1

The MLE maximizes Equation 1.2. In regular models (see Appendix A) where the In L(0 | X) is
differentiable and the maxima occurs at an interior point of ©, the derivative of the log-likelihood
function, also known as the score function is equal to zero at é, i.e. 0 is obtained as the solution of
# such that

d
L] X)=0.

Suppose 0 € O is the true parameter value. Then, the score function S(6 | X), defined as
S| X) zn: i f(Xi10) (1.3)
= do

has the following properties in a regular model, as seen in Hogg et al. (2018):
S(0 | X) =0, since § maximizes the log-likelihood.
2. Its expectation is zero, i.e. Eg[S(0 | X)] = 0.
3. The negative expectation of the first derivative of 7 In f(X | 0) gives the Fisher Information
1(0).

d2
1(6) = —Eq LZHQ In f(X | 9)1 (1.4)

The asymptotic distribution of 6 is derived using a Taylor series expansion of the score function

around the true parameter 0:

SO|X) = S(0|X)+(§—0)(1S(29|X)0_é
S@|X) ~ SO|X)+(6- a)ds(‘fw'X)



w ~ —nl(f) since I(f) = lim —lzn:ailnf(Xi | )

g n—oo n £ df?
0 ~ SO|X)—(0—0)nl6)
-0 ~ SO0

By the Central Limit Theorem, S(f | X) is asymptotically normally distributed, where 6 is the

true parameter value.
S 1X)
NG

Therefore, the limiting distribution of the maximum likelihood estimator 0 under regularity condi-

45 N(0,1(0)) .

tions is

v —0) 4 N (o, 1—1(9)) . (1.5)

The regularity conditions are outlined in Appendix A. The likelihood function used to obtain the
MLE above is the specific case of an uncensored data. In survival analysis, we are interested in
studying the time until some population survives or experiences an event of interest. However,
many factors could prevent the entire population from experiencing the event. This results in
censored data. Therefore, censoring is said to have occurred when information on the start or end
of some event of interest is missing, Turkson, Ayiah-Mensah, and Nimoh (2021) and Kalbfleisch
and Prentice (2002). Generally, observed data comprises both censored and uncensored data, thus,
the probability distribution of this kind of data has a different form than the case without random

censoring.

1.4 Maximum Likelihood Estimator under Random Censoring

The statistical inference methods employed in this research are based on likelihood functions derived
from the observed data. Let X; be the lifetime of observed data, which characterizes the time
between entry into the study and the event, with density function f(x | 6), and cumulative density
function F(z | 6). Let Y; be the random censoring variable independent of X;, Stute (1995),
which characterizes the time from entry into the study and the end of the study, with density
function ¢(y), and cumulative density function G(y). We define the lifetime random variable as

Z = min(X,Y), z;,i = 1,...,n is similarly defined. We also define a censoring indicator J; as



0; = I(X; <Y;) such that

1, if X <Y i.e. uncensored
5 pu—

0, if X >Y ie. censored

The joint distribution h(d, z | 8) is based on the probability distribution of (d;, z;):

P[5 =1, X] = G(x) f(x | 0)

h(d,z|0) =

P[6=0,Y]=F(y|0)g(y)

= (C_r’(x) f(z| 9))5i (F(y | 0) g(y))liai , see Lawless (2011).

where z = min(z,), and, G(.) and F(.) are the respective survival functions corresponding to G(.)

and F'(.), respectively. Therefore, the likelihood function is given as

L(01]6,2) =

L(0]6,2) =

InL(0|6,2) =

h(d:, Z; | 9)

—.

N
Il
—

F(Z;10)" G(Z:)" g(2:)' " F(Z; | 6)' " (1.6)

.

@
Il
—_

(6,0 G(Z,) + 6 n £(Z; | 0) + (1= 8) I F(Z; | 0) + (1 = 6;) In g(Z:)|(1.7)

-

-
Il
A

See Kalbfleisch and Prentice (2002) and Klein and Moeschberger (2003). If the data is en-

tirely uncensored, we note that ¢; = 1 Vi and although ¢(y) does not appear in the likelihood,

G(z) = P(Y > z) still appears since Y > X always. Thus, even in uncensored cases, the cen-

soring distribution matters in the likelihood through G(z). The MLE under this likelihood solves

d
—InL(0 | 0,Z) =0. That is,

do
:le:;&jelnf(zi | 6) + ig(l — 5i)d%1nﬁ(zi | 6) - 0
Given that S(0 [ 6, Z) = di@ In L(0 | 6, Z), using a Taylor series expansion around 6 gives
G- 0)~— S(06,2) 4

1N5d21ze 15d21ﬁza Bn
o 2=l zﬁnf(z‘ )+(_Z)Wn (z’)

Vi(An) -5 N(0,Ipc(0))  and B, -5 Inc(6)



Thus, by Slutsky’s Theorem, the limiting distribution of 6 under random censoring is

Vil = 0) =5 N (0, 154500))

where Irc(0) is the Fisher information under random censoring:

2
Ey (5(1‘10 I f(Z]60)+(1— 5)(% InF(Z | 9))
IRC(Q) d2 d
_E9< LM A(Z]0) + (1—6)d021nF(Z|9)>

Properties of S(0 | 0, Z) include:

1. The expectation of the score function is equal to zero, i.e. Eg[S(0 | J, Z)] = 0.
2. The negative expectation of its first derivative gives the Fisher Information, i.e.

d? d 2
<d921n hs. 7 | 9)) - _E (d@ Inh(5, Z | 9)>

Proofs of these properties are shown in Section 1.4.1 below.

1.4.1 Further proofs

(1.8)

First, we show that the expectation of the score function in the uncensored data case equals 0.

Proof of Eg[S(0 | X)] = 0.

Recall that for a pdf f(x | 6),
JEaK

je/f(m@)dx -

f(x]0)
de _
/ b @10 = 0

/<d91nf(x‘9)) fz|0)dz = 0

Ey [;lelnf(X\G)} ~ 0

Similarly, we can show that the expectation of the score function in the censored case is zero.



Proof of Eg[S(0 | 9, 2Z)] = 0.

d

1z 10) Pz 10
B |5 ey 0 g | =
That is,
d d
Jux <v) a0 oy gty dray  [1xsy). @Yo gt deay— o
f(x]0) F(y|0)
Since the joint distribution h(d, z | 0) is a pdf
1
Z/h(é 2| 0)dz =
/G f(z|0)de + /F(y|0)g(y)dy:1, for all 0 (1.10)
/G f@|0)dr + /jaF(y 10) g(y) dy = 0, for all 0 (1.11)
Hence for all 6, and for all » > 1,
o) gttal0)dn + [ SF|6)gw)dy =0 (1.12)
a0 a0
Ey[S(0 | 5, 2)] can be further expressed as
(016, 2)] /G xyedx+/d9 (1) - g(y) dy

Then, it follows from Equation 1.11 that Eg[S(6 | 0, Z)] = 0.

2

Proof of E < d

d 2
(6,7 9)) E (delnh(é,Z | 0)) .

We start by taking the derivative of the score function, and show that its expectation is equal to

the right hand side.



2 2 2 2
f(z|9)6762f(2|9)—<59 (- |9>) F(: 1) 3P 0) = (55F16)
P [0)

d d ?
Fla|6) gz ]6) — (1)
= Jux<y) 4 (x(,(d@ ) S |0)gl)dedy

2
P10 - (5Fw0)
P2y 0)

d 2 d - 2
1) e [ 0L
d

f(z | 0)g(y) dr dy

20y 0) F(y|0)g(y)dy
Lsw9) 110G e [(Snkw0) 70w d
_ —E[é (jglnf(ZW)) (1—5).(jelnﬁ(2|e)ﬂ2

- _E (jelnh(e 5, Z)>2

hence the proof.

1.4.2 Censoring Rate

One can find the random censoring rate by finding the probability that 6 = 0, or alternatively, the
failure rate as the probability § = 1. Therefore, the random censoring probability is P[§ = 0] =
P(X >Y).

PLX>Y) = [POX>y)g() dy

The probability of failure, P[§ = 1] =P(X <Y) =P(X <Y) since X and Y are continuous.

10



P(X <Y) = /P(Y>x)f(x\0)d:c

_ /é(a:) (x| 6) dz

1.5 Research Objectives and Methods

In this research, we consider two likelihoods: the full parametric model as outlined above, and a
semi-parametric one based on the Non-Parametric Maximum Likelihood Estimator by Kaplan and
Meier (1958). The latter will be referred to as “compact” likelihood or “modified” estimator (de-
fined in Section 2.1), and the former as “parametric” estimator. The compact likelihood modifies
the fully parametric model by incorporating Kaplan—-Meier (KM) weights (defined in Section 2.1)
in place of the censoring indicators. We evaluate the performance of the maximum likelihood
estimators of these two likelihoods by examining their limiting variances and confidence regions
where applicable. The limiting variances are obtained using the main result of Stute (1995). We
study which estimator performs better under varying censoring probabilities and distributional se-

tups. We would also gain more insights on conditions under which comparable results are obtained.

Other researchers have also explored alternative estimation procedures to the traditional maximum
likelihood estimator in the presence of censoring. In particular, weighted likelihood methods and
semi-parametric approaches have been developed (Murray (2001); Ren (2008); Zhou and Liang
(2011); Ren and Lyu (2024)) which have shown promise in reducing bias and improving efficiency.

This thesis builds upon such methodologies.

To carry out this analysis effectively, we consider a variety of distributions for the event variable X
along with corresponding distributions for the censoring variable Y. For each distributional pair
(X,Y), the limiting variances of the estimators are evaluated both theoretically and via simulation.
The behavior of the variances are assessed under varying censoring rates, controlled by the parame-
ter values from the censoring distribution. Both single-parameter distributions (e.g., Exzp(1/6)) and
two-parameter distributions (e.g., Gamma(a, 8)) for X are considered. All computational analyses

were performed using R version 4.5.1.

11



1.6 Plan of the Thesis

The rest of the thesis is organized as follows. A comprehensive analysis of the single parameter
case of X is outlined in Chapter 2. This includes a detailed derivation of the limiting variances
of the MLEs for both the parametric and compact likelihood cases, based on general forms of X
and Y. This chapter also explores specific sampled distributions for X and Y. Chapter 3 extends
the discussion to the multi-parameter case, providing generalized forms of the vectorized likelihood
functions and corresponding MLEs. As in Chapter 2, selected distributions are analyzed. Addi-
tionally, this chapter revisits key concepts from the multivariate normal distribution, which serves
as the foundation for evaluating the limiting variance-covariance matrices. The thesis concludes
with a summary of key findings in Chapter 4. Regularity conditions based on which the theory
of the maximum likelihood estimators are established, and complementary results are outlined in

Appendix A and Appendix B respectively.

12



Chapter 2

Single Parameter Case

This chapter begins with an introduction to the compact likelihood. Unlike the fully parametric
likelihood discussed in Section 1.4, which incorporates the censoring indicator §, the compact

likelihood, L™ (6 | Z) replaces these indicators with Kaplan-Meier weights W;,, as seen in Stute

(1995).
LMo | z) = ZWmlnf(Zi]G)
d . v &
5L O 2) = ZWm Inf(Z; | 0)
where, 5 _ 5,

Wi = n—z+1H< n—3+1> (1)

The modified likelihood above is motivated by the fact that a sample average of the form
n~1 3" | »(X;) based on an uncensored sample, is to be replaced by 31 ;| Wio(Z;p) in a censored
sample, where Z;,, 1 < i < n, are the order-statistics of the censored sample. The MLE of 6 for

A d
this likelihood, 6™ is obtained at — In LM (0 | Z) = 0.
df 9—0M

Proceeding as in the case of uncensored data, we have

d
i1 Win—In f(Z; | 0) AM
N =1
\/ﬁ<¢9M—9)z\/ﬁ do_ = S
—Z:‘L:l Wmﬁlnf(Zi \ ‘9) "
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Further, using Theorem 1 of Stute (1995),

where
2
02(9) =Ep (0 80_6((5)) + (1= 0)7p(Z) — F@G(Z)]
and,
d
Al = il
) = Fogran ] 1> e S0

Section 2.2.2 describes in detail the terms in Equation 2.2 above. By Slutsky’s Theorem,

Vi (0M —0) - N(O, (;jgz;)

2.1 Non-Parametric Maximum Likelihood Estimator

(2.2)

(2.3)

The Kaplan-Meier estimator, as proposed by Kaplan and Meier (1958) is also interpreted as a non-

parametric maximum likelihood estimator (NPMLE), Rodriguez (2005). This estimator assumes

that the censored and uncensored subjects have the same chances of survival at any time, censoring

probabilities are the same for all subjects regardless of their entry time into the study, and events

occur exactly at the recorded times, with no lag, see Goel, Khanna, and Kishore (2010). The

Kaplan-Meier estimate of the ith order statistic, F'(Z;.,) is defined as

_ i 5 .

j=1
where Z;.,, are the order-statistics.
Hence, if 6, = --- = §,, = 1, then F(Z;.,) = (1—71) (1— ni1> (1—71_1“)
— F(Zip) = n;z when 61 =--- =0, = 1.
Note that,
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_ - 6
Therefore as seen in Stute (1995), Wi, = F(Zi—1.) — F(Zin) = + H ( )
n—i -

2.2 Limiting Distribution of Estimators

One way to assess the efficiency of an estimator is by examining its variance, Saleem, Sanaullah,
Al-Essa, Bashir, and Al Mutairi (2023). Given that maximum likelihood estimators (MLEs) are
asymptotically normal, we compute the limiting variances of the two estimators as a basis for
comparison. The variance provides insight into an estimator’s performance, with lower variance
generally indicating greater efficiency, thus being more desirable, Lehmann and Casella (2006).
These variances can be evaluated analytically by computing the integrals presented in the subse-
quent sections for specific choices of the event and censoring distributions. Generally, desirable
results are said to be obtained when the limiting variance of the modified estimator, Varys(0)
is less than, or approximately equal to that of the parametric estimator, Varp(f), i.e. where
Vary(0) < Varp(0), and where Vary () ~ Varp(6). Nonetheless, we will also present cases

where this is not achieved.

To support the theoretical results, we carry out a computational analysis. This involves selecting
a family of distributions for the event variable X by varying the parameter 6 across a specified
range, while holding the parameter A of the censoring variable Y fixed at several points within that
range. We then compute the variance for each (6, \) pair across the entire range of 6, capturing the
behavior of the estimators under varying censoring rates and parameter values. Additionally, we

simulate 1000 datasets each of size 100 from the specified distributions and evaluate the estimators

15



by comparing the mean squared errors (MSEs) of the maximum likelihood estimators, DeGroot
and Schervish (2012), defined as
1 & A
MSE = — > (0; — 0;)?
i=1

where 6; is the maximum likelihood estimate for the ith simulation, and n is the number of datasets

simulated.

2.2.1 Parametric Estimator

From expression 1.8, the limiting variance of # under random censoring is:

1
Irc(0)

Varp(0) = (2.4)

where,
2
Irc(0) = Ey (556 Inf(Z|6)+(1— 5)% In F(Z | 9))

We showed in Section 1.4.1 that

(Lsi0) (2rwin)
do = do =
~Trel0) =~ [ M i 9) G ds — [ S Gy ) ) dy

2
— IRC(9)2/<C?01nf(CC|9)>2 f(z | 0)G(z)dx +/< yy99> -9(y) dy

Thus, the limiting variance in the parametric likelihood case is the multiplicative inverse of the

integral above.

2.2.2 Modified Estimator

From expression 2.3, the limiting variance of the modified estimator is given as

Vary (0) = (2.5)

where 1(#) is the inverse of the limiting variance in the non-censored case as outlined in Equation 1.5.

16



From Stute (1995),

2
o2(6) = Ey lé (’O,G(Z) + (1 =0)vp,(Z) =Ty, (Z)| , where @y(2) = ilnf(,z | 0)

G(2) d6

vp(.) and (.) are used interchangeably to denote the same function, i.e., pg(.) = ¢(.).

(0)=Bo 5 S04 (1 0)5202) 4 122) - 26 5D () - 20 - 02,21 T12)
— By | 501 4 [ P22 o) dy + B [12(2)] 256 [p(X) Lo(X)] - 20 [F(¥) 70(1) Dol )]
Gx) o)
T B C b E
where,

' (pz(X) _ f(z)
A E G(X)] = /902( ) é(x)
) 0 Se(0)
B [Fwrdwewdy = [F)- g5l ot) iy = [ 5of G o) dy

B H(sVw) (s) Sy(w) < duw

- // Ty Hw) Gls)  Glw) I 9 dsd

L[ S Selw)

= //‘(s) Gls)  Glw) Iglwldsdw +
1
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B / S2(s)
s) G(s)
- 52(3)
/F(S)G_Q(S) (5)
- - @(3)
E 2E[F(Y) = 2//F 5 y > s) (s G(5) 9(y) g(s) dyds
Se(y (s)
Iz e a(w) (o) dy s
’(X) -
A+B+C-D-E = E(%(X)> —E(F(r)2(y))
_ f(=) SZ(y)
- [2@ Gyt [ Frag s
110
/Ht>y S f(t]0) (t|0)dt:/]l(t>y)f(t0) (t]6)
— Sl = w0
2
C(d 2 /(@] 0) ( Fly|0))
02(9)_/(d91nf(x]9)) G / S Tac) W (2.6)

As mentioned in Section 2.2 above, desirable results are obtained if Varys(0) < Varp(0). Therefore,

we can find conditions on which this is attained by finding parameter values at which

a2(0) 1
2O) = Inc(0) 27
o2(0) 1)
IO S Tncl0)
a2(0) 1
= T0) T Inc0)/10)

Note that for uncensored data G(z) = 1 and g(z) = 0 for all x > 0, hence 0%(0) = I(0) = Irc(6).
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Vary(0) < Varp(0) resolves to:

2.3 Exponentially Distributed Event

Generally, we select continuous distributions for both the event variable X and the censoring vari-
able Y such that integrability conditions are satisifed, particularly for the variance of the modified
estimator. Therefore, in the case where X ~ Exp(1/0), as in other cases we consider, we ensure

that 02() remains finite by choosing Y such that the survival function G(x) has a heavier tail than

f(x ] @), and such that the ratio fgﬂe) remains finite.
x

We begin by computing the theoretical variances, followed by the estimation of the maximum
likelihood estimators (MLEs).
f(z|0) = e 2>0,0>0
Inf(z|0) = Inf—0x
d
| - - _
7 nf(x|6) x
F(z|0) = e 6>0
mF(z|0) = —6z

d _
@lnF(x\G) = —x

2.3.1 Exponentially Distributed Censoring

Under f(z | 6) = 0e=%%, 0 > 0, we take g(y) = Ae ™™, A > 0 and G(y) = e~ .
Computing all relevant integrals including 0%(0), Irc(#), and I2(0) from the simplified expressions

above, we have
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00 2 00

= 9/ eAde: 2/ ze~ 9A)zdaz+0/ 22e 0Ty — )\/ y2e=(0-Ny gy

B 2 20 2\
- 0(9—)\) (0—)\)2+(9—)\)3_(6—>\)3
) 1
o) = m,0>A
Hence
1
a20) 00—\
=) 1
94
o) 63
IHORENEDY

) 2 0o
Irc(9) = 6/ (1—3:) e~ B+ M)z dw—i-)\/ y2e=(O+VY gy

— 9/ —(6+X) :de 2/ re” 09+)\)de+0/ I‘ e~ 9+)\)5de )\/ y e (9+)\)ydy

- 2 2 22
= «9(9+)\) R CES AR IS AR CES\E
1

000+ N)

Irc(0) =

Notice that as A — 0, Vary(0) ~ Varp(0), as a%(0) — 1(6), and Irc(0) — 1(6). Additionally, we
find that Equation (2.7) holds when

20) = Tno(0)
< 00+
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>
w
A

(6 + \)(6 — )

63 < 0(6* -\
63 < 63 —0)\2
)2 < 0
A <0 (2.8)

Since A > 0, we conclude that Vary(0) £ Varp(f), and that the modified estimator attains

minimal variance as the censoring rate approaches 0. The censoring rate is:

oo —(0+N)y |© A
IP’X>Y:)\/ 0Ny g, = NS T A
( =2 C Y “O+N|, 0+

Computationally, we examine 0 < 6 < 20, with the condition 6 > X to identify regions where com-

parable results are observed for A € {0.5,1,2,3}. The corresponding results are presented below.

While these graphs support the theoretical results, they also illustrate how close the variances of
the estimators are, particularly as A — 0. Similarly, as A — oo, the difference in variance increases,
with a more pronounced gap observed at § — 0. The graphs of the MSEs obtained from the
simulated data further confirm these results (see Figure 2.3). These observations were made at a

decreasing censoring rate.

Variances of Modified and Parametric Estimators Zoomed in Variances of Estimators
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Figure 2.1: Variance of Estimators for X ~ Exp(1/0), Y ~ Exp(1/\)
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For all values of A\, the random censoring rate steadily decreases as @ increases, from approximately
0.5 to 0. As P(6 = 0) — oo, the variances of both estimators also approach zero. Throughout
this range, the variance of the modified estimator is slightly higher than that of the parametric
estimator, as shown in Figure 2.2. Notably, the modified estimator exhibits a sharp increase in
variance toward high censoring rates. This behavior corresponds to the wider variance gap observed

as #§ — 0 in Figure 2.1.

Relationship between Theta and Censoring Rate Variance of Estimators vs Censoring Rate

lambda = 0.5 lambda = 1 lambda = 0.5 lambda = 1
05 05 400 400
04 0.4 300 300
03 03 200 200

02 02 100 100

o

0
0.1

lambda = 2 lambda = 3

Variance
©
g
8

lambda = 2 lambda = 3
0.5

o
o
@
3
3

2000

04 1000

0.3 \
e — 0

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Censoring rate

Censoring Rate
o o
PPN
N &
8 &
o 8 8

o
o

0.2

o

0 5 10 15 20 Y Estimator Modified — Parametric
Theta

Figure 2.2: Comparison by Censoring Rates for X ~ Exzp(1/6), Y ~ Exp(1/))

Additionally, we simulated data from the respective distributions and computed the MLEs of the

estimators as follows:

Parametric MLE Semi-parametric MLE
3 [52- (1 - zi) (- 52-)(—%-)} —0 S W, (1 - zi) ~0
i=1 0 i=1 0
z”: {51'—51'22'—%(1—52')} =0 En:Winl_i:VVinZizo
i=1 4 i=1 0 i=1
lidz_izlz }zn:Wln En:vvznzz
=1 =1 0 i=1 i=1
\P _ ?—1 0 éM ?—1 Win
=1 7%i =1 Winzi

The mean squared errors of the MLEs were thus computed and compared in Figure 2.3.
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MSE of Modified vs Parametric Estimators Zoomed in MSEs of Estimators
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Figure 2.3: Mean Squared Error Comparison when X ~ Ezp(1/0), Y ~ Exp(1/)\)

Similar to the graphs from the theoretical computations, the two estimators are comparable as

A— 0.

2.3.2 Pareto Distributed Censoring

We also consider Y to have a Pareto distribution with shape parameter = X\ and scale = 1, i.e.

A>0and G(y) = 5~ The theoretical variances are computed as

A
9(y) = W’

(1+y)
© /1 2 )
02(9) = /0 (5 - CL‘) 96_9:6(1 + x))‘ dr — /0 y26—9y )\(1 + y))\—l dy
= 0 <i + i /oo 6701(1 -+ x)/\ildx —+ é /00 x2€*91(1 + x))\ldx> _
93 03 )y 9 Jo

1
= ﬁ(l-i-)\ e %1 + x)? ldﬂl), letu=1+4+z, r=u—1, du=dx
0
= 1 (1 + A 6_9(“_1)u)‘_1du> = 1 (1 + /\69/ e_euu’\_ldu> let t = 6u, dt = Odu
92 1 92 1
1 > tAldt 1 DY
= 5! )‘9/ oo o)== (1 _/ —to Al
92(‘1‘696 7 9) 92<+9)\96
2 1 Ae? . . .
o°(0) = 72 1+ ny (N, 6) ), where T'(),0) is the upper incomplete gamma function.
i.e.

[e.e]
L'\ 6) = / A te~tdt .
0
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For the modified estimator,

1 Ae?

—(14+——T()\0

o (ET00) e

12(0) 1 a 0> ’
94

For the parametric estimator, the theoretical variance is the reciprocal of Irc(6):

Irc(9) = /m<1—x>2wdx+/oo ze_eyLd
rel® =)y \a (I+a) R P e
D W )
= 972_@/0 e 0 (1+$) (A+1)d.'13

with random censoring rate,
[oe) )\ [e'e}
P(X >Y)= IR — :)\/ (1 4 )~y
(>)/06 A5t W - (1+y) y

These integrals are solved computationally using R. The corresponding results from this case are

included below.

We find that the theoretical variances of the two estimators are fairly similar, especially as A — 0.
However, we do not find intervals of # where Vary(0) < Varp(#). Additionally, we noticed that
P(0 =0) - 0as§ — oo and as P(6 = 0) — oo, variances also approach 0; Figure 2.5 shows that the

variance of the modified estimator is only marginally higher than that of the parametric estimator.

Variances of Modified and Parametric Estimators Zoomed in Variances of Estimators
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Figure 2.4: Variance of Estimators for X ~ Exp(1/60), Y ~ Pareto(\,1)
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Relationship between Theta and Censoring Rate Variances of Modified and Parametric Estimators
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Figure 2.5: Comparison by Censoring Rates for X ~ FExp(1/0), Y ~ Pareto(\, 1)

The comparability of the estimators as A — 0, as shown in Figure 2.4, is confirmed by the simulated

data results with the MLEs (Figure 2.6).

MSE of Modified vs Parametric Estimators Zoomed in MSE of Estimators
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Figure 2.6: Mean Squared Error Comparison when X ~ Exp(1/6), Y ~ Pareto(\,1)

Generally for X ~ Ezponential(1/6), we saw that Vary/(0) ~ Varp(f) for small A\, and despite

the gap in variance at § — 0, the estimators behave more closely as 6 — co.

2.4 Weibull Distributed Event

We also consider the event variable to have a Weibull distribution with scale = 6, and shape = 2.

Some distributions of Y include Weibull(6,2), and Pareto(A,1). Let

flx]6) = 20ze %" £>0,0>0
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Inf(z]0) =
d
@lnf(x 10) =
F(x|0) =
InF(z|0) =

d _
@lnF(:ﬂQ) =

2.4.1 Weibull Distributed Censoring

Under f(z | 0) = 20ze%", 0 > 0, we consider g(y) = 2\ye™
also the specific case of the shape parameter, p = 2. However, to show that Vp the variances do not

change, we will solve the theoretical variances for a general p. These results support the findings

for X ~ Exp(1/0), Y ~ Exp(1/0), which is the case when p = 1. Let f(z | 0)

g(y) = pryP~le ",

0 /1 2 v
o2(0) = pb < ) 2P 1eP=02" gy
o \0

pA /0 Yy lem O gy

= pb (0 2>\/ 2P 1= (0=2)2? .. 2/00 :czp_le_(e_)‘)mpdaz+/oo 333p—1e_(9_)‘)xp> —
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—02?

_p)\/o yPP ey gy

= pb ( ! /Oo gPle=(0=N2" g0 2/00 Pl (0=NF 4 /oo x3p—16_(9_>‘)xp> -
02 0 0 0 0

= po (_ (0 + )\)((9 - >‘) /OO $3p7167(97)\)xp dx + /oo 231
0 0
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PA / y*Plem 07V gy

262 0
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_ p(020)‘) / xSpflef(Hf)\)xp dx
0

1
Let u = (60 — \)zP, xz( “ )p, du =
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3p—1

6 (6% + \? o0
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Since A > 0, we conclude that Vara(0) £ Varp(d), see breakdown in Equation 2.8. However,
we remark that comparable results are obtained from the computational analysis. We examine

0<60<20,0>\for \e{0.51,2 3}
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Variances of Modified and Parametric Estimators Zoomed in Variances of Estimators
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Figure 2.7: Variance of Estimators for X ~ Weibull(6,2), Y ~ Weibull(\,2)

The same observations made for X ~ Exp(1/0), Y ~ Exp(1/0) are replicated here with random

censoring rate

o 1 [o.¢]
P(X >Y) :p)\/ yp_le_(e"')‘)ypdy = pA ——— T / e “du = 7)\
0 p(@+A)» Tp /0

Relationship between Theta and Censoring Rate Variances of Estimators vs Censoring rate
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Figure 2.8: Comparison with Censoring Rates for X ~ Weibull(0,2), Y ~ Weibull(\, 2)

Censoring rates increase with decreasing variance, with variance of the modified estimator being
slighly greater than the parametric estimator. The MLEs used to compute the mean squared errors

from simulated data are outlined as follows:
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Parametric MLE Semi-parametric MLE
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See Balakrishnan and Kateri (2008). The mean squared errors of the MLEs were thus computed

and compared in Figure 2.9.

MSE of Modified vs Parametric Estimators Zoomed in MSE of Estimators
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Figure 2.9: Mean Squared Error Comparison when X ~ Weibull(0,2), Y ~ Weibull(),2)

The estimators are comparable as A — 0. These results confirm the theoretical computations and

Figure 2.7.

2.4.2 Pareto Distributed Censoring

Considering Y ~ Pareto(\, 1), g(y) =

The relevant integrals are evaluated computationally. The outcomes obtained are included below.
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Whilst Vary (0) £ Varp(), we observe that Vary(0) ~ Varp() particularly as A — 0, as shown
in Figure 2.10. As A — oo, the variance gap between the two estimators widen, with the modified
estimator’s variance being marginally higher. With respect to the random censoring rate, little to
no difference in variance is detected for small A. Furthermore, P(6 = 0) — 0 as # — oo, and as

P(6 = 0) — oo, the variances of both estimators approach zero as well (see Figure 2.11).
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Figure 2.10: Variance of Estimators for X ~ Weibull(6,2), Y ~ Pareto(A,1)
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Figure 2.11: Comparison by Censoring Rates for X ~ Weibull(0,2), Y ~ Pareto(A,1)

The difference in the MSEs of the estimators is negligible for small values of A. Contrary to the case

where X ~ Ezponential(1/6) and Y ~ Pareto(\, 1), as § — oo, very little difference is observed
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in the MSEs. These results (Figure 2.12) further confirm the comparability of the estimators as

A — 0, consistent with the observations in Figure 2.10.
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Figure 2.12: Mean Squared Error Comparison when X ~ Weibull(0,2), Y ~ Pareto(\, 1)

For X ~ Weibull(0,p = 2) and Y ~ Weibull(0, p = 2), we observed a strong similarity with the case
X ~ Exponential(1/0) and Y ~ Exponential(1/0), as the latter corresponds to the special case
where p = 1. Consequently, similar patterns and observations were found in both scenarios. More
desirable results were obtained when X ~ Weibull(f,p = 2) and Y ~ Pareto(A,1), compared to
the combination X ~ Exponential(1/6) and Y ~ Pareto(A,1). In this case, comparability between

the estimators was evident even at A = 1.

2.5 Beta Distributed Event

Fixing one shape parameter, we consider X ~ Beta(a = 6,5 = 1) which allows us to explore

several choices for the distribution of Y specifically at 0 <y < 1. Let
fz]0) = 0271, 0<2<1,0>0

Inf(z|0) = Inf+(@—1)lnz

d 1
@lnf(:ﬂﬁ) = a—i—lnx
Fz]0) = 1-2° 0<z<1

InF(z|0) = In(l—z%
d —2fIngz

P06 = =
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2.5.1 Exponentially Distributed Censoring

Under f(z | 6) = 02971, 0 <z <1, we take g(y) = Ae ™, A > 0 and G(y) = e .

2 29
o%(9) = 0/ ( —i—lnx) 2f71er d )\/ hl yee dy

29 LAY
Inc(6) = 9/( —i—lnx) 0 1*Mda;+A/ 1il_yy{fdy
2 1
160) = b — P0)-

1
PX >Y] = /\/ (1—y%)e ™ dy
0

These integrals are evaluated computationally.
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Figure 2.13: Variance of Estimators for X ~ Beta(0,1), Y ~ Exp(1/)\)
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Figure 2.14: Comparison by Censoring Rates for X ~ Beta(6,1), Y ~ Exzp(1/\)

The modified and parametric estimators have similar variances especially when A — 0. In contrast

to the cases where X follows an exponential or Weibull distribution, P(§ = 0) exhibits a positive
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relationship with 6. Likewise, the variances increase with increasing censoring rates. When A <1,
there is no significant difference between the variances as P(§ = 0) — co. However, for larger values

of A, the modified estimator exhibits moderately higher variances.

Computing the MLE of X ~ Beta(6,1) requires numerical methods, especially for the parametric

d -
estimator owing to the form of 0 InF(x|0).

Parametric MLE Semi-parametric MLE

n

i:(‘slje In f(z | 0) + (1 5');1HF(Zi|9)> =0 ZWm< -anZ) =0

1

=

" 1 —,01 : n 1 n
Z 5@(0+ln2z (1—51) (ZZHGZ>‘| =0 ZWmE—i—ZWln]nzlzo

i=1 L=z i=1 i=1
n 6 1 ) 5 0 1 ) 1> n
Z( +511’12Z Zi n?—f— i%i H;Z>:0 EZWm:—ZWmlnzz
i=1 1=z 1=z i=1 i=1
No explicit solution exists for or. .M — _ i1 Win

n
i1 Win In z;

The inbuilt R uniroot function was used to find the roots of the score function where explicit
expressions were not found. On examining the mean squared errors, the estimators were highly

comparable as A — 0. See Figure 2.15.
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Figure 2.15: Mean Squared Error Comparison when for X ~ Beta(0,1), Y ~ Exp(1/\)
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2.5.2 Weibull Distributed Censoring

2

Taking g(y) = 2)\ye_>‘92 and G(y) = e M

1/q 2 1,204+1 102, . M2
o2(9) = 9/ ( —|—lnx> 20— 1eM” da:—2)\/ Y - ye ¢ dy
0 0 0 -y

1 /1 2 1,,20+1 112, . —y?
Irc() = 9/0 (0+1nm> gfLe—Ae? dx+2)\/0 Y f_iee dy

1
PX >Y] = 2)\/ (1 —ye)ye_’\y2 dy
0
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Figure 2.16: Variance of Estimators for X ~ Beta(0,1), Y ~ Weibull(\,2)
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Figure 2.17: Comparison by Censoring Rates for X ~ Beta(6,1), Y ~ Weibull(X,2)

Figures 2.16 — 2.18 display similar results to the previous scenarios, where the estimators are
comparable at small values of A, and random censoring rate increases with increasing 6. The MSEs

further corroborate these findings.
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MSE of Modified vs Parametric Estimators Zoomed in MSE Estimators
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Figure 2.18: Mean Squared Error Comparison when X ~ Beta(6,1), Y ~ Weibull(\,2)

2.5.3 Pareto Distributed Censoring

A - 1
Finally for X ~ Beta(0,1), we let g(y) = ———— and G(y) = ——
2 20 ln
o%(0) = 9/ ( —|—lnx> a:e_l(l /\/ y_ny y (1+y) 1t dy
29 ].Il
Y
Tre(0 :«9/<+lnx> dw+)\/ d
RC( ) ( 1_ 1+y))\+1 Y
)
PX >Y] = )\/ —dy
0 (1 + y))\-i-l
See the results from this distribution appended below.
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Figure 2.19: Variance of Estimators for X ~ Beta(0,1), Y ~ Pareto(A,1)

This case yields the most desirable results for the modified estimator so far. No significant differ-

ences are noticed between the estimators, except at large values of 6, where the modified estimator
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exhibits a moderately higher variance. As shown in Figure 2.21, the MSE comparison highlights
the strong comparability of the estimators. Moreover, the curves in Figure 2.19, representing the

theoretical variances, are nearly indistinguishable.

Relationship between Theta and Censoring Rate Variances of Estimators vs Censoring rate
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Figure 2.20: Comparison by Censoring Rates for X ~ Beta(6,1), Y ~ Pareto(\, 1)
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Figure 2.21: Mean Squared Error Comparison when X ~ Beta(0,1), Y ~ Pareto(\, 1)

The two MLEs yielded identical results from the simulated data. Consequently, there was little to no
distinction in the curves of the estimators, which explains the absence of the red curve corresponding
to the modified estimator in the graph. Given the outcome of the theoretical computations, these

results are entirely consistent and expected.

2.6 Summary

In this chapter, we examined three continuous distributions for the event variable, and some distri-

butions for the censoring variable. Integrability and finiteness were key in making suitable choices
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for Y. Therefore, combinations such as (X ~ Exzp(1/6),Y ~ Weibull(0,2)), (X ~ Beta(0,1), Y ~
Uniform(0,1)) and (X ~ Weibull(0,p),Y ~ Weibull(6,q),p # q) were excluded. In cases where
both X and Y followed the same distribution, as in Sections 2.3.1 and 2.4.1, finiteness was ensured
by choosing the same shape parameters where applicable, and by fixing the scale parameters such
that @ > X. Although in these cases Vary(6) £ Varp(6), the estimators exhibited similar behavior
across the range of 6 for small values of A\. Overall, the estimates derived from the compact and
full parametric likelihoods were found to be comparable for small A, typically A < 1. A higher

comparability was also observed at small 8 values.

For X ~ Exponential and X ~ Weibull, the random censoring rates were negatively correlated
with the parameter being estimated. In contrast, for X ~ Beta(f, 1), the random censoring rate
increased as § — oco. Moreover, as P(§ = 0) — oo, the difference in variances between the two
estimators became negligible. In a few instances, the modified estimator exhibited a slightly higher
variance with increasing censoring rate. The most notable results in the single-parameter case were
observed in the case of X ~ Beta(,1) and Y ~ Pareto(\, 1), discussed in Section 2.5.3, where
no significant distinction was seen between the estimated variances across censoring rates, and the

mean squared errors of the two maximum likelihood estimators were identical.
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Chapter 3

Multiparameter Case

In the previous chapter, we discussed and illustrated the performance of the full parametric and
modified estimators for the special case of the observed variable X which depends only on a single
parameter. This chapter extends the discussion to consider observed distributions with mutliple
parameters to be estimated. We begin the chapter with an introduction to maximum likelihood

estimation in the absence of random censoring.

Let X1,..., X, be arandom sample from uncensored data with common pdf or pmf f(x | @), where
0= (01,...,0;)", 8 € ©CRF, the parameter space. The likelihood function and its logarithm are

defined by

LO|Xy,.... X)) = [[f(Xi]0)
=1

InLO|X1,....X,) = Y Inf(X;|0)
=1

The regularity conditions assumed for this theory are detailed in Appendix (A). The maximum
likelihood estimator of 8, 6 is the value of @ that miximizes the likelihood or log-likelihood function.

Potential candidates for the MLE are values of (61, ...,6,,) obtained by solving

O L@ Xy X)) =0, 1<j<k (3.1)
09,

The solutions to Equation 3.1 are potential maxima because one needs to verify if they are indeed

the maxima. Another approach to determining the MLE is the direct maximization method. This
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method involves finding a global upper bound on the likelihood function and then proving that

there is a unique point for which the upper bound is attained, see Casella and Berger (2024).

In the single parameter case, we established that the expectation of the score function is zero, and
that the negative expectation of its derivative gives the Fisher Information. In the multiparameter

case, the Fisher Information becomes a matrix with element Z;;(@) given below, see Lehmann and

Casella (2006).

7,;(6) = E(aae Inf(X|6)- ;; lnf(X\0)>, 1<i, j<k (3.2)

An alternative and simpler expression for the Information may be obtained using the expression:

B P f(X]0)
7;;(0) = -E <m>

We consider the specific case where k = 2, so that 8 = (6, 92)T. The Fisher Information matrix is

() s (7he)
1 2
7(0) = '

Performing a multivariate Taylor series expansion of the score function S(€ | X), around the true

parameter 6;, we have

a 1 k ? 1 (&
0 Zlnfxya +3 (6, 8989 Zlnf(XiIO), 1<j<k
=1 !

=1

B(o)
Let B(0) be the matrix identified in the above equation. Then,

A 02

B(O) ~ —17(0), since Z(0) = nhﬁngo 89189 (Z In f(X; | 0)) by law of large numbers.

0 ~ S(6]|X)+B(6) (6 —6), where S(0|X) = [ Zlan 10), 1<j<k
]11
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is the score vector, as in Equation (3.1). This implies,

~B() (6,—6) ~ S(O]|X)

7(0) (0, —6,) ~ S(0]X)

Therefore, the limiting distribution of the 0 when k = 2 is:

0, — 0,
Vvn Z(9) | — N2 (0, Z(6))

0y — 05
0, — 6, 0

vn | — N3 , I716) 7(6) 771(6)
0y — 05 0
0, — 6, 0

vn . — Ns , I_l(e)
0y — 05 0

See Pawitan (2001) and Bickel and Doksum (2015) for a comprehensive overview of the limiting

distribution.

3.1 Multivariate Normal Distribution and Confidence Ellipsoid

To assess the performance of the above estimators in terms of their limiting Normal distribution,
we make use of so-called confidence ellipsoids. Let X = (Xi,...,X) have a k-variate Normal

distribution, Ny (p, ). Now, define Z by
7 = sUX )

where ¥71/2 is the square-root matrix of ¥, i.e., ¥=1/2%~1/2 = 3. Then Z has N}(0, I;,) distribu-

tion, where I, is the k x k identity matrix. Let Y = (X — p) " ¥71 (X — p), then from the above

k
Y=27"x\2e7 vz =772 =% 7}
i=1

Since Z1,...,Z, are iid N'(0,1), Y has x? distribution with & degrees of freedom, see Section B.4
— B.7 of Bickel and Doksum (2015). Hence we have
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Theorem 3.1. Suppose X has a Ny(u,X) distribution, where ¥ is positive definite. Then the
random variable Y = (X — p) " 271 (X — p) has x2(k) distribution.

See Section 3.5 of Hogg et al. (2018). Since the limiting ditribution of 8 (the MLE of ) is Na, we

have that X TS 71X ~ x2 where X = /n(6 — ). A 100(1 — @)% confidence region for  is given
by
XTe X <3,

where X%,a is the upper a quantile of the x3 distribution, that is P (Xg > X%,a) = «. This confidence

region will be the interior of the ellipse:
2} S + 2355 +255 zas < X%,a

where we denote the entries of X~1 by Ei_jl, 1 < 4,5 < 2. Here, we consider the significance level
a = 0.01, and 0.05. Note that the boundary of such an ellipse is also a constant-density contour of

the corresponding bi-variate Normal density:

f(x) = 25 &P (—;(az—u)TE_l (cc—u)) , forax, peR?

where |3] = det ¥ = 01021/1 — p?. In this chapter, we propose to use this confidence ellipsoid as a

graphical illustration of the performance of 6.

x o 010
From Bickel and Doksum (2015), when k = 2, Y & , Lo

2
x2 H2 po102  0)
Thus, the inverse of the variance-covariance matrix

2
1 03 —poi102

2
—po102 o1

p is the correlation between x; and xo. If 21 and xo are independent then p = 0. If p = 0, and
0? = 02, the eigenvalues would also be equal, and a circle will be obtained instead of an ellipse.
If p > 0, then the major axis of the ellipse will have a positive slope. Likewise, if p < 0, then the

major axis will have a negative slope. Further, the lengths of the two axes are proportional to /A;
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where A;,j = 1,2, are the eigenvalues of X. Note that,

/\1+)\2:0%+0§.

3.1.1 Parametric Estimator

In the multiparameter case under random censoring, the score function is given as a vector. Specif-
ically for k = 2,
o [Smf(Z 1 0)+ (1 -0 F(Z|0)]

S@16,2) = _
e [Mnf(z 10)+ (1—8)InF(Z | e)}

This yields a 2 x 2 Fisher information matrix, where each entry Zrc(0);; is given by:

OF(y|6) = 9F(y|6)
ol 0) 01 0 - - .
Tuc(o)y = [ TLe 8 ST s o)y + [t gy

The limiting variance-covariance matrix would be symmetric, which implies that Zrc(0)12 =

Zrc(0)21, with elements given to be,

|0
Oln f(z | 0)\?> aey
Trc(0)11 :/(f(|)) f(x]0)G(z)dr + / : -g(y)dy
0th F(y|0)
on f(x | 0) el
T (0) s — / (H) 2)d / o J
rc(0)22 26, flz]6 r + Fly | 9) 9(y)dy
OF(410)  OF(4/6)
Ol f(z[0) Ol f(x]0) / 90 ae
Trc(0)19 = . . d L 2_. d
ne® = [T G, TG+ [ S )y
The limiting distribution of @ is
b — 6 o
vn | — N> ZIpe(0) |, where
0y — 05 0
1 Tre(0)22  —Zrc(0)12

Tri(6) =

5
Trc(0)11Zrc(0)22 — Ire(0)1,y ~Tre(0)12  Tre(0)1

and,
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Y = Ipe(6)
Zrc(0)11 Irc(0)12
Zrc(0)12 Zrco(0)22

— 271 = Zpe(9) =

3.1.2 Modified Estimator

The limiting distribution of 6 under the compact likelihood is derived as follows. Performing a

multivariate Taylor series expansion around the true parameter, we have

n 8 n n
= In f(Z;|0) + 1 (Z:|0) + (02 — in In f(Z;|0
0 ;W g6, n/(Zil6) ;W nf(Z16) + (62 — 62) ;W 89892 n f(Zi6)
0 = i:W 0 In f(Z;]0) + (6, — 61) i:W o In f(Z;|0) + (OQ—HQ)ZWma In f(Z;|0)
= " 96, = " 00200, = 003
And the MLE of 6; is obtained at
5012 = Y Walmpzle)] =0, j=12
j L znaej i o5 ) )
1= A
0 Inf(Z;]0)
For o(Z;) = 83 , we have that
%0, Inf(Z;]0)

where,

D(6) = D11(0) Di2(0)
Dy1(0) D22(0)

To determine the entries of D(6) we use Cramer-Wold device, i.e., consider an arbitrary linear

combination Y1 ; Wi, ¢(Z;), so that
0 0 T
ZWm o1 g M F(Zi10) + 2 o Inf(Z:]0)] — N (0, ¢"De),
00,

where,
¢'De= C%DH + chzg + 2¢1c9D15 .
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Expression for the terms is found by applying Equation (2.6) to the function

o(Z)=qc ilnf(Z\O) + ¢ (;Zlnf(ZIO)
2

001
We thus get
= 2
[ (omf]0)\? f(z]6) (2552
ou0) = [ (F507) o ] Fte o 0
(8F<y|e> ) 2

B oln f(z | 0)\? f(z|0) 965
D (0) —/( 6, ) ) dx—/F(yw).@(y)‘g(y)dy

OF(y6) = OF(y|o)

- [ Omf(@]8) Omf(x|0) fx|6) [ 0.2yl
We are able to find that,

01 — 6,

vn Z(6) | —  N2(0, D(6))
0y — 0
01 — 6, of __, ~
= Vi | — Ny , I71(6) D(6) I7(8)
Oy — 0 0

Here, ¥ = Z-1(8) D(0) T-1(8), so that ©~' = Z(6) D~(8) Z(6).

a b
Let the elements of Z(0) = , where:
c d

4=T = —E [821nf(X | 0)]

067
B B 0?In f(X | 6)
d=1Ty = —E [89%

2
bzcqu:Izl:—E[‘Wl

001004

1 d —b
, since b = c.

-b a
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Now, let the elements of matrix D(0) = , so that the limiting variance-covariance matrix,

fg
Covp(0) = IT746) D(0) Z-1(0):
1 [ d —b e f d —b
C 0)= ———
TR IV Ll I R
v lde—br  ar—ng d b
- - X
(ad — b%)2 —betaf —bf+ag b a
1 d(de —bf) — b(df — bg) —b(de — bf) + a(df — bg)
Covp(0) = (ad = 12

d(—be +af) —b(=bf +ag) —b(—be+af)+a(—=bf+ ag)

where,
(ad — b*)? = (T11 T2 — I1,)?
d(de —bf) — b(df — bg) = D11Z3, — 2Z12T22 D12 + D213,
—b(de — bf) + a(df — bg) = —T19T22 D11 + D197 + T11T2aD1s — 111112 Doy
d(=be +af) — b(=bf + ag) = —~T12To2 D11 + T11Ta2 D12 + D12Z75 — T11Z12Dao

—b(=be + af) + a(=bf + ag) = D11I{y — 2T11Z22 D12 + Do T}

3.2 Weibull Distributed Event

Under this case, we consider X ~ Weibull(f,p) and Y ~ Pareto(A,1). We begin by computing
the theoretical variances, followed by the maximum likelihood estimation of the scale parameter, 6
and the shape parameter, p.

flz|0,p) = phaP~ e ™ 2>0,p>0,0>0
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The integrals are evaluated computationally using software. The variance-covariance matrices
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obtained from this case produced the following results.

Table 3.1: Numerical Results from Weibull Distributed Event at significance level o = 0.01

» 0 \ Parametric Ellipse Area | Modified Ellipse Area Censoring Rate
Theoretical Estimated | Theoretical Estimated

0.1 | 0.5 | 4.939092 5.026896 0.127872 0.134701 0.5944349
1 0.1 1 ] 9.393342 9.436232 0.387559 0.401798 0.7985357
0.75 | 0.25 | 0.5 | 7.925077 8.053711 1.153352 1.221890 0.5007178
0.75 1 0.25 | 1 | 12.85312 12.68529 3.120171 2.973647 0.6950513
1 0.5 | 0.5 | 16.48671 16.49241 8.133768 8.184578 0.3443205
1 0.5 1 | 22.87485 22.86229 13.45165 13.58318 0.5385447
0.5 | 0.1 | 0.5 3.986597 3.961047 | 0.172574 0.173800 0.7490133
0.5 | 0.1 1 | 8.370920 8.249199 2.511489 2.299068 0.8708996
0.5 1 0.5 | 15.16020 15.22512 17.07878 17.39303 0.2453899
0.5 1 1 | 18.75805 18.80608 30.21760 30.04615 0.3785504

Due to the complexity of graphing multiple ellipses across a range of parameter values, we selected
a sample of values for 6 and p at A = 0.5 and A = 1. For each combination (or triple), we computed
the corresponding variance-covariance matrices and plotted the resulting confidence ellipses. The
parameter values are listed in Table 3.1 above. Comparisons are made based on the area covered,
calculated as

Area = mwab, where a, b are the half lengths of the ellipse.

Parametric Ellipse (A=0.5) Modified Ellipse (A=0.5) Overlaid Ellipses for o= 0.01 Overlaid Ellipses for o = 0.05

Major — Minor Estimator — Modified — Parametric Estimator — Modified — Parametric

Figure 3.1: Theoretical Ellipse Comparison for Weibull(p = 0.5, § =1) at A =10.5

We observed that ellipses associated with the modified estimator generally covered smaller areas
than those of the parametric estimator across different censoring rates. This suggests that, for
the selected (p, 0, \) triples, the modified estimator tends to yield lower variance in the maximum
likelihood estimates. This observation was consistent across all examined combinations, with the

exception of the case p = 0.5, § = 1. Graphical illustrations of some triples are included below.
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for Weibull(p=0.5, 6 =1) at A=10.5
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Figure 3.4: Estimated Ellipse Comparison for Weibull(p =1, § = 0.5) at A =1

The maximum likelihood estimators used to generate the ellipses in Figures 3.2 and 3.4 are shown

below.

In both likelihoods, no closed-form expressions was obtained for the shape parameter.

Consequently, the uniroot function in R was employed to numerically solve for the roots of the

respective score functions.
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Table 3.2 below provides the maximum likelihood estimates and their corresponding mean squared

errors for p and 9, based on 10,000 simulations drawn from the specified distributions.

Table 3.2: MLE Results for Weibull Distributed Event at significance level a = 0.01

D 0
A p ﬁP ﬁM MSEP MSEM 0 9P HM MSEP MSEM
0.5 1 1.00630 | 1.00670 | 0.00004 | 0.00004 | 0.1 | 0.10208 | 0.10216 | 0.00000 | 0.00000
1 1 1.00999 | 1.01120 | 0.00010 | 0.00013 | 0.1 | 0.10043 | 0.10249 | 0.00000 | 0.00001
0.5 | 0.75 | 0.75858 | 0.75998 | 0.00007 | 0.00010 | 0.25 | 0.25329 | 0.25533 | 0.00001 | 0.00003
1 10.75 | 0.73879 | 0.73875 | 0.00013 | 0.00013 | 0.25 | 0.24709 | 0.24224 | 0.00001 | 0.00006
0.5 1 1.00752 | 1.00960 | 0.00006 | 0.00009 | 0.5 | 0.49614 | 0.49979 | 0.00001 | 0.00000
1 1 10.99868 | 1.00276 | 0.00000 | 0.00001 | 0.5 | 0.50043 | 0.50201 | 0.00000 | 0.00000

0.5] 0.5 | 0.50107 | 0.50412 | 0.00000 | 0.00002 | 0.1 | 0.09855 | 0.10092 | 0.00000 | 0.00000
1 | 0.5 | 0.49053 | 0.51270 | 0.00009 | 0.00016 | 0.1 | 0.09427 | 0.10388 | 0.00003 | 0.00002
0.5 ] 0.5 | 0.50089 | 0.50494 | 0.00000 | 0.00002 1 1.00366 | 1.01087 | 0.00001 | 0.00012
1 | 0.5 | 0.50262 | 0.49589 | 0.00001 | 0.00002 1 10.99590 | 0.98768 | 0.00002 | 0.00015
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The observed similarity in the mean squared errors accounts for the consistency between the theo-

retical and estimated confidence ellipses.

3.3 Gamma Distributed Event

In the second scenario, we let X ~ Gamma(a, ) and Y ~ Pareto(),1).

a—1 _—

|8

e
f($|04,0) = W,$>O,a>0,0>0
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090 M@0 = =5
8ilnf(x\a,6) = Inz—¢(a)—Inb
62
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Recall that the upper incomplete Gamma function is defined as:

T o0 T du T
T ) = a—1 _—t 1 _r e r
(a, 0) é t e ‘dt, let u AT, B

Applying the Leibniz integral rule which says:

d b@ p ; o
& o f(z, t)dt = f(z, b(:c)).%b(:c)—f(;c,a(x)).ia@) /

since u = u(f), we get

In this case,

That implies,

Hence,
8 — 1 l’a _ =z
o5 In F(z|a, 0) = (0, Z) 6ot e’
0. - 0 x 0
8—alnF(x|a,0) = %IHF <a, 9> - a—alnf(a)
0., = 1 0 x
L mF(za) = — T (a,2) -
We see that, gf (04, a:) = / ito‘_1 e ldt = / t tnt- e ldt
Oa 0 2 da z
2ot e s
For f(z | a,0) = T@) 6o we only consider Y to be Pareto with shape = A and scale = 1., i.e.
g(y) = Aty and G(y) = At The information matrix for X ~ Gamma(cq,6) in the

non-censored case, Z(a, ) is known and given as

(1) 1
Lo, 0) = v (a) ’ )

where 1)) (a) is the trigamma function, the first derivative of the digamma function (), see
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Lehmann and Casella (2006). Some relevant integrals include:
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For the parametric likelihood,
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Table 3.3 below shows results of the ellipses obtained from the theoretical computation of the

variance-covariance matrices of the likelihoods for selected values of «, 6, and A.

Table 3.3: Numerical Results from Gamma Distributed Event at significance level = 0.01

o 0 A\ Parametric Ellipse Area | Modified Ellipse Area Censoring Rate
Theoretical Estimated | Theoretical Estimated

0.5 ] 0.1 | 0.5 | 2.439091 2.448590 2.440983 2.450497 0.02264331
0.5 ] 0.1 1 | 2.488794 2.536911 2.496540 2.545101 0.04391339
1 ] 01 ]0.5] 3.729703 3.714726 3.734178 3.719167 0.04391339
1 | 0.1 1 | 3.856470 3.865999 3.875031 3.884613 0.08436666
0.2 ] 0.2 | 0.5 | 2.877299 2.860837 | 2.882318 2.864727 0.01728026
0.2 ] 0.2 1 | 2.945821 3.042820 2.966536 3.065323 0.03308677
0.5 ]0.25| 0.5 | 6.257164 6.210355 6.278819 6.229643 0.05039196
0.5]025| 1 | 6.536152 6.660282 6.627420 6.749412 0.09464590
0.1 ] 0.1 | 0.5 0.967690 1.035191 0.968106 1.035714 0.00464514
0.1 ] 0.1 1 | 0.978154 0.933697 | 0.979930 0.935235 0.00907924
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The confidence ellipses generated by the two estimators were highly comparable at low censoring
rates. However, as the censoring rate increased, the ellipses corresponding to the modified estimator
exhibited substantially larger areas than those of the parametric estimator. The comparability at
low censoring rates was consistently observed across all (a, 6) pairs evaluated at A = 0.5 and 1.

Graphical illustrations of some sampled cases are presented below.

Parametric Ellipse (A=0.5) Modified Ellipse (A=0.5) Overlaid Ellipses for o = 0.01 Overlaid Ellipses for o= 0.05
2 2 2 2
1 1 1 1
o fo o Yo
1 1 Bl 1
2 2 2 2

2 1 0 1 2 2 1 0 1 2 2 1 0 1 2 2 1 0 1 2
x1 x1 x1 x1
Axis — Major — Minor Axis — Mejor — Minor Estimator — Modifed — Parametric Estimator — Modified — Parametric

Figure 3.5: Theoretical Ellipse Comparison for Gamma(a = 0.2, § =0.2) at A =0.5

Parametric Ellipse (A=0.5) Modified Ellipse (A=0.5) Overlaid Ellipses for o = 0.01 Overlaid Ellipses for o = 0.05
2 2 2 2
1 1 1 1
Yo Yo 9o 'R
1 1 B 1
2 2 -2 2

2 1 0 1 2 2 1 0 1 2 2 1 0 1 2 2 1 0 1 2
x1 xt x1 xt
Axis — Major Minor Axis — Major Minor Estimator Modified — Parametric Estimator Modified — Parametric

Figure 3.6: Estimated Ellipse Comparison for Gamma(a = 0.2, § =0.2) at A =0.5

Parametric Ellipse (\=1) Modified Ellipse (\=1) Overlaid Ellipses for o = 0.01 Overlaid Ellipses for o = 0.05
2 2 2 2
—
( I
Yo Yo o Yo
) -
-
2 2 2 2
2 0 2 2 0 2 2 0 2 2 0 2
x1 x1 x1 x1
Axis — Major — Minor Axis — Major — Minor Estimator — Modified — Parametic Estimator — Modiied — Parametic

Figure 3.7: Theoretical Ellipse Comparison for Gamma(a = 0.5, § = 0.25) at A =1
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Parametric Ellipse (A=1) Modified Ellipse (A=1) Overlaid Ellipses for o = 0.01 Overlaid Ellipses for o = 0.05

2 0 2 2 0 2 2 0 2 2 0 2
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Figure 3.8: Estimated Ellipse Comparison for Gamma(a = 0.5, § = 0.25) at A =1

In Figures 3.5 - 3.8, the ellipses largely overlap such that there is minimal to no distinction between
the interior regions. A negative correlation between the shape and scale parameters was also evi-
dent across all parameter combinations examined. In addition, the maximum likelihood estimates
and their corresponding mean squared errors are presented in Table 3.4. The derivations for the
MLEs are outlined below.

A closed-form expression was obtained only for 6M | while the remaining estimators required nu-

merical methods for their computation.

Semi-parametric MLE
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Table 3.4: MLE Results for Gamma Distributed Event at significance level = 0.01
& 0
A« af aM | MSEp | MSEy | 6 o oM MSEp | MSEy

0.5 | 0.5 | 0.50287 | 0.50287 | 0.00001 | 0.00001 | 0.1 | 0.10004 | 0.10004 | 0.00000 | 0.00000
1 ]10.5 ] 0.49554 | 0.49554 | 0.00002 | 0.00002 | 0.1 | 0.10241 | 0.10241 | 0.00001 | 0.00001
0.5 | 1 |0.98954 | 0.98954 | 0.00011 | 0.00011 | 0.1 | 0.10024 | 0.10024 | 0.00000 | 0.00000
1 1 | 1.01155 | 1.01155 | 0.00013 | 0.00013 | 0.1 | 0.09954 | 0.09954 | 0.00000 | 0.00000
0.5 | 0.2 ] 0.19947 | 0.19950 | 0.00000 | 0.00000 | 0.2 | 0.19917 | 0.19909 | 0.00000 | 0.00000
1 10.2]0.20018 | 0.20018 | 0.00000 | 0.00000 | 0.2 | 0.20621 | 0.20621 | 0.00000 | 0.00000
0.5 | 0.5 | 0.50107 | 0.50127 | 0.00000 | 0.00000 | 0.25 | 0.24788 | 0.24775 | 0.00000 | 0.00000
1 10.5]0.49110 | 0.49163 | 0.00008 | 0.00007 | 0.25 | 0.25719 | 0.25677 | 0.00005 | 0.00005
0.5 | 0.1 | 0.10190 | 0.10190 | 0.00000 | 0.00000 | 0.1 | 0.10583 | 0.10583 | 0.00003 | 0.00003
1 10.1]0.10179 | 0.10179 | 0.00000 | 0.00000 | 0.1 | 0.09464 | 0.09464 | 0.00003 | 0.00003

In Table 3.4, we observe that the estimates produced by both estimators are identical in most cases,
with only minimal differences in the remaining instances. This explains the substantial overlap of
the confidence ellipses observed in almost all scenarios in this case. Consequently, for small values

of the parameters and A, the variances of the estimators are almost indistinguishable.
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3.4 Summary

This chapter began with an introduction to the maximum likelihood estimation of multiple param-
eters in the absence of random censoring, with a focus on the two-parameter case estimation. We
explored the estimation of the variance-covariance matrix using confidence ellipses derived from
the bivariate normal distribution. This concept was also applicable in the censored data case.
Considering X ~ Weibull(p,0) and X ~ Gamma(a, ), both paired with Y ~ Pareto(A, 1), we
identified some triples of the scale parameter (6), shape parameter (p or «), and the parameter of

the censoring distribution (\) where comparisons were particularly insightful.

Motivated by findings from the single-parameter case, we focused on relatively small parameter
values. Thus, we examined the shape-scale pairs of the event variable at A = 0.5 and A = 1. For
X ~ Weibull(p,0), random parameter combinations were tested across a range of censoring rates.
Among the sampled triples, the modified estimator generally demonstrated better efficiency, with
the exception of (p = 0.5,0 = 1), where the estimators were comparable at A = 0.5. Notably, the
case (p = 1,60 = 0.1) yielded especially favorable results for the modified estimator (see Table 3.1
and B.3).

In the case of X ~ Gamma(a,@), high censoring rates were associated with large confidence
ellipse areas for the modified estimator. As such, our comparisons focused on scenarios where
P(6 = 0) — 0. Across all triples examined, the estimators showed highly comparable performance,
particularly at A = 0.5. The maximum likelihood estimates obtained from simulated data showed
strong similarity between the estimators, as evidenced by identical mean squared errors in most

cases.
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Chapter 4

Conclusion

The aim of this research was to compare two maximum likelihood estimators under random cen-
soring. Specifically, we sought to examine the traditional maximum likelihood estimator of the
fully parametric likelihood and a modified likelihood estimator constructed by replacing the cen-
soring indicators in the parametric model with Kaplan-Meier-type weights. The study considered
various estimation scenarios, including both single-parameter and multi-parameter cases. For each
scenario, appropriate distributions were specified for the event and censoring variables. Generally,
suitable choices were made to ensure finiteness and integrability in the variance components. The
comparison was conducted from a theoretical perspective and further supported by simulated data.
Therefore, variances and mean squared errors were the primary tools for evaluating and contrasting

the performance of the estimators.

In the single parameter case, we observed that although the variance of the modified estimator
was not consistently smaller than that of the parametric estimator, the two estimators exhibited
strong comparability at lower parameter values. The most notable similarity was observed at
A < 1 in nearly all three cases of the event variable X. In particular, when X ~ Beta(f,1) and
Y ~ Pareto(\, 1), the estimators produced identical mean squared errors for A € {0.5,1,2,3}.
Comparisons in the multi-parameter case were based on confidence ellipses, as the focus was on
estimating k = 2 parameters. Remarkably, when X ~ Weibull(6,p), the modified estimator con-
sistently produced confidence ellipses with smaller areas than those of the parametric estimator

across most of the randomly selected parameter triples at different censoring rates. This suggests
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that the modified estimator produces more precise estimates than the parametric estimator at those
triples. On top of that, comparable ellipses were produced under X ~ Gamma(q, @) with minimal
differences in area. This similarity was further supported by the fact that both estimators produced

identical maximum likelihood estimates for the shape and scale parameters.

This research posed a few challenges, particularly in selecting appropriate distributions for both the
single and multi-parameter scenarios, due to the varying shapes and characteristics of the candidate
distributions. Another challenge was estimating the shape parameters in the parametric models,
particularly in the multi-parameter cases, where closed-form solutions were largely unattainable.
Nonetheless, these challenges presented the opportunity to apply novel and numerical techniques in
solving statistical problems. A limitation of this study is that, in instances where the relevant in-
tegrals were not explicitly solved, the comparisons were made at selected ranges of the parameters.
Future research could extend the analysis to wider parameter ranges to provide a more compre-
hensive evaluation. Moreover, it would be valuable to validate these findings using real-world data.
The observation of high comparability between the estimators in the case of X ~ Gamma(a,6)
at very low censoring rates may also inspire future studies to explore similar comparisons in the

absence of random censoring.
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Appendix A

Regular Model

Let the density of X be f(x | @), where 8 € © C R", the parameter space. Here, X can be a vector
in R™ or a scalar. Let I(6) be the n x n Fisher information matrix. From Hogg et al. (2018), a

model is said to be regular if the following regularity conditions are satisfied:

1. The cumulative density functions are distinct, that is, for 8 # @', it follows that F(x; | 0) #

F(z;]0").
2. The probability density functions share a common support V 6.
3. The point g lies in the interior of the parameter space ©.
4. f(x | 0) is twice differentiable.
5. [ f(z | 6) dx is twice differentiable under the integral sign as a function of 6.

6. 3 an open subset ©9p C © such that 8y € ©g and the third partial derivatives of f(x | )

exists VO € Oy.

7. The expectation of the score function is zero, and the information matrix is the negative

expectation of the second derivative of the log-likelihood function.

8. VO € Oy, the information matrix I(@) is positive definite.
3

9. 3 functions Mjy(x) such that m

log f(SU | 0) < Mjkl(x), Vo € @0 and Ego(Mjkl) <

00, Vi, k1€ 1,...,n.
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Appendix B

Complementary Results

This section contains additional results and figures.

parameter case.
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Figure B.1: Estimated Ellipse Comparison for Weibull(f = 0.25,p = 0.75) at A = 0.5
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Figure B.2: Estimated Ellipse Comparison for Weibull(§ = 0.1,p = 0.5) at A = 0.5
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Figure B.3: Estimated Ellipse Comparison
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Figure B.5: Estimated Ellipse Comparison for
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