

Notes

for

Files and Databases

 Bipin C. DESAI

Concordia University
Montreal

BytePress

Limit of Liability/Disclaimer of Warranty:

The authors and the publishers have taken care to prepare this book. However, there is no warranty of the
accuracy, completeness or presentation of the latest version/generation of any system discussed in this book. The
reader must be aware of the fact that software systems often have multiple bugs and are not well thought out, and
are usually suitable for limited situations and/or data combinations. Hence the user must be responsible for the
appropriate application of any technique and use of any software or code examples.

Furthermore, there is no assurance whatsoever of the possible usefulness or commercialization of any programs,
scripts and examples given in this book.

Any references given are based on their existence at the time of writing and the authors and the publishers do not
endorse them or imply any usefulness of the information found therein. The reader must be aware that any web
site cited may change, disappear or change their terms of service.

This document in electronic form, bearing a CopyForward permission, could be used for personal use and/or
study, free of charge Anyone could use it to derive updated versions. The derived version must be published
under CopyForward. All authors of the version used to derive the new version must be included in the updated
version in the existing order, followed by name(s) of author(s) producing the derived work. Such derived
version must be made available free of charge in electronic form under CopyForward. Any other means of
reproduction requires that annual profits(income minus the actual production costs) should be shared with
established charitable organizations for children. This annual share must be at least 25% of the profits and the
organization being supported must have a very modest administrative charges(20-30% of their annual budget
and this sharing amount must be at least 15% of the gross annual revenue). The 25% of the profits is the
minimum and the original creator of the digital content may increase it to up to 40%. The derived contents
would be governed by the term of the original creator of contents.

Readers who found a CopyForward content or any derived work useful are encouraged to also make a donation
to their favourite children charity. Make sure to choose charity which has very modest administrative charges or
give directly to some deserving children in your community.

This children’s charity contribution requirement of CopyForward is civil and moral! It would be judged in the
court of public opinion and the author and all author(s) of this and any derived works allow(s) interested
party/parties to take legal actions against the violator of the spirit of sharing.

Published by: Electronic Publishing BytePress.com Inc.
ISBN: 978-1-988392-16-5

 Bipin C Desai

Files and Databases
Introduction

 Pl. see: https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

Notes

 Bipin C. Desai

2
 Bipin C Desai

Objectives
• Concepts and use data models(E-R, RDM, unstructured)

• Intro. To the Relational database management systems (RDBMS)

• Query languages (Relational Algebra & Calculus, SQL)

• Concepts of checks, assertions, and triggers.

• Database design and web-programming including: HTML, Javascript,
PhP – design/implementation of a real application.

3
 Bipin C Desai

Data

Where does data come from?

Records of status
Operation of organizations
Data + action → more data

What to record
Legal and traditional commitments
cost of recording and preserving the records

Data + Algorithm → Programs +++

4
 Bipin C Desai

Computers

Jacquard machine - 1804
Textile weaving machine
 Pattern controlled by punched cards (first input device)

Charles Babbage:
Difference Engine – 1832
Analytical Engine - no funds

Processor, storage, input device, output device
Partially completed in 1910
Fully programmable

First programmer: Lady Lovelace -Ada (daughter of Byron- the poet)

US Census-
 Hollerith and the tabulating machine – used punched cards
1911 -Computing-Tabulating-Recording Company ► IBM

5
 Bipin C Desai

Computers

1930 Vennevar Bush ► an analog computer ►Differential Analyzer

Programming an
analog computer

6
 Bipin C Desai

Computers

1934 James Hilton wrote GoodBye Mr. Chips in 4 days-£50 a royalty!

1939-1843 Howard Aiken and IBM
 ► Mark I (mechanical) Mark IV (vacuum tube)

1939 Atanasoff/Berry Iowa State
1943 Digital computer- Colossus (UK)
1945 Eniac (USA)
1949 Manchester Mark I

https://www.britannica.com/technology/computer/The-first-computer

7
 Bipin C Desai

1945
Feb. 4-11 Yalta conference: Decide Europe’s re-organization
April 30 Hitler commits suicide
May 8 Armistice day
March-July: Interim committee for the deployment of the Atomic bomb,

July: Final report of the interim cmt. & a press statement on dropping the
 bomb(s)
July: Publication(The Atlantic, July, 1945) of As We May Think

by VANNEVAR BUSH concept of linked documents
https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/

 August: Most of the Japanese forces have been defeated
 August 6 US drops atomic bomb on Hiroshima
 August 9 US drops atomic bomb on Nagasaki

8
 Bipin C Desai

Late 1940s
End of colonization, and new ones -digital and internet based?
 https://en.wikipedia.org/wiki/Decolonisation_of_Asia - /Nakba
1950s
Development of the digital computers
1960
Concept of wide area network, ARPANET, packet transmission
Early databases
1970s
TCP/IP protocol, Relational Databases, SQL – IBM a late R-DBMS starter
Time sharing, multi-tasking. IBM and the effective end of Usain anti-
monopoly law applications. Birth of PC and DOS -drop-out kid wonder!
1980s
Commercialization of the internet, ISPs,

Hypertext, HTML, HTTP, OODB
1990s
Web browsers, search engines, massive data collection, tracking
21st Century
NoSQL, OSN, more drop-out billionaires, AI, LLM, Internet colonization

9
 Bipin C Desai

https://en.wikipedia.org/wiki/IBM_729Allan Gondeck on an IBM1620 1964

IBM 026 keypunches, IBM 1403 line printer and IBM 729 tape drives
https://commons.wikimedia.org/w/index.php?curid=17267381

IBM 7090 computer
https://commons.wikimedia.org/w/index.php?curid=2878809

10
 Bipin C Desai

Modelling:

Represent (approximate)
 -physical thing,
 -conceptual thing

Broomstick stability control

Application:
Stability of rockets such
 as: Saturn V

© BCDesai, NASA, Purdue 1965

© BCDesai, NASA, Purdue 1965

11
 Bipin C Desai

wikimedia.org/w/index.php?curid=6448924

Saturn V - The Real thing – 1969

12
 Bipin C Desai

Børre Ludvigsen, Dr. Bipin Desai; Dr.
Yuri Rubinsky

http://www94.web.cern.ch/WWW94/Images/ClosingPanel/Closingpanel1.html

Data deluge and exploitation:
 The Beginning!

13
 Bipin C Desai

 Constantine the Great
https://www.flickr.com/photos/yorkminster/5390106900/

14
 Bipin C Desai

Virtual empire built on data

https://www.economist.com/leaders/2016/04/09/imperial-ambitions

15
 Bipin C Desai

Virtual empire built on data

Recent Disasters in Database Related Projects
HORIZON

 https://en.wikipedia.org/wiki/British_Post_Office_scandal

PHOENIX:

https://pipsc.ca/news-issues/press-releases/press-release-phoenix-pay-system-turns-nine-billion-

dollar-breakdown

https://spectrum.ieee.org/canadian-governments-phoenix-pay-system-an-incomprehensible-failure

https://en.wikipedia.org/wiki/Phoenix_pay_system

https://ottawacitizen.com/opinion/desousa-9-years-of-phoenix-the-payroll-disaster-thats-burning-workers

https://ottawacitizen.com/news/feds-spending-1-billion-on-maintaining-public-servant-pay-system-over-two-years

-as-it-tries-to-fix-phoenix-issues

SAAQClick

https://globalnews.ca/news/11153545/quebecs-saaqclic-scandal-500-million/

Unity

Lack of knowledge, trasperancy, over hype by marketing people,

ignorance of elected officers, fear of challenging authority and its reults

 Bipin C. DESAI 1

 Files and Databases
 Introduction

 Pl. see: https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

 Bipin C. DESAI

 Bipin C. DESAI 2

 Bipin C. DESAI 3

M o d e lin g t ech n iq u es (E-R, O D L, U M L)

Basic r e la t io n a l m o d e l

D esig n o f d a t ab ase ap p l ica t io n s

D at ab ase p r o g r am m in g (M ySQ L,
SQ L, PH P, H TM L, CSS, Javascr ip t)

 Bipin C. DESAI 4

Real and abstract
Objects/things and their
interactions

Requirements
for data processing

applications

Entities and
relationships
to be modeled

 Bipin C. DESAI 5

DBMS! What is it?

Database is an integrated data collection
(Logically consistent and persistent)

It is derived from the model of a set of
applications for a real world enterprise.

DBMS is a software package designed to make
managing almost any database.

DBMS offers: data independence, efficiency,
integrity, security, concurrency, recovery

 Bipin C. DESAI 6

Why Database?
Information Age: 30-40% of world trade and growing
Web(Unstructured data) and .com
Digital Library
Human Genome Project
Day to day operation of Mama/Papa Store
List of titles, artist, and download site of shared files.
Information about employees, departments, projects,

etc. in an organization
Information about students, courses, enrollments,

professors, etc. in an educational institute
Information about books, videos, albums, members, etc.

in a library

Email,
Entertainment
OSN,
Shopping

 Bipin C. DESAI 7

DBMS is a complex set of software packages:
- create new databases, store and manage data -

provide application development and support
environment
Application Support: Gives developers tools to build
applications for using the data. Allows easy method for
users to query and modify the data
Persistent storage: Support the storage of data
Transaction management: Controls concurrent access
to data from many users
Supports the ACID properties .

Atomicity Concurrency Integrity Durability

 Bipin C. DESAI 8

Cu st o m e r
M a st e r

File

O S
Cu st o m e r list

U se r 1
Pro g ra m

w it h d a t a d e f s.

PLI

Cu st -N o
Cu st -
N a m e
Ad d re ss
Cre d it -
Co d e
D e scr ip t i
o n

I n vo ice
M a st e r

File

O S
M o n t h ly in vo ice

U se r 2
Pro g ra m

 w it h d a t a d e fs

CO BO L

Cu st -N o
Cu st -N a m e
Ad d re ss
Pa r t -N o
Q t y -O rd e re d
Pr ice

Pa r t -N o
Pa r t -D e scr
Ve n d o r -N o
Q t y -I n -St o ck
Q t y -O n -
O rd e r I n ve n t o r y

M a st e r
File

O S
Pa r t s list

U se r 3
Pro g ra m

w it h d a t a d e f s.

PASCAL

Marketing

Accounting

Warehouse

 Bipin C. DESAI 9

Sharing not possible data definition is “locked” in
application programs which “owns” the file and the data in it

Redundancy of data: Same data is duplicated perhaps in
slightly different format over various files

Multiple updates: Changes have to be made to all files
containing the same data. Possibility of inconsistency

Waste of storage space:

Reliability and better local control

Pros & Cons of file based system

 Bipin C. DESAI 10

Application

Database Management System

Application Application

Online
storage

Online
storage

Online
storage

Naïve User

DBA

Casual Users Web User

. . .

 Bipin C. DESAI 11

Q t y-O rd e rd
Pr ice
Pa r t -d e scr
Ve n d o r -N o
Q t y -I n -St o ck
Q t y -O n -
O rd e r

D a t a b a se

Cu st o m e r list

U se r 1

M o n t h ly in vo ice

U se r 2

Pa r t s list

U se r 3

O S

D a t a I t e m s
:
Cu st -N o
Cu st -N a m e
Ad d re ss
Cre d it -Co d e
D e scr ip t io n
Pa r t -N o

Ap p lica t io n 1

D BM S
Ap p lica t io n 2

Ap p lica t io n 3

 Bipin C. DESAI 12

Reduce data redundancy and avoiding inconsistency
Provide Concurrent access
Offer Centralized control

- security(appropriate authorization and its
control),

- integrity(constraints and their enforcements)
- reliability(backups and replication)

Data abstraction and independence

Pros & Cons of DBMS

 Bipin C. DESAI 13

First Step: Data Models

Data Model: concept to describe data
Schema: description of a collection of data

using a specific data model
Relational Model: Based on the concept of

relation(table with rows and columns)

 Bipin C. DESAI 14

A Data Model is a collection of concepts for describing

Entities(objects) and relationships among them

Expressing the semantics and constraints from the real world

 Object-Based Modeling Techniques

Entity-Relationship (ER) Model

Object-Oriented (OO) Model

 Record-Based Models
Hierarchical Model: used by earliest DBMS – IBM’s IMS

Network Model: second generation DBMS - DBTG

Relational Model: the first based on theory - relations

(RA, RC, Datalog)

 Bipin C. DESAI 15

Employee Name
Employee Phone Number

Employee Name
Employee SIN

Employee Salary

Employee Name
Employee Phone Number

Employee SIN
Employee Address

Employee Annual Salary
Employee YTD Salary

Employee Name string
Employee Phone Number digits

Employee SIN digits
Employee Address string

Employee Annual Salary money units
Employee YTD Salary money units

 Bipin C. DESAI 16

Three level Concepts

. V i e w : U s e r 1 V i e w : U s e r 2 V i e w : U s e r 3

 C o n c e p t u a l S c h e m a

 P h y s i c a l S c h e m a

L o g i c a l I n d e p e n d e n c e

P h y s i c a l I n d e p e n d e n c e

 Bipin C. DESAI 17

Employee address

Employee name

Annual salary

SIN

Employee health card No: string,
unique

Annual salary: float

Employee address: string

SIN: dec, key

Employee name: string

Employee address: string length 51 offset 44

Annual salary: 9,2 dec offset 95

Employee health card No: string length 10 offset 34 unique

SIN: 9 dec offset 25 unique

Employee name: string length 25 offset 0

Lo g ica l v ie w

Co n ce p t u a l v ie w

I n t e r n a l v ie w

U ser 1

D BA

U ser 2

 Bipin C. DESAI 18

Three levels & Independence

User View: How users view data - derived
from conceptual view-

Conceptual Schema: Logical structure of
the database

Physical Schema: The actual files and
indices used

Schema defined using DDL

 Bipin C. DESAI 19

Data Independence: modify definition of schema at one
level without affecting a schema definition at a higher
level.
Logical Data Independence: modify logical schema
without causing application programs to be rewritten

adding new fields to a record or changing the type of a field

Physical Data Independence: modify physical schema
without causing logical schema or applications to be
rewritten

changing file structure from sequential to direct access

 Bipin C. DESAI 20

University Database

External Schema:
Course_Enrol(C#:char, Number:int);
Conceptual Schema:
Student(S#, Name, Dept)
Course(C#, Cname, Credits)
Enrollment(C#, S#, grade)
Physical Schema:
files, indexed on S#, C#, etc

 Bipin C. DESAI 21

A d a t ab ase sch em a is a d escr ip t io n o f a
p a r t icu la r co l lect io n o f d a t a , u sin g a g iven
d a t a m o d e l

Par t o f a sch em a f o r a u n ive r sit y. d a t ab ase in
r e la t io n m o d e l w o u ld co n t a in am o n g o t h e r s,
t h e f o l lo w in g :

St u d en t s (sid , n am e , d ep ar t m en t , d o b , ad d r ess)

An in st an ce o f a d a t ab ase sch em a is t h e
act u a l co n t en t o f t h e d a t ab ase a t a
p a r t icu la r p o in t in t im e

sid name department dob address

1112223 John Smith CS 12-01-82 22 Pine, #1203

2223334 Ali Brown EE 31-08-73 2000 St. Marc

3334445 Youwong Li CS 23-11-79 1150 Guy

 Bipin C. DESAI 22

Q u er y
Pr o cesso r

Sch em a
M o d ifi ca t io n s

Tr an sact io n
M an ag er

St o r ag e
M an ag er

D at a
M et ad a t a

Q u er ies

M o d ifi ca t io n s

The Architecture of a DBMS
There are 3 types of input to

DBMS:
Access via queries
Updates to data
Updates to model

Initial database creation,
addition to schema components
schema modifications

 Bipin C. DESAI 23

The query processor handles:
Queries
Updates

The job of the query processor
which includes an optimizer
To find the “best” way to carry out

a requested operation
To issue commands to the storage

manager that will carry them out.

Q u er y
Pr o cesso r

Sch em a
M o d ifi ca t io n s

Tr an sact io n
M an ag er

St o r ag e
M an ag er

D at a
M et ad a t a

Q u er ies

M o d ifi ca t io n s

 Bipin C. DESAI 24

The job of the storage
manager is
To obtain requested

information from the data
storage

To modify the information to
the data storage when
requested.

Q u er y
Pr o cesso r

Sch em a
M o d ifi ca t io n s

Tr an sact io n
M an ag er

St o r ag e
M an ag er

D at a
M et ad a t a

Q u er ies

M o d ifi ca t io n s

 Bipin C. DESAI 25

The transaction manager
is responsible for the
enforcing ACIDity
several concurrent

transactions(one or more
queries) do not interfere with
each other

the system will not lose data
even if there are failures
(done through Recovery
subsystem)

Q u er y
Pr o cesso r

Sch em a
M o d ifi ca t io n s

Tr an sact io n
M an ag er

St o r ag e
M an ag er

D at a
M et ad a t a

Q u er ies

M o d ifi ca t io n s

 Bipin C. DESAI 26

Database contents include:
Metadata for the DBMS

and one or more databases
Data belonging to one or

more databases
Access aids such as indices

and statistics

Q u er y
Pr o cesso r

Sch em a
M o d ifi ca t io n s

Tr an sact io n
M an ag er

St o r ag e
M an ag er

D at a
M et ad a t a

Q u er ies

M o d ifi ca t io n s

 Bipin C. DESAI 27

The Structure of a DBMS

D BM S an d
i t s d a t a m an ag er

Q u er y
p r o cesso r

O S o r o w n
fi le m an ag er

D D L co m p ile r

Co m p iled
ap p l ica t io n

p r o g r am

D at a Fi les an d
D a t a D ict io n ar y

O S d isk
m an ag er

Co m p iled
u se r in t e r f ace

Te leco m syst em

Te leco m syst em
Te leco m syst em

N aive u ser

Bat ch u ser

D BA

Casu a l u ser

 Bipin C. DESAI 28

Database Design Process
and

Conceptual Design

 Bipin C. DESAI 29

Req u ir em en t s
f o r a se t o f
ap p l ica t io n s

O D L

E/ R

Re la t io n s

O b ject -O r ien t ed
D BM S

Re la t io n
a l

D BM S

 Bipin C. DESAI 30

Real World

E-R Model

 Bipin C. DESAI 31

Abc 123q 456• abc • abc

Abc 123q 456• abc • abc

Abc 123q 456• abc • abc

Abc 123q 456• abc • abc

Abc 123q 456• abc • abc

Abc 123q 456• abc • abc

Abc 123q 456• abc • abc

Abc 123q 456• abc • abc

Abc 123q 456• abc • abc

Abc 123q 456• abc • abc

Abc 123q 456• abc • abc

Abc 123q 456• abc • abc

Abc 123q 456• abc • abc

Abc 123q 456• abc • abc

Abc 123q 456• abc • abc

Relational Model
E-R Model

 Bipin C. DESAI 32

Re la t io n a l M o d e l
I n t h is m o d e l, t h e d a t a is o r g an ized in r e la t io n s
(t ab les)

Relational database schema: D D L co m p o n en t o f SQ L

se t o f t ab le n am es

l ist o f a t t r ib u t es f o r each t ab le an d t h e ir
p r o p e r t ies

Examples of tables from a university database:
St u d en t : st u d _n u m b er, n am e , ad d r ess,
p r o g r am

D ep ar t m en t : n am e , b u d g e t _co d e , r o o m , p h o n e

Co u r se : n am e , n u m b er, cr ed it s

 Bipin C. DESAI 33

 Definition
 of the
 Problem

 Analysis:
 Systems,
 Procedures

 Preliminary
 Design

 Hardware
 Software
 Requirements

 Final Design

 Implementation
 and
 Testing

 Installation
 Operation &
 Tuning

 Bipin C. DESAI 34

Database Design Process

 Definition of the problem
 Study underlying applications(Procedure Manuals, Interviews etc.)

 What are the entities and relationships involved?
 What details about them should be in the database?
 What are the procedures, business rules, constraints?
 Who are the users? What do they need?

 Preliminary Conceptual design:
 ER Model

 Bipin C. DESAI 35

Database Design Process

 Software/Hardware Requirements

UML for software design
 Final Design: Schema Refinement: (Normalization)

Check relational schema for redundancies and related
anomalies.

External Schemas, indices, views, access methods
 Application programs, forms, reports, user interfaces
 Implementation and testing
 Installation and Tuning:

Data Distribution, Physical re-design
Performance, Security, Backup & Recovery.

 Bipin C. DESAI 36

ER Model
 Entity: Real-world object

 distinguishable from other
objects.
An entity is described using a

set of attributes.
 Entity Set: A collection of similar

entities.
All entities in an entity set

have the same set of attributes.

Each entity set has a key.
Each attribute has a domain.
Can map entity set to a relation

easily.

 CREATE TABLE Employees
 (sin CHAR(9),
 name CHAR(25),
 grade INTEGER,
 PRIMA RY K EY (sin))

Employees

sin
name

grade

 Bipin C. DESAI 37

mysql> CREATE TABLE Employees
 (sin CHAR(9),

name CHAR(25),
grade INTEGER,
PRIMARY KEY (sin));

Query OK, 0 rows affected (0.00 sec)
mysql> show tables;
+-----------------+
| Tables_in_db11s |
+-----------------+
| Employees |
+-----------------+

 Bipin C. DESAI 38

mysql> desc Employees;
+-------+----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------+------+-----+---------+-------+
sin	char(9)	NO	PRI		
name	char(25)	YES		NULL	
grade	int(11)	YES		NULL	
+-------+----------+------+-----+---------+-------+
3 rows in set (0.00 sec)

Note: size of integer is defaulted to 11

The Extra field contains any additional information that is
available about a given column.
The value is auto_increment for columns that have the
AUTO_INCREMENT attribute and empty otherwise.

 Bipin C. DESAI 39

CREATE TABLE Department
(did mediumint not null auto_increment,
 dname CHAR(16),
 bcode char(12),
 PRIMARY KEY (did));

Query OK, 0 rows affected (0.04 sec)

mysql> desc Department;
+-------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+----------------+
did	mediumint(9)	NO	PRI	NULL	auto_increment
dname	char(16)	YES		NULL	
bcode	char(12)	YES		NULL	
+-------+--------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)

 Bipin C. DESAI 40

Entities and entity sets

g r d

sin n am e

Em p lo yee

d n am e b co d e

Department

d id

All employees, and departments have the same set of
properties(attributes)
To distinguish one instance of an entity in an entity set from
others, we introduce an identifying attribute
This is the primary key and it is underlined

Entity set

attribute

 Bipin C. DESAI 41

Entity – Real world object distinguishable from other
objects of the same type

Entity Set -- A collection of similar entities: all have
same set of properties
ODL:
Object corresponds to entity Class corresponds to entity set

D O B. ad d r ess

SID

Fir st N am e

St u d en t

Last N am e
co u r seN u m b er n am e

Co u r se

cr ed it s

 Bipin C. DESAI 42

 Relationship:
Association among 2 or more entities.

 Relationship Set: Collection of similar relationships.
An n-ary relationship set R expresses an association among n

entity sets E1 ... En; each relationship in R involves entities e1
 E1, ..., en  En

Same entity set could participate in different relationship sets, or
in different “roles” in same set.

Employees

sin grd

dname

budgetdid

DOA
name

WorksIn Departments

ReportsTo

Employees

supervisee
supervisor

 Bipin C. DESAI 43

Employees

sin grd

dname

budgetdid

DOA
name

WorksIn Departments

Employees

sin grd

dname

budgetdid

DOA
name

WorksIn Departments

Total participation of all
employees & departments
In the WorksIn relationship
No Employee or Department
may exist without being related

Employees

sin grd

dname

budgetdid

DOA
name

WorksIn Departments
(0-n) 1

Many to one relationship:
many employees in a
department;
but an employee is
assigned to only one
department

Alternate way of showing a many-to-one relationship

© Bipin C. DESAI 4444

Entities and entity sets

len g t h fi lm Typ e

t i t le year

M o vie

n am e ad d r ess

St ar

len g t h fi lm Typ e

t i t le year

M o vie

n am e ad d r ess

St arM a leLead

One to many relationship between
 a movie and its male lead(“hero”):
Indicated by a arrow pointing to the “one
side” – A movie has but one main role,
The star may be a lead in many movies

 Bipin C. DESAI 45

len g t h fi lm Typ e

t i t le year

M o vie

n am e ad d r ess

St arSt a r r ed _in

len g t h fi lm Typ e

t i t le year

M o vie

n am e ad d r ess

St arFem aleLead

Many to many relationship between
movies and its stars. Each movie may
have many stars and each star may have
featured in many movies. Indicated by no
arrows on the connecting lines.

Entities and entity sets

© Bipin C. DESAI 46

len g t h fi lm Typ e

t i t le year

M o vie

n am e ad d r ess

St arD ir ect o r

How about a movie and the roles(characters) in it and the stars
playing them!

Entities and entity sets

 Bipin C. DESAI 47

len g t h fi lm Typ e

t i t le year

M o vie

n am e

Ch ar act e rh as

St ar

n am e ad d r ess

p lays
How about a movie, the roles
(characters) in it and the stars
playing them!

Scarlett O’Hara - Vivien Leigh
Rhett Butler - - Clark Gable
Alex Guinness plays eight members of the D'Ascoyne family in
Kind hearts and coronets(1949)
Matt Damon played the lead in the Bourne triology.

Entities and entity sets

 Bipin C. DESAI 48

Entities and entity sets

g r d

sin n am e

Em p lo yee

d n am e d o b

Employees

sin grd

dname

dob

Keenship
name

Related Dependents

All dependents must be related
to some employee(but only one!)

Total participation

1 (0-n)

An employee
may have 0 to n
dependents

Dependents

 Bipin C. DESAI 49

E/R model is a graphical approach to database modeling

E/R is widely used in database design

E/R model grew out of modeling application database

No standard for E/R diagrams: a number of variations

En t it y se t

Re la t io n sh ip se t

At t r ib u t e

isa I n h e r i t an ce

Typ e o f r e la t io n sh ip

W eak en t i t y se t

Re fe r en t ia l
in t eg r i t y

W eak r e la t io n sh ip se t

x xx

atr
atr Key At t r ib u t e

 Bipin C. DESAI 50

Employees

sin grd

dname

budgetdid

DOA
name

WorksIn Departments

budget

DOA

WorksInEmployees

sin grd

dname

did

name

Departments

Total participation of all
employees & departments
In the WorksIn relationship

Employees

sin grd

dname

budgetdid

DOA
name

WorksIn Departments
(0-n) 1

Many to one relationship:
many employees in a
department;
but an employee is
assigned to only one
department

Alternate way of showing a many-to-one relationship

 Bipin C. DESAI 51

Key Constraints

 Consider Works_In:
An employee can
work in many
departments; a dept
can have many
employees.

 In contrast, each dept
has at most one
manager, according to
the key constraint
on Manages.

A department can have only one manager,
an employee could manage many departments.

dname

budgetdid

DOA

grd

name

sin

ManagesEmployees Departments

1

 Bipin C. DESAI 52

 Relationship sets can have
attributes

 In translating a
relationship set to a
relation, attributes of the
relation must include:
Keys for each

participating entity set
(as foreign keys).
This set of attributes

forms superkey for
the relation.

All descriptive
attributes.

CREATE TABLE WorksIn
 (sin CHAR(9),
 did INTEGER,
 DOA DATE,
 PRIMA RY K EY (sin, did),
 FOREIGN K EY (sin)
 REFERENCES Employees,
 FOREIGN K EY (did)
 REFERENCES Departments)

If a relationship is 1-to-1 primary
 key is from either of the ‘1’ side,

the other side is a foreign key

 Bipin C. DESAI 53

If a binary relationship between two entity sets is 1-to-1,
- the primary key of the relationship is the key of the entity from
either of the ‘1’ side, the other side is a foreign key(would be
unique)

If a binary relationship between two entity sets is 1-to-many,
- the primary key of the relationship is from the
 ‘m’ side, the ‘1’ side is the foreign key (would be unique)

If a binary relationship between two entity sets is m-to-n,
- the primary key is composite, consisting
 of the primary key of the entities from each side of the relationship

 Bipin C. DESAI 54

budget

dname

did

DOA

grd

name

sin

ManagesEmployees Departments

11 (0-n)

dname

budgetdid

DOA

grd

name

sin

ManagesEmployees Departments

1

Alternate methods of
showing the same model!

 Bipin C. DESAI 55

 Map relationship to a
table:
Note that did is the

key now!
Separate tables for

Employees and
Departments.

 Since each department
has a unique manager,
we could instead
combine Manages and
Departments.

CREATE TABLE Manages
 (sin CHAR(9),
 did INTEGER,
 DOA DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (sin) REFERENCES Employees,
 FOREIGN KEY (did) REFERENCES Departments)

CREATE TABLE DeptMgr
 (did INTEGER,
 dname CHAR(20),
 budget REAL,
 sin CHAR(9),
 DOA DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (sin) REFERENCES Employees)

Null for Dept. w/o
 manager!

 Bipin C. DESAI 56

Participation Constraints
 Every department has a manager (a business rule) 

participation constraint:
The participation of Departments in Manages is total
(all instances of Department must have a manager; participation of Employees is
partial i.e., not all employees are managers).

Every did value in Departments table must appear in a row of the
Manages table (with a non-null sin value!)

DOA

grd

name dname

budgetdid

name dname

budgetdid

Manages

DOA

DepartmentsEmployees

sin

WorksIn

Note: yet another method of
showing a many-to-one
relationship and
total participation!!!

 Bipin C. DESAI 57

Participation Constraints: SQL
 A participation constraints involving one entity set in a binary

relationship, can be expressed as follows without resorting to
CHECK constraints.

CREATE TABLE DeptMgr
 (did INTEGER,
 dname CHAR(20),
 budget REAL ,
 sin CHAR(9) NOT NULL ,
 DOA DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (sin) REFERENCES Employees,
 ON DELETE NO ACTION)

Every department must
have a manager!

 Bipin C. DESAI 58

CREATE TABLE Manages
 (sin CHAR(9) NOTNULL ,
 did INTEGER NOT NULL ,
 DOA DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (sin) REFERENCES Employees,
 FOREIGN KEY (did) REFERENCES Departments)

Here a department can exist without a manager.
We couldn’t insert an occurrence of this relation
without having an occurrence of a department
and employee! Once inserted, does firing the manager
create problems?

grd

name dname

budgetdid

DOA
name dname

budgetdid

Manages

DOA

DepartmentsEmployees

sin

WorksIn

 Bipin C. DESAI 59

CREATE TABLE WorkIn
 (sin CHAR(9) NOTNULL ,
 did INTEGER NOT NULL ,
 DOA DATE)

To ensure total participation of department in WorkIn, each
did value must be in at least one tuple of WorkIn:
enforced by assertion

DOA

grd

name dname

budgetdid

name dname

budgetdid

Manages

DOA

DepartmentsEmployees

sin

WorksIn

 Bipin C. DESAI 60

 A weak entity can be identified uniquely only by considering the
primary key of another strong-owner entity.
Owner entity set and weak entity set must participate in a one-to-

many relationship set (1 owner, many weak entities).
Weak entity set must have total participation in this identifying

relationship set.

Type Prem

grd

name

DOBdname

DependentsEmployees

sin

Covers

 Bipin C. DESAI 61

 Weak entity set and identifying relationship set
are translated into a single relation.
Weak entity  total participation
When the owner entity is deleted, all owned

weak entities must also be deleted.

CREATE TABLE Covers
 (dname CHAR(20),
 DOB DATE,
 Type INTEGER,
 Cost FLOAT,
 sin CHAR(9) NOT NULL ,
 PRIMARY KEY (dname, sin),
 FOREIGN KEY (sin) REFERENCES Employees,
 ON DELETE CASCADE)

 Bipin C. DESAI 62

Generalization, Specialization
 If we declare A ISA B, every

A entity is also considered to
be a B entity. However, not
implemented always:

 Overlap constraints: Can two
subclasses contain the same
instance of an entity? Can
Carole be an Hourly_Emps as
well as a Salary_Emps?
(A llowed/disallowed)

 Reasons for using ISA relationship:
To add attributes specific to a subclass.
To identify subset of an entity set that participate in a

relationship.

 Salary_Emp

name
sin

Employees

grd

hourly_wages
ISA

Hourly_Emps

AnnualPay

hours_worked

Generalization

Specialization

Covering constraints: Does every
 Employees entity also have to be
 an Hourly_Emps or a Contract_
Emps entity? (Yes/no)

 Bipin C. DESAI 63

 Salary_Emp

name
sin

Employees

grd

hourly_wages
ISA

Hourly_Emps

AnnualPay

hours_worked

ISA relationship to
Relations

 Every employee is recorded in Employees. For hourly
employees, value for additional attribute are recorded in
Hourly_Emps; if referenced Employees tuple is deleted,
Hourly_Emps tuple must also be deleted.

 Queries involving all employees easy, those involving just
Hourly_Emps require a join with Employee to get inherited
attributes.

Create 3 relations:
Employees(Sin, Name, Grd),
Hourly_Emps(Sin, Hwage, Hwrkd) and
Salary_Emps(Sin, AnnualPay).

© Bipin C. DESAI 64

ISA relationship to
Relations

 Create two relations:
 Hourly_Emps(Sin, Name, Grd, HWrkd, Hwages) and

Salary_Emps (Sin, Name, Grd, AnnualPay).

Each employee must be in one of these two subclasses.

All employees require accessing Two relations

 Salary_Emp

name
sin

Employees

grd

hourly_wages
ISA

Hourly_Emps

AnnualPay

hours_worked

© Bipin C. DESAI 65

Aggregation
 Aggregation:

models a
relationship,
involving entity
sets and a
relationship set, as
an entity set. The
aggregated entity
participates in
other
relationships.
Supervise

mapped to table
like any other
relationship set.

 Aggregation vs. ternary relationship:
 Supervises is a distinct relationship,
with its attribute.

budgetdidpid

started_on

pbudget
dname

until

DepartmentsProjects Controls

Employees

Supervises

grd
name

sin

© Bipin C. DESAI 66

Binary vs. Ternary Relationships

 If each policy is
owned by just
ONE employee:

 Key constraint
on Policy
requires that it
can only cover
one dependent.

dobdname

DependentsCovers

name

Employees

sin grd

Policy

Policy# cost

Bad design

 Covers

dobdname

Dependents

Policy# cost

Policy

Purchaser

name

Employees

sin grd

Better design

© Bipin C. DESAI 67

 The key
constraints allow
us to combine
Purchaser with
Policy and Covers
with Dependents.

 Participation
constraints lead
to NOT NULL
constraints.

CREATE TABLE Policy (
 policy# INTEGER,
 cost REAL,
 sin CHAR(9) NOT NULL,
 PRIMARY KEY (policy#).
 FOREIGN KEY (sin) REFERENCES
 Employees,
 ON DELETE CASCADE)

CREATE TABLE Dependents (
 dname CHAR(20),
 dob DATE,
 policy# INTEGER,
 PRIMARY KEY (dname, policy#).
 FOREIGN KEY (policy#)
 REFERENCES Policy,
 ON DELETE CASCADE)

 Bipin C. DESAI 68

Parts Dept.

Supplier

SuppliesQty Etc.

An example where a ternary relation is better than a
 number of binary relations is the following:

Key: Part#, Dept#, Supl#

 Bipin C. DESAI 69

Parts Dept.

Supplier

CanSupply CanBuy

Uses

 Bipin C. DESAI 70

 Supplies relates entity sets Parts, Departments and Suppliers, and
has descriptive attributes price, quantity etc.

 A number of binary relationships may not convey the semantics
 Supplier ``CanSupply’’ Part, Dept. ``Uses’’ Part, and Dept. ``Can

Buy’’ from Supplier does not imply that Dept has a PO to buy Part
from S.
How do we record the following: which part, quantity price?

 Bipin C. DESAI 71

Parts Dept.

Supplier

SuppliesQty Etc.

A department can order only one part from a supplier?

 Bipin C. DESAI 72

Introduce a new
entity-set which
represents the
multi-way
relationship

Supplier

Supplier_X

Parts Dept.

Parts_X Dept_XX

Schema of X could be
XID, P#, D#, S#, Qty, …

What are the schema of the
 binary relationship?

 Bipin C. DESAI 73

Constraints Beyond the ER Model
 Functional dependencies:

A department can order only one part from a given supplier.
Can’t express this in ternary Supplies relationship.

Normalization refines ER design by considering FDs.
 Inclusion dependencies:

Special case: Foreign keys (ER model can express these).
e.g., At least 1 person must report to each manager. (Set of sin

values in Manages must be subset of supervisor_ssn values in
Reports_To.)

 General constraints:
e.g., Manager’s discretionary budget less than 10% of the

combined budget of all departments he or she manages.

 Bipin C Desai

Databases – the generations

Notes

Bipin C. Desai

 Pl. see: https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

2 Bipin C. DESAI

FIRST GENERATION
1950s –Refinement of storage media, magnetic tape, drums, disks
Early 1960s: Disk access method based on
Index Sequential Access Method(ISAM)
Mid 1960s:Emergence - Information Management System(IMS)-IBM
 developed in 1966 along with NASA(Rockwell and Caterpillar)
 to support the Apollo/Saturn V program
Current version is IMS 15.4 and runs on IBM z platform
It is still being marketed, used in banking etc.

promises > 250*109 transactions per day
1959 : CODASYL(Conf./Committee on Data Systems Languages)
 later to become Database Task Group (DBTG),
 DBTG developed the network model and its implementation

Integrated Data Store (IDS),
Integrated Database Management System (IDMS)
 both still marketed and supported.

3 Bipin C. DESAI

SECOND GENERATION
1970 Codd’s paper about relations
1973/1974 Ingres(UC Berkley, M. Stonebraker, E.Wong)

System R(IBM), Berkley/DB (Sleepy Cat Software, Oracle)
QUEL, SEQUEL(Ingres) and SQL(System R)

1978 Oracle
1981 Informix (IBM)
1984 System R(IBM)
1987 Postgres
1993 mSQL (mini SQL by D. Hughes)
 mSQL used in the development of early dynamic Web

applications including CrsMgr and ConfSys
1995 MySQL - bought by Sun in 2008 price- $1billion

 – Sun was taken over by Oracle
2009 Mariadb – a fork of MySQL

4 Bipin C. DESAI

THIRD GENERATION

2004 MapReduce paradigm shift to lower level!
Map(distribute tasks to nodes to filter local data) and then
Reduce(process result in parallel)
2005 Hadoop (Apache)
2008 Cassandra, Hbase,
2009 MongoDB

5 Bipin C. DESAI

Simple SQLPlus & SQL

 Bipin C. DESAI

6 Bipin C. DESAI

Getting & Installing {Apache, Oracle, PHP} or, XAMPP

Consult:

http://www.oracle.com/technology/tech/php/htdocs/inst_php_apache_windows.html
 or whatever is the currrent URL
For Oracle you need to register with OTN

MySQL/Mariadb

https://www.apachefriends.org/download.php

The projects are to be demonstrated on one of the systems in our labs.
So if you develop the projects on your own systems, make sure you could:

- Upload all the code to CrsMgr
- Have it run on one of AITS systems which has one of the above configurations
- It works as specified These notes uses Oracle, MySQL, MariaDB

7 Bipin C. DESAI

Connecting to SQLPlus

SQLPlus is a “user friendly interface” to ORACLE SQL to be used
interactively.
You need Oracle USERID/PASSWORD and appropriate permission
to a Oracle DB.
May connect remotely using a secure shell (e.g., Putty)

(c) Bipin C. DESAI 8 Bipin C. DESAI

Download and install Oracle (the version changes over time)

Typically - start database (unless it has been installed as service which starts
on boot)

From Start select RunSQL command line
Connect to oracle:

9 Bipin C. DESAI

create table student
(SID NUMBER(7) primary key not null,
 SNAME VARCHAR2(20),
 MAJOR CHAR(4),
 YEAR NUMBER(1),
 BDATE DATE)
 tablespace bcd pctfree 2;

To execute a text file containing sql
statements interactively from the sql
prompt use @ followed by the full
path to file

sql>@student.sql

10 Bipin C. DESAI

Connecting to MySQL/MariaDB

MySQl/Mariadb has a simpler text based interface
used for connecting to the database
running locally or on a server accessed using a terminal emulator

Putty is one used in WinX

Again the DB server must be running and one needs
 a user ID and password for the database to be used

 shell> mysql –u username –p password

 If the ID/PW are correct, one gets the prompt from the database

11 Bipin C. DESAI

Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 96773
Server version: 10.3.17-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and
others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

MariaDB [(none)]> connect test;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Connection id: 29348
Current database: test

 Bipin C. DESAI 12

 mysql> create table student
(SID DECIMAL(7) primary key not null,
 SNAME VARCHAR (20),
 MAJOR CHAR(4),
 YEAR DEC(1),
 BDATE DATE);

To execute a text file containing sql
statements interactively from the sql
prompt use @ followed by the full
path to file

sql>@student.sql
 in MySQL use “source student.sql”

mysql> desc student;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
SID	decimal(7,0)	NO	PRI	NULL	
SNAME	varchar(20)	YES		NULL	
MAJOR	char(4)	YES		NULL	
YEAR	decimal(1,0)	YES		NULL	
BDATE	date	YES		NULL	
+-------+--------------+------+-----+---------+-------+
5 rows in set (0.00 sec)

13 Bipin C. DESAI

Inserting Data in a table – table must exist!

 Date format in MySQL is yyyy-mm-dd;
 Value order as in schema for the table
 MariaDB [test]> insert into student values
 (8, 'Brenda', 'COMP', 2, '1977-8-13');

14 Bipin C. DESAI

MariaDB [test]> \! tcsh -- escape to interative shell (tcsh)
101 => emacs -nw students.sql
 104 => more students.sql
insert into student values(10, "Dupont", 'ENGL', 1, '1980-05-13');
insert into student values(13, 'Kelly', 'SENG', 4,'1980-08-12');
insert into student values(14, 'Jack', 'CSAP', 1, '1970-02-12');
 105 => exit
exit
MariaDB [test]>system cat students.sql;
create table student
(SID DECIMAL(7) primary key not null,
 SNAME VARCHAR (20),
 MAJOR CHAR(4),
 YEAR DEC(1),
 BDATE DATE);
insert into student values(10, "Dupont", 'ENGL', 1, '1980-05-13');
insert into student values(13, 'Kelly', 'SENG', 4,'1980-08-12');
insert into student values(14, 'Jack', 'CSAP', 1, '1970-02-12');
MariaDB [test]>

15 Bipin C. DESAI

16 Bipin C. DESAI

17 Bipin C. DESAI

Find all students (ORACLE)

SQL> select * from student;

 SID SNAME MAJO YEAR BDATE
---------- -------------------- ---- ---------- ---------

 8 Brenda COMP 2 13-AUG-77

 10 Dupont ENGL 1 13-MAY-80

 13 Kelly SENG 4 12-AUG-80

 14 Jack CSAP 1 12-FEB-77

SQL>column major format a5

SQL>column sid format 9,9

SQL>column sname format a12

SQL>column major format a5

SQL>column year format 999

SQL>column bdate format a12

 SID SNAME MAJOR YEAR BDATE
---- ---------- ----- ---- ----------
 8 Brenda COMP 2 13-AUG-77
 1,0 Dupont ENGL 1 13-MAY-80
 1,3 Kelly SENG 4 12-AUG-80
 1,4 Jack CSAP 1 12-FEB-77

 format not available in MySQL

18 Bipin C. DESAI

MariaDB [test]> select * from student;
+-----+--------+-------+------+------------+
| sid | sname | major | year | bdate |
+-----+--------+-------+------+------------+
8	Brenda	COMP	2	1997-08-13
10	Dupont	ENGL	1	1980-05-13
13	Kelly	SENG	4	1980-08-12
14	Jack	CSAP	1	1970-02-12
+-----+--------+-------+------+------------+
4 rows in set (0.001 sec)

19 Bipin C. DESAI

select s.sname

from student s

where to_date(s.bdate) like '%13%';

SNAME

Brenda
Dupont

SQL script: date.sql

select s.sname

from student s

where s.bdate like '%13%';
+--------+
| sname |
+--------+
| Brenda |
| Dupont |
+--------+
2 rows in set (0.000 sec)

20 Bipin C. DESAI

select s.sname

from student s

where to_date(s.bdate) like '%AUG%';

SNAME

Brenda
Kelly

Find students born in August

SQL script: month.sql

select s.sname

from student s

where s.bdate like '%-08-%';
+--------+

| sname |

+--------+

| Brenda |

| Kelly |

+--------+

2 rows in set(0.000 sec)

21 Bipin C. DESAI

select s.sname

from student s

where to_date(s.bdate) like '%77%';

SNAME

Brenda
Jack

Find student born in 1977

SQL script: year.sql

select s.sname from student s

where s.bdate like '%80-%';
+--------+

| sname |

+--------+

| Dupont |

| Kelly |

+--------+

2 rows in set (0.001 sec)

22 Bipin C. DESAI

create table dept
(DEPT CHAR(20) not null,
 CODE CHAR(4) primary key not null);

insert into dept values('Computer Science', 'COMP');
insert into dept values('Decision Science', 'DISC');

create table deptmajor
(CODE CHAR(4),
 MAJOR CHAR(20),
primary key (CODE, MAJOR))

insert into deptmajor values('COMP', 'COTH');
insert into deptmajor values('COMP', 'SENG');
insert into deptmajor values('COMP', 'CSAP');
insert into deptmajor values('DISC', 'OPRS');

23 Bipin C. DESAI

create table course
(CNAME CHAR(20),
 CNUMBER CHAR(8) primary key NOT NULL,
 CREDITS NUMBER(2),
 ODEPT CHAR(4),
 foreign key (ODEPT) references dept(code)
 on delete cascade)

insert into course values('C++','COMP248',3,'COMP');
insert into course values('DATA STRUCTURES ','COMP352',3,
 'COMP');
insert into course values('OPERATING SYSTEMS','COMP346',4
,'COMP');
insert into course values('DATABASE','COMP353',4,'COMP');
insert into course values('Operation Research','DISC253',4,'DISC');

24 Bipin C. DESAI

create table crs_section
(SECID NUMBER(6) primary key NOT NULL,
 COURSE_NUM CHAR(8),
 SECTION CHAR(2),
 SEMESTER CHAR(4),
 YEAR CHAR(4),
 SCHEDULE CHAR(10),
 ROOM CHAR(7));

insert into crs_section values
(85,'COMP352','A','FALL', '1998','TH16001715','H123');
insert into crs_section values
(90,'COMP353','B','FALL','1999','MW08451000','H631');
insert into crs_section values
(95,'DISC253','B','FALL','1999','MW10151130','H631');

25 Bipin C. DESAI

create table prereq
(COURSE_Number CHAR(8),
 PREREQ CHAR(8), primary key (course_number, prereq));
insert into prereq values('COMP353','COMP352');

insert into prereq values('COMP353','COMP346');
insert into prereq values('COMP352','COMP248');

create table enrollment
(STUDENT_NUMBER NUMBER(3) not null,
 SECTION_ID NUMBER(6) not null, GRADE CHAR(1),
 primary key(student_number, section_id));

insert into enrollment values(8,85,null);
insert into enrollment values(10,90,null);
insert into enrollment values(8,90,null);
insert into enrollment values(14,90,null);
insert into enrollment values(14,95,null);

26 Bipin C. DESAI

select s.SID, s.SNAME, s.MAJOR, s.YEAR, s.BDATE
from student s, dept d, course c, crs_section r, enrolment e
where c.ODEPT=d.CODE and

r.COURSE_NUM=c.CNUMBER and
r.SECID=e.SECTION_ID and
e.STUDENT_NUMBER = s.SID and
d.CODE= 'DISC';

SID SNAME MAJOR YEAR BDATE
---- ------------ ----- ---- ------------
 1,4 Jack CSAP 1 12-FEB-77

SQL script: ex-select3.sql

Find details of studs. taking a course offered by the “DISC” dept.

27 Bipin C. DESAI

 Find student who are registered in a course offered by
their majoring dept.

select * from student
where student.sid in
(select s.sid from student s, dept d, course c, crs_section r, enrollment e
where
c.ODEPT=d.CODE and -- c Offering Dept same as the d dept
s.MAJOR=c.ODEPT and -- s major Dept same as the c.ODEPT
r.COURSE_NUM=c.CNUMBER and -- the section is for the course c
r.SECID=e.SECTION_ID and -- r course section same as e section
e.STUDENT_NUMBER = s.SID);

 SID SNAME MAJOR YEAR BDATE
---- ------------ ---------- ------- -----------
 8 Brenda COMP 2 13-AUG-80

28 Bipin C. DESAI

Find students who are currently registered.

select * from student
where student.sid in

(select s.sid
 from student s, dept d, course c, crs_section r, enrolment e

where c.ODEPT=d.CODE and
r.COURSE_NUM=c.CNUMBER and
r.SECID=e.SECTION_ID and e.STUDENT_NUMBER =
s.SID);

SID SNAME MAJOR YEAR BDATE

---- ------------ ----- ---- ------------

 8 Brenda COMP 2 13-AUG-80

 1,0 Dupont ENGL 1 13-MAY-80

 1,4 Jack CSAP 1 12-FEB-77

sql > @ex-select1.sql

29 Bipin C. DESAI

select s.SID, s.SNAME, s.MAJOR, s.YEAR, s.BDATE
from student s, dept d, course c, crs_section r, enrolment e
where c.ODEPT=d.CODE and

r.COURSE_NUM=c.CNUMBER and
r.SECID=e.SECTION_ID and
e.STUDENT_NUMBER = s.SID and
d.CODE= 'COMP';

SQL> @ex-select2.sql
 SID SNAME MAJOR YEAR BDATE
---- ------------ ----- ---- ------------
 8 Brenda COMP 2 13-AUG-80
 1,0 Dupont ENGL 1 13-MAY-80
 8 Brenda COMP 2 13-AUG-80
 1,4 Jack CSAP 1 12-FEB-77

30 Bipin C. DESAI

The DUAL table in Oracle

SQL> describe dual;
 Name Null? Type
 --------------- -------- --------------
 DUMMY VARCHAR2(1)

Contains one row and one column. Can be used to put results

SQL> select power(2,10) from dual;

POWER(2,10)

 1024
SQL> select to_date(sysdate) from dual;

TO_DATE(S

29-SEP-02

select sysdate from dual;

31 Bipin C. DESAI

SQL> select add_months(sysdate,2) from dual;
ADD_MONTH

29-NOV-02

 SQL> update student
set bdate=(select add_months(bdate,36)from dual)
where sid=8

SQL> select * from student where sid=8;

 SID SNAME MAJOR YEAR BDATE
---- ------------ ----- ----

 8 Brenda COMP 2 13-AUG-80

Lets make Brenda younger

13-AUG-77

update student
set bdate= add_months(bdate,36)
where sid=8

32 Bipin C. DESAI

Editing SQL Buffer

Command abbrev. Operation on crnt. line/all lines
append txt a text adds text at the end of a line
change /old/new/ c /old/new/ change old to new in a line
change /txt c /txt delete text from a line
clear buffer cl buff delete all lines in the buffer
delete del delete the current line
delete n del n delete line n
delete last del last delete the last line of the buffer
delete n,m del n,m delete lines n - m from buffer
ed ed edit the buffer or a file
get file load file into buffer
input i add one or more lines
input txt i txt add text as a line
host exit temp to OS, exit back to SQLPlus
list l list all lines of buffer
list n l n (n) list line n and make it current
list * l * list current. line

33 Bipin C. DESAI

Command abbrev. Operation on crnt. line/all lines
list last l last list last line
list m n l m n list lines m – n
save file sav file save buffer to file
run / execute the commands in buffer
Other useful commands:

alter user userid identified by newpassword

spool nameoffile

Comments
/* for multi-line comments */
rem for a single line comment
 -- comments that can start anywhere in a line up to the eol

Editing SQL Buffer

34 Bipin C. DESAI

create table student -- we will create a table for students
(SID NUMBER(7) primary key not null, --not null is redundant
 SNAME VARCHAR2(20), --varchar2 is a variable length string
 /*
 We will now define
 the student’s major and year
 */
MAJOR CHAR(4),
YEAR NUMBER(1),
rem BDATE is his/her birth date
rem It can be used to compute the age which is not stored.
BDATE DATE)

35 Bipin C. DESAI

The editor used for the ed command is the default editor set
using

setenv EDITOR {emas| vi | gedit | xemacs | ndedit} for
tcsh/csh
export EDITOR={ emas| vi | gedit | xemacs | ndedit} for bash

Alternatively, you can set up your editor using the define
command:

SQL> define _editor=emacs

36 Bipin C. DESAI

SQL> define _USER=scott
SQL> define _PW=tiger
SQL> define
DEFINE _CONNECT_IDENTIFIER = "cind" (CHAR)
DEFINE _SQLPLUS_RELEASE = "902000100" (CHAR)
DEFINE _EDITOR = "emacs" (CHAR)
DEFINE _O_VERSION = "Oracle9i Enterprise Edition Release
9.2.0.1.0 - Production
With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production" (CHAR)
DEFINE _O_RELEASE = "902000100" (CHAR)
DEFINE _RC = "0" (CHAR)
DEFINE _USER = "scott" (CHAR)
DEFINE _PW = "tiger" (CHAR)

Show user defined varaibles

37 Bipin C. DESAI

MySQL/Mariadb do not have, to date some of these interactive
 terminal based features

For most of the current versions of DB server have added
web based functions

One can use phpMyadmin mySQLweb

 Bipin C Desai

A short introduction to
ER & SQL

 Pl. see: https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

Notes

Bipin C. Desai

 Bipin C Desai 2

Database Languages

 A Database Management System (DBMS) provides two types
of languages; they may also be viewed as components of the
DBMS language:
Data Definition Language (DDL)

Language (notation) for defining and modifying a
database schema

It includes syntax for declaring tables, indexes, views,
constraints, etc.)

Data Manipulation Language (DML)
Language for accessing and manipulating the data

(organized/stored according to the appropriate data
model)

 Bipin C Desai 3

Query Languages

 Theoretical:
Relational Algebra, Relational Calculus, Datalog

 Commercial: SQL
 First there were two: SEQUEL (Ingres) and SQL(R)
 SQL developed originally at IBM in 1976

First standard: SQL-86
Second standard: SQL-92
Latest standard: SQL-99, or SQL3,

SQL3 standard has over 1,000 pages of
document

 SQL is the de-facto standard for RDBMS
 The SQL query language components:

 DDL (e.g., create)
 DML(e.g., select, insert, update, delete)

 Bipin C Desai 4

Simple SQL Queries

A SQL query has a form:

SELECT . . .

FROM . . .

WHERE . . . ;

The SELECT clause defines the schema of the result

The FROM clause gives the source relation(s) of the query

The WHERE clause is one or more predicates to ‘select” the
tuples of interest.

The query result is a relation and it is unnamed.

 Bipin C Desai 5

Example “theoretical” SQL Query
Relation schema:

Course (Cno, Cname, credits)

Query in natural language (English):

Find all the courses stored in the database

Query in SQL:

SELECT 
FROM Course;

Here the “  “ in “SELECT ” means all attributes in
the relation(s) involved.

 Bipin C Desai 6

More Examples SQL Query
 Relation schema:

Movie (title, year, length, filmType)
Query in natural language (English):

Find the titles of all movies stored in the database
Query in SQL:

SELECT title
FROM Movie;

Relation schema:
Student (SID, FirstName, LastName, Address, GPA)

Query in natural language (English):
Find the SID of every student whose GPA is greater than 3

Query in SQL:
SELECT SID
FROM Student
WHERE GPA > 3;

 Bipin C Desai 7

The “WHERE” clause
The expressions that may follow WHERE are conditions
Standard comparison operators θ includes { =, <>, <, >, <=, >= }
The values that may be compared include constants and attributes of
the relation(s) mentioned in FROM clause

Simple expression
A θ Value
A θ B

We may also apply the usual arithmetic operators, +,-,*,/, etc. to
numeric values before comparing them

(year - 1930) * (year - 1930)  100
The result of a comparison is a Boolean value TRUE or FALSE
Boolean expressions can be combined by the logical operators AND,
OR, and NOT

Where A, B are attributes and
θ is a comparison operator

 Bipin C Desai 8

 Relation schema: Movie (title, year, length, filmType)
 Query: Find the titles of all color movies produced in 1950
 Query in SQL:

SELECT title
FROM Movie
WHERE filmType = ’color’ AND year = 1950;

 Query: Find the titles of color movies that are either made after
1970 or are less than 90 minutes long

 Query in SQL:
SELECT title
FROM Movie
WHERE (year > 1970 OR length < 90) AND filmType =

’color’;
Note the precedence rules, when parentheses are absent:

AND takes precedence over OR,
and NOT takes precedence over both

 Bipin C
Desai

9

An example of using SQL
from E-R to RDBMS

© Bipin C. Desai

 Bipin C
Desai

10

Dept

Studen
t

Stud-major

Enrol
l

CourseOffers

Section

Prereq

Crs_section

1

n

n m

1

n

n

1 m n

Major

D_M
1

n

 Bipin C
Desai

11

SQL DDL example:

create table student

(SID NUMBER(3) primary key not null,

 SNAME VARCHAR2(20),

 MAJOR CHAR(4),

 YEAR NUMBER(1),

 BDATE DATE)

/

BDATE. Year

SID

M ajo r

St u d en t

SN am e

 Bipin C
Desai

12

insert into student values

(8,'Brenda','COMP','2','13-AUG-77');

(8,'Brenda','COMP',',‘1977-08-13');

insert into student values

(10,‘Mary','ENGL','1','13-MAY-80');

(10,‘Mary','ENGL','1',‘1980-5-13’);

insert into student values

(13,'Keily','SENG','4','12-AUG-80');

insert into student values

(14,‘Jack','CSAP','1','12-FEB-77');

 Bipin C Desai 13

Many to one relationship

O ff er ed

Co d e D n am e

D ep ar t m en t

Ro o m N o

Co u r seN u m b er Cr sn am e

Co u r se

cr ed it s

n 1

A department offers many courses
A given course can be offered by only one department

There is no standard regarding the direction of arrow
for the “one” entity.

Alternate ways of representing
The “one” of the many-to-one
relationship; arrow either pointing to entity on
the “one side” or pointing to the relationship

 Bipin C
Desai

14

create table course

(COURSE_NAME CHAR(20),

 COURSE_NUMBER CHAR(8) primary key NOT
NULL,

 CREDIT_HOURS NUMBER(2),

 OFFERING_DEPT CHAR(4))

 tablespace TUTOR pctfree 5

/ Note how the relationship
w/o an attribute is
“merged” with one of the
entity

 Bipin C
Desai

15

insert into course values
('C++','COMP248',3,'COMP');

insert into course values
('DATA STRUCTURES ','COMP352',3,'COMP');

insert into course values
('OPERATING SYSTEMS','COMP346',4,'COMP');

insert into course values
('DATABASE','COMP353',4,'COMP');

 Bipin C
Desai

16

o ff er in g

sem est e r sch ed u le

year sect io n

cr s_sect io n

secid cn u m b er cn am e

co u r se

o d ep t cr ed it s

r o o m

NB: Here course section (crssection) is really a “weak” entity;
However, in most cases it is promoted a “strong” entity
by introducing an identifying key attribute section ID (secid)

1n

 Bipin C
Desai

17

create table crs_section

(SECID NUMBER(6) primary key NOT NULL,

 COURSE_NUM CHAR(8),

 SECTION CHAR(2),

 SEMESTER CHAR(4),

 YEAR CHAR(4),

 SCHEDULE CHAR(10),

 ROOM CHAR(7))

 tablespace TUTOR pctfree 2

/

Note: We have replaced an
entity and the relationship

With a single relation

 Bipin C
Desai

18

insert into crs_section values

(85,'COMP352','A','FALL', '1998','TH16001715','H123');

insert into crs_section values

(90,'COMP353','B','FALL','1999','MW08451000','H631');

 Bipin C
Desai

19

create table enrolment

(STUDENT_NUMBER NUMBER(3) not null,

 SECTION_ID NUMBER(6) not null,

 GRADE CHAR(1),

 primary key(student_number, section_id))

tablespace TUTOR pctfree

/ insert into enrolment values(8,85,null);
insert into enrolment values(10,90,null);
insert into enrolment values(8,90,null);
insert into enrolment values(14,90,null);

 Bipin C
Desai

20

select s.SID, s.SNAME, s.MAJOR, s.YEAR, s.BDATE
from student s, dept d, course c, crs_section r, enrolment e
where c.ODEPT=d.CODE and

r.COURSE_NUM=c.CNUMBER and
r.SECID=e.SECTION_ID and
e.STUDENT_NUMBER = s.SID and
d.CODE= 'DISC';

SID SNAME MAJOR YEAR BDATE
---- ------------ ----- ---- ------------
 1,4 Jack CSAP 1 12-FEB-77

Find details of studs. taking a course offered by the “DISC” dept.

 Bipin C
Desai

21

More examples of using E-R modeling

© Bipin C. Desai

 Bipin C
Desai

22

Professors have a SIN, a name, an age, a rank, and a research specialty.
Projects have a project number, a sponsor name (e.g., NSERC),

a starting date, an ending date, and a budget.
Graduate students have a SIN, a name, an age, and a degree program

(e.g., M.S. or Ph. D.).
Each project is managed by a professor (principal investigator).
Each project is worked on by one or more professors (co-investigators).
Professors can manage and/or work on multiple projects.
Each project is worked on by one or more graduate students (research
assistants).
When a graduate student works on a project, is supervised by a

participating professor.
Graduate students can work on multiple projects.
Departments have a department number, a department name, and a main office.
Departments have a chairman who runs the department.
Professors work in one or more departments(%time)
Graduate students have one major department for their degree.
Each graduate student has another, more senior graduate student

(student advisor)

 Bipin C
Desai

23

Professor
Project

GrStudent

ChairWorks

Works-in

Manages

Supervises

Major

Assigned

Dept.

StdAdv

SIN, Rank, Expertise

Dno, Dname, Office

1

1
1

1

11 One side of
relationship

total participation

 Bipin C
Desai

24

In a company database, you need to store information about

employees (SIN,salary and phone),
departments (dno, dname, budget), and
children of employees (with name and age as attributes).
Employees work in departments;
Each employee works in only one department;
A department could have many employees;
Each department is managed by an employee;
Each department has only one manager(an employee);
A manager could manage many departments
A child can only be identified by name
An employee has only one child with a given name
only one parent can declare a child as a dependent

 Bipin C
Desai

25

Child

Empl. Dept.

Dependent

Manages

WorksIn

1

1

m

m

 Bipin C
Desai

26

Each musician that records at Notown has an SIN, a name,
an address, and a phone number.

Musicians often share the same address,
 no address has more than one phone.

Each instrument that is used in songs recorded at Notown has a name and
a musical key

Each album that is recorded on has a title, a copyright date, and
an album identifier.

Each song recorded has a title and an author.
Each musician may play several instruments, and

a given instrument may b e played by several musicians.
Each album has a number of songs on it,

but no song may appear on more than one album.
Each song is performed by one or more musicians, and

a musician may perform a number of songs.
For each album, there is exactly one musician that acts as its producer.
A musician may produce several albums.

 Bipin C
Desai

27

Musician

Performs

Instrument

Residence

Album

Song

Plays

LivesAt

Appear

Produces

Notes: Since a songs must appear on only one album, Appear is a many to one
relationship. Similarly for Produces. Album requires total participation in Produces.
Some songs may not be recorded and there may be some instruments that nobody can play!

Poor musicians can
have only one address

1

1

1

n

n

n

m

n

m

 Bipin C
Desai

28

Entity Set

Weak
Entity Set

 Relationship
set

Weak
Relationship

set

Attribute

many
to many

one
 to many

Primary Key

role name

Total participation
 of entiry in
relationship

one
 to one

weak entity
discriminating

attribute

isa

isa

ISA: specialization
 or generalization

isa
Total

generalization

1

m

m1

1

n

Alternate E-R notations

 Bipin C Desai 29

 A one-one relationship between Department and its chair (
a dept. has one chair and a prof. is the chair of at most one
dept) is represented by
arrows pointing to both Department and Professor or
 indicated by a line with the number 1 on it.
Sometimes the arrow is in the opposite

direction(pointing to the diamond)

Ch a ir

Co d e D n am e

D ep ar t m en t

Ro o m N o
Ph o n e Ro o m N o

Em p ID

Fir st N am e

Pr o fesso r

Last N am e

1 1
alternate
direction
of arrows

 Bipin C Desai 30

ODL allows only binary relationships, i.e.,
relationships involving two classes.

E/R model makes it convenient to define
 (n-ary) relationships – relationships involving
 n entity sets

A n-ary relationship in an E/R diagram is
represented by lines from the relationship
(diamond) to each of the participating entity sets
(rectangles).

 Bipin C Desai 31

N-ary Relationships

St u d en t Co u r se

Syst em

En r o l l

Multiplicity of this ternary relationship: n to n to n

Enroll(sid(fk Student), cno(fk  Course),, sys(fk  System), grd)

What is the problem here?
What is the schema for Enroll?
How is the n:n:n relationship mapped to a relation(table)?

grd

 Bipin C Desai 32

N-ary Relationships

St u d en t Co u r se

Syst em

Acco u n t

Multiplicity of this ternary relationship: n to n to n

Account(sid(fk Student), cno(fk  Course), sys(fk  System), uid)

Enroll(sid(fk Student), cno(fk  Course), grd)

Enroll

grd

 Bipin C Desai 33

N-ary Relationships

E1 En

Ei

R

Multiplicity of this N-ary relationship: n1---- ni ----- nn

Any of this ni could be 1
Any of this could be multiple

 Bipin C
Desai

34

If a binary relationship between two entity sets is 1-to-1,
- the primary key of the relationship is the key of the entity from
either of the ‘1’ side, the other side is a foreign key(would be unique)

If a binary relationship between two entity sets is 1-to-many,
- the primary key of the relationship is from the ‘m’ side, the ‘1’ side is
theforeign key (would be unique)! This ‘convention’ may be reversed for
convenience -specially if the number of entities on the one side is much
smaller!

If a binary relationship between two entity sets is m-to-n,
- the primary key is composite, consisting
 of the primary key of the entities from each side of the relationship

 Bipin C
Desai

35

Per so n

1
Mother

O ff sp r in g

 1
Father

n child

N-ary Relationships

Multiplicity of this ternary relationship: 1 to 1 to n

Offspring(fid (fatherID  Person(ID)), motherID (fk  Person(ID)),
ChildID (fk  Person(ID)))

Who here is the father and mother?
What is the key?

ID DOBGender

 Bipin C
Desai

36

create table person(
ID number primary key,
gender char(1),
DOB date);
insert into person values(1, 'M', '11-Jan-1900');
insert into person values(2,'F', '11-Jan-1902');
insert into person values(121,'M', '11-Jan-1925');
insert into person values(122,'F', '11-Jan-1927');
insert into person values(3,'M', '11-Jan-1901');
insert into person values(4,'F', '11-Jan-1903');
insert into person values(341,'M', '11-Jan-1926');
insert into person values(342,'F', '11-Jan-1928');
insert into person

values(1213421,'M', '11-Jan-1948');
insert into person

values(1213422,'F', '11-Jan-1950');

create table offspring(
fid number, mid number,
cid number primary key,
foreign key (fid)

references person(id),
foreign key (mid)

references person(id),
foreign key (cid)

references person(id));
insert into offspring values(1,2,121);
insert into offspring

values(1,2,122);
insert into offspring
values(3,4,341);
insert into offspring

values(3,4,342);
insert into offspring
values(121,342, 1213421);
insert into offspring
values(121, 342, 1213422);

Could two tuples exist in offspring with
the same cid???

 Bipin C
Desai

37

Per so n

O ff sp r in g

 1
Parent

n child

DOB

What is the schema for Offspring here?
What is a possible inconsistency problem?
Who is the father, mother??

Replacing a ternary relation by a binary relation

Offspring (IDC, IDF, IDM, DOB)

Father(IDC, IDF, DOB)
Mother(IDC, IDM, DOB)
- not the same ER
- duplication of DOB
- Composite key

 Bipin C
Desai

38

Per so n

O ff sp r in g

 1
Parent

n child

DOB

What is the schema for Offspring?
Is there a duplication problem?
What is the primary key?

Replacing a ternary relation by a binary relation
 --- an alternate non-normal form

Which parent

Multivalued attribute
121 1 Father
 2 Mother
122 1 Father
 2 Mother

 Bipin C Desai 39

Roles in Relationships

 I t is p o ssib le t h a t t h e sam e en t i t y se t
ap p ear s t w o o r m o re t im es in a
r e la t io n sh ip

 Su p p o se , w e w an t t o cap t u r e t h e
r e la t io n sh ip b e t w een t w o co u r se s,
o n e o f w h ich is t h e
p re -re q u isit e / f o llow -o n o f t h e o t h e r

 Bipin C Desai 40

Each l in e t o t h e en t i t y se t r ep r esen t s a
d iff e r en t ro le t h a t t h e en t i t y se t p lays in t h e
r e la t io n sh ip Fo llo w -o n

Pr e r eq u isit e

co u r seN u m b er n am e

Co u r se

cr ed it s

Married_To

Person

Date

 Bipin C
Desai

41

create table prereq

(COURSE_Number CHAR(8),

 PREREQ CHAR(8),

 primary key (course_number, prereq))

tablespace TUTOR pctfree 2

/

 Bipin C
Desai

42

insert into prereq values('COMP353','COMP352');

insert into prereq values('COMP353','COMP346');

insert into prereq values('COMP352','COMP248');

 Bipin C Desai 43

Suppose, each star is under contract with a single studio
The studio of the star may enter into a contract with another

studio to allow that star to act in a particular movie

len g t h fi lm Typ e

t i t le year

M o vie

n am e ad d r ess

St ar

n am e ad d r ess

St u d io

Co n t r act s

Pr o d u cin g
st u d io

St u d io
o f st a r

 Bipin C Desai 44

Converting n-ary relationship

Any n-ary relationship may be converted into a
collection of binary relationships without loosing
any information???
Introduce a new entity set – connecting existing entity set –

whose entities might be thought of as tuples of the
relationship for the n-ary relationship

Introduce many-to-one relationships from the connecting
entity set to each of the entity sets participating in the
original n-ary relationship

If an entity set plays more than one role, then it is the target
of one relationship for each role

Usually doesn't convey the same semantics – limitation
of modeling

 Bipin C Desai 45

len g t h fi lm Typ e

t i t le year

M o vie n am e ad d r ess

St ar

n am e ad d r ess

St u d io

Co n t r act

M o v ie -o f

Pr o d u cin g
st u d io

St u d io
o f st a r

St a r -o f

DOB

 Bipin C Desai 46

Inheritance in E/R is expressed by isa relationship

Su p er v ised By
isa

Gr ad St u d en t

t o
Pr o fesso r

o p t io n m ajo r

U g r ad St u d en t

isaGPA ad d r ess

ID

fi r st N am e

St u d en t

last N am e

 Bipin C Desai 47

 There is a subtle difference between the concept of
inheritance in ODL and in the E/R model

 In ODL, an object must be a member of exactly one class
 In the E/R model

We shall view an entity as having “components” belonging to
several entity sets that are “part of” a single isa-hierarchy

The “components” are connected into a single entity by the isa
relationships

The entity has whatever attributes any of its components has,
and it participates in whatever relationships its components
participate in

  We need to represent an entity (e.g., CartoonMurderMystery) in
the diagram only if it has attributes and/or relationships of its own

 Bipin C Desai 48

Constraints

There are some important aspects of the real world
that cannot be represented using the ODL or E/R
model introduced so far

The additional information about these aspects often
takes the form of constraints on the data

Sometimes modeling this additional information
goes beyond the structural and type constraints
imposed by classes, entity sets, attributes, and
relationships

 Bipin C Desai 49

Keys are (sets of) attributes that uniquely identify an object within
its class or an entity within its entity set;

K  R. no two entities may agree in all their key values

Single-value constraints are requirements that the value of an
attribute be unique. In addition to key constraints, other attributes
must a have a single-value constraints.
Also in an “one” relationship

Referential integrity constraints are requirements that a value
referred to by some object must actually exist in the database;

 This means, no dangling pointers.

Domain constrains require that the value of an attribute must be
drawn from a specific set of values (called attribute domain), or
lies within a specific range

General constraints – arbitrary assertions that must hold on the DB

 Bipin C Desai 50

Keys
 A super key is a set of attributes whose values uniquely

identify an entity in the entity set; this set may not be
minimal.

 A minimal super key is called a (candidate) key.
 An entity may have more than one key. One of them is

picked as the primary key; others may be called alternate
keys

 In E/R, we underline the key attribute(s) of an entity set (i.e.,
those attributes that form the primary key of the set)

 No notation in E/R for alternate keys

GPA ad d r ess

ID

fi r st N am e

St u d en t

last N am e

I D is t h e k ey f o r t h e en t i t y se t
St u d e n t

 Bipin C Desai 51

Example
What should we select as a key for Movie ?
title?

there could be different movies with the same name
{title, year}?

there still could be two movies made in the same year,
with the same title, but that’s very unlikely

len g t h fi lm Typ e

t i t le year

M o vie {t it le , ye a r } is a k ey f o r M ovie

https://en.wikipedia.org/wiki/Lists_of_film_remakes

 Bipin C Desai 52

 Which of the three should “we” pick as the primary key?

H E

G F E

D

CBA Su p p o se can d id a t e k eys f o r E ar e :
1 . {A, B}
2 . {D, E}
3 . {F, G, H }

Selecting A Primary Key

Criteria to choose a primary key when there are more than one

candidate:

Total size

Number of attributes

Convenience

A combination of the above

 Bipin C Desai 53

 In E/R:
attributes are atomic
an arrow () can be used to express the multiplicity
What about multi-valued attributes or relationships?

Single Value Constraint

With the E/R model introduced so far, we cannot express the

following options regarding the value of a single-valued attribute:
• Require that the value of that attribute to be present(not null)
• Or the presence of the value be optional (null allowed)

If the choice is not explicit, then we may conclude:
• The value must exist if an attribute is part of the key
• The value is optional, otherwise

 Bipin C Desai 54

Referential Integrity Constraints

For relationships:
Single-value + Existence = Referential Integrity

Constraint
We extend the arrow notation to indicate a reference

is mandatory (to support referential integrity)

O ff er ed

D co d e n am e

D ep ar t m en t

ad d r ess

co u r seN u m b er n am e

Co u r se

cr ed it s

 Th e d ep ar t m en t t h a t g ives a co u r se m u st a lw ays
ex ist in t h e D e p a r t m e n t en t i t y se t

n 1

 Bipin C Desai 55

Ru n s

Referential Integrity Constraints

 The studio owning a movie must always be present in the Studios (extent
of the Studio entity set)

 If a president runs a studio, then that studio exists in the Studios
 There could be studios without a president (temporarily)

len g t h fi lm Typ e

t i t le year

M o vie

n am e ad d r ess

St u d io

n am e ad d r ess

Pr esid en tO w n s
n 1

open arrow to denote ref. intg.

 Bipin C Desai 56

Domain constraints

Domain constraints restrict the values of an
attribute to be drawn from a set
In ODL, we give a type to the attributes and hence limit

their set of values
ODL does not support other restrictions, such as that the

value should be within a certain range
E/R, in general, does not support imposing domain

constraints

 Bipin C Desai 57

Relationship degree constraints

 Relationship degree constraints restrict the number that an
entity/object can participate in a relationship
For example, we can impose a constraint saying that a student cannot

be enrolled in more that 5 courses
 In ODL, we could use, instead of a set of references, an array of size

5
 In E/R, we may attach a bounding number to the corresponding link

 5
En r o l led In

co u r seN u m b er n am e

Co u r se

cr ed it sGPA ad d r ess

ID

fi r st N am e

St u d en t

last N am e
0..5

 Bipin C Desai 58

Weak Entity / Relationship Sets
A strong entity set has a primary key
A weak entity set does not have sufficient attributes

to form a primary key. It should be part of a one-
many relationship (with no descriptive attributes)
with a strong entity set

Discriminator of a weak entity set is a set of
attributes that distinguishes among the entities
corresponding to a strong entity

Primary key of a weak entity set = primary key of
the strong entity + discriminator of the weak entity

Represented in E/R model by

 Bipin C Desai 59

Example

 Log records transactions done by an ATM
 Each transaction has a number, date, and an amount
 Different accounts might have transactions by the same

number, on the same date, and for the same amount

lo g

acco u n t # b a lan ce

Acco u n t

n u m b er

Tr an sact io n

am o u n t

d a t e

 Bipin C Desai 60

len g t h fi lm Typ e

t i t le year

M o vie n am e ad d r ess

St ar

n am e ad d r ess

St u d io

Co n t r act

M o v ie -o f

Pr o d u cin g
st u d io

St u d io
o f st a r

St a r -o f

 Bipin C Desai 61

Design Principles

Design should
Reflect reality
Avoid redundancy

Redundant information takes space
Could cause inconsistency

Be as simple as possible
Be careful when choosing between using attributes

and using classes or entity sets. Remember that
An attribute is simpler to implement than either a

class/entity set or a relationship
If something has more information associated with it

than just its name, it probably needs to be an entity set
or a class

 Bipin C
Desai

62

Consider the entity set course in a typical university :

It could be involved in many relationships:
one to many relationships with

the offering department,
the offerings faculty
the professor coordinating the course

A many to one relationship with
sections for the course

many to many relationships with
the major program in which it is required
the pre-requisites (follow up) courses

 Bipin C
Desai

63

Course Dept.

Faculty

Professor

CrsDept

CrsFac

CrsProf

CrsSec CrsOffr

Major Prog.

PreReq

How to implement the entity Course and its relationship

 Bipin C
Desai

64

 Bipin C
Desai

Many doctors, nurses, twins-triplets-…, one mother

Birth(Doctor, Nurse, Baby, Mother, Time, Date, Weight)

 Bipin C
Desai

Many doctors, nurses, twins-triplets-…, one mother

Birth(Mother, Baby, Time, Date, Weight, Doctor, Nurse)

D1 N1
M1 B1 T1 D1 W1 D2 N2

N3

D1 N1
M1 B2 T2 D1 W2 D2 N2

N3

D1 N1
M1 B3 T3 D1 W3 D2 N2

D3 N3

66

 Bipin C
Desai

R

E
1 1

RA B
1 1

Create table R_AB(A char(2) primary key, B char(2) unique, C integer (5));
insert into R_AB values ('A1','B1',11);
Query OK, 1 row affected (0.010 sec)
insert into R_AB values ('A2','B1',11);
ERROR 1062 (23000): Duplicate entry 'B1' for key 'B'
insert into R_AB values ('A1','B2',11);
ERROR 1062 (23000): Duplicate entry 'A1' for key 'PRIMARY'
insert into R_AB values ('A2','B2',22);
Query OK, 1 row affected (0.003 sec)
select * from R_AB;
+----+------+------+
| A | B | C |
+----+------+------+
| A1 | B1 | 11 |
| A2 | B2 | 22 |
+----+------+------+
2 rows in set (0.000 sec)

67

 Bipin C
Desai

RA B
1 1

Create table S_AB(A char(2), B char(2), primary key(A,B),, C integer (5));
insert into S_AB values ('A1','B1',11),('A1','B2',12), ('A2','B2',22);
Query OK, 3 rows affected (0.009 sec)
Records: 3 Duplicates: 0 Warnings: 0

select * from S_AB;
+----+----+------+
| A | B | C |
+----+----+------+
A1	B1	11
A1	B2	12
A2	B2	22
+----+----+------+
3 rows in set (0.000 sec)

68

 Bipin C
Desai

69

Design decision
Merge the one-to-many relationships

CrsDept, CrsFac, CrsProf
 in the schema for Course; all attributes of
 these relationships are also included in the
 schema for Course

In this case the relation for Course would have a higher arity;
but requires one less join to get details for the department, faculty
or professor for a given course

Similarly, merge the one-to-many relationship
CrsSec

in the schema for CrsSec

Create a relation for the many to many relationships
Program and PreReq

Create a separate
relation for each
one-to-many
relationships

 Bipin C Desai

Relational Database

Relational Algebra – SQL

 Pl. see: https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

Notes

Bipin C. Desai

 Bipin C Desai 2

Attributes and Domains

An object or entity is characterized by its properties (attributes or
data elements). The set of allowable values for an attribute is the
domain of the attribute.

Domain. We define a domain, Di, as a set of values of the same
data type.
Each Attribute is defined on some underlying domain; more than
one attribute may share a domain.

Tuples, Relations and Their Schemes

A relation consists of a homogeneous set of tuples.

Since each tuple in a relation represents an identifiable instance
of an entity (object type), duplicate tuples are not allowed.

 Bipin C Desai 3

The number of attributes in the relation gives the degree
or arity of the relation.

The cardinality of an instance of a relation, at a point in
time, is derived from the count of the tuples in the instance .
The cardinality could change over time

 Relation Representation

 APPLICANT:
Name Age Profession

John Doe 55 Analyst

Mirian Taylor 31 Programmer

Abe Malcolm 28 Receptionist

Adrian Cook 33 Programmer

Liz Smith 33 Manager

 Bipin C Desai 4

Key. A subset of attributes X of a relation R(R), X  R, with the
following time independent properties is called the key of the
relation:

Unique Identification: The values of X uniquely identify a tuple.
s[X] = t[X]  s = t.

Non-redundancy: No proper subset of X has the unique identifica-
tion property.

There may be more than one key in a relation; all such keys are
known as candidate keys.

One of the candidate keys is chosen as the primary key; the others
are known as alternate keys.
An attribute that forms part of a candidate key of a relation is called
a prime attribute.

 Bipin C Desai 5

EMPLOYEE (Emp#, Emp_Name, Profession)
PRODUCT (Prod#, Prod_Name, Prod_Details)
JOB_FUNCTION (Job#, Title)
ASSIGNMENT (Emp#, Prod#, Job#)

PRODUCT

Prod# Prod_Name Prod_Details

HEA P1 HEA P_SORT ISS module

BINS9 BINA RY_SEA RCH ISS/ R module

FM6 FILE_MANA GER ISS/ R-PC subsys

B++1 B++_TREE ISS/ R turbo sys

B++2 B++_TREE ISS/ R-PC turbo

EMPLOYEE

Emp# Name Profession

101 Jones A nalyst

103 Smith Programmer

104 Lalonde Receptionist

106 Letitia VP Marketing

107 Evan VP R & D

110 Drew VP Operation

112 Smith Manager

 Bipin C Desai 6

JOB_FUNCTION

Job# Title

1000 CEO
700 Chief Programmer
800 Manager
 600 A nalyst

A SSIGNMENT
Emp# Prod# Job#

107 HEA P1 800

101 HEA P1 600

 110 BINS9 800

 103 HEA P1 700

 101 BINS9 700

 110 FM6 800

 107 B++1 800

The attributes Emp#, Prod#, and Job# in the
relation ASSIGNMENT are known as
foreign keys.

 Bipin C Desai 7

A null value for an attribute:

- a value that is either not known at the time, or

- the value is known but not recorded, or

 - no value is applicable for some tuples

P:
Id Name
101 Jones
103 Smith
104 Lalonde
105 Letitia
107 Evan
110 Drew
112 Smith

P:
Id Name
101 Jones
@ Smith
104 Lalonde
105 Letitia
107 Evan
110 Drew
@ Smith

Emp# Name Manager
101 Jones @
103 Smith 110
104 Lalonde 107
107 Evan 110
110 Drew 112
112 Smith 112

 Bipin C Desai 8

Integrity rule 1 (Entity Integrity). If attribute A
of relation R(R) is a component of the primary
key of R(R), then A cannot accept null values.

Integrity Rule 2 (Referential Integrity). Given two
relations R and S. Suppose R refers the relation S
via a set of attribute which forms the primary key of
S and, hence, this set of attributes forms a foreign
key in R. Then, the value of the foreign key in a
tuple in R must either be equal to the primary key
of a tuple of S or be entirely null.

- All tuples which contain references to the deleted tuple should also be deleted.
cascading deletion

- A tuple which is referred by other tuples in the database cannot be deleted.

- In the third option, the tuple is deleted, however, the foreign key attributes of all
referencing tuples are set to null(otherwise “dangling” pointers!)

 Bipin C Desai 9

- All tuples which contain references to the deleted tuple should also be
deleted. This is cascading deletion

- A tuple which is referred by other tuples in the database cannot be
deleted.

- In the third option, the tuple is deleted, however, the foreign key
attributes of all referencing tuples are set to null (otherwise “dangling”
pointers!)

 Bipin C Desai 10

 The Relational model supports simple, powerful query

languages which:
Have formal foundation based on logic.
Allows for implementation which can be optimized.

 Allow data access and modification.
 These languages are not general purpose programming

languages, however, most DBMS vendors have added their
own enhancements to improve its functionality.

Query Languages

 Bipin C Desai 11

Relational Algebra, Calculus

Relational Algebra(RA) and Relational Calculus(RC) are the
foundation for implemented languages (e.g. SQL)

 RA is operational, and is useful for representing the plan of
execution of a query.

 RC is declarative allowing users to describe what they want.
(i.e. it is non-operational)

 Understanding RA & RC is vital to the understanding
of SQL and query processing!

Your textbook may not cover RC!

 Bipin C Desai 12

Relational algebra is a collection of operations to manipulate
relations.

Basic Operations: Three of these four basic operations
 - union, intersection and difference - require that operand relations
be union-compatible. (Same number (and order)of attributes on
identical (at least compatible) domains

Q:
Id Name
101 Jones
105 Letitia
107 Evan
110 Drew

P:
Id Name
101 Jones
103 Smith
104 Lalonde
105 Letitia
107 Evan
110 Drew
112 Smith

 Bipin C Desai 13

 Bipin C Desai 14

P  Q:
Id Name
101 Jones
103 Smith
104 Lalonde
105 Letitia
107 Evan
110 Drew
112 Smith

Q  P:
Id Name
101 Jones
103 Smith
104 Lalonde
105 Letitia
107 Evan
110 Drew
112 Smith

Q:
Id Name
101 Jones
105 Letitia
107 Evan
110 Drew

P:
Id Name
101 Jones
103 Smith
104 Lalonde
105 Letitia
107 Evan
110 Drew
112 Smith

 Bipin C Desai 15

 Bipin C Desai 16

P - Q:
Id Name
103 Smith
104 Lalonde
112 Smith

Q - P:
Id Name

Q:
Id Name
101 Jones
105 Letitia
107 Evan
110 Drew

P:
Id Name
101 Jones
103 Smith
104 Lalonde
105 Letitia
107 Evan
110 Drew
112 Smith

 Bipin C Desai 17

INTERSECTION ()
The intersection operation selects the common tuples
from the two relations.
R = P  Q where
R = { t  t  P & t  Q} and 0  R  min(P , Q)
The intersection operation is really unnecessary as it can
be very simply expressed as:
 P  Q = P - (P - Q)
 Q  P = Q - (Q - P)

Is P – (P – Q) = Q – (Q – P)?

 Bipin C Desai 18

P  Q:
Id Name
105 Letitia
107 Evan
110 Drew

Q  P:
Id Name
105 Letitia
107 Evan
110 Drew

Q:
Id Name
101 Jones
105 Letitia
107 Evan
110 Drew

P:
Id Name
103 Smith
104 Lalonde
105 Letitia
107 Evan
110 Drew
112 Smith

 Bipin C Desai 19

Q:
Id Name
101 Jones
105 Letitia
107 Evan
110 Drew

P:
Id Name
103 Smith
104 Lalonde
105 Letitia
107 Evan
110 Drew
112 Smith

P - Q:
Id Name
103 Smith
104 Lalonde
112 Smith

P-(P- Q)
Id Name
105 Letitia
107 Evan
110 Drew

Q – P :
Id Name
101 Jones

Q-(Q- P)
Id Name
105 Letitia
107 Evan
110 Drew

 Bipin C Desai 20

RENAMING ()

The renaming operation * is used to rename relations or
its attributes. The operation:

(R(modattributes), rel_exp)

takes a relation expression and the result is named R with
some of the attributes, specified in the modattributes, are
renamed

The format of modattributes is:

modattributes ::= <oldname  newname>|

 <position  newname> <,modattributes>

* rho is the 17th letter of the Greek alphabet

 Bipin C Desai 21

Employee(Emp#, Ename, Address, Phone, DOB)

 ρ(Q Emp#  ID, Ename Name  Emp#,Ename EMPLOYEE)

Q:
Id Name
101 Jones
105 Letitia
107 Evan
110 Drew

 Bipin C Desai 22

 Bipin C Desai 23

Id Name Id Name

101 Jones 101 Jones

101 Jones 103 Smith

101 Jones 104 Lalonde

...

...

...

....

110 Drew 112 Smith

Q:
Id Name
101 Jones
105 Letitia
107 Evan
110 Drew

P:
Id Name
101 Jones
103 Smith
104 Lalonde
105 Letitia
107 Evan
110 Drew
112 Smith

 Bipin C Desai 24

P:
Id Name
101 Jones
103 Smith
104 Lalonde
105 Letitia
107 Evan
110 Drew
112 Smith

πNameP:
 Name
Jones
Smith
Lalonde
Letitia
Evan
Drew

 Bipin C Desai 25

SELECTION ()

The selection operation,yields a "horizontal subset" of
a given relation. Any finite number of predicates
connected by boolean operators may be specified in
the selection operation.

P:
Id Name
101 Jones
103 Smith
104 Lalonde
105 Letitia
107 Evan
110 Drew
112 Smith

σ Id<106 P:
Id Name
101 Jones
103 Smith
104 Lalonde
105 Letitia

 Bipin C Desai 26

JOIN ( )
The join operator, as the name suggests, allows

the combining of two relations to form a single new
relation.

- first compute the cartesian product
- followed by selecting those tuples
where the common attribute(s) has(have)
the same value(s).

 Bipin C Desai 27

Project (Proj#, Pname, Pleader) Assign(P#, E#)

Employee(Emp#, Ename, Address, Phone, DOB)

 Get Emp# of employees working on Proj# comp353.

 Get complete details of employee working on comp353.

 Get complete detatils of employes working on the
Database project.

 Get complete details of employees working on both
comp353 and comp354

 Get Emp# (complete details) of employees working on
two projects.

 Get names of employees working in projects where Ma
is the project leader.

 Bipin C Desai 28

 Bipin C Desai 29

 Bipin C Desai 30

 Bipin C Desai 31

 Bipin C Desai 32

 Bipin C Desai 33

 Bipin C Desai 34

 Bipin C Desai 35

If two relations that are to be joined have no domain
compatible attributes, then the natural join operation is
equivalent to a simple cartesian product.

-The equi-join and the theta joins are "horizontal
subsets" of the cartesian product.

-The natural join is equivalent to an equi-join with a
subsequent projection to eliminate the duplicate
attributes.

 Bipin C Desai 36

SQL is both the data definition and data manipulation
language of the relational database systems

Create table <relation> (<attribute list>, <integrity
constraint list>)
Where the <attribute list> is specified as:
<A ttribute list> ::= <attribute name> (<data type>)[not
null][,<attribute list>]
and <integrity constraints list> is specified as:
<Integrity constraint list> ::= <integrity1>|<integrity
constraint list>
and <integrity> could be a primary key(a1, a2, … am) , not
null or a named constraint.

 Bipin C Desai 37

create table EMPLOYEE
(Empl_No integer not null,
 Name char(25),
 Skill char(20),
 Pay_Rate decimal(10,2)
 Primary key Empl_No)

select [distinct] <target list>
from <relation list>
[where <predicate>]

 Bipin C Desai 38

Database Schema

Employee(Name, Sin, Dept#, MGRSIN)
Dept(Dname, Dept#, MgrSin, Bcode)
Project(Pname, Proj#, Dept#, Lab)
Assign(Proj#, EmpSin, Hours)
EmpDet(Sin, Address, Salary, DOB)
EmplDepd(Sin, DepName, HowR)

 Bipin C Desai 39

Queries
Employee(Name, Sin, Dept#, MGRSIN)
Dept(Dname, Dept#, MgrSin, Bcode)
Project(Pname, Proj#, Dept#, Lab)

Names of Employees in Dept 101?
select Name
from Employee
where Dept#= 101

Details of Employee in Dept. 101?
select *
from Employee
where Dept#= 101

 Bipin C Desai 40

Employee(Name, Sin, Dept#, MGRSIN)
Dept(Dname, Dept#, MgrSin, Bcode)
Project(Pname, Proj#, Dept#, Lab)

For all projects in the Software Engg. Lab,
find the DName, Manager’s name?

select Dname, Name
from Employee e, Dept d, Project p
where Lab = ‘Software Engg.’

and p.Dept#=d.Dept#
and d.MgrSin=e.Sin

For all projects in the Software Engg. Lab,
find the DName, Manager’s address etc.

 Bipin C Desai 41

For all projects in the Software Engg. Lab,
find the DName, Manager’s name, address etc.

select Dname, Name,Address, Salary,DOB
from Employee e, Dept d, Project p, EmpDet t
where Lab = ‘Software Engg.’

and p.Dept#=d.Dept#
and d.MgrSin=e.Sin
and e.Sin=t.Sin

Employee(Name, Sin, Dept#, MGRSIN)
Dept(Dname, Dept#, MgrSin, Bcode)
Project(Pname, Proj#, Dept#, Lab)
EmpDet(Sin, Address, Salary, DOB)

 Bipin C Desai 42

Query Tree

Consider the relation:
Employee(Emp#, Ename, City, Phone, YOB,)

Suppose we want to find Emp# and names of employees who live
in NDG(an address) and who were born in 1971(YOB).

We can express this query in one of the following ways:

Π Emp#, Ename (σ City=‘NDG’  YOB =1971(EMPLOYEE))

or
Π Emp#, Ename (σ City=‘NDG’ (EMPLOYEE)σ YOB =1971(EMPLOYEE))
or
Π Emp#, Ename σ City=‘NDG’ (EMPLOYEE) 

Π Emp#, Ename σ YOB =1971(EMPLOYEE)

 Bipin C Desai 43

 Π Emp#, Ename

 

σ Citys=‘NDG’ σ YOB=1971

EMPLOYEE EMPLOYEE

Π Emp#, Ename (σ City=‘NDG’  YOB =1971(EMPLOYEE))

 Bipin C Desai 44

 
Π Emp#, Ename Π Emp#, Ename

 σ City=‘NDG’ σ YOB=1971

EMPLOYEE EMPLOYEE

 Π Emp#, Ename

σ City=‘NDG’  YOB =1971

 EMPLOYEE

Π Emp#, Ename (σ City=‘NDG’ (EMPLOYEE)σ YOB =1971(EMPLOYEE))

Π Emp#, Ename σ City=‘NDG’ (EMPLOYEE) 

Π Emp#, Ename σ YOB =1971(EMPLOYEE)

 Bipin C Desai 45

Project (Proj#, Pname, Pleader) 100 projects
Empl (Emp#, Ename, City, Ph, DOB,) 500 employees
Assign (P#, E#) 1500 assignments

Get complete details of employees working on the DB project(s).
Suppose there are 10 DB projects, distribution is uniform.

Av. of 3 projects for each employee; Av. of 15 employees per project

Number of assignments to DB project is 150 (10% of assignments).

If no employee works on more than one DB project,

then maximum number of tuples in output would be 150.

Two possible ways of expressing this query

 Bipin C Desai 46

Pr Pn P E Em En
P1 DB P1 E1 E1 N1

 E2 N2
 ……………
 P2 E2 E1 N1

E2 N2
 ……………

P2 X P1 E1 E1 N1
E2 N2

 ……………

 P2 E2 E1 N1
E2 N2

 ……………

P1 DB
P2 X
 .
 .

Pr Pn
P1 E1
P2 E2
 .
 .

P E
E1 N1
E2 N2
 .
 .

Em En

 Bipin C Desai 47

 

Pname=Database

E#, Ename, City, Ph, DOB



Project100 Assign 1500

Empl
500

150,000

75,000,000

150

150

E#, Ename, City, Ph, DOB(P#=Database (Empl  Assign  Project))

E#=Emp#

7, 500,000
Proj#=P#

75,000

Only one per 100 would
have have the Proj#=P#

Only 10% would have
have Pname=Database

Only one per 500
would have have the
Emp#=E#

 Bipin C Desai 48

 Bipin C Desai 49

P(P): Q(Q): R(R)(result):
 A B B A
 a1 b1 b1 a1
 a1 b2 b2 a5
 a2 b1
 a3 b1
 a4 b2
 a5 b1
 a5 b2

Division ()

 Bipin C Desai 50

Q(Q): R(R) is:
 B A

 b1 a1
a2
a3
a5

P(P):
 A B
 a1 b1
 a1 b2
 a2 b1
 a3 b1
 a4 b2
 a5 b1
 a5 b2

Q(Q): R(R) is:
 B A

 b1
 b2
 b3

Q(Q):
R(R) is:
 B A

 a1
 a2

 a3
 a4
 a5

The division operation is useful where a
query involves the phrase "for all objects
having all of the specified
properties".

 Bipin C Desai 51

 Bipin C Desai 52

Project (Proj#, Pname, Pleader) Assign(P#, E#)
Employee(Emp#, Ename, Address, Phone, DOB,)

Get complete details of employees working exactly on all DB projects.

Find the Proj# of all Database project as DBPROJNO
  1 P# (DBPROJNO, Proj#(Pname=DatabaseProject))

 Find those employees who work on all DB projects by dividing

Assign by DBPROJNO (some of them work on other projects as well!).

ALLDB =ASSIGN  DBPROJNO

Find those tuples not involving assignments to DB projects

NOTDBONLY =ASSIGN – DBPROJNO  ALLDB

Required employees: ONLYDB = ALLDB - E# NOTDBONLY

 Bipin C Desai 53

Division is not a basic operation
We can re-write P(AB)Q(B) by :
A P - A(A P  Q – P)

A B B
 a1 b1 b1
 a1 b2 b2
 a2 b1
 a3 b1
 a4 b2
 a5 b1
 a5 b2

A P
 a1

 a2
 a3
 a4
 a5

A P  Q – P
A B
 a2 b2
 a3 b2
 a4 b1
A(A P  Q – P)
A
 a2

 a3
 a4
A P - A(A P  Q – P)
A
 a1

 a5

 Bipin C Desai 54

 Bipin C Desai

Many doctors, nurses, twins-triplets-…, one mother

Birth(Doctor, Nurse, Baby, Mother, Time, Date, Weight)

55

 Bipin C Desai

Many doctors, nurses, twins-triplets-…, one mother

Birth(Mother, Baby, Time, Date, Weight, Doctor, Nurse)

D1 N1
M1 B1 T1 D1 W1 D2 N2

N3

D1 N1
M1 B2 T2 D1 W2 D2 N2

N3

D1 N1
M1 B3 T3 D1 W3 D2 N2

D3 N3

56

 Bipin C Desai

RA B
1 1

Create table R_AB(A char(2), B char(2), primary key(A,B),, C
integer (5));
insert into R_AB values ('A1','B1',11),('A1','B2',12), ('A2','B2',22);
Query OK, 3 rows affected (0.009 sec)
Records: 3 Duplicates: 0 Warnings: 0

select * from R_AB;
+----+----+------+
| A | B | C |
+----+----+------+
A1	B1	11
A1	B2	12
A2	B2	22
+----+----+------+
3 rows in set (0.000 sec)

NOT 1:1

57

 Bipin C Desai

RA B
1 1

Create table R_AB(A char(2) primary key, B char(2) unique, C integer (5));
insert into R_AB values ('A1','B1',11);
Query OK, 1 row affected (0.010 sec)
insert into R_AB values ('A2','B1',11);
ERROR 1062 (23000): Duplicate entry 'B1' for key 'B'
insert into R_AB values ('A1','B2',11);
ERROR 1062 (23000): Duplicate entry 'A1' for key 'PRIMARY'
insert into R_AB values ('A2','B2',22);
Query OK, 1 row affected (0.003 sec)
select * from R_AB;
+----+------+------+
| A | B | C |
+----+------+------+
| A1 | B1 | 11 |
| A2 | B2 | 22 |
+----+------+------+
2 rows in set (0.000 sec)

58

 1:1

 Bipin C Desai 59

Some special characters used in DB & HTML codes

1 Bipin C Desai

Relational Model

&

Relational Database Design

 2025 Bipin C. DESAI

 To be used in the spirit of copy-forward! https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

2 Bipin C Desai

 Relation Scheme and Relational Design

 Anomalies in Database:
 A Consequence of Bad Design

 Functional Dependency

 Normal Forms

3 Bipin C Desai

A relation scheme R is a plan which gives the
attributes involved in one or more relations defined
on this relation scheme.

{A 1, A 2, ... ,A n},
A i is defined on domain Di

Relation R on the relation scheme R
is a finite set of mappings or tuples
{t1, t2, ..., tp}

4 Bipin C Desai

5 Bipin C Desai

Vendor-V, Address-A, Date-D, Account-C, ShipAddress-S ,

Partno-P, Qty-Q, Unit price -U, Description-T, linetotal -L ,
.
.
.
.
.
Tax- X
Total - $
Signature G
Date E

PURCHASE_ORDER (Pid, V, A, D, C, S, P, Q, U, T, L, X, $, G, E)

6 Bipin C Desai

Anomalies in Database: A Consequence of Bad Design

Redundancies: the same information is stored more than once.

Update Anomalies: The multiple copies may lead to updates
which become inconsistent.

Insertion Anomalies: Cannot insert some fact unless some other
fact is inserted.

Deletion Anomalies: Deleting one fact may delete another.

PURCHASE_ORDER (PID, V, A, D, C, S, P, Q, U, T, L, X, $, G, E)

What are the redundancies and/or anomalies in PURCHASE_ORDER?

7 Bipin C Desai

8 Bipin C Desai

STDINF(Name, Course, Phone_No, Major, Prof, Grade)

 Name Course Phone_No Major Prof Grade

 Jones 353 237-4539 Comp Sci Smith A
 Ng 329 427-7390 Chemistry Turner B
 Jones 328 237-4539 Comp Sci Clark B
 Martin 456 388-5183 Physics James A
 Dulles 293 371-6259 Decision Sci Cook C
 Duke 491 823-7293 Mathematics Lamb B
 Duke 356 823-7293 Mathematics Bond in prog
 Jones 492 237-4539 Comp Sci Cross in prog
 Baxter 379 839-0827 English Broes C

The key of STDINF is (Name, Course)

9 Bipin C Desai

Vendor-V, Address-A, Date-D, Account-C, ShipAddress-S ,
For each line
Partno-P, Qty-Q, Unit price -U, Description-T, linetotal -L,
Total Tax- X Total for the PO - $
PO approval signature G Date of PO approval signature E

PURCHASE_ORDER (Pid, V, A, D, C, S, P, Q, U, T, L, X, $, G, E)

FDs in Purchase Order from common business rules

Pid ADCSX$GE,

PidP  QU,

QU  L,

P T

10 Bipin C
Desai
 Bipin C
Desai

Problems due to Redundancy

 Redundancy creates problems associated with relational
schemas:
redundant storage, insert/delete/update anomalies

 Integrity constraints, e.g., functional dependencies, can be
used to identify relational schemas with potential
anomalies.

 Main refinement technique: decomposition
Decompose R(ABCD) with R1(ABC) and R2(BCD) .

 Decomposition should be used with care.
Decompose or not to that is the question!

11 Bipin C Desai

12 Bipin C Desai

13 Bipin C Desai

R A B C D E
 a1 b1 c2 d1 e1
 a2 b2 c1 d2 e2
 a3 b1 c2 d1 e3
 a3 b3 c3 d3 e4
 a1 b2 c1 d2 e5
 a4 b4 c4 d4 e6
 a3 b2 c1 d2 e7
 a5 b4 c4 d4 e8

 Relation R on the scheme R(A , B, C, D, E)

Illustrates the inference axioms.
FDs: B  CD, B  C , C  D, B  D may hold

14 Bipin C Desai

If F is a set of FD's on a relation scheme R then F+, the closure of
F, is the smallest set of FD's such that F+  F and no FD can be
derived from F by using the inference axioms, that are not
contained in F+.

If R is not specified, then it is assumed to contain all the attributes
that appear in F.

Suppose R(A, B, C, D):

the FDs that hold on R are:

F = {A → B, B → C, C → D}

Then F+ also contain:
A → C , A → D, B → D

15 Bipin C Desai

16 Bipin C
Desai
 Bipin C
Desai

Functional Dependencies (FDs)

 An FD is a statement about all allowable relations on a

relational schema.
Must be identified based on semantics of application (not

 from an instance r of a relation on the schema R)
Given some allowable instance r of R, we can check if it

violates some FD f, but we cannot tell if f holds over R!
 K is a candidate key for R means that K  R
 We require the candidate keys to be minimal
 If K’  K then K’   R

However, X  R does not require X to be minimal(superkey)!

17 Bipin C
Desai
 Bipin C
Desai

 Consider relation

 HrEmps (Sin, Name, Grade, Rate, HrWrk):

 let us denote it by listing the attributes simply using: SNGRH
The schema is a plan for the co-occurrence of the set of attributes

{S,N,G,R, H}.
We may alternately refer to this set of attributes by using just the

relation scheme name. (e.g., HrEmps for {SNGRH})
In implementation, we usually have only in relation on each

relation scheme
 Some FDs on Hourly_Emps:

Sin is the candidate key: S  SNGRH
Grade determines Rate (hourly wages): G  R (transitive FD)

FDs again!

18 Bipin C
Desai

Example
 Problems due to G  R :

Update anomaly: Can we change

 R in just the 1st tuple of SNGRH?
(e.g., change value of R to 11!)

Insertion anomaly: What if we want

to insert an employee and don’t

know the hourly wage for her

grade? Also, we can’t insert a rate for
a grade unless we have an
employee with that grade!

Deletion anomaly: If we delete all
employees with grade 35, we lose
the information about the wage for
this grade!

S N G R H

123-223-666 Evan 48 10 40

231-315-368 Lalonde 22 8 30

131-243-650 Letitia 35 9 30

434-263-751 Drew 35 9 32

612-674-134 Ma 48 10 40

G R

48 10

35 9

22 8

Emps

Wages

S N G H

123-223-666 Evan 48 40

231-315-368 Lalonde 22 30

131-243-650 Letitia 35 30

434-263-751 Drew 35 32

612-674-134 Ma 48 40

Emp

19 Bipin C Desai

Definition: The closure of X under a set of functional
dependencies F and written as X+, is the set of attributes
{A 1,A 2, .., A m} such that the FD X A i for A i  X+ follows
 from F by the inference axioms for functional
dependencies.

20 Bipin C Desai

21 Bipin C Desai

22 Bipin C Desai

23 Bipin C Desai

Definition: Given two sets of FD's F and G over
a relation scheme R. F and G are equivalent
 (i.e., F  G) if the closure of F is identically equal
 to the closure of G (i.e., F+ = G+). If F and G are
equivalent then F covers G and G covers F.

Definition: Given a set of FD's F, we say that it is
non-redundant if no proper subset F' of F is
equivalent to F, i.e., no F' exists such that F'+ = F+.

24 Bipin C Desai

Title: Algorithm: Non-redundant cover
Input: A set of FD's F
Output: A non-redundant cover of F

Body
G := F; // initialize G to F
for each FD X  Y in G do

if X  Y  {F -(X  Y)}+

 // i.e.{F-(X  Y)} X  Y
 then F := {F - (X  Y)};

G := F; // G is the non-redundant cover of F
end;

25 Bipin C Desai

If F = {A  BC, CD  E, E  C, D  AEH,

ABH  BD, DH  BC}

then a non-redundant cover for F is:

 {A  BC, E  C, D  AEH, ABH  BD}.

CD+ under (F- CD  E) is CDAEHB and it includes E the
 RHS.

Hence CD  E is redundant.

26 Bipin C Desai

Definition: A set of functional dependencies Fc is a canonical
cover if every FD in Fc satisfies the following :

- each FD in Fc is simple, (recall that in a simple FD the right
hand side has a single attribute i.e., each FD is of the form X
 A);
- for no FD X  A with Z  X is {(Fc -(X  A)) U (Z  A)}  Fc.
In other words the left hand side of each FD does not have any
extraneous attributes or the FD's in Fc are left reduced;
- no FD X  A is redundant i.e., { Fc - (X  A)} does not
logically imply Fc.

A canonical cover is sometimes called minimal.

Given a set F of functional dependencies we can find a
canonical set Fc; Obviously Fc covers F.

27 Bipin C Desai

Example: If F = {A  BC, CD  E, E  C, D  AEH,
 ABH  BD, DH  BC}

then a non-redundant cover for
 F is { A  BC, E  C, D  AEH, ABH  BD }:

and the canonical cover is
{A  B, A  C, E  C, D  A, D  E, D  H,
AH  D}.

28 Bipin C Desai

Definition: Given a relation scheme R {A1A2A3 ... An},and

 a set of functional dependencies F, a key K of R is a

subset of R such that the following are satisfied:

- K  A1A2A3...An is in F+

- For any Y  K, Y  A1A2A3...An is not in F+

29 Bipin C Desai

Given R(A, B, C, D) with F{C D, C  A, B  C}
Find C+ the closure of C under F.
C+ is initialized to C
Using C D we augment C+ to CD
Using C  A, we augment C+ to CDA
No other change is possible; hence closure of C under F is:
CDA

Find the candidate key for R.
The closure of B under F is BCDA
Hence B is a candidate key.

30 Bipin C Desai

Given R(A, B, C, D) with F{D  A, B  C}

Find C+ the closure of C under F.
C+ is initialized to C
Since C doesn’t appear on the RHS of any FDs in F,
no change is possible; hence closure of C under F is: C
Find the candidate key for R.
The closure of D under F is DA
The closure of B under F is BC
Since neither of the determinants are possible candidate
keys, However, BD  ABCD
Hence BD is a candidate key.

31 Bipin C Desai

Example: If R (ABCDEH) and F = {A  BC, CD  E, E  C, D
 AEH, ABH  BD, DH  BC},

Attributes in
Left only: Left & Right Right only

 none A, B, C, D, E, H none
Closure of one attribute Closure of two attributes not involving key already found
A+ = ABC AB+ = ABC BH+ = BH
B+ = B AC+ = ABC CE+ = CE
C+ = C AE+ = ABEC CH+ = CH
D+ = DAEHBC AH+ = ABCHDE EH+ = ECH
E+ = EC BC+ = BC
H+ = H BE+ = BEC

D is a candidate key of R since D  A BCDEH is in F+
No other single attribute candidate key.
Also, A H is candidate key since AH+= under F is A BCDEH .
Since D is only in one RHS, the key must include D or AH
No other keys:
Superkeys are DX or AHX where X  R

32 Bipin C Desai

Full Functional Dependency

Definition: Given a relational scheme R and a FD X  Y, then
Y is fully functionally dependent on X if there is no Z, where
Z is a proper subset of X such that Z  Y.

Thus, the dependency X  Y is left reduced, if there are no
extraneous attributes in the left hand side of the dependency.

 Example: Given R (A BCDEH) and F = {A  BC, CD  E ,
 E  C, D  A EH , A BH  BD, DH  BC}

The FD A BH  BD is not left reduced since A  B allows
us to eliminate B from the LHS. Also, in A H  B is not
left reduced since we have A  B and we can thus
eliminate it. So the FD A BH  BD can be replaced by
simply A H  D

33 Bipin C Desai

Example: In the relation scheme R (ABCDEH) with the
FD's,

F = {A  BC, CD  E, E  C, CD  AH, ABH  BD,

DH  BC}, the dependency A  BC is left reduced and

BC is fully functionally dependent on A. However, the

functional dependency ABH  D, is not left reduced, the

attribute B being extraneous in this dependency.

Definition: An attribute A in a relation scheme R is a prime

 attribute or simply prime, if A is part of any candidate key

of the relation. If A is not a part of any candidate key of R,

A is called a nonprime attribute or simply nonprime.

34 Bipin C Desai

Example: If R (ABCDEH) and F = {A  BC, CD  E,
E  C, AH  D}; then AH is the only candidate key of R.
The attributes A and H are prime, and the attributes B, C, D,
and E are nonprime.

35 Bipin C Desai

In the relation scheme

STUDENT_COURSE_INFO(Name, Course, Grade,
Phone_No, Major, Course_Dept) with the FD's,
F = {Name  Phone_NoMajor, Course  Course_Dept,
NameCourse  Grade}.

Here NameCourse is a candidate key,
 Name and Course are prime attributes.
 Grade is fully functionally dependent on the candidate key.

 Phone_No, Course_Dept, and Major are partially
dependent on the candidate key.

36 Bipin C Desai

37 Bipin C Desai

In the relation scheme

Employee(Emp_Name, Department, Manager)

 with the function dependencies

F = {Emp_Name  Department, Department  Manager},

 Emp _Name is the key and Manager is transitively

 Dependent on the key since

 Emp_Name  Department  Manager.

38 Bipin C Desai

Content Preserving: the original relation can be derived from

the decomposed relations (lossless join decomposition)

Dependency Preserving: the original set of constraints can be

derived from the dependencies in the decomposed relations.

Free of interrelation join constraints: if there are no
dependencies that can only be derived from the join of two or
more decomposed relations

39 Bipin C Desai

Definition: An unnormalized relation contains
nonatomic values.

Definition: A relation scheme is said to be in the first
 normal form (1NF) if the values in the domain of each
 attribute of the relation are atomic.
1NF has NO NON-ATOMIC ATTRIBUTES.

Definition: A relation scheme R<S, F> is in the second
 normal form (2NF) if all non-prime attributes are fully
 functionally dependent on the relation key(s).

2NF has NO PARTIAL DEPENDENCY

40 Bipin C Desai

Assignment(Emp#, Name, Dept, Proj#, Hours, Lab)
Emp#  NameDept, Proj#  Lab,
Emp#Proj#  Hours

P1 5 L1123 Smith D1

P2 30 L1

P1 20 L1
P3 10 L2

234 Ma D2

P4 5 L3
345 Russo D1 P1 35 L1

Example of an unnormalized (non-normal form) relation

41 Bipin C Desai

123 Smith D1 P1 5 L1

123 Smith D1 P2 30 L1

234 Ma D2 P1 20 L1
234 Ma D2 P3 10 L2
234 Ma D2 P4 5 L3
345 Russo D1 P1 35 L1

42 Bipin C Desai

123 Smith D1

123 Smith D1
234 Ma D2
234 Ma D2
234 Ma D2
345 Russo D1

P1 L1

P2 L1

P3 L2
P4 L3

123 P1 5

123 P2 30
234 P1 20
234 P3 10
234 P4 5
345 P1 35

Assignment(Emp#, Name, Dept, Proj#, Hours, Lab)
Emp#  NameDept, Proj#  Lab,
Emp#Proj#  Hours

43 Bipin C Desai

123 Smith D1 P1 35 L1

234 Ma D2 P2 35 L2

345 Russo D1 P3 35 L1

Assignment(Emp#, Name, Dept, Proj#, Hours, Lab)
Emp#  NameDept, Proj#  Lab, Dept  Lab
Emp#Proj#  Hours

One can't say that there is no anomaly from the
contents in the database at a given point in time!

44 Bipin C Desai

Definition: A relation scheme R<S,F> is in the third normal
form(3NF)if for all nontrivial FD in F+ of the form X  A ,
either X contains a key (i.e., X is a superkey) or A is a
 prime attribute.

A database scheme is in the third normal form if every
relation scheme included in the database scheme is in the
 third normal form.

3NF HAS NO TRANSITIVE DEPENDENCY

45 Bipin C Desai

46 Bipin C Desai

123 Smith D1

123 Smith D1
234 Ma D2
234 Ma D2
234 Ma D2
345 Russo D1

P1 L1

P2 L1

P3 L2
P4 L3

123 P1 5

123 P2 30
234 P1 20
234 P3 10
234 P4 5
345 P1 35

Assignment(Emp#, Name, Dept, Proj#, Hours, Lab)
Emp#  NameDept, Proj#  Lab,
Emp#Proj#  Hours

47 Bipin C Desai

Join the first two
relations:
Creates extraneous tuples

123 Smith D1 P1 L1
123 Smith D1 P2 L1
123 Smith D1 P3 L2
124 Smith D1 P4 L3
234 Ma D2 P1 L1
234 Ma D2 P2 L1
234 Ma D2 P3 L2
234 Ma D2 P4 L3
345 Russo D1 P1 L1
345 Russo D1 P2 L1
345 Russo D1 P3 L2
345 Russo D1 P4 L3

123 P1 5
123 P2 30
234 P1 20
234 P3 10
234 P4 5
345 P1 35

When we join the third relation,
 the extraneous tuples are eliminated!
Hence, the decomposition is lossless

48 Bipin C Desai

Assignment(Emp#, Name, Dept, Proj#, Hours, Lab)

Emp#  NameDept, Proj#  Lab, Emp#Proj#  Hours
123 Smith D1 P1 5 L1
123 Smith D1 P2 30 L1
234 Ma D2 P1 20 L1
234 Ma D2 P3 10 L2
234 Ma D2 P4 5 L3
345 Russo D1 P1 35 L1

P1 5 L1
P2 30 L1
P1 20 L1
P3 10 L2
P4 5 L3
P1 35 L1

123 Smith D1 L1

234 Ma D2 L1

234 Ma D2 L2

234 Ma D2 L3

345 Russo D1 L1

123 Smith D1 P1 5 L1

123 Smith D1 P1 20 L1

123 Smith D1 P1 35 L1

123 Smith D1 P2 30 L1

234 Ma D2 P1 5 L1

234 Ma D2 P1 20 L1

234 Ma D2 P1 35 L1

234 Ma D2 P2 30 L1

234 Ma D2 P3 10 L2

234 Ma D2 P4 5 L3

345 Russo D1 P1 5 L1
345 Russo D1 P1 20 L1
345 Russo D1 P1 35 L1
345 Russo D1 P2 30 L1

A lossy join decomposition

49 Bipin C Desai

Definition: Given a relation scheme R<S,F> where F is the
 associated set of functional dependencies on the attributes
in S. Consider that R is decomposed into the relation
schemes R1, R2, ... , Rn with the functional dependencies

F1, F2,.. , Fn.

Then this decomposition of R is dependencies preserving, if
the closure of F' (where F'= F1  F2  ...  Fn) is identical to

F+ (i.e., F'+  F+).

50 Bipin C Desai

Theorem : A decomposition of relation scheme R <(X, Y, Z),
 F> into say R1<(X, Y), F1> and R2<(X,Z), F2> is:

(i) dependency preserving if every functional dependency in
R can logically derived from the functional dependencies of
R1 and R2 i.e., (F1  F2)+ = F+, and

(ii) is lossless if the common attributes X of R1 and R2 form

a superkey of at least one of these i.e., X Y or X  Z .

51 Bipin C Desai

for each decomposed relation R i do
 if an attribute A j is included in R i,
 then TABLE_LOSSY(i,j) := Aj
 else TABLE_LOSSY(i,j) := ßiAj

change := true
while (change) do
 for each FD X Y in F do
 if rows i and j exist such that the r symbol appears in

 each column corresponding to the attributes of X
 then if one of the symbol in the Y column is r , the other ßr

 then make replace ßr with r

 else if the symbols are ßpm and ßqm

 then make both of them, say, ßpm;
 else change := false
i := 1
If there is a row will all  then the decomposition is lossless

52 Bipin C Desai

Example: R(A,B,C,D) with the functional
dependencies F {A  B, A  C, C  D}.
Consider the dependence preserving
decomposition of R into R1(A,B,C) and R2(C,D).

 A B C D A B C D

R1 A B C ß1D A B C D
R2 ß2A ß2B C D ß2A ß2B C D

Example: R(A, B, C, D, E) with the functional
dependencies F {AB  CD, A  E, C  D}. Then the
decomposition of R into R1(A,B,C) and R2(B,C,D) and
R3(C,D,E) is lossy.

53 Bipin C Desai

A B C D E

R1(A,B,C)     

R2(B,C,D)     

R3(C,D,E)     

F {AB  CD, A  E, C  D}.

A B C D E

R1(A,B,C)     

R2(B,C,D)     

R3(C,D,E)     

C  D

No further changes – no row with all 
 Hence , lossy decomposition!

54 Bipin C Desai

Algorithm to check if a decomposition is dependency

 preserving

Input: A relation scheme and a set F of FDs: a projection

(R1, R2, ..., Rn) of R with the FDs (F1, F2, ..., Fn).

Output: Whether the decomposition is dependency
preserving or not.

Body:
F'+_=_F+ := true;
F' := ø;
for i:= 1 to n do
 F' := F'  Fi;
for each FD X  Y  F and while (F'+_=_F+) do

// compute X'+, the closure of X under F'
 if Y  X'+ then F'+_=_F+ := false;

55 Bipin C Desai

Example : Consider the relation scheme R(A ,B,C,D) with the
FDs F = {A  B, A  C, C  D}. Here, the decomposition of R
into R1< (A ,B,C), {A  B, A  C} and R2 <(C,D), {C  D}>

 is dependence preserving, since in this case each FD in F is
included in F' (where F' = F1  F2).

Example: Consider the relation Student_Advisor(Name, Dept,
Advisor) with the FDs F = {N  D, N  A , A  D}. Here, its
decomposition into S_Pr<(N, A), {N  A }>, and D_A <(D, A),
{A  D}> is dependence preserving, since N  D is implied by
 (N  A)  (A  D); in addition the decomposition is lossless.

56 Bipin C Desai

Example: Consider R(A,B,C,D) with the FDs

F {A  B, A  C, C  D} and its decomposition into

R1(A,B,C) with the FDs F1 = {A  B, A  C} and

R2(C,D) with the FDs F2 = {C  D}.

This decomposition is dependence preserving since all the

original FD's can be logically derived from F1 and F2.

Example: R(A,B,C,D) with the FDs F {A  B, A  C, A  D}
is decomposed into R1(A,B,D) with the FDsF1 = {A  B, A  D}
and R2(B,C) with the FDs F2 = { }
is not dependence preserving since the FD
A  C is not implied by any FD's in R1 or R2.

57 Bipin C Desai

Example The decomposition of the relation Concentration
(Student, Major_or_Minor, Dept, Advisor), with the FDs
{SMmF s  A , A  F s } into the relations SMmA and FsA is not

 FD preserving since F' = A  F s and the FD SMmF s  A is

not implied by F'.

58 Bipin C Desai

Third Normal Form Decomposition Algorithm
Input: A relation Scheme R, a set of Canonical FDs Fc, and
 K a candidate key of R.(K must have any attributes  Fc)
Output: A collection of third normal form relation schemes
 (R1, R2, ... R i) which are dependency preserving and lossless.
i := 0
if there is a dependency X  Y in Fc such that all the
attributes that remain in R are included in it{
 i:= i+1; output R as R i{ X, Y};}
 else{ for each FD X  A in Fc {

 i:= i+1; form R i< {X,A }, F i{ X  A }>}
Replace (<(X,A), {X  A }> and <(X,B), {X  B}> with
 <(X,A B), {X  A B}>)

 if F j for 1  j  i not satisfies K  X {
 i := i+1; form R i { K }

59 Bipin C Desai

 SHIPPING(Ship, Capacity, Date, Cargo, Value)
 Ship  Capacity,
 ShipDate  Cargo,
 CargoCapacity  Value
The given set of FD's is in canonical form.
A candidate key of the relation is ShipDate.
Decompose into:
R1(Ship, Capacity) with the FD: Ship  Capacity,
R2(Ship, Date, Cargo) with the FD: ShipDate  Cargo,
R3(Cargo, Capacity, Value) with the FD: CargoCapacity Value

60 Bipin C Desai

Consider the relation scheme Student_info(Student(S),
Major(M), Student_Department(Sd), Advisor(A), Course(C),
Course_Department(Cd), Grade(G), Professor(P),
 Prof_Department(Pd), Room(R), Day(D), Time(T)) with
{S  M , S  A , M  Sd , S  Sd , A  Sd, C  Cd , C  P,
P  Pd , RTD  C , RTD  P, TPD  R , TSD  R ,
TDC  R , TPD  C , TSD  C ,SC  G}
Redundant FDs {S  Sd, RTD  P, TDC  R , TPD  C, TSD  R}.
The primary key is TSD.
3NF decomposition is: <R1(SMA), {S  MA }>; <R2(MSd),
{M  Sd }>, < R3(A Sd);, {A  Sd }>; < R4(CCdP), {C  CdP }>; < R5(PPd) ,
{P  Pd }>; < R6(RTDC), {RTD  C }>; < R7(TPDR) {TPD  R }>; < R8(TSDR),
 {TSD  R }>; < R9(SCG) {SC  G }>.

61 Bipin C Desai

 Name Student# Course Grade

 Jones 23714539 353 A
 Ng 42717390 329 A
 Jones 23714539 328 in prog
 Martin 38815183 456 C
 Dulles 37116259 293 B
 Duke 82317293 491 C
 Duke 82317293 353 in prog
 Jones 23714539 491 C
 Evan 11011978 353 A+
 Baxter 83910827 379 in prog

 The Grade Relation

 Suppose the FDs are Student#  Name and Name  Student#?

 Is it in 3NF? Any redundancies?

62 Bipin C Desai

Definition: A normalized relation scheme R<S,F>
is in the Boyce Codd normal form if for every
nontrivial FD in F+ of the form X A where X  S
 and A  S, X is a superkey of R.
A database scheme is in the BCNF if every relation
scheme in the database scheme is in the BCNF.

The relation GRADE is not in the BCNF because of the
dependencies Student#  Name and Name  Student#
 are nontrivial and their determinants are not superkeys
of GRADE.

63 Bipin C Desai

Algorithm: Lossless BCNF Decomposition

i := 0;
S := { R(U) };
all_BCNF := false;
Find a non-redundant cover F' from F
while (all_BCNF){
 if ((X  Y)F'+YX)(XY  Rj)X Rj{

 i := i+1;
 <Ri{X, Y}, X  Y>  S
 Rj := Rj - Y;

}
 else all_BCNF := true;
}

64 Bipin C Desai

Example: Let us find a BCNF decomposition of the relation:
SHIPPING(Ship, Capacity, Date, Cargo, Value)
{S  Cap, SD  Cargo, CargoCap  V
There are no redundant FD'S in the set
Since S  Cap and since Ship  SHIPPING replace
SHIPPING with: R1(S, Cap) and R2(S, D, Cargo, V).

The decomposition is lossless but not FD preserving: the FD
CargoCap  V is not implied by {Ship  Cap, SD  Cargo}.
A BCNF decomposition which is lossless and FD preserving:
R1(Cargo, Capacity, Value) with the FD CargoCapacity  Value,
R2(Ship, Capacity) with the FD Ship  Capacity
R3(Ship, Date, Cargo) with the FD ShipDate  Cargo

65 Bipin C Desai

Given F1={PersonName  City, Street;
PersonName,CompName  Salary;
CompName  CompCity;
PersonName  MgrName}
and
Given F2={CompName  CompCity;
PersonName, CompName, CompCity  Salary;
PersonName  City;
PersonName  Street;
PersonName, City  MgrName}

Does F1 cover F2 ?

66 Bipin C Desai

Given F1={PersonName  City, Street;
PersonName,CompName  Salary;
CompName  CompCity;
PersonName  MgrName}

Candidate key: PersonNameCompanyName
No redundant attributes on the LHS.
No redundant FDs

R(Pn, Cn, Mn, C, S, Cc, $) can be decomposed, using the 3NF
algorithm (FD preserving and losslessly) into:

R1(PnCS), R2(PnCn$), R3(CnCc), R4(PnMn)

67 Bipin C Desai

Given F1={PersonName  City, Street;
PersonName,CompName  Salary;
CompName  CompCity;
PersonName  MgrName}
Candidate key: PersonNameCompanyName PnCn

No redundant attributes on the LHS.
No redundant FDs
R(Pn, Cn, Mn, C, S, Cc, $) can be decomposed, using the BCNF
algorithm as follows:

 PnCnMnCSCc$
R1(PnCS) PnCnMnCc$
 R2(PnCn$) PnCnMnCc

 R3(PnMn) PnCnCc

 R4(CnCc) PnCn

PnCn is already in LHS of R2, we can combine it with it(drop it).

Do not use the FD PnCn  $
WHY???

68 Bipin C Desai

Given F1={PersonName  City, Street;
PersonName,CompName  Salary;
CompName  CompCity;
PersonName  MgrName}
Candidate key: PersonNameCompanyName
No redundant attributes on the LHS.
No redundant FDs
Since PnCn is the key we need not use it in decompoing it in
the second step(as shown on the previous slide!!)
Hence, R(Pn, Cn, Mn, C, S, Cc, $) can be decomposed,
alternatively, using the BCNF algorithm as follows:

 PnCnMnCSCc$
R1(PnCS) PnCnMnCc$
 R2(PnMn) PnCnCc$
 R3(CnCc) R4(PnCn$)

69 Bipin C Desai

Given R = <{ABCDEGIJK},
{AB  CDE, E  G, B  G, BG  AIJ, IJ  K}

F = {AB  C BG  A
AB  D BG  I
AB  E BG  J
E  G IJ  K
B  G}

Fc = {B  A, B  C, B  D, B  E,
 B  I, B  J , IJ  K, E  G}

B is a candidate key.

70 Bipin C Desai

(ABCDEGIJK)

Fc = {B  A, B  C, B  D, B  E,

 B  I, B  J, E  G, IJ  K }

B is a candidate key.

3NF: Since there is no single FD which includes all attributes in
R, we create a relation for each FD:

R1(AB), R2(BC), R3(BD), R4(BE), R5(BI), R6(BJ), R7(EG),
R8(IJK)

Combine the relations with the same LHS:

R1’(ABCDEIJ), R7(EG), R8(IJK)

Why did we not include G in R1’ ?

71 Bipin C Desai

72 Bipin C Desai

Decompose :
Projects<{Employee, Project, Dept,Part, QtyUsed,
 HrsWorked},
{Employee,Project  HrsWorked; Project  Dept;
Project,Part  QtyUsed }>

73 Bipin C
Desai

Refining an ER Diagram
1st diagram translated:

Emp(S,N,D,P,S)

 Dept(D,Dn,B)

 Pay is associated with Emp.

Suppose all workers in a dept are
assigned the same pay:

 D  P

Redundancy; fixed by:

 Emp2(S,N,D,S)

 Dept2(D,Dn,B,P)

Pay

dname

budgetdid

since
nom

Works_In DepartmentsEmployees

sin

Pay

dname

budget

did

since
name

Works_In DepartmentsEmployees

sin

Before:

After:

74 Bipin C
Desai
 Bipin C
Desai

 Normal Forms: Conclusions

-Returning to the issue of schema refinement, the first question to
ask is whether any refinement is needed!

-If a relation is in a certain normal form (BCNF, 3NF etc.), it is
known that certain kinds of problems are avoided/minimized. This
can be used to help us decide whether decomposing the relation
will help.

- Role of FDs in detecting redundancy:

• Consider a relation R with 3 attributes, ABC.
• No FDs hold: There is no redundancy here.
• However if A  B: Then, several tuples could have the

same A value, and if so, they’ll all have the same B value!
We need refinement!

75 Bipin C
Desai
 Bipin C
Desai

 Boyce-Codd Normal Form (BCNF)

• Reln R with FDs F is in BCNF if, for all X  A in
• A  X (called a trivial FD), or
• X contains a key for R.

• In other words, R is in BCNF if the only non-trivial FDs that hold
over R are key constraints.
• No dependency in R that can be predicted using FDs alone.
• If we are shown two tuples that agree upon the X value,
• we cannot infer the A value in one tuple from the A
• value in the other.
• If example relation is in BCNF, the 2 tuples

must be identical (since X is a key).

X Y A

x y1 a

x y2 ?

76 Bipin C
Desai
 Bipin C
Desai

 Third Normal Form (3NF)

• Relation R with FDs F is in 3NF if, for all X  A in
• A  X (called a trivial FD), or
• X contains a key for R, or
• A is part of some key for R.

• Minimality of a key is crucial in third condition above!
• If R is in BCNF, obviously it is also in 3NF.
• If R is in 3NF, some redundancy is possible. It is a compromise,

 used when BCNF not achievable (e.g., no ``good’’ decomposition,

 or performance considerations).
• Lossless-join, dependency-preserving decomposition of R into a

collection of 3NF relations always possible.

77 Bipin C
Desai
 Bipin C
Desai

 When is R not in 3NF?

• If 3NF violated by X  A, one of the following holds:
• X is a subset of some key K(Partial Dep)

• We store (X, A) pairs redundantly.
• X is not a proper subset of any key.(Trans. Dep)

• There is a chain of FDs K  X  A, which means that
 we cannot associate an X value with a K value unless we
 also associate an A value with an X value.

• But: even if relation is in 3NF, these problems could arise.
• (Member,Chalet, Date, Card), M  C, C  M is in 3NF,
 but for each reservation of member, same (M, C) pair is stored.

• Thus, 3NF is indeed a compromise relative to BCNF.

78 Bipin C
Desai
 Bipin C
Desai

 Decomposition of a Relation Scheme

• Suppose that relation R contains attributes A1 ... An. A
decomposition of R consists of replacing R by two or more

 relations such that:
• Each new relation scheme contains a subset of the attributes of

 R (and no attributes that do not appear in R), and
• Every attribute of R appears as an attribute of one of the new

relations.
• Intuitively, decomposing R means we will store instances of the

relation schemes produced by the decomposition, instead of

 instances of R.

79 Bipin C
Desai
 Bipin C
Desai

 Example Decomposition

• Decompositions should be used only when needed.
• SNPGRH has FDs S  SNPGRH and G  R
• Second FD causes violation of 3NF; R values repeatedly

associated with G values. Easiest way to fix this is to create a
relation GR to store these associations, and to remove R from the
main schema:
• i.e., we decompose SNPGRH into SNPGH and GR

• The information to be stored consists of SNPGRH tuples. If we just
store the projections of these tuples onto SNPGH and GR, are there
any potential problems that we should be aware of?

80 Bipin C Desai

Given R(A, B, C, D) with F{C D, C  A, B  C}

 If R is not in BCNF, decompose it into a set of BCNF
 relations that preserve the FDs.

 B is the candidate key.

Both C  D and C  A cause BCNF violations.

One way to obtain a (lossless) join preserving
 decomposition is to decompose R into

 AC, BC, and CD.

81 Bipin C Desai

Given R(A, B, C, D) with F{D  A, B  C}

Here BD is a candidate key. R is in 1NF but not 2NF due to
the partial dependencies.
B  C and D  A

The decomposition: AD, BC, BD
- obtained by first decomposing R into AD, BCD;
- followed by decomposing BCD into BC and BD

 is BCNF and lossless and join-preserving.

 ABCD

BC, B  C ABD

 AD,D  A BD

82 Bipin C Desai

Review of Relational Design

©Bipin C. DESAI

83 Bipin C Desai

Example relation:
EMPLOYEE
(EID, Project, Component,EName,,Building, Room, TelNo)

Note: Keys are underlined.
What are the FDs?
What is the normal form of the relation?

-Only one phone in each room.
R(I, P, C, N, B, R, T)
FD: {I  NTBR, BR  T, T  BR}
Key: IPC
All partial dependencies.
R1(BRT), R2(INT), R3(IPC)

84 Bipin C Desai

Example relation:
EMPLOYEE
(EID,Project#,Component,Qty,EName,Building,Room,TelNo,Hours)

Note: Keys are underlined.
What are the FDs? What is the normal form of the relation?

-Only one phone in each room.
-There is a m-to-n relationship between projects and components
-Each employee works a number of hours on a project
R(I, P, C, Q, N, B, R, T, H)

Key: IPC
FD: {I  NTBR, BR  T, T  BR, IP  H, PC  Q}

85 Bipin C Desai

R(I, P, C, Q, N, B, R, T, H)

Key: IPC
FD: F{I  NTBR, BR  T, T  BR, IP  H, PC  Q}
The corresponding Fc is
 Fc {I  N, I  T, BR  T, T  BR, IP  H, PC  Q}

A 3NF decomposition is:
R(INT), R(BRT), R(IPH), R(PCQ), R(IPC),

It is also in BCNF!

86 Bipin C Desai

R(I, P, C, N, B, R, T)

Key: IPC
FD: {I  N, I  T , I  B , I  R, BR  T, T  BR}

3NF decomposition: R1(IN), R2(IT), R3(IB), R4(IR), R5(BRT),
R6(IPC)

Can we combine R1 …. R4?

BCNF decomposition:
 IPCNBRT

 BRT IPCNBR (not IPCNT LHS is dropped)
BR  T IN IPCBR
 IB IPCR
 IR IPC

87 Bipin C Desai

R(I, P, C, N, B, R, T)

Key: IPC
FD: {I  N, I  T , I  B , I  R, BR  T, T  BR}

Another BCNF Decomposition which is lossless but NOT FD
preserving:
 IPCNBRT

 IB IPCNRT
 I  B IN IPCR
 I  N IT IPCR
 I  T IR IPC

 I  R

88 Bipin C Desai

Example: 1NF but not 2NF

ORDER(SuplNo, Address, Distance, PartNo, Price)

Assume each supplier is located in only one Address.

What are the FDs?

What are the anomalies?

89 Bipin C Desai

PO (SuplNo,, PartNo, Price)

Supplier (SuplNo, Address, Distance)

What are the FDs in each and the normal form of each?

Any anomalies?

90 Bipin C Desai

Decomposition (into 3NF):
SUPPLIER_Address (SuplNo, Address)

Address_DISTANCE (Address, Distance)

91 Bipin C Desai

Example (3NF but not BCNF):
Can_Supply (SuplNo, SuplName, Address, PartNo, Price)

Functional Dependencies:

We assume that SuplNo, Address, PartNo are always unique
Thus we have two candidate keys:

(SuplNo, PartNo) and (SuplName, Address, PartNo)

and we have the following dependencies:

(SuplNo, PartNo)  Price
(SuplNo, PartNo)  SuplName, Address
(SuplName, Address, PartNo)  Price
(SuplName, Address, PartNo)  SuplNo
SuplName, Address  SuplNo
SuplNo  SuplName, Address

92 Bipin C Desai

Decomposition (into BCNF)
SUPPLIER (SuplNo, SuplName)
SUPPLIER_PARTS (SuplNo, PartNo, Quantity)

93 Bipin C Desai

A relation is in BCNF iff every determinant is a candidate key

BCNF addresses the situations which 3NF does not handle.
In many real DB design the relations in 3NF are also in BCNF.

When is a relation in 3NF not in BCNF:
it has multiple composite candidate keys, and
these candidate keys are non-disjoint

(at least one common attribute)
Example:

Can_Supply (SuplNo, SuplName, Address, PartNo, Price)

Can_Supply is an example of a relation in 3NF but not in BCNF

Can_Supply exhibits the above properties).

94 Bipin C Desai

The following relation is in 3NF, and also in BCNF:

SUPPLIERS (SuplNo, Suplname, Address, PostalCode)

We assume that each supplier has a unique Suplname, so that
SuplNo and Suplname are both candidate keys.

These candidate keys are not composite keys and hence the 3NF

is also BCNF(all FDs the LHS is a candidate key)

Functional Dependencies:
SuplNo  Address
SuplNo  PostalCode
SuplNo  SuplName
SuplName  SuplNo
SuplName  Address
SuplName  PostalCode

95 Bipin C Desai

Anomalies even in a BCNF relations:

 SUPPLIERS (SuplNo, SuplName, Address, PostalCode)

INSERT: We cannot record the Address for a SuplNo without
also knowing the SuplName

DELETE: If we delete the row for a given SuplName, we
lose the information that the SuplNo is associated
with a given Address.

UPDATE: Since SuplName is a candidate key (unique),
there are none.

Decomposition:
SUPPLIER_INFO (SuplNo, Address, PostalCode)
SUPPLIER_NAME (SuplNo, SuplName)

96 Bipin C Desai

R(ABC) F={ AB  C, C  B)

This is in 3NF but not in BCNF.

There is no need (no way) to decompose this relation!

R(X,Y, Z) with F={XY  Z, YZ  X, XZ  Y}

The candidate keys are: XY, YZ and XZ.
This relation is in BCNF since the determinant of each FD is a
candidate key!
There is no need (no way) to decompose this relation!

1 Bipin C Desai

Relational Calculus

Bipin C. Desai

 To be used in the spirit of copy-forward! https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

2 Bipin C Desai

A proposition is a statement that is either true or false (but not both).

In propositional logic, we assume a collection of atomic propositions
are given, e.g. p, q, r, s, t, ….

 p = “COMP5531 is about databases”
 q = “COMP5531 is an important course”
 r = “databases is an important course”
 ¬ p = “ COMP5531 is not about databases”
p q = “COMP5531 is about databases and COMP5531 is an ∧
important course”
p q →r = ∧ “COMP5531 is about databases and COMP5531 is
an important course then databases is an important
course”

Propositional Logic …

3 Bipin C Desai

We form compound propositions by using logical operators:
and, or, not, exclusive or, implication(if-then), biconditional(iff)).

A tautology is a compound proposition that always
evaluates to true. e.g.: p ∨ ¬p

A contradiction is a compound proposition that always
evaluates to false.

A predicate is a property or description of subjects in the
universe of discourse.
In the previous slide, predicates are italicized :
 is about databases,
 is an important course

Propositional Logic.

4 Bipin C Desai

Knowing the two propositions
 p = “COMP5531 is about databases”
 r = “databases is an important course”

Can we say that COMP5531 is an important course?

Example of a relation as predicates: Assignment (E#, P#, H)
expresses the fact that Employee E# is assigned to project P# for H
hours

Its value is true if an Employee E# is assigned H hours to
project P# else it is false

In the database this is expressed by having a tuple in the table for
Assignment

Propositional & Predicate Logic - Relational Calculus

5 Bipin C Desai

  indicates derivable or follows in both directions

Assertion of Universality
∀x:P(x)  ¬∃x:¬P(x)
If everything is (tr ue), there exists nothing that is not (tr ue).

Denial of Existence
∀x:¬P(x)  ¬∃x:P(x)
If everything is not(tr ue), there exists nothing that is(true).

Denial of Universality
¬∀x:P(x)  ∃x:¬P(x)
If not everything is(true), there exists something that is
not(true).

Assertion of Existence
¬∀x:¬P(x)  ∃x:P(x)
If not everything is not(tr ue), there exists something that
is(true).

6 Bipin C Desai

De Morgan’s Laws
It can be shown that the following, called De Morgan’s laws
 are equivalent:
P(x)  Q(x)  ¬(¬ P(x)  ¬ Q(x))
P(x)  Q(x)  ¬(¬ P(x)  ¬ Q(x))
A generalization of De Morgan's Law involving the , 
quantifiers is obtained as shown in the following.
Assertion of Universality & Assertion of Existence
x(P(x))  ¬(x)(¬ P(x)) and x(P(x))  ¬(x)(¬ P(x))

In formal systems, the acceptable sentences (or formulae) are
usually called well-formed formulae (wff).
In the wff (x)(P(x) & Q(y)), where  is the universal quantifier
(for all), x is bound and y is free.

7 Bipin C Desai

Tuple calculus formulae are built from atoms of the form:
A1. x  R where R is a relation and x is a tuple variable.

A2. x  y or x  c where  {=,,<,,>,}, x and y are

variables and c is a constant: x, y, c are domain compatible
Formulae are built from atoms using the following rules:
B1. An atom is a formula.

B2. If f and g are formulae, then are: f, (f), f  g, f  g, f  g

B3. If f(x) is a formula, where x is free, then x(f(x)), and x(f(x))

are also formulae; however, x is now bound.

The formula f  g, meaning if f then g, is equivalent to f  g.

8 Bipin C Desai

Tuple and domain calculi are collectively referred to as
 relational calculus.

Relational Calculus

Relational calculus is a query system wherein queries
 are expressed as variables and formulae on these
variables. Such a formula describes the properties of
the required result relation without specifying the
 method of evaluating it.

9 Bipin C Desai

A query in tuple relational calculus is expressed as a formula:

{t | P(t)}

This is the formula that finds all tuples t such that the
predicate P is true.

A formula may use a constant to specify a particular
value, while a variable is used as a place holder for the
values in an expression or procedure.
We can also specify logical connectors such as "not" (or
negation; denoted by ¬), "or" (⋁), "and" (∧), and
"implication" (), universal (or for all; denoted by 
and existential (or for some; denoted by )

10 Bipin C Desai

PROJECT (Project#, Project_Name, Chief_Architect)
EMPLOYEE (Emp#, EmpName)
ASSIGNED_TO (Project#, Emp#)

Obtain the employee numbers of employees working on
project P1.
Obtain employee details for those employees assigned to project P1
Get complete details of employees working on a Database
 project.
Get complete details of employees working on all Database
projects.
List the complete details of employees working on both P1
 and P2.
List the complete details of employees working on either P1
 or P2 or both.

11 Bipin C Desai

PROJECT (Project#, Project_Name, Chief_Architect)
EMPLOYEE (Emp#, EmpName)
ASSIGNED_TO (Project#, Emp#)

Obtain the employee numbers of employees working on
project P1.

{t(Emp#) | u(u  ASSIGNED_TO ∧ u[Project#]='P1'
 ∧ t[Emp#] = u[Emp#]) }

u

t

12 Bipin C Desai

PROJECT (Project#, Project_Name, Chief_Architect)
EMPLOYEE (Emp#, EmpName)
ASSIGNED_TO (Project#, Emp#)

 Obtain employee details for those employees assigned to the
project P1

{t | temployee ∧ u(u  ASSIGNED_TO ∧

u[Emp#]=t[Emp#] ∧

u[Project#] = P1)) }

u

t

13 Bipin C Desai

 List the complete details of employees working on both P1
 and P2.

{s | s  employee ∧ u1,u2 (u1  assigned_to
∧ u2  assigned_to ∧ u1[Emp#] = u2[Emp#]
∧ s[Emp#] = u1[Emp#] ∧ u1[Project#] = ’P1'
∧ u2[Project#] = ’P2')}

Find s such that s is from employee and there exists tuples u1,u2

both from assigned_to such that a number of predicates
are being satisfied

u1

u2

s

14 Bipin C Desai

List the complete details of employees working on either P1
 or P2 or both.

{s | s  employee ∧ u1, u2(u1  assigned_to ∧
u2  assigned_to ∧ ((s[Emp#] = u1[Emp#] ∧
u1[Project#] = ’P1’)
⋁ (s[Emp#] = u2[Emp#] ∧ u2[Project#] = ’P2')))}

{s | s  employee ∧ u1(u1  assigned_to
 ∧ s[Emp#] = u1[Emp#] ∧ (u1[Project#] = ’P1’
⋁ u1[Project#] = ’P2'))}

u1

s

15 Bipin C Desai

Get complete details of employees working on a Database
 project.
{s | s  employee

∧ u,t(t  project ∧ t[Project_Name] = 'Database'
∧ u  assigned_to ∧ u[Project#] = t[Project#]
∧ s[Emp#] = u[Emp#])}

u

t
s

16 Bipin C Desai

The universe of discourse for a particular branch of mathematics is
a set that contains everything of interest for that subject.

If P and Q are formulas, then "if P then Q'' or
"P implies Q'' is written P Q, using the conditional symbol, .⇒ ⇒

Bi-conditional, written , corresponds to the phrase ⇔
"if and only if'' or "iff'' for short.

The denial or negation of of P Q can be expressed as:⇒

 ¬(P Q) ¬(¬P Q) or ⇒ ⇔ ∨
 ¬(P Q) ¬¬P) (¬Q)⇒ ⇔ ∧
 ¬(P Q) P ¬Q⇒ ⇔ ∧

17 Bipin C Desai

De Morgan's laws for quantifier are expresses usually in the form:

¬∀xP(x) ⇔ ∃x¬P(x)
¬∃xP(x) ⇔ ∀x¬P(x) which could be re-written as:

 ∀x¬P(x) ¬⇔ ∃xP(x)

Get details of employees working on all Database projects.
{s | s  employee

∧ t(t  project ∧ t[Project_Name] = 'Database'
 u(u  assigned_to ∧ u[Project#] = t[Project#]
∧ s[Emp#] = u[Emp#]))}

 Writting the predicate as
 s  employee ∧ t (¬[(¬(P(t)  uQ(u,t))])

18 Bipin C Desai

Now we use: x¬P(x) ¬ xP(x) and re-write the ∀ ⇔ ∃
above predicate as:

s  employee ∧ ¬ t(∃ ¬(P(t)  uQ(u,t)))

Substituting f  g by its equivalent form f ⋁ g:

We get: s  employee ∧ ¬ t(∃ ¬(¬P(t) ⋁ uQ(u,t)))

Now move the negation in and stop it just after the ⋁
s  employee ∧ ¬ t(∃ ¬(¬P(t) ⋁ uQ(u,t)))

s  employee ∧ ¬ t(∃ P(t) ∧ ¬uQ(u,t)))

{s | s  employee
∧ ¬ t(∃ t  project ∧ t[Project_Name] = 'Database'
∧ ¬ u(u  assigned_to ∧ u[Project#] = t[Project#]
∧ s[Emp#] = u[Emp#]))}

19 Bipin C Desai

Get details of employees working on all Database projects.
{s | s  employee

∧ t(t  project ∧ t[Project_Name] = 'Database'
 u(u  assigned_to ∧ u[Project#] = t[Project#]
∧ s[Emp#] = u[Emp#]))}

replacing f  g by its equivalent form f ⋁ g:
{s | s  employee

∧ t(t  project ⋁ t[Project_Name]  'Database'
⋁ u(u  assigned_to ∧ u[Project#] = t[Project#]
∧ s[Emp#] = u[Emp#]))}

u

t s

u[Project#] = t[Project#] s[Emp#] = u[Emp#]

20 Bipin C Desai

mysql> select * from Assign;
+-----+-------+ mysql> select * from Project;
| Pno | Eno | +--------+----------+---------+
+-----+-------+ | ProjNo | Pname | Pleader |
| 353 | 10000 | +--------+----------+---------+
354	10000		353	Database	10000
534	10001		354	Database	10000
353	10002		534	OS	10005
354	10003		574	VOIP	10005
534	10003	+--------+----------+---------+			
354	10004	4 rows in set (0.00 sec)			
534	10005				
574	10005				
+-----+-------+mysql> select * from Employee;					
+-------+----------+-------------+------------+------------+					
EmpNo	Ename	Address	Phone	DOB	
+-------+----------+-------------+------------+------------+					
10000	James	Montreal	5144445555	1965-10-21	
10001	Piere	Laval	5144555445	1956-10-12	
10002	Nathalie	Brossard	5147454555	1976-04-01	
10003	Mary	Dorval	5145544455	1965-10-21	
10004	Sabrina	St. Laurent	5144445555	1987-01-31	
10005	Ma	Montreal	5144454555	1964-02-29	
+-------+----------+-------------+------------+------------+

21 Bipin C Desai

Get details of employees working on all Database projects.

{s | s  employee
  t((t  project ∧ t[Project_Name] = 'Database‘)
 (u(u  assigned_to ∧ u[Project#] = t[Project#]
∧ s[Emp#] = u[Emp#]))) }

replacing (f)  (g) by its equivalent form (f)  (g) :

{s | s  employee
∧ t((t  project ⋁ t[Project_Name]  'Database‘)
⋁ (u(u  assigned_to ∧ u[Project#] = t[Project#]
∧ s[Emp#] = u[Emp#])))

Project
Assign

22 Bipin C Desai

{s | s  employee
∧ t(t  project  t[Project_Name]  'Database'
⋁ u(u  assigned_to ∧ u[Project#] = t[Project#]
∧ s[Emp#] = u[Emp#]))}

Now use Assertion of Universality: x(P(x))  ¬(x)(¬ P(x))

{s | s  employee
∧ ¬(t)(¬(t  project ⋁ t[Project_Name]  'Database'
⋁ u(u  assigned_to ∧ u[Project#] = t[Project#]
∧ s[Emp#] = u[Emp#])))}

{s | s  employee
∧ ¬(t)((t  project ∧ t[Project_Name] = 'Database'
∧ ¬u(u  assigned_to ∧ u[Project#] = t[Project#]
∧ s[Emp#] = u[Emp#])))}

not
exists

23 Bipin C Desai

select *
from Employee e
where not exists
 (select *
 from Project t
 where PName='Database'
 and not exists
 (select * from Assign u

 where u.Pno = t.ProjNo and
 e.EmpNo = u.Eno));

+-------+-------+----------+------------+------------+
| EmpNo | Ename | Address | Phone | DOB |
+-------+-------+----------+------------+------------+
| 10000 | James | Montreal | 5144445555 | 1965-10-21 |
+-------+-------+----------+------------+------------+

24 Bipin C Desai

select *
from Employee e
where not exists
 (select ProjNo
 from Project t
 where PName='Database' and
 ProjNo NOT IN
 (select a.Pno
 from Assign a
 where a.Eno = e.EmpNo));

+-------+-------+----------+------------+------------+
| EmpNo | Ename | Address | Phone | DOB |
+-------+-------+----------+------------+------------+
| 10000 | James | Montreal | 5144445555 | 1965-10-21 |
+-------+-------+----------+------------+------------+

25 Bipin C Desai

insert Employee values(10006, 'John', 'Ndg', 5144455555, '1988-04-01');
insert Assign values (353, 10006),(354, 10006),(534, 10006),(574,10006);

mysql> select * from Employee s
where not exists (select * from Project t

 where not exists(select * from Assign u
 where u.Pno = t.ProjNo and
 s.EmpNo = u.Eno));

mysql> select * from Employee e
where not exists
 (select *
 from Project
 where ProjNo NOT IN
 (select distinct a.Pno

 from Assign a
 where a.Eno = e.EmpNo));
+-------+-------+---------+------------+------------+
| EmpNo | Ename | Address | Phone | DOB |
+-------+-------+---------+------------+------------+
| 10006 | John | Ndg | 5144455555 | 1988-04-01 |
+-------+-------+---------+------------+------------+

26 Bipin C Desai

mysql> update Employee set DOB = '1988-01-01' where
EmpNo=10006;
mysql> update Employee set DOB = DATE_ADD(DOB,
INTERVAL 365 DAY) where EmpNo=10006;
mysql> select * from Employee where EmpNo=10006;
+-------+-------+---------+------------+------------+
| EmpNo | Ename | Address | Phone | DOB |
+-------+-------+---------+------------+------------+
| 10006 | John | Ndg | 5144455555 | 1988-12-31 |
+-------+-------+---------+------------+------------+
1 row in set (0.00 sec)
mysql>update Employee set DOB = DATE_SUB(DOB,
INTERVAL 365 DAY) where EmpNo=10006;
mysql> select * from Employee where EmpNo=10006;
+-------+-------+---------+------------+------------+
| EmpNo | Ename | Address | Phone | DOB |
+-------+-------+---------+------------+------------+
| 10006 | John | Ndg | 5144455555 | 1988-01-01 |
+-------+-------+---------+------------+------------+
1 row in set (0.02 sec)

27 Bipin C Desai

Example: Get the employee numbers of employees,
other than employee 107, who work on at least all
those projects that employee 107 works on"

{ t[Emp#] | t  assigned_to ∧
u1(u1  assigned_to ∧ u1[Emp#] = 107
 u2(u2  assigned_to ∧ u2[Emp#]  107
∧ u1[Project#] = u2[Project#]∧ t[Emp#] = u2[Emp#]))}

Alternately we can write this query without the logical
implication by substituting its equivalent form f  g :
{ t[Emp#] | t  assigned_to ∧

u1(u1  assigned_to ⋁ u1[Emp#]  107
⋁ u2(u2  assigned_to ∧ u2[Emp#]  107
∧ u1[Project#] = u2[Project#]∧ t[Emp#] = u2[Emp#]))}

28 Bipin C Desai

To avoid procedural operation, such as projection, in a
calculus query, we could define t to be on the relation
 scheme (Emp#) and rewrite this query expression as:

{ t(Emp#) |
u1(u1  assigned_to ⋁ u1[Emp#]  107
⋁ u2(u2  assigned_to ∧ u2[Emp#]  107
∧ u1[Project#] = u2[Project#]∧ t[Emp#] = u2[Emp#]))}

29 Bipin C Desai

Example: Get employee numbers of employees who do not
 work on project P2.

{ t[Emp#] | t  assigned_to ∧
u(u  assigned_to ∧ u[Project#] = P2
∧ t[Emp#] = u[Emp#])}

Alternatively, we can express this query in the following
equivalent form:

{ t[Emp#] | t  assigned_to ∧
u(u  assigned_to ⋁ t[Emp#]  u[Emp#]

⋁ u[Project#]  P2)}

30 Bipin C Desai

{ t[Emp#] | t  assigned_to ∧
p(p  PROJECT  u(u  assigned_to
∧ p[Project#] = u[Project#]
∧ t[Emp#] = u[Emp#]))}

The above can be rewritten as:

{ t[Emp#] | t  assigned_to ∧
  p(p  PROJECT ⋁ u(u  assigned_to
∧ p[Project#] = u[Project#]
∧ t[Emp#] = u[Emp#]))}

Example: Compile a list of employee numbers
of employees who work on all projects.

31 Bipin C Desai

Example: Get employee numbers of employees, not
 including employee 107, who work on at least one
project that employee 107 works on.

{ t[Emp#] | t  assigned_to ∧
s,u (s  assigned_to ∧ u  assigned_to
 ∧ s[Project#] = u[Project#]
 ∧ s[Emp#] = 107
 ∧ t[Emp#]  107
 ∧ t[Emp#] = u[Emp#])}

32 Bipin C Desai

Consider the division operation on the two relations,
P(P) and Q(Q), where Q  P:

R = P  Q

R = {t  tP[P-Q] ∧ s(sQ∧ (ts  P)}

R = {ttP[P-Q] ∧ s(sQ  u(uP ∧ u[Q]=s
∧u[P-Q]=t[P-Q]))}

R = P  Q = P-Q(P) - P-Q((P-Q(P)  Q) - P)

33 Bipin C Desai

P-Q(P) Q P-Q(P)  Q P-Q(P)Q - P
 A B A B A B
 a1 b1 a1 b1 a4 b1
 a2 b2 a2 b1 a2 b2
 a3 a3 b1 a3 b2
 a4 a4 b1
 a5 a5 b1
 a1 b2
 a2 b2
 a3 b2
 a4 b2
 a5 b2

P-Q(P-Q(P)  Q - P)
 A
 a4
 a2

 a3

P-Q(P)-
P-Q(P-Q(P)Q-P)
 A
 a1
 a5

34 Bipin C Desai

A domain calculus expression is of the form
 { X | f(X) }
where f is a formula on X, and X represents a set of
domain variables.
A1. X  R

A2. x  y or x  c
where  is one of the comparison operators x and y are domain
compatible variables, and c is a domain compatible constant.

B1. An atom is a formula.

B2. If f and g are formulae, then f, (f), f ∧ g, f ∧ g, f  g are
also formulae.
B3. If f(X) is a formula where X is free, then X(f(X)), and
X(f(X)) are also formulae

35 Bipin C Desai

PROJECT(Project#,Project_Name,Chief_Architect)
EMPLOYEE(Emp#, EmpName)
ASSIGNED_TO (Project#, Emp#)

Get employee numbers for employees working on
project
number P1

{e | p (<e, p> assigned_to ∧ p = P1) }
In this can, we can drop the quantifier and
simplify
the query as:
{e | <e, p>  assigned_to ∧ p = P1}

36 Bipin C Desai

Get employee details such that the employee is assigned
to the project P1

{<e1, m> | e2 (<p, e2>  assigned_to
  <e1, m>  employee) ∧ p = P1 ∧ e1 = e2)}

Compile the details of employees working on a Database
project.
{e,m | p1,e1,p2,n2 (<p1,e1>  assigned_to

∧ <e,m>  employee
∧ <p2,n2,c2>  project
∧ e1 = e ∧ p1 = p2 ∧ n2 = Database)}

37 Bipin C Desai

Compile the details of employees working on both P1
and P2.

{e,m | p1,e1,p2,e2 (<e,m>  employee
∧ <p1,e1>  assigned_to
∧ <p2,e2>  assigned_to
∧ e = e1 ∧ e = e2

∧ p1 = 'P1' ∧ p2 = 'P2')}

38 Bipin C Desai

Obtain the employee numbers of employees, other than the
 employee 107, who work on at least all those projects that
employee 107 works on.

{e | <p,e>  assigned_to  p1,e1(
<p1,e1>  assigned_to ∧ e1 =107

  (p2,e2(<p2,e2>  assigned_to
∧ e2  107 ∧ p1 = p2∧ e = e2))}

An equivalent form of this query

{e | <p,e>  assigned_to ∧
p1,e1(<p1,e1>  assigned_to ⋁ e1  107

 ⋁ (p2,e2(<p2,e2>  assigned_to
∧ e2  107 ∧ p1 = p2 ∧ e = e2))}

39 Bipin C Desai

Get employee numbers of employees who do not work on
the P2 project.

 {e | p (<p,e>  assigned_to
∧  p1,e1 (<p1,e1>  assigned_to
⋁ p1  P2 ⋁ e1  e))}

What are the employee numbers of employees who work
on all projects?"

{e | p (<p,e>  assigned_to
 ∧  p1(<p1,n1,c1>  project
  <p1,e>  assigned_to))}

40 Bipin C Desai

Acquire the employee numbers of employees, other than
employee 107, who work on at least one project that
employee 107 works on.

{e |  p,p1,e1,p2,e2(<p,e>  assigned_to
∧ <p1,e1>  assigned_to
∧ <p2,e2>  assigned_to
∧ e2  107 ∧ p1 = p2 ∧ e1 = 107 ∧ e = e2)}

41 Bipin C Desai

The following is covered in predicate logic discussions:
Here Q(x) is any predicate of variable x and  means
Logically equivalent

Negating a proposition such as xQ(x) requires negating
the predicate and changing the quantifier from the
 Universal to the existential
Thus we can replace a negated universal quantifier with a
 predicate Q(x) as follows to its logically equivalent form

¬[xQ(x)]  x[¬Q(x)] or x[¬Q(x)]  ¬[xQ(x)]

Similarly, we can negate a proposition with an existential
 quantifier as follows:

¬[xQ(x)]  x[¬Q(x)] or x[¬Q(x)]  ¬[xQ(x)]

42 Bipin C Desai

Using the last formula from the previous slide :
¬[xQ(x)]  x[¬Q(x)]
If we reverse the sides and move the negation inside:
x(¬Q(x))  ¬(x)(¬Q(x))

Now if we substitute, in the above:
P(x) for ¬Q(x) and ¬ P(x) for ¬ ¬Q(x) i.e., ¬ P(x) for Q(x)

We get:
x(P(x))  ¬[(x)(¬Q(x))] or
x(P(x))  ¬[(x) (¬¬ P(x))] or
x(P(x))  ¬[(x) (P(x))]

It is the last form that we have used!!

43 Bipin C Desai

Get details of employees working on all Database projects .

{s | s  employee ∧
 ¬t((t  project ∧
 ∧ t[Project_Name] = 'Database'
 ∧ ¬u(u  assigned_to ∧
 u[Project#] = t[Project#] ∧ s[Emp#] = u[Emp#])))}
select distinct a.empno
 from assigned_to a, project p
 where not exists
 (select *
 from project p
 where p.projname = 'database' and
 not exists
 (select *
 from assigned_to a1
 where a1.projno = p.projno and
 a1.empno = a.empno));

44 Bipin C Desai

Get details of employees working on all Database projects
and only on database projects.

{s | s  employee ∧
 ¬t((t  project ∧
 ∧ t[Project_Name] = 'Database'
 ∧ ¬u(u  assigned_to ∧
 u[Project#] = t[Project#] ∧ s[Emp#] = u[Emp#])))
 ∧ (¬t1(t1  project ∧ t1[Project_Name] ≠ 'Database'
 ∧ u1(u1  assigned_to ∧
 u1[Project#] = t1[Project#] ∧ s[Emp#] = u1[Emp#])))}

45 Bipin C Desai

select distinct a.empno
 from assigned_to a, project p
 where not exists
 (select *
 from project p
 where p.projname = 'database' and
 not exists
 (select *
 from assigned_to a1
 where a1.projno = p.projno and
 a1.empno = a.empno))

and not exists (select *
 from project p1

 where p1.projname <> 'database' and
 exists (select *
 from assigned_to a2
 where a2.projno = p1.projno and
 a2.empno = a.empno));

46 Bipin C Desai

mysql> show engines;
+------------+---------+--+
| Engine | Support | Comment |
+------------+---------+--+
MyISAM	DEFAULT	Default engine as of MySQL 3.23
		with great performance
MEMORY	YES	Hash based, stored in memory,
		useful for temporary tables
InnoDB	YES	Supports transactions, row-level
		locking, and foreign keys
BerkeleyDB	NO	Supports transactions and
		page-level locking
BLACKHOLE	NO	/dev/null storage engine (anything
		you write to it disappears)
EXAMPLE	NO	Example storage engine
ARCHIVE	NO	Archive storage engine
CSV	NO	CSV storage engine
ndbcluster	NO	Clustered, fault-tolerant,
ndbcluster	NO	memory-based tables
FEDERATED	NO	Federated MySQL storage engine
MRG_MYISAM	YES	Collection of identical MyISAM tables
ISAM	NO	Obsolete storage engine
+------------+---------+---+
12 rows in set (0.02 sec)

47 Bipin C Desai

 Evolving database systems
 MariaDB [mysql]> show engines;

+--------------------+---------+---+
| Engine | Support | Comment |
+--------------------+---------+---+
MRG_MyISAM	YES	Collection of identical MyISAM tables
MyISAM	YES	MyISAM storage engine
MEMORY	YES	Hash based, stored in memory,
		useful for temporary tables
CSV	YES	CSV storage engine
Aria	YES	Crash-safe tables with MyISAM heritage
InnoDB	DEFAULT	Percona-XtraDB, Supports transactions, row-level
		locking, foreign keys and encryption for tables
SEQUENCE	YES	Generated tables filled with sequential values
PERFORMANCE_SCHEMA	YES	Performance Schema
+--------------------+---------+---+

48 Bipin C Desai

 Bipin C Desai

 Pl. see: https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

SQL – II

 Bipin C. DESAI

 Bipin C Desai 2

This set of slides is extensive with many examples
 using Oracle and MariaDB/MySQL.

These example should be tried out for better understanding.
We will not go through them in details: this is left as exercises!

Here are the main SQL topics – their syntax etc.- DBMS dependent!
Data Types
SQL statements

Group/having
Functions
Views, Null and operations on null
Joins – cross. inner, natural, outer,

Implementation of joins
Representing relationships, key constraints
Complex relationships
Constraints,triggers(row/statement, before/after);

mutating triggers
Aggregation

 Bipin C Desai 3

DATA TYPES

Typical data types supported are:
 integer, decimal, real or float, binary, blob
characters (fixed and variable length), bits, date,

int or integer; tinyint (1 byte), smallint (2 bytes),
mediumint (3 bytes), int (4 bytes) bigint (8 bytes)

real or float
decimal(n, d) -- numeric(n, d) e.g. decimal(6, 2)
char(n)/bit(B) fixed length character/bit string, padded
varchar(n) / bit varying(n) variable-length strings up to n characters
tinyblob (28 -1 bytes), blob (216 -1 bytes),
mediumblob (224 -1 bytes), longblog (232 -1 bytes)

Note: In the following , we have used MariaDB/MySQL or Oracle
 -The prompt for Oracle is: SQL>
 -The prompt for MariaDB/MySQL is followed by database name

 Bipin C Desai 4

Oracle also uses varchar2(n); it’s truly varying length
 varchar2 is not yet supported in MySQL/Mariadb!

Times:SQL2 form is TIME 'hh:mm:ss[.ss...]'

Dates: SQL2 format is DATE ’yyyy-mm-dd’ (m =0 or 1)

 supported in MySQL/Mariadb

Oracle’s default dates format is ’dd-mon-yy’

Example: create table BDays(name char(25), d DATE);

insert into BDays values (“Martha Smith’’, ‘18-nov-1962’);

Oracle function to_date converts a date value into default format, e.g.,

insert into BDays values(“Martha Smith’’,

to_date('1962-nov-18', 'yyyy-mm-dd'));

 Bipin C
Desai

5

SQL is case insensitive
 However, the case is significant for strings and could be for

names of tables and columns

Two strings s1 and s2 are equal if
- they have the same sequence of characters and
- the same case

The strings are compared alphabetically
’fodder’ < ’folder’
 ’bat’ < ’batman’

string LIKE pattern
Ordinary characters in pattern match only ordinary characters in

string
The special character % in pattern, matches any sequence of

zero or more characters in string
The special character _ in pattern, matches any one character in

string

Note: some DBMS are
case sensitive for the
names of tables and
columns: all DBMS are
case sensitive for strings

 Bipin C
Desai

6

Find all students with “de’” in their name
 select Name, Dept

from students
where Name like ’%de’’ %’ ;

Note: an apostrophe in a string represented by two apostrophes ’’
without any intervening spaces

Expressing special characters _ and % in a string by an using a
preceding escape character.

SQL allows any character to be used as an escape character with
the escape keyword

string LIKE ’x_%x%’ ESCAPE ’x’
Here x is the escape character
The sequence ’x_ and x% is taken to be a single _ and %
This pattern matches any string that begins with _ and ends

with %

 Bipin C
Desai

7

We can apply the 3 most common set operations union, intersection,
except(difference) to relations R and S, provided the relations are
compatible.

If two SQL queries produce compatible relations as their result, then
we may combine these queries using: union, intersection, except

The SQL implementation of union, intersection, and except
operation normally eliminate duplicates; the modifier ALL is used
to keep the duplicates:

R UNION ALL S, |tR | = n, |t  S | =m, |t  RS |  n+m

R INTERSECT ALL S, |tR | = n, |t  S | =m |t  RS |= min(n,m)

R EXCEPT ALL S , |tR | = n, | t  S | =m | t  R-S | = max(0,n-m)

NOTE: in many of the SQL examples, to save space on slides,
we are not including constraints such a primary key which are
usually evident

 Bipin C
Desai

8

Relation schemas:
Faculty (Name, Dept, Position, salary, gender)

Student (Name, Dept, Major, sex)

Query:
 Give the names and the departments of students and professors.

(SELECT Name, Dept

FROM Faculty)

UNION

(SELECT Name, Dept

FROM Student);

 Bipin C
Desai

9

create table Faculty (Name varchar2(30),

 Dept varchar2(20), Position varchar2(20),

 salary dec(9,2), gender char(1));

insert into faculty values ('Smith', 'CS', 'Prof', 81000.00, 'F');

insert into faculty values ('Brown', 'CS', 'Assoc Prof', 75000.00, 'M');

insert into student values ('Brown', 'CS', 'Info', 'F');

create table Student (
 Name varchar2(28),
 Dept varchar2(20),
 Major varchar2(20),
 sex char(1));

(SELECT Name, Dept FROM Faculty)
UNION ALL

(SELECT Name, Dept FROM Student);
NAME DEPT
------------------------ ------------------
Smith CS
Brown CS
Brown CS

(SELECT Name, Dept FROM Faculty)
UNION

(SELECT Name, Dept FROM Student);
NAME DEPT
----------------- --------------------
Brown CS
Smith CS

 Bipin C
Desai

10

Relation schemas:

TA (Name, stipend, course)

Student (Name, Dept, Major, sex)
Query: Find names of female TAs who are majoring in

the department of Computer Science
(SELECT name
 FROM TA)

INTERSECT
(SELECT name
 FROM Student
 WHERE Dept=“Computer Science”

and sex = “F”);

Find names of TAs who are not majoring
in the department of Computer Science.
(SELECT name

 FROM TA)

EXCEPT

(SELECT Name

 FROM Student

WHERE Dept = “Computer Science”);

 Bipin C
Desai

11

A tuple in SQL is represented by a parenthesized list of scalar values;
(Smith, ’CompSci’) or (Smith, Student.Dept)

If a tuple t has the same number of components as a table(relation) R,
then it makes sense to compare t and R

t IN R -- this is true iff t  R

t <> ANY R -- true if t is neither greater nor less than any tuple in R

Relation schemas: Student (Name, Dept, Major, sex),

TA (Name, stipend, course), GRADE(Name, course, gr)
Find students who got an A in the course where they are TAs

select t.Name
from TA t
where (t.name, t.course) in

(select Name, course
 from grade

 where gr = ‘A’);

We are conveniently
ignoring time!

 Bipin C Desai 12

The form of a insert statement:

insert into relation[list of attributes] values(list of values);

insert into relation select statement;

The form of a delete statement:

delete from relation where condition;
Delete every tuple in the relation satisfying the condition

The form of an update statement:

update relation set new-value assignments where condition;

Adding Columns

alter table relation add column declaration;

Removing Columns

alter table relation DROP column name;

INSERT, DELETE, ALTER

Add & Remove with care!

 Bipin C Desai 13

select * from EMPL;
| Eid | Name | title | salary | emailsuffix |
+-----+----------+----------+--------+------------------+
33	John	SrProgr	120000	coldmail.org
34	Jenny	SrProgr	110000	coldmail.org
35	Anne	WebDev	90000	gonemail.com
36	Mary	WebDev	85000	comemail.com
37	Freddy	Progr	75000	netmail.com
38	Johnny	Progr	80000	netmail.com
39	Art	Progr	75000	netmail.com
40	Albert	Progr	70000	netmail.com
41	Susan	WebProgr	90000	gonemail.com
42	Paul	WebProgr	85000	gonemail.com
43	Edward	DBProgr	75000	coldmail.org
44	Kim	WebDev	110000	coldmail.org
45	Roger	DBA	150000	comemail.com
46	Danny	NetAdmin	100000	sizzlingmail.com
47	Mike	Mkt Mgr	120000	gonemail.com
48	MaryAnne	Mkt Mg	90000	speedymail.com
+-----+----------+----------+--------+------------------+

 Bipin C Desai 14

Group by and Having

The Group by clause is to group the data by the value(s) of
one (or more) column(s)
The predicate for the GROUP BY clause is HAVING

CREATE TABLE EMPL (
 Eid int unsigned not null auto_increment primary key,
 Name varchar(20),
 title varchar(30),
 salary int,
 emailsuffix varchar(60)
);

ALTER TABLE EMPL AUTO_INCREMENT = 100;

 Bipin C Desai 15

select title, count(*) AS HowMany
from EMPL
GROUP BY title
ORDER BY HowMany;

+----------+---------+
| title | HowMany |
+----------+---------+
DBA	1
NetAdmin	1
Mkt Mgr	1
Mkt Mg	1
DBProgr	1
SrProgr	2
WebProgr	2
WebDev	3
Progr	4
+----------+---------+
9 rows in set (0.00 sec)

 Bipin C Desai 16

select title, count(*) AS HowMany
from EMPL
GROUP BY title having count(title)>=2;

+----------+---------+
| title | HowMany |
+----------+---------+
Progr	4
SrProgr	2
WebDev	3
WebProgr	2
+----------+---------+
4 rows in set (0.00 sec)

 Bipin C Desai 17

select title, emailsuffix
from EMPL
GROUP BY title, emailsuffix;
+----------+------------------+
| title | emailsuffix |
+----------+------------------+
DBA	comemail.com
DBProgr	coldmail.org
Mkt Mg	speedymail.com
Mkt Mgr	gonemail.com
NetAdmin	sizzlingmail.com
Progr	netmail.com
SrProgr	coldmail.org
WebDev	coldmail.org
WebDev	comemail.com
WebDev	gonemail.com
WebProgr	gonemail.com
+----------+------------------+
11 rows in set (0.00 sec)

 Bipin C Desai 18

select title, emailsuffix
from EMPL
GROUP BY title, emailsuffix
having count(title)>2;

+-------+-------------+
| title | emailsuffix |
+-------+-------------+
| Progr | netmail.com |
+-------+-------------+

 Bipin C Desai 19

select title, emailsuffix
from EMPL
GROUP BY title, emailsuffix
having count(title)>=2
ORDER BY title;

+----------+--------------+
| title | emailsuffix |
+----------+--------------+
Progr	netmail.com
SrProgr	coldmail.org
WebProgr	gonemail.com
+----------+--------------+
3 rows in set (0.01 sec)

 Bipin C Desai 20

select title, salary
from EMPL
where emailsuffix like '%org'
GROUP BY title, emailsuffix
having count(title)>=2
ORDER BY salary;

+----------+--------+
| title | salary |
+----------+--------+
| Progr | 75000 |
| WebProgr | 90000 |
+----------+--------+
2 rows in set (0.00 sec)

 Bipin C Desai 21

Merge rows
Using the select statement to merge multiple rows into 1 row:
 MySQL: the group_concat notation".

mysql> select C, group_concat(B) as Bs
 -> from R
 -> group by C;
+------+-------+
| C | Bs |
+------+-------+
12	10,11
14	9
17	8
+------+-------+
3 rows in set (0.03 sec)

mysql> select * from R;
+----+------+------+
| A | B | C |
+----+------+------+
a1	10	12
a2	11	12
a3	9	14
a4	8	17
+----+------+------+

 Bipin C Desai 22

Merge rows

Using the select statement to merge multiple rows into 1 row:
 MySQL: the group_concat notation".

mysql> select C, group_concat(distinct B separator ‘;’) as Bs
 -> from R
 -> group by C;
+------+-------+
| C | Bs |
+------+-------+
12	10;11
14	9
17	8
+------+-------+
3 rows in set (0.03 sec) two 10 are not repeated

mysql> select * from R;
+----+------+------+
| A | B | C |
+----+------+------+
a1	10	12
a2	11	12
a3	9	14
a4	8	17
a5	10	12
+----+------+------+

 Bipin C Desai 23

 Merge rows: Oracle

SELECT C,
 listagg(B, ', ') WITHIN GROUP (ORDER BY B) AS Bs
FROM R
GROUP BY C;

C Bs
12 10, 11
14 9
17 8
3 rows returned in 0.07 seconds

select * from R;
+----+------+------+
| A | B | C |
+----+------+------+
a1	10	12
a2	11	12
a3	9	14
a4	8	17
+----+------+------+

 Bipin C Desai 24

Update part of text in a column
Handy to update part of an existing text column in a table!

select message from account_email where message like '%confsys%';
11 rows in set (0.001 sec)

update account_email
 set message =replace (message ,'confsys.encs', 'ideas.encs');
Query OK, 11 rows affected (0.010 sec)

select message from account_email where message like '%confsys%';
Empty set (0.001 sec)
Revert:
update account_email
 -> set message =replace (message ,'ideas.encs','confsys.encs');
Query OK, 11 rows affected (0.009 sec)

 Bipin C Desai 25

Functions

Most database systems have a multitude of functions:

 - Comparison Functions and Operators
 - Logical Operators
 - Control Flow Functions
 - String Functions
 - Mathematical Functions
 - Date and Time Functions
 - Encryption and Compression Functions
 - Bit Functions
 - Full-Text Search Functions
 - Cast functions and Operators
 - Information Functions
 - XML Functions

 Bipin C Desai 26

Regular expression

 REGEXP is used to give a pattern scheme for a string
comparison of the pattern with a string using the syntax:

 expr REGEXP pat

If there is a match the REGEXP function returns 1, else 0.

If either expression or pattern is NULL, the function returns
NULL.

Some meta-characters: ^, * , . , [] , () , {m,n}
^ Match the beginning of a string.
$ Match the end of a string.
. Match any character

Suggestion: Look up manual/tutorials and try examples.

 Bipin C Desai 27

Date format for MySQL is YYYY-MM-DD - the SQL2 default

To set Oracle’s default date format to YYYY-MM-DD
Internally Oracle stores both date and time as a single value
 $conn = OCILogon($my_Ora_id,$My-Ora_PW,$My_Ora_db)
 //Set Oracle’s date format to YYYY-MM-DD
 $stmt = OCIParse($conn,"ALTER SESSION SET
 NLS_DATE_FORMAT='YYYY-MM-DD'");
OCIExecute($stmt,OCI_DEFAULT);

create table bdate(Name char(25), bday date);
insert into bdate values('Jane', '20-Jan-83');
select * from bdate;
NAME BDAY
------------------------- ---------
Jane 20-JAN-83

MariaDB>insert into bdate values('Jane', '1983-01-20');

 Bipin C Desai 28

ALTER SESSION SET NLS_DATE_FORMAT='YYYY-MM-DD';
SQL> select * from bdate;
NAME BDAY
------------------------- ----------
Jane 1983-01-20

SELECT Name, TO_CHAR(bday, 'YYYY/MM/DD') AS Birthday
FROM bdate;
NAME BIRTHDAY
------------------------- ----------
Jane 1983/01/20

In Oracle:
The functions TO_CHAR or TO_DATE return part of the
date/time.
TRUNC will return the first day of the period. ROUND will
round up at mid year/mid month (July 1 or 16th day)

 Bipin C Desai 29

CREATE TABLE supplies
 (supname char(14),
 part# number(4),
 price number(7,2));

CREATE TABLE project
 (proj# number(4),
 projname char(14),
 projmgr number(4));

CREATE TABLE empls
 (emp# number(4),
 empname char(14),
 address char(14));

CREATE TABLE usedin
 (proj# number(4),
 part# number(4),
 qty number(3));

 Bipin C Desai 30

SQL> select * from empls;

 EMP# EMPNAME ADDRESS
---------- -------------- ------------
 120 Hardrock Outremont

 123 Eliza NDG

 124 John Laval

 127 Jim Montreal

 129 Sun Brossard

 131 Moon Beaconsfield

 135 Dr. Dolittle Laval

 141 Knowit Montreal

 142 Softee NDG

 143 Dr. Knowall Montreal

SQL> select * from project;

 PROJ# PROJNAME PROJMGR
---------- -------------- ----------
 353 database 135
 451 database 141
 321 software 120
 326 hardware 142
 753 database 135

SQL> select * from assigned_to;

 PROJ# EMP# HOURS
---------- ---------- ----------
 353 135 20
 753 135 20
 353 123 6
 353 124 40
 451 141 40
 753 127 40
 353 129 4
 451 131 10
 321 120 40
 326 142 40
 326 129 36
 451 135 1

 EMP# EMPNAME ADDRESS
--------- -------------- ----------
 135 Dr. Dolittle Laval

 Bipin C Desai 31

USEDIN
COMP321 1 5
COMP321 2 2
COMP321 3 3
COMP326 4 1
COMP326 5 3
COMP326 6 4
COMP353 1 5
COMP353 8 1
COMP451 9 2
COMP451 7 3
COMP753 1 4
COMP753 2 3
COMP753 3 6
COMP753 4 4

SUPPLIES
SUPNAME PART# PRICE
-------------- ---------- ----------
PROVIBEC 1 710.2
PROVIBEC 2 815.3
PROVIBEC 3 325
PROVIBEC 4 795.99
SUPORIO 1 695.99
SUPBEC 2 799.98
NDG-SUPPLY 1 699.99
NDG-SUPPLY 2 799.99
NDG-SUPPLY 3 324.99
NDG-SUPPLY 4 795.98
NDG-SUPPLY 7 754
SUPBEC 1 699.98
MANIBEC 1 727.99
MDG-SUPPLY 1 699.99
MDG-SUPPLY 2 799.99
MDG-SUPPLY 3 324.99
MDG-SUPPLY 4 795.98

SUPPLIER
PROVIBEC Quebec
SUPORIO Toronto
MANIPART Winnipeg
SUPBEC Laval
NDG-SUPPLY NDG

 Bipin C Desai 32

PROJECT(Project#, Project_Name,Chief_Architect)
EMPLOYEE (Emp#, EmpName)
ASSIGNED_TO (Project#, Emp#)
Get details of employees working on all Database projects.
{s | s  employee

∧ t(t  project ∧ t[Project_Name] = 'Database'
 u(u  assigned_to ∧ u[Project#] = t[Project#]
∧ s[Emp#] = u[Emp#])}

replacing f  g by its equivalent form f  g:
{s | s  employee

∧ t(t  project ⋁ t[Project_Name]  'Database'
⋁ u(u  assigned_to ∧ u[Project#] = t[Project#]
∧ s[Emp#] = u[Emp#])}

 Bipin C Desai 33

Using x(P(x))  ¬(x)(¬ P(x)) Assertion of Universality
{s  s  employee

∧ ¬(t)(¬ (t  project ⋁ t[Project_Name]  'Database'
⋁ u(u  assigned_to ∧ u[Project#] = t[Project#]
∧ s[Emp#] = u[Emp#]))}

{s  s  employee
∧ ¬(t) (t  project ∧ t[Project_Name] = 'Database'
¬( u(u  assigned_to ∧ u[Project#] = t[Project#]

∧ s[Emp#] = u[Emp#])))}
{s  s  employee

∧ ¬(t) (t  project ∧ t[Project_Name] = 'Database'
 ∧ ¬ u(u  assigned_to ∧ u[Project#] = t[Project#]
∧ s[Emp#] = u[Emp#]))}

 Bipin C Desai 34

Get details of employees working on all Database projects.

{s  s  employee
∧ ¬(t) (t  project ∧ t[Project_Name] = 'Database'
 ∧ ¬ u(u  assigned_to ∧ u[Project#] = t[Project#]
∧ s[Emp#] = u[Emp#]))}

select *
from employees s
where not exists (select *

 from project t
 where t.Project_Name = 'Database' and
 not exists(select *

 from assigned_to u
where u.Project# = t.Project# and
 s.Emp# = u.Emp#))

 Bipin C Desai 35

ALTERNATE SCHEME:
 Using set operation for answering “ALL” type queries
select *
from empls s
where not exists((select Proj#

 from project t
 where t.ProjName = 'database')

 minus
 (select u.Proj#
 from assigned_to u, project t1

 where u.Proj# = t1.Proj#
 and s.EMP# = u.Emp#

 and t1.ProjName = 'database'));

Set of all projects
with name = ‘database’

Set of projects with
name=‘database’
assigned to
employee s

 Bipin C Desai 36

create view do_project[(projnumber)] as
select p.proj#
from project p
where p.projmgr = (select e.emp#
 from empls e

 where empname='Dr. Dolittle')

Optional renaming of attributes used in view definitions

USE OF VIEW
A view is a materialized(virtual) table that can be used
 in any SQL query

Create a view (project numbers) of the projects managed
by an employee with the name 'Dr. Dolittle'

 Bipin C Desai 37

Using VIEW

Find suppliers who can supply all parts used in a
 project managed by Dr. Dolittle, and
 the corresponding project number(s)

{S  s  supplies  d  do_project
  S[Supname] = s [Supname]
  S[Project#] = d [Projectnumb]
  ¬(u) (u  used_in  u[Project#] = d[Projectnumb]

  ¬ t(t  supplies  u[Part#] = t[Part#]
 t[Supname] = s[Supname]))}

 Bipin C Desai 38

A view can appear where a relation name is allowed
Find suppliers who can supply all parts used in a
 project managed by Dr. Dolittle

select unique s.supname, d.proj#
from supplies s, do_project d
where exists
 (select *
 from supplies s1
 where s1.supname=s.supname
 and not exists
 (select *
 from usedin u

 where u.proj# = d.proj#
 and not exists

 (select *
 from supplies s2
 where s2.supname = s1.supname

 and s2.part#=u.part#)))

There exists a supplier s and
project d such that there are no
parts used in d that is not
supplied by this supplier s
SUPNAME PROJ#
-------------- ----
MDG-SUPPLY 753
NDG-SUPPLY 753
PROVIBEC 753

Is this predicate required??

 Bipin C Desai 39

A view can appear where a relation name is allowed
Find suppliers who can supply all parts used in a
 project managed by Dr. Dolittle

select unique s.supname, d.proj#
from supplies s, do_project d
where not exists
 (select *
 from usedin u
 where u.proj# = d.proj#
 and not exists
 (select *
 from supplies s2
 where s2.supname = s.supname
 and s2.part#=u.part#))

There exists a supplier s and
project d such that there are no
parts used in d that is not
supplied by this supplier s

SUPNAME PROJ#
-------------- ----
MDG-SUPPLY 753
NDG-SUPPLY 753
PROVIBEC 753

 Bipin C Desai 40

select unique s.supname, d.proj#
from supplies s, do_project d
where not exists
 (select u.part#
 from usedin u
 where u.proj# = d.proj#
 minus (select s2.part#
 from supplies s2
 where s2.supname = s.supname))

SUPNAME PROJ#
-------------- ----
MDG-SUPPLY 753
NDG-SUPPLY 753
PROVIBEC 753

An Alternative
Using the view do_project and set difference operations to write
the SQL query for:

Find suppliers who can supply all parts used in a
 project managed by Dr. Dolittle

Parts used in one of
Dolittle’s project

Parts supplied by s

 Bipin C Desai 41

Find suppliers who can supply all parts used in a
 project managed by Dr. Dolittle

Parts used in one of
Dolittle’s project

select unique s.supname, d.proj#
from supplies s, do_project d
where not exists
 (select s2.part#
 from supplies s2
 where s2.supname = s.supname
 minus
 (select u.part#
 from usedin u
 where u.proj# = d.proj#)))

Parts supplied by s

What is wrong with this query??
If a supplier supplies all parts used in the
 project but also other parts than this supplier

 would not be included.

 Bipin C
Desai

42

How to update a view?
Translate modification of the view to the corresponding

modification on the base tables used in the view definition
–be able to identify the base relation(s) and attribute(s)

Should we allow updates on views?
Yes, however it depends - some problems can arise

Some simple views can be updated
Known as updatable views (easy if primary keys are part

of view)

Many views cannot be updated
This is due to the so called view-update anomaly

insert into do_project values(‘Proj1’); (Proj1, null, null)
Note: null should be allowed for the base attributes

Would the insertion cause the insertion of (Proj1, null, emp# of Dr. Do..)?

 Bipin C
Desai

43

SQL provides a formal definition of when modifications to a view
are permitted

- it is permitted if the view is defined by selecting some
attributes from one relation R, which could be an “updatable”
view itself

- the view definition uses SELECT (but not SELECT
DISTINCT)

- the WHERE clause does not involve R in a sub query

- the list in the SELECT clause includes “enough” attributes
that for every tuple inserted into the view, the tuple inserted into
the base relation will “yield” the inserted tuple of the view

- the NOT NULL constraints on the base relation will
not be violated

 Bipin C Desai 44

SQL allows user defined data types - domains

We can define a domain as follows:

create domain <name> as <type description>default value;

To create a domain with default value:

create domain Projnumbers as number(4) default 9999;

To change the default for a domain:

alter domain Projnumbers set default 0;

To delete a domain definition:

drop domain Projnumbers;

 Bipin C
Desai

45

Arithmetic operations on NULLs

Result of an arithmetic operator, when at least one of the operands
has a value of NULL, is NULL
if x have the value NULL, then x+3 is also NULL

However, NULL is not a constant
NULL + 3 is illegal

Some basic arithmetic rules are not applicable.
Suppose x is a numeric value

x * 0 = 0, but if x is NULL then x * 0 is NULL

x – x = 0, but if x is NULL then x – x is NULL

 Bipin C
Desai

46

X Y X AND Y X OR Y NOT X
TRUE TRUE TRUE TRUE FALSE
TRUE UNKNOWN UNKNOWN TRUE FALSE
TRUE FALSE FALSE TRUE FALSE

UNKNOWN TRUE UNKNOWN TRUE UNKNOWN
UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN
UNKNOWN FALSE FALSE UNKNOWN UNKNOWN

FALSE TRUE FALSE TRUE TRUE
FALSE UNKNOWN FALSE UNKNOWN TRUE
FALSE FALSE FALSE FALSE TRUE

In 3-Valued Logic we may assume that:

TRUE = 1, FALSE = 0 , UNKNOWN = 1/2

x AND y = min (x, y) , x OR y = max (x, y) , NOT x = 1x

 Bipin C
Desai

47

Null value and logical operations
Two value logic: x OR (NOT x) = 0 OR 1| 1 OR 0 = 1 = TRUE
For 3-valued logic:
x OR (NOT x) = max(1/2,(11/2)) = 1/2 = UNKNOWN  (TRUE)

Note: We can't treat NULL as a constant :
grade (Name, course, gr)

Consider query:
 select *

from grade
WHERE gr <= “c” or gr > “c” ;

Here the result is expected to be the grade relation.

If null values are allowed for gr, then the above query returns only
tuples of grade where the value of gr is not NULL .

 Bipin C
Desai

48

In SQL2, there are other forms for expressing × and ⨝
Cartesian Product of Employee and Position

Employee (Empl_No, Name, Skill, Pay_rate) Position (Posting_No, Skill)

select * from Employee, Position;

select * from Employee CROSS JOIN position;
Theta join of Employee, Position

select * from Employee JOIN Position ON
 Position. Skill = Employee. Skill;

select distinct * from Employee JOIN Position ON
 Position. Skill = Employee. Skill;

Natural join of Employee, Position
select * from Employee NATURAL JOIN Position

To remove
duplicates

select *
 from Employees
 JOIN Position
 USING (skill);

 Bipin C
Desai

49

OUTER JOIN -- computes the join relations preserving dangling
tuples by padding them with NULLs

A tuple in R is dangling if it doesn't join with any tuple in S; similarly a tuple in
S is dangling if it doesn’t join with any tuple in R

FULL OUTER JOIN: It pads dangling tuples of R and S preserving them

LEFT OUTER JOIN: It pads dangling tuples of R only; tuples of R preserved

RIGHT OUTER JOIN: It pads dangling tuples of S only; tuples of S preserved

S:

R:
R FULL OUTER JOIN S:

B C

2 5

2 6

7 8

A B

1 2

2 3
A B C

1 2 5

1 2 6

2 3 
 7 8

A B C

1 2 5

1 2 6

2 3 

R LEFT OUTER JOIN S:
A B C

1 2 5

1 2 6
 7 8

R RIGHT OUTER JOIN S:

In SQL

R [NATURAL] [LEFT | RIGHT | FULL] OUTER JOIN S [ON ...]

 Bipin C Desai 50

SQL> select * from part;

 PART# DESCR

---------- ----------

 1 part1

 2 part2

 3 part3

 4 part4

 5 part5

 6 part6

 7 part7

 8 part8

 9 part9

SQL> select * from supplies;

SUPNAME PART# PRICE
-------------- ---------- ----------
PROVIBEC 1 710.2

PROVIBEC 2 815.3

PROVIBEC 3 325

PROVIBEC 4 795.99

SUPORIO 1 695.99

SUPBEC 2 799.98

NDG-SUPPLY 1 699.99

NDG-SUPPLY 2 799.99

NDG-SUPPLY 3 324.99

NDG-SUPPLY 4 795.98

NDG-SUPPLY 7 754

SUPBEC 1 699.98

MANIBEC 1 727.99

MDG-SUPPLY 1 699.99

MDG-SUPPLY 2 799.99

MDG-SUPPLY 3 324.99

MDG-SUPPLY 4 795.98

 Bipin C Desai 51

select *
from part p left outer join supplies s
on (p.part# = s.part#);

 PART# DESCR SUPNAME PART# PRICE
---------- ---------- -------------- ---------- ----------
 1 part1 PROVIBEC 1 710.2
 2 part2 PROVIBEC 2 815.3
 3 part3 PROVIBEC 3 325
 4 part4 PROVIBEC 4 795.99
 1 part1 SUPORIO 1 695.99
 2 part2 SUPBEC 2 799.98
 1 part1 NDG-SUPPLY 1 699.99
 2 part2 NDG-SUPPLY 2 799.99
 3 part3 NDG-SUPPLY 3 324.99
 4 part4 NDG-SUPPLY 4 795.98
 7 part7 NDG-SUPPLY 7 754
 1 part1 SUPBEC 1 699.98
 1 part1 MANIBEC 1 727.99
 1 part1 MDG-SUPPLY 1 699.99
 2 part2 MDG-SUPPLY 2 799.99
 3 part3 MDG-SUPPLY 3 324.99
 4 part4 MDG-SUPPLY 4 795.98
 5 part5
 8 part8
 6 part6
 9 part9

21 rows selected.

 Bipin C Desai 52

select *
from part p right outer join supplies s
on (p.part# = s.part#);

 PART# DESCR SUPNAME PART# PRICE
---------- ---------- -------------- ---------- ----------
 1 part1 MDG-SUPPLY 1 699.99
 1 part1 MANIBEC 1 727.99
 1 part1 SUPBEC 1 699.98
 1 part1 NDG-SUPPLY 1 699.99
 1 part1 SUPORIO 1 695.99
 1 part1 PROVIBEC 1 710.2
 2 part2 MDG-SUPPLY 2 799.99
 2 part2 NDG-SUPPLY 2 799.99
 2 part2 SUPBEC 2 799.98
 2 part2 PROVIBEC 2 815.3
 3 part3 MDG-SUPPLY 3 324.99
 3 part3 NDG-SUPPLY 3 324.99
 3 part3 PROVIBEC 3 325
 4 part4 MDG-SUPPLY 4 795.98
 4 part4 NDG-SUPPLY 4 795.98
 4 part4 PROVIBEC 4 795.99
 7 part7 NDG-SUPPLY 7 754

17 rows selected.

 Bipin C Desai 53

SQL> select * from part p full outer join supplies s on (p.part# =
s.part#);
 PART# DESCR SUPNAME PART# PRICE
---------- ---------- -------------- ---------- ----------
 1 part1 PROVIBEC 1 710.2
 2 part2 PROVIBEC 2 815.3
 3 part3 PROVIBEC 3 325
 4 part4 PROVIBEC 4 795.99
 1 part1 SUPORIO 1 695.99
 2 part2 SUPBEC 2 799.98
 1 part1 NDG-SUPPLY 1 699.99
 2 part2 NDG-SUPPLY 2 799.99
 3 part3 NDG-SUPPLY 3 324.99
 4 part4 NDG-SUPPLY 4 795.98
 7 part7 NDG-SUPPLY 7 754
 1 part1 SUPBEC 1 699.98
 1 part1 MANIBEC 1 727.99
 1 part1 MDG-SUPPLY 1 699.99
 2 part2 MDG-SUPPLY 2 799.99
 3 part3 MDG-SUPPLY 3 324.99
 4 part4 MDG-SUPPLY 4 795.98
 5 part5
 8 part8
 6 part6
 9 part9

 Bipin C Desai 54

Joins in SQL

mysql> select * from R; mysql> select * from S;
+----+------+------+ +------+------+----+
| A | B | C | | B | C | D |
+----+------+------+ +------+------+----+
a1	10	12		10	12	d1
a2	11	12		11	12	d2
a3	9	14		6	14	d3
a4	8	17		9	12	d4
+----+------+------+ +------+------+----+

 Bipin C Desai 55

In MySQL(up to version 5.7 at least), JOIN, CROSS JOIN, and
INNER JOIN are syntactic equivalents: i.e., they can be used
interchangeably.

In standard SQL, they are not equivalent.
INNER JOIN is used with an ON clause,

select * from Employee JOIN Position ON
 Position. Skill = Employee. Skill;
select R.a, T .e
from R inner join S on R.b = S.b
 inner join T on S.c = T.c

CROSS JOIN is used as follows:
 select *
 from R cross join S;

MariaDB [test]> select *
 from R join S
 on R.B=S.B;
+---+---+---+---+---+---+
| A | B | C | B | C | D |
+---+---+---+---+---+---+
a1	10	12	10	12	D1
a2	11	12	11	12	D2
a3	9	15	9	12	D4
+---+---+---+---+---+---+
3 rows in set (0.028 sec)

 Bipin C Desai 56

 +----+----+----+-----+-----+----+
ALL THE FOLLOWING | A | B | C | B | C | D |
ARE EQUIVALENT IN +----+----+----+-----+-----+----+
 MySQL | a1 | 10 | 12 | 10 | 12 | d1 |
 | a2 | 11 | 12 | 10 | 12 | d1 |
select * | a3 | 9 | 14 | 10 | 12 | d1 |
from R JOIN S; | a4 | 8 | 17 | 10 | 12 | d1 |
 | a1 | 10 | 12 | 11 | 12 | d2 |
select * | a2 | 11 | 12 | 11 | 12 | d2 |
from R, S; | a3 | 9 | 14 | 11 | 12 | d2 |
 | a4 | 8 | 17 | 11 | 12 | d2 |
select * | a1 | 10 | 12 | 6 | 14 | d3 |
from R CROSS JOIN S;| a2 | 11 | 12 | 6 | 14 | d3 |
 | a3 | 9 | 14 | 6 | 14 | d3 |
 | a4 | 8 | 17 | 6 | 14 | d3 |
select * | a1 | 10 | 12 | 9 | 12 | d4 |
from R INNER JOIN S;| a2 | 11 | 12 | 9 | 12 | d4 |
 | a3 | 9 | 14 | 9 | 12 | d4 |
 4*4 rows in result | a4 | 8 | 17 | 9 | 12 | d4 |
 +----+----+----+-----+-----+----+

Note: result schema R || S

 Bipin C Desai 57

Equijoin: join predicate containing an equality operator.
- combines rows that have same values for the specified columns.

If two tables in a join query have no join predicate the DBMS
 returns a Cartesian product.

Outer Join
An outer join extends the result of a simple join.
An outer join returns all rows that satisfy the join condition and
those rows from one table for which no rows from the
other satisfy the join condition.
Such rows are not returned by a simple join.

 Bipin C
Desai

Joins: Equi-Joins

58

select * from R JOIN S on R.B=S.B;
| A | B | C | B | C | D |
+----+------+------+------+------+----+
a1	10	12	10	12	d1
a2	11	12	11	12	d2
a3	9	14	9	12	d4

select * from R JOIN S on R.B=S.B and R.C=S.C;
| A | B | C | B | C | D |
+----+------+------+------+------+----+
| a1 | 10 | 12 | 10 | 12 | d1 |
| a2 | 11 | 12 | 11 | 12 | d2 |

 Bipin C Desai 59

select * from R left outer join S on R.B=S.B;
| A | B | C | B | C | D |
+----+------+------+------+------+------+
a1	10	12	10	12	d1
a2	11	12	11	12	d2
a3	9	14	9	12	d4
a4	8	17	NULL	NULL	NULL

select * from R left outer join S
on R.B=S.B and R.C=S.C;
| A | B | C | B | C | D |
+----+------+------+------+------+------+
a1	10	12	10	12	d1
a2	11	12	11	12	d2
a3	9	14	NULL	NULL	NULL
a4	8	17	NULL	NULL	NULL

 Bipin C Desai 60

select *
from R right outer join S
on R.B=S.B and R.C=S.C;

+------+------+------+------+------+----+
| A | B | C | B | C | D |
+------+------+------+------+------+----+
a1	10	12	10	12	d1
a2	11	12	11	12	d2
NULL	NULL	NULL	6	14	d3
NULL	NULL	NULL	9	12	d4
+------+------+------+------+------+----+

 Bipin C Desai 61

FULL outer join does not exist in MySQL;
Simulated by:

select *
from R left outer join S on R.B=S.B
UNION
select *
from R right outer join S on R.B=S.B;
+------+------+------+------+------+------+
| A | B | C | B | C | D |
+------+------+------+------+------+------+
a1	10	12	10	12	d1
a2	11	12	11	12	d2
a3	9	14	9	12	d4
a4	8	17	NULL	NULL	NULL
NULL	NULL	NULL	6	14	d3
+------+------+------+------+------+------+

 Bipin C Desai 62

select *
from R left outer join S
on R.B=S.B and R.C=S.C
UNION
select *
from R right outer join S
on R.B=S.B and R.C=S.C;
+------+------+------+------+------+------+
| A | B | C | B | C | D |
+------+------+------+------+------+------+
a1	10	12	10	12	d1
a2	11	12	11	12	d2
a3	9	14	NULL	NULL	NULL
a4	8	17	NULL	NULL	NULL
NULL	NULL	NULL	6	14	d3
NULL	NULL	NULL	9	12	d4
+------+------+------+------+------+------+

FULL outer join does
not exist in MySQL;
 Simulated by:

 Bipin C
Desai

Full outer Join: Oracle

63

select *
from R r
full outer join
S s
on r.B=s.B and r.C=s.C
A B C B C D
a1 10 12 10 12 d1
a2 11 12 11 12 d2
- - - 6 14 d3
- - - 9 12 d4
a3 9 14 - - -
a4 8 17 - - -
6 rows returned in 0.01 seconds

The Full outer join
simulation,
as in MySQL
causes problems
with column
 headings: the
 ones used
 would be from
 the system catalog!

 Bipin C
Desai

64

Oracle: Cross Join
- explicit and implicit

However, Oracle some
 releases get
 chocked up by:

select *
from R JOIN S;

select *

from R inner join S

 Bipin C Desai 65

select *
from R natural join S

B C A D
10 12 a1 d1
11 12 a2 d2
2 rows returned in 0.03 seconds

Natural Join R S
+----+------+------+ +------+------+----+
| A | B | C | | B | C | D |
+----+------+------+ +------+------+----+
a1	10	12		10	12	d1
a2	11	12		11	12	d2
a3	9	14		6	14	d3
a4	8	17		9	12	d4
+----+------+------+ +------+------+----+

 Bipin C Desai 66

 Self Join

MariaDB [test]> select r1.A, r2.A, r1.B, r1.C
 -> from R r1
 -> inner join R r2 on r1.C=r2.C
 -> where r1.A < r2.A
 -> order by r1.A, r2.A

+----+----+------+------+
| A | A | B | C |
+----+----+------+------+
| a1 | a2 | 10 | 12 |
+----+----+------+------+

To avoid duplicate

 R S
+----+------+------+ +------+------+----+
| A | B | C | | B | C | D |
+----+------+------+ +------+------+----+
a1	10	12		10	12	d1
a2	11	12		11	12	d2
a3	9	14		6	14	d3
a4	8	17		9	12	d4
+----+------+------+ +------+------+----+

 Bipin C Desai 67

Join Operation Execution

Hash joins

- In a hash join, a DBMS does a full-scan of one of the tables in the
 join operation to build a main-memory hash table. Then it searches
 for a matching value in the (hash table) for the other table.

 Hash joins need more main memory but it could execute faster for
 certain types of join, the hash join will execute faster than a
 nested loop join.

 Bipin C Desai 68

Join Operation Execution

Nested loops join
 - The nested loops join is one of the original join pans and it is the
 most common method. In a nested loops join, we have two tables:
 one is the left operand table and the other the right hand table.
The an index for the attribute of left table is accessed to get the
 row IDs of the rows with the attribute value.
 The matching rows of the second table are then probed in a nested
 loop and matching rows of the two tables are joined using an index
 range scan.

 Bipin C Desai 69

Join Operation Execution

Some queries will perform faster with NESTED LOOPS joins,
some with HASH joins, while others favor sort-merge joins.

It is difficult to predict what join technique will be fastest a priori,
so many tuning a database is to test the often use joins and record
the statistics to guide the productions operations

 Bipin C
Desai

70

Constraints

Primary keys declarations

Foreign key constraints is a referential integrity constraints

If a supplier supplies part# 4, then we must have part# 4 in the
table for part

Primary key constraint is declared within the DDL SQL command
CREATE TABLE using the keywords PRIMARY KEY or
UNIQUE

Many DBMSs treat them as synonyms: A table may have one
primary key but any number of "unique” declarations

CREATE TABLE project
 (proj# number(4) primary key,
 projname char(14),
 projmgr number(4));

CREATE TABLE assigned_to
(proj# number(4),
 emp# number(4),
 hours number(3)
 primary key(proj#,emp#));

unique

 Bipin C Desai 71

SQL> create table x
 (a number (4) primary key);
Table created.
SQL> create table y
 (s number(4),
 b number (4) references x(a));
Table created.

SQL> insert into y values(1, 2);
insert into y values(1, 2)
*
ERROR at line 1:
SQL> insert into x values (2);
1 row created.
SQL> insert into y values(1, 2);
1 row created.

NOTE: References
must be a primary
key or an attribute
with an unique
attribute

 Bipin C Desai 72

SQL> create table x(
 2 a number (4) primary key,
 3 b number(4));
Table created.
SQL> create table y(
 2 c number (4) primary key,
 3 d number (4) references x(a));
Table created.
SQL> create table z(
 2 e number (4) references x(b),
 3 f number (4) references y(c));
ERROR:no matching unique or primary key for this column-list
create table w(
e number (4) references x(a),
f number (4) references y(d));
ERROR no matching unique or primary key for this column-list

SQL> create table z(
 2 e number (4) references x(a),
 3 f number (4) references y(c));
Table created

Note: The table x must
be created before we can
create table y

This is considered as a ‘foreign key’

 Bipin C
Desai

73

Possible situations violating foreign key constraints:
Insert:

SQL> insert into y values(1, 2);
insert into y values(1, 2)
ERROR at line 1:ORA-02292: integrity constraint (SCOTT.SYS_C002908)

violated - child record found

Update:
SQL> update x set a=3;
ERROR at line 1:
ORA-02292: integrity constraint (SCOTT.SYS_C002908) violated - child record
found
SQL> update y set b=4;
ERROR at line 1: ORA-02291: integrity constraint (SCOTT.SYS_C002908)

violated - parent key not found
Delete:

SQL> delete from x where a=2;
delete from x where a=2
ERROR at line 1: ORA-02292: integrity constraint (SCOTT.SYS_C002908)

violated - child record found

No tuple in x with primary key 2

Some tuple in y is referencing the
current key value of a tuple x

No tuple in x with primary key 2

Some tuple in y is referencing the
current key value of a tuple x

 Bipin C
Desai

74

Insert with null values is OK!
SQL> insert into y values(1,null);
1 row created.
SQL> insert into y values(2,null);
1 row created.

SQL> select * from y;
 C D
---------- ----------
 1
 2

 Bipin C
Desai

75

There are three policies choices for situations violating foreign key constraints
The reject policy (default)
 The system will reject any such violating request and a run-time error will

be generated. The database state will not change.
In case of update or delete request:

The cascade policy: changes to the referenced attributes are
“mimicked” at the foreign key (e.g. y.b)

The set-NULL policy: set the referencing attribute to NULL (e.g., y.b)

Options/policies may be chosen for deletes and updates,

independently

[ON DELETE {CASCADE | SET NULL }]

[ON UPDATE] { CASCADE | SET NULL }]

The policy to be used is a design decision and must conform to

the business rules of the underlying application.

 Bipin C Desai 76

RA

a br1

B

Type of
rel-ship

From
A

From
B

attrib

m-m apf bpf r

m-1 apf bf r

1-1 apf bfu r

xpf attribute is prime
 and foreign key
xf attribute is foreign
 key
xfu attribute is foreign
 key and unique

For m-1 multiplicity either of the
entities could be “A” – 2 cases

Attributes of R

In the case of 1-1 multiplicity
either of the entities could be “A”
- 2 choices

 Bipin C Desai 77

Relshp11

e1 e2r1

Entity1 Entity21 1

Converting one to one relationship to a DB table:
create table RELSHP11
(e1 number primary key,
 e2 number,
 r1 number);
SQL> insert into RELSHP11 values (1, 1, 11);
1 row created.
SQL>insert into RELSHP11 values (1, 2, 11);
ERROR at line 1: ORA-00001: unique constraint violated
SQL> insert into RELSHP11 values (2, 1, 11);
1 row created. Not a 1-to-1 relationship!

select * from relshp11;
 E1 E2 R1
---------- ---------- ----------
 1 1 11
 2 1 11

 Bipin C Desai 78

Entity1 Entity2Relshp11

e1 e2r1

1 1

Converting one to one relationship to a DB table:
create table RELSHP11
(e1 number primary key,
 e2 number unique not null,
 r1 number);
SQL> insert into RELSHP11 values (1, 1, 11);
1 row created.
SQL>insert into RELSHP11 values (1, 2, 11);
ERROR at line 1: ORA-00001: unique constraint violated
SQL> insert into RELSHP11 values (2, 1, 11);
ERROR at line 1: ORA-00001: unique constraint violated

Without unique, we could insert the same
e2 value for two different e1 values (not 1-
to-1). Without null, we can leave out
some values for entity e2. (not a 1-to-1
relationship!)

 Bipin C Desai 79

Entity1 Entity2Relshp11

e1 e2r1

1 1

create table RELSHP11
(e1 number primary key, foreign key(e1) references ent1(e1),
 e2 number unique not null, foreign key(e2) references ent2(e2) ,
 r1 number);
SQL> insert into RELSHP11 values (1, 1, 11);
1 row created.
SQL>insert into RELSHP11 values (1, 2, 11);
ERROR at line 1: ORA-00001: unique constraint violated
SQL> insert into RELSHP11 values (2, 1, 11);
ERROR at line 1: ORA-00001: unique constraint violated
SQL> insert into relshp1m values(3,null,10);
*ERROR at line 1:ORA-01400: cannot insert NULL

Converting one to one relationship to a DB table:

 Bipin C
Desai

80

SQL> create table e1(e1 number primary key);

Table created.

SQL> create table e2(e1 number primary key)

Table created.

create table r1(e1 number ,foreign key(e1) references e1(e1),

e2 number, foreign key(e2) references e2(e1),

r1 number, primary key (e1,e2))
insert into e1 values(1); insert into e1 values(2);

insert into e2 values(1) insert into e2 values(2);

insert into r1 values (1,1,10); insert into r1 values (2,1,10)

insert into r1 values (2,2,10);insert into r1 values (1,2,10)

Entity1 Entity2Relshp11

e1 e2r1

1 1

Converting one to one relationship to a DB table:

 WRONG
 design

 Bipin C
Desai

81

create table r1new(e1 number unique ,foreign key(e1) references e1(e1),
e2 number unique, foreign key(e2) references e2(e1),
r1 number,
primary key (e1,e2))
insert into r1new values(1,1,10);
1 row created
insert into r1new values(2,1,10)
*
ERROR at line 1:
ORA-00001: unique constraint (SCOTT.SYS_C004018) violated
insert into r1new values(3,3,10)
*
ERROR at line 1:
ORA-02291: integrity constraint (SCOTT.SYS_C004020) violated - parent key

not found
drop table e1
 *
ERROR at line 1:
ORA-02449: unique/primary keys in table referenced by foreign keys

Trying to insert another relationship involving e2.e1=1

Referential integrity enforced

Since the value(s) in e1 are being referenced

Added the unique attribute
With the unique attribute is
 the primary key redundant?

 Bipin C
Desai

82

create table e1(e1 number primary key);
create table e2(e1 number primary key);
create table r11(e1 number primary key,
foreign key(e1) references e1(e1) on delete cascade,
e2 number unique,
foreign key(e2) references e2(e1) on delete set null,
r1 number)
 insert into e1 values(1); insert into e1 values(2);
insert into e2 values(1); insert into e2 values(2);
insert into r11 values (1,1,10); insert into r11 values (2,2,10);
 insert into r11 values (2,1,10); UNIQUE CONSTRAINT

VIOLATION
insert into r11 values (1,2,10); UNIQUE CONSTRAINT

VIOLATION

Mapping 1-to-1 relationship r11 e1 e2
Must create the referenced
table (parent) before creating
the referencing table (child)

 Bipin C Desai 83

RAB A BMapping many-to-1 relationship
SQL> create table A(
a1 number(3) primary key,
a2 number (3)); Table created
SQL> create table RAB(
 r1 number(3),
 r2 number(4) primary key,
 constraint fk_1 foreign key (r1) references A(a1),
 constraint fk_2 foreign key (r2) references B(b1)); Table created.
SQL> insert into RAB values (null,null);
*ERROR ORA-01400: cannot insert NULL into ("SCOTT"."RAB"."R2")

SQL> insert into RAB values (null,1);
*ERROR ORA-02291: integrity constraint (SCOTT.FK_2) violated - parent key not found

SQL> insert into A values(1,1); 1 row created
SQL> insert into RAB values (null,1);
*ERROR ORA-02291: integrity constraint (SCOTT.FK_2) violated - parent key not found

SQL> insert into B values(11,11);1 row created.

SQL> create table B(
b1 number(4) primary key,
b2 number (3)); Table created

Must create the referenced table (parent)
before creating the referencing table (child)

 Bipin C Desai 84

SQL> insert into RAB values (1,12);
*ERROR ORA-02291: integrity constraint (SCOTT.FK_2) violated - parent key not found

SQL> insert into RAB values (2,11);
*ERROR ORA-02291: integrity constraint (SCOTT.FK_1) violated - parent key not found

SQL> insert into RAB values (1,11); 1 row created.
SQL> delete A where a1=1;
*ERROR ORA-02292: integrity constraint (SCOTT.FK_1) violated - child record found

SQL> delete B where b1=11;
*ERROR ORA-02292: integrity constraint (SCOTT.FK_2) violated - child record found

SQL> insert into A values (2, 2); 1 row created.
SQL> insert into RAB values (2,11);
* ERROR ORA-00001: unique constraint (SCOTT.SYS_C004197) violated

SQL> insert into B values (12, 12); 1 row created.
SQL> insert into RAB values (1, 12); 1 row created.

 Bipin C Desai 85

CREATE TABLE Supplier(
SID numeric(10) not null,
SName varchar2(50) not null,
Contact varchar2(50),
CONSTRAINT s_pk PRIMARY KEY (SID, SName));

CREATE TABLE Parts(
PNo numeric(10) not null,
SNo numeric(10) not null,
SName varchar2(50) not null,
CONSTRAINT p_fk
 FOREIGN KEY (SNo, SName)
 REFERENCES Supplier(SID, SName) ON DELETE CASCADE);

The “ON CASCADE DELETE” in the
foreign key constrain in Parts causes all
tuples with the matching SID, SName
values in Parts to be deleted when a
record in Supplier is deleted

 Bipin C
Desai

86

create table e1(e1 number primary key);
create table e2(e1 number primary key);
create table r11(e1 number primary key,
foreign key(e1) references e1(e1) on delete cascade,
e2 number unique,
foreign key(e2) references e2(e1) on delete set null,
r1 number)
 insert into e1 values(1); insert into e1 values(2);
insert into e2 values(1); insert into e2 values(2);
insert into r11 values (1,1,10); insert into r11 values (2,2,10);
 insert into r11 values (2,1,10); UNIQUE CONSTRAINT VIOLATION
insert into r11 values (1,2,10); UNIQUE CONSTRAINT VIOLATION ;

SQL> delete from e2;
2 rows deleted.

SQL> delete from e1;
2 rows deleted.

Added the on delete clauses
Changed the composite primary key

SQL> select * from r11;
 E1 E2 R1
---------- ---------- ----------
 1 10
 2 10

SQL> select * from r11;
no rows selectedDelete of rows in e1 cascades to r11

SQL> select * from e1;
 E1

 1
2

SQL> select * from e2;
 E1

 1
 2

e2 columns set to null

 Bipin C Desai 87

create table e1(e1 number primary key);
create table e2(e1 number primary key);
create table r11(e1 number primary key,
foreign key(e1) references e1(e1) on delete cascade,
e2 number unique,
foreign key(e2) references e2(e1) on delete set null,
r1 number)
SQL> delete from e1;
x rows deleted
SQL> select * from r11;
no rows selected

SQL> insert into r11 values (3,null,null);
ERROR at line 1:
ORA-02291: integrity constraint (SCOTT.SYS_C004071)
violated - parent key not found

Can’t insert a null value in r11 of the foreign key constraint

SQL> delete from e2;
y rows deleted

 Bipin C Desai 88

Entity1 Entity2Relshp1m

e1 e2r1

m 1

Converting one to many relationship to a DB table:
create table RELSHP1m
(e1 number primary key,
 e2 number,
 r1 number);
SQL> insert into relshp1m values (1, 1, 11);
1 row created.
SQL> insert into relshp1m values (1, 2, 11);
*ERROR at line 1:
ORA-00001: unique constraint violated
SQL> insert into relshp1m values (2, 1, 11);
1 row created.

select * from relshp1m;

 E1 E2 R1
---------- ---------- ----------
 1 1 11
 2 1 11

 Bipin C Desai 89

Entity1 Entity2Relshp1m

e1 e2r1

m 1

create table RELSHP1m
(e1 number primary key, foreign key(e1) references ent1(e1),
 e2 number not null, foreign key(e2) references ent2(e2),
 r1 number);
SQL> insert into relshp1m values (1, 1, 10);
1 row created.
SQL> insert into relshp1m values (1, 2, 10);
*ERROR 1: unique constraint violated
SQL> insert into relshp1m values (2, 1, 10);
1 row created.
SQL> insert into relshp1m values(2,3,10);
*ERROR integrity constraint violated - parent key not found

select * from relshp1m;
 E1 E2 R1
---------- ---------- ----------
 1 1 10
 2 1 10

Converting one to many relationship to a DB table

 Bipin C Desai 90

Entity1 Entity2Relshpnm

e1 e2r1

n m

Converting many to many relationship to a DB table:
create table RELSHPnm
(e1 number, e2 number,
 r1 number, primary key(e1,e2));
SQL> insert into relshpnm values (1, 1, 11)
1 row created.
SQL> insert into relshpnm values (1, 2, 11);
1 row created.
SQL> insert into relshpnm values (2, 2, 11);
1 row created.
SQL> insert into relshpnm values (2, 1, 11)
1 row created.

select * from relshpnm;
 E1 E2 R1
---------- ---------- ----------
 1 1 11
 1 2 11
 2 2 11
 2 1 11

 Bipin C Desai 91

Entity1 Entity2Relshpnm

e1 e2r1

n m

create table RELSHPnm
(e1 number, e2 number,
 r1 number, primary key(e1,e2),
 foreign key(e1) references ent1(e1),
 foreign key(e2) references ent2(e2));
SQL> insert into relshpnm values (1, 1, 11)
SQL> insert into relshpnm values (1, 2, 11);
SQL> insert into relshpnm values (2, 2, 11);
SQL> insert into relshpnm values (2, 1, 11)
SQL> insert into relshpnm values (3, 4, 11);
*ERROR: integrity constraint violated - parent key not found

select * from relshpnm;
 E1 E2 R1
---------- ---------- ----------
 1 1 11
 1 2 11
 2 2 11
 2 1 11

Converting many to many relationship to a DB table:
Better relational schema!

 Bipin C
Desai

92

create table friends(
name varchar2(30) unique,
address varchar(30) unique,
phone decimal(16) primary key);

create table friends1(
name varchar2(30),
address varchar(30),
phone decimal(16) primary key,
 unique (name,address)); create table friends2(

name varchar2(30),
address varchar(30),
phone decimal(16) unique,
primary key (name, address));

Alternate Candidate keys – How to implement?

Candidate keys of our friends:
Phone number
or
(name, address)

 Bipin C
Desai

93

create table friends (
name varchar2(30) unique,
address varchar(30) unique,
phone decimal(16) primary key);

SQL> insert into friends values('smith','montreal',1234);
1 row created.
SQL> insert into friends values('smith‘ ,'laval',1235);
ERROR : unique constraint (SCOTT.SYS_C003729) violated
SQL> insert into friends values('smith','montreal‘,1235);
ERROR : unique constraint (SCOTT.SYS_C003729) violated
SQL> insert into friends values('brown','laval',1235);
1 row created.

Alternate Candidate keys

Only 1 Smith, 1 Montreal, etc.!

 Bipin C
Desai

94

create table friends1(
name varchar2(30),
address varchar(30),
phone decimal(16) primary key,
 unique (name,address));

SQL> insert into friends1 values('smith','montreal',1234);
1 row created.
SQL> insert into friends1 values('smith','laval',1236);
1 row created.
SQL> insert into friends1 values('smith','laval',1237)
* ERROR at line 1:
ERROR : unique constraint (SCOTT.SYS_C003727) violated

Alternate Candidate keys

 Bipin C
Desai

95

create table friends2(
name varchar2(30), address varchar(30),
phone decimal(16) unique, primary key(name,address));
SQL> insert into friends2 values('smith','laval',1235);
1 row created.
SQL> insert into friends2 values('smith','montreal',1235);
ERROR : unique constraint (SCOTT.SYS_C003724) violated
SQL> insert into friends2 values('brown','laval',1235);
ERROR : unique constraint (SCOTT.SYS_C003725) violated
SQL> insert into friends2 values('smith','laval‘,1236);
ERROR : unique constraint (SCOTT.SYS_C003724) violated
SQL> insert into friends2 values('smith','montreal',1234);
1 row created.

Alternate Candidate keys

SQL> select * from friends2 /
NAME ADDRESS PHONE
------------------------- ------------------------------ ----------
smith montreal 1234
smith laval 1235

 Bipin C Desai 96

Ternary Relationships and multiplicity

Parts Projects

Buys

Suppliers

The above is an example of a three way relationship
The multiplicity could be m or 1 for any of the entity sets
involved in the relationship
Ignoring the permutation of the entities we need to consider
Four cases: m-m-m or m-m-1 or m-1-1 or 1-1-1
Considering permutations there are 8 cases 2*2*2 or 1+3+3+1

 Bipin C Desai 97

Type From
A

From
B

From
C

attrib

m-m-m apf bpf cpf r

m-m-1 apf bpf cf r

m-1-1 apf bf cf r

1-1-1 apf bfu cfu r

 A B

 R

 C

b

c

a

r

xpf attribute is prime
 and foreign key
xf attribute is foreign
 key
xfu attribute is foreign
 key and unique

In the case of 1-1-1
multiplicity any of
the entities could
be used for A

 Bipin C Desai 98

Actor Movie

Contract

 Studio

T, Y

SName

Name

$$

 Bipin C Desai 99

Type A B C D attrib

m-m-m-m apf bpf cpf dpf r

m-m-m-1 apf bpf cpf df r

m-m-1-1 apf bpf cf df r

m-1-1-1 apf bf cf df r

1-1-1-1 apf bfu cfu dfu r

xpf attribute is prime
 and foreign key
xf attribute is foreign
 key
xfu attribute is foreign
 key and unique

 A B

 R

C

b

c

r

a

d D

In the case of 1-1-1
multiplicity any of
the entities could
be used for A

Total # permutations
would be 2*2*2*2=
1+4+6+4+1=16

 Bipin C Desai 100

Given the following relations, find the CS courses that Brenda
can take.(Note: she cannot take a course already passed and
 must have all pre-requisites)

Student(Sno Name)
Dept(Dno, Dname)
Course(Cno, Dno, Cname)
Enroll(Sno,Cno,Grade)
Prereq(Cno,Pcno)

CSCrs = Cno  Dname=CS DEPT ⨝ Course
BrendaPassed = Cno (( Grade≠FEnroll) ⨝ ( Name=BrendaStudent))
BrendaSatisfiedPre = CSCrs X BrendaPassed
BrendaCantTake = Cno (Prereq - BrendaSatisfiedPre)
BrendaCanTake = (CSCrs – BrendaPassed) – BrendaCantTake

 Bipin C Desai 101

{c  c  Course d Dept  d.Dname=‘COMP’ 
 s Student  s[Name]=‘Brenda’  c[Dno]=d[Dno] 
   e(e  Enroll  e[Sno]=s[Sno]  e[Grade]<>’F’ 
 e[Cno]=C[Cno])

 p(p  Prereq  p[Cno] = C[Cno]  p[Cno]=d[Cno]
 g(g  Enroll  s1 Student  g[Cno] = p[PCno]
 s1[Name]=‘Brenda’  g[Sno] = s1[Sno]

  g[Grade]<>’F’ }

Has not already taken and passed the course

Has all the pre-req.

 Bipin C Desai 102

select c.cno
from course c, dept d, student s
where d.dept='Computer Science' and s.sname='Brenda' and
c.dno = d.dno and not exists(
select e.cno
from enroll e
where e.cno=c.cno
s.sno=e.sno and e.grade <>'F') and
not exists(select p1.cno
 from preq p1
 where p1.cno = c.cno and
 not exists(select e1.cno
 from enroll e1, student s1
 where e1.sno = s1.sno and s1.sname='Brenda' and
 e1.sno = s1.sno and e1.grade <>'F' and
 e1.cno = p1.pcno));

Has not already taken and
 passed the course

Has all the pre-req.

 Bipin C Desai 103

select c.cno
from course c, dept d , student s
where d.dept='Computer Science' and s.sname='Brenda' and
c.dno = d.dno and c.cno not in(
select e.cno
from enroll e
where s.sno=e.sno and e.grade <>'F') and
not exists(select p1.cno
 from preq p1
 where p1.cno = c.cno and
 not exists(select e1.cno
 from enroll e1
 where e1.sno = s.sno and
 e1.sno = s.sno and e1.grade <>'F' and
 e1.cno = p1.pcno));

The course c.cno has not
already been taken and
 passed

Has all the pre-req.

Alternate SQL

 Bipin C
Desai

104

We may associate the NOT NULL constraint with an attribute for a table

 Two consequences:
 1. We can’t insert a tuple into the table without giving value for the

attribute defined with the NOT NULL constraint.
 2. We can’t use the “set-null” policy to fix foreign-key violations for such

attributes

 Bipin C
Desai

105

SQL> create table z(d number (4)
 check (d >999));
Table created.
SQL> insert into z values(1);
insert into z values(1)
ERROR at line 1: ORA-02290: check constraint

(SCOTT.SYS_C002909) violated

Difference between a check and a foreign-key constraint.
The check is done only when a tuple is inserted or updated.
A foreign key constraint checks for any update, deletes

 Bipin C
Desai

106

Example:
CREATE TABLE Star(
 name CHAR(30) PRIMARY KEY,
 address VARCHAR(255),
 gender CHAR(1),
 birthdate DATE,
 CHECK (gender = ’F’ OR name NOT LIKE ’Ms.%’)
);

 This constraints says that if a star is male (M), then his
name must not begin with ‘Ms.’ (¬condition); Here we
used (gender=‘F’ OR ¬condition) for (Mnot Ms).

 Bipin C Desai 107

CREATE TABLE person(
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
gender CHAR(1),
 dob DATE,
 CHECK (gender = 'F' OR name NOT LIKE 'Ms.%'));
SQL> insert into person (name, gender)
 values ('Ms. John Smith', 'M');
ERROR at line 1:
ORA-02290: check constraint (SCOTT.SYS_C002916)
 violated
SQL> insert into person (name, gender)
values ('Ms. George Sands', 'F');
1 row created.
SQL> alter table person add constraint Person_Adr unique (gender);
Table altered.
SQL> alter table person add income number (12,2);
Table altered.

 Bipin C
Desai

108

Assertions, or general constraints, are boolean-valued SQL
expressions that must always be true

Sometimes we need a constraint that involves relation as a whole or
part of the database schema

Assertions are checked when a mentioned relation changes
Assertion in SQL not supported by most DBMS:

CREATE ASSERTION PoorPerson CHECK
 (NOT EXIST (SELECT *

 FROM person
 WHERE income > 10000

)
);

 Bipin C
Desai

109

SQL provides a number of features to express integrity constraints
(primary, foreign key)as part of the database schema.

 Constraints, in essence, provide database designers with more
control over the database content

An active element is an statement that we write once, store in the
database, and “program” to execute when an event occurs. This
event is considered as a trigger

An event may be an insertion of a tuple into a predefined table or a
specified change in the database that causes a specified (boolean-
valued) condition to become true

Constraints and triggers

It is also possible to implement many of the constraints and triggers
in scripts such as PHP, JSP etc. However, this is left to the
application programmer and has to be included in each application!

 Bipin C Desai 110

Triggers

Procedures that are implicitly executed when an INSERT, UPDATE,
or DELETE statement is issued against an associated table.

Simple procedure is explicitly executed by a user, application,
or a trigger.
Triggers (one or more) are implicitly executed by Oracle when a
triggering INSERT, UPDATE, or DELETE statement is issued,
regardless of how it is issued(user or application).

A trigger can restrict DML operations against a table
(time of day/week etc.)

A statement in a trigger body could causes another trigger to be fired!
Such the triggers are said to be cascading triggers.

 Bipin C Desai 111

 A required referential integrity rule cannot be enforced using:
 the integrity constraints such as:

NOT NULL,
UNIQUE key,
PRIMARY KEY,
FOREIGN KEY,
CHECK,
update CASCADE,
update and delete SET NULL,
update and delete SET DEFAULT

 Enforce referential integrity when child and parent tables are on
 different nodes of a distributed database

 Enforce complex business rules not definable using integrity
 constraints

Why Triggers?

A trigger has three parts:
 a triggering event

(some statement)
 a trigger condition
 a trigger action

 Bipin C
Desai

112

TRIGGERS
Triggers are often called event-condition-action rules

- An Event is any specified changes in the DB, due to
insertions, deletions or updates
- A Condition is a predicate or test to determine if the specified
trigger is applicable
- An Action is one or more SQL statements

Triggers are not supported in SQL2

Differ from checks or SQL2 assertions in that:
Event is programmable, rather than implied by the kind of

check
Condition is not available in checks
Action could be any sequence of database operations

Triggers are essential for Active Database Management Systems (ADBMS)

 Bipin C
Desai

113

Triggers are compiled by storing the procedure in a text file and
compiling it with:
@filename

If we update an entire table with an SQL statement
A row-level trigger will be executed once for each tuple
A statement-level trigger will be executed only once for the entire update

In a statement-level trigger:
We can not refer to old and new tuples
Instead, we can/should refer to

The set of old tuples – OLD TABLE
The set of new tuples – NEW TABLE

 Bipin C
Desai

114

 Relation scheme: Employee(name, empId, salary, dept, supervisorId)

 Constraint: No employee gets a salary more than his/her supervisor.

CREATE TRIGGER Inform_supervisor

BEFORE INSERT OR UPDATE OF salary, supervisorId ON Employee

NEW ROW AS new

FOR EACH ROW

WHEN (new.salary > (SELECT salary

 FROM Employee

 WHERE empId=new.supervisorId))

Begin

 ROLLBACK;

 Inform_Supervisor(new.supervisorId, new.empId);

End;

 Bipin C Desai 115

Row Triggers (before and after)
A row trigger is fired once for each row affected by, say, an
UPDATE statement.

Row triggers are used when the trigger action depends on data
provided by the triggering statement or rows that are affected.

Statement Triggers (before and after)
A statement trigger is fired once, regardless of the number of rows in
the table that the triggering statement affects (even if no rows are affected).

If a DELETE statement deletes several rows from a table, a
statement-level DELETE trigger is fired only once, regardless of the
number of rows are deleted from the table.
Useful when the trigger action does not depend on the data provided
by the triggering statement or the rows that are affected.

 Bipin C
Desai

116

Relation Scheme: Movie(title, year, length, filmType, studioName,
producerC#)

CREATE VIEW ParamountMovie AS
SELECT title, year
FROM Movie
WHERE studioName = ’Paramount’;

The following trigger replaces an insertion on the view (ParamountMovie) with an
 insertion on its underlying base table (Movie)

CREATE TRIGGER ParamountInsert
INSTEAD OF INSERT ON ParamountMovie
REFERENCING NEW ROW AS NewRow
FOR EACH ROW
INSERT INTO Movie(title, year, studioName)
VALUES (NewRow.title, NewRow.year, ’Paramount’);

This is WRONG for a view!

 Bipin C Desai 117

CREATE or REPLACE TRIGGER ParamountInsert
INSTEAD OF INSERT ON ParamountMovie
FOR EACH ROW
BEGIN
INSERT INTO Movie(title, year, studioName)
VALUES (:new.title, :new.year, 'Paramount');
end ParamountInsert;
/
Trigger created.
SQL> show errors trigger ParamountInsert;
No errors.
insert into ParamountMovie values ('Movie2016', '2016');
1 row created.
SQL> select * from movie;
TITLE YEAR STUDIONAME
--------------------------- ---- ------------
Movie2016 2016 Paramount

To-date Mysql/
Maraiadb doesn’t
 have ‘instead of
 insert’ option

 Bipin C Desai 118

SQL> desc student;
 Name Null? Type
 -------------- -------- --------------
 SID NOT NULL NUMBER(7)
 SNAME VARCHAR2(20)
 MAJOR CHAR(4)
 YEAR NUMBER(1)
 BDATE DATE

create view cstdnt as
select sid as id, sname as name, bdate as dob
from student
where major='COMP';
View created.

SQL> select * from cstdnt;
 ID NAME DOB
---------- -------------------- ---------
 8 Brenda 13-AUG-89

 Bipin C Desai 119

CREATE OR REPLACE TRIGGER CStudentInsert
INSTEAD OF INSERT ON cstdnt
REFERENCING NEW AS NewRow
FOR EACH ROW
INSERT INTO student(sid, sname, major, year, bdate)
VALUES (NewRow.id, NewRow.name, 'COMP', 1, NewRow.dob)
Warning: Trigger created with compilation errors.

SQL> SHOW ERRORS TRIGGER CStudentInsert;
Errors for TRIGGER CSTUDENTINSERT:

LINE/COL ERROR
-------- ---
1/7 PL/SQL: SQL Statement ignored
2/51 PL/SQL: ORA-00984: column not allowed here

 Bipin C Desai 120

SQL> CREATE OR REPLACE TRIGGER CStudentInsert
instead of INSERT ON cstdnt
FOR EACH ROW
INSERT INTO student(sid, sname, major, year, bdate)
VALUES (:new.id, :new.name, 'COMP', 1, :new.dob)
/
Trigger created.
SQL> select * from student;

 SID SNAME MAJO YEAR BDATE
------- ------------ ---- ------ ---------
 8 Brenda COMP 2 13-AUG-89
 10 Dupont ENGL 1 13-MAY-80
 13 Kelly SENG 4 12-AUG-80
 14 Jack CSAP 1 12-FEB-77

 Bipin C Desai 121

SQL> insert into cstdnt values(7,'Drew', '13-Sep-81');
1 row created.

SQL> select * from student;

 SID SNAME MAJO YEAR BDATE
------ ----------- ---- ------- ---------
 8 Brenda COMP 2 13-AUG-89
 10 Dupont ENGL 1 13-MAY-80
 13 Kelly SENG 4 12-AUG-80
 14 Jack CSAP 1 12-FEB-77
 7 Drew COMP 1 13-SEP-81

 Bipin C Desai 122

MariaDB [tempDB]> CREATE TABLE users
(userid INT(11) NOT NULL AUTO_INCREMENT,
 last_name VARCHAR(30) NOT NULL,
 first_name VARCHAR(25),
 email VARCHAR(50) NOT NULL,
 insert_date DATE,
 inserted_by VARCHAR(30),
 CONSTRAINT users_pk PRIMARY KEY (userid));

MariaDB [mysql]> desc users;
+-------------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+----------------+
userid	int(11)	NO	PRI	NULL	auto_increment
last_name	varchar(30)	NO		NULL	
first_name	varchar(25)	YES		NULL	
email	varchar(50)	NO		NULL	
insert_date	date	YES		NULL	
inserted_by	varchar(30)	YES		NULL	
+-------------+-------------+------+-----+---------+----------------+
6 rows in set (0.01 sec)

 Bipin C Desai 123

DELIMITER |
CREATE TRIGGER users_before_insert
BEFORE INSERT
 ON users FOR EACH ROW
BEGIN
 DECLARE whoinserted varchar(50);
 -- Find username of person performing inserting a new user
 SELECT USER() INTO whoinserted ;
 -- Update create_date field to current system date
 SET NEW.insert_date = SYSDATE();
 -- Update created_by field to the username of the person
 -- performing the INSERT
 SET NEW.inserted_by = whoinserted;
END; |

DELIMITER ;
 show triggers;

Other triggers:
 -before delete
 -before update
 -after insert
 -after update
 -after delete

 Bipin C Desai 124

MariaDB [test]> insert into users(last_name, first_name, email)

 -> values ('Smith', 'John', 'j_smith@okkefeenukee.edu');
Query OK, 1 row affected (0.024 sec)

Now create trigger

MariaDB [test]> DELIMITER |
MariaDB [test]> CREATE TRIGGER users_before_insert
 -> BEFORE INSERT
 -> ON users FOR EACH ROW
 -> BEGIN
 -> DECLARE whoinserted varchar(50);
 -> -- Find username of person performing inserting a new user
 -> SELECT USER() INTO whoinserted ;
 -> -- Update create_date field to current system date
 -> SET NEW.insert_date = SYSDATE();
 -> -- Update created_by field to the username of the person
 -> -- performing the INSERT
 -> SET NEW.inserted_by = whoinserted;
 -> END; |
Query OK, 0 rows affected (0.011 sec)

MariaDB [test]> DELIMITER ;

 Bipin C Desai 125

Insert another user

MariaDB [tempDB]> insert into users(last_name, first_name,
email) values ('Smith', 'John', 'j_smith@okkefeenukee.edu');
Query OK, 1 row affected (0.01 sec)

MariaDB [tempDB]> select * from users;
select * from users;
+--------+-----------+------------+--------------------------+-------------+-------------------+
| userid | last_name | first_name | email | insert_date | inserted_by |
+--------+-----------+------------+--------------------------+-------------+-------------------+
| 1 | Smith | John | j_smith@okkefeenukee.edu | NULL | NULL |
| 2 | Smith | John | j_smith@okkefeenukee.edu | 2024-03-24 | bcdesai@localhost |
+--------+-----------+------------+--------------------------+-------------+-------------------+
2 rows in set (0.000 sec) Before the trigger was crated

After the trigger was crated

 Bipin C Desai 126

HOW ARE TRIGGERS EXECUTED

- SQL statement is issued
- Execute any BEFORE statement-level triggers
- For each row affected by the triggering SQL statement
 - Execute any BEFORE row-level triggers
 - Lock and change row, and perform integrity constraint checking
 The lock is not released until the transaction is commited
 - Execute any AFTER row-level triggers
- Execute any AFTER statement-level triggers

 Bipin C Desai 127

Example with triggers etc.

create table University(
 Name CHAR(20) PRIMARY KEY,
 City CHAR(20));

create table Engineer(
 EID NUMBER(4),
 SIN NUMBER(9),
 Name char(20),
 AlmaMater CHAR(20),
 HireAge number(2) CHECK (HireAge BETWEEN 25 AND 65),
 CONSTRAINT Engineer_PK PRIMARY KEY(eid),
 CONSTRAINT Engineer_CK UNIQUE(SIN),
 FOREIGN KEY (AlmaMater) REFERENCES University(NAME)
);

Name of the constraint

Candidate key

 Check constraint

 Bipin C Desai 128

create table Project(
 ProjNo NUMBER(4) primary key,
 EID NUMBER(4),
 FOREIGN KEY (EID) REFERENCES Engineer(EID)
);

create table Assigned(
 ID NUMBER(4),
 pno NUMBER(4),
 CONSTRAINT Assign_FK1 FOREIGN KEY(ID)
 REFERENCES Engineer(EID),
 CONSTRAINT Assign_FK2 FOREIGN KEY(pno)
 REFERENCES Project(ProjNo)
);

 Bipin C Desai 129

insert into University values('ConU', 'Montreal');
insert into University values('UdeM', 'Montreal');

insert into Engineer values(11, 123456789, 'Smith', 'ConU', 35);
insert into Engineer values(12, 234567891, 'Shah', 'UdeM', 73)
*
ERROR at line 1:
ORA-02290: check constraint (SCOTT.SYS_C003385) violated

insert into Engineer values(12, 234567891, 'Shah', 'UdeM', 33);
insert into project values(1, 11);
insert into project values(2, 11);
insert into project values(3, 11);
insert into Assigned values(11, 1);
insert into Assigned values(12, 1);

INSERT Some Data

 Bipin C Desai 130

SQL> Create or Replace package ProjEngg
 as
 EnggEid number(4);
 end;
/
Package created.

SQL> Create or Replace Trigger WhichEngg
Before Insert on Project
for each row
begin
ProjEngg.EnggEid := :new.EID;
end;
/
Trigger created.

Package is a collections of
procedures and functions

Trigger of type Row level

 Bipin C Desai 131

Create or Replace Trigger NumberOfProjs
After Insert on PROJECT
Declare Howmany Number(2);
Begin
Select count(ProjNo) into Howmany
from PROJECT
where EID = ProjEngg.EnggEid;
if (Howmany > 4) then
RAISE_APPLICATION_ERROR(-20001,
 '**** Too many projects for this engineer! ****');
end if;
end;
/
Trigger created.

Statement level trigger

 Bipin C Desai 132

SQL> insert into project values(4, 11);
1 row created.
SQL> select * from project;
 PROJNO EID
---------- ----------
 1 11
 2 11
 3 11
 4 11
SQL> insert into project values(5, 11);
ERROR at line 1:
ORA-20001: **** Too many projects for this engineer! ****
ORA-06512: at "SCOTT.NUMBEROFPROJS", line 7
ORA-04088: error during execution of trigger
 'SCOTT.NUMBEROFPROJS'

SQL> select * from project;
 PROJNO EID
---------- ----------
 1 11
 2 11
 3 11
 4 11

 Bipin C Desai 133

Mutating trigger
A trigger that attempts to modify the same table that initiated the
trigger is called a mutating trigger.

CREATE OR REPLACE TRIGGER person_st
AFTER INSERT ON PERSON
REFERENCING NEW AS newRow
FOR EACH ROW
DECLARE STATUS CHAR(4);
BEGIN
STATUS := 'Poor';
IF (:newRow.income > 20000) THEN
STATUS := 'Med'; END IF;
IF (:newRow.income > 60000)THEN
STATUS := 'Rich'; END IF;
INSERT INTO person VALUES(:newRow.name, :newRow.dob,
 :newRow.income, STATUS);
END person_st;
.
run Trigger created.

 Bipin C Desai 134

SQL> insert into person (name, dob,income)
 values('Jones', '10-jun-68', 61000.00);
insert into person (name, dob,income)
 values('Jones', '10-jun-68', 61000.00)
 *
ERROR at line 1:
ORA-04091: table SCOTT.PERSON is mutating,
 trigger/function may not see it
ORA-06512: at "SCOTT.PERSON_ST", line 11
ORA-04088: error during execution of trigger
 'SCOTT.PERSON_ST'
Sql> drop trigger person_st;

Trigger dropped.

 Bipin C Desai 135

Getting around mutation!
create table person1 (
name char(25) primary key,
dob date,
income number(12,2))
/

drop table person cascade
constraints
/

create table person (
name char(25) primary key,
dob date,
income number(12,2),
status char (6))
/

CREATE or REPLACE TRIGGER
person1_st
AFTER INSERT ON PERSON1
REFERENCING NEW AS newRow
FOR EACH ROW
DECLARE STATUS CHAR(4);
BEGIN
STATUS := 'Poor';
IF (:newRow.income > 20000) THEN
STATUS := 'Med'; END IF;
IF (:newRow.income > 60000)THEN
STATUS := 'Rich'; END IF;
INSERT INTO person VALUES
(:newRow.name, :newRow.dob,
:newRow.income, STATUS);
END person_st;
.
run

 Bipin C Desai 136

SQL> insert into person1 values('Smith', '31-may-70', 21000.00);
SQL> insert into person1 values('John', '3-Apr-68', 11000.00);
SQL> insert into person1 values('Wang', '31-may-70', 60001.00);
SQL> select * from person1;
NAME DOB INCOME
--------------- --------- ----------
Smith 31-MAY-70 21000
John 03-APR-68 11000
Wang 31-MAY-70 60001
SQL> select * from person;
NAME DOB INCOME STATUS
-------------------------- ---------- ------
Smith 31-MAY-70 21000 Med
John 03-APR-68 11000 Poor
Wang 31-MAY-70 60001 Rich
Now input of dates needs the use of to_date function in Oracle!

insert into person1 values (‘Jones', to_date('1976/02/29','yyyy/mm/dd'), 29000.00);

 Bipin C Desai 137

SQL> select * from person;
NAME DOB INCOME STATUS
------------------------- --------- ---------- ------
Smith 31-MAY-70 21000 Med
John 03-APR-68 11000 Poor
Wang 31-MAY-70 60001 Rich

SQL> drop table person cascade constraints;
/
NOTE: Data in person1 is still not deleted
SQL> select * from person1;
NAME DOB INCOME
------------------------- --------- ----------
Smith 31-MAY-70 21000
John 03-APR-68 11000
Wang 31-MAY-70 60001

 Bipin C Desai 138

MariaDB [tempDB]> create table person (
name char(25) primary key,
income decimal(12,2),
status char (6));

CREATE OR REPLACE TRIGGER person_st
AFTER INSERT ON person
FOR EACH ROW
BEGIN
DECLARE STATUS CHAR(4);
set STATUS = 'Poor';
IF (new.income > 20000) THEN
set STATUS = 'Med'; END IF;
IF (new.income > 60000)THEN
set STATUS = 'Rich'; END IF;
INSERT INTO person VALUES(new.name, new.income, STATUS);
END

Note: the MySQL trigger syntax is different

 Bipin C Desai 139

MariaDB [tempDB]>insert into person (name, income)
 values ('Smith', 10000.0);

ERROR 1442 (HY000): Can't update table 'person' in stored
 function/trigger because it is already used by statement
 which invoked this stored function/trigger.

Mutating Trigger in mariadb/mysql

 Bipin C Desai 140

Another way to get around mutation

SQL> create view personv as select * from person;
CREATE OR REPLACE TRIGGER personv_st
INSTEAD OF INSERT ON PERSONV
FOR EACH ROW
DECLARE STATUS CHAR(4);
BEGIN
STATUS := 'Poor';
IF (:new.income > 20000) THEN
STATUS := 'Med'; END IF;
IF (:new.income > 60000)THEN
STATUS := 'Rich'; END IF;
INSERT INTO person VALUES(:new.name, :new.dob,
 :new.income, STATUS);
END person_st;
.
run
Trigger created.
insert into personv values('Black', '13-may-45', 120000,'Poor');
1 row created.

SQL> select * from person;

NAME DOB INCOME STATUS
------ --------- ------ ------
Smith 31-MAY-70 21000 Med
John 03-APR-68 11000 Poor
Wang 31-MAY-70 60001 Rich
Black 13-MAY-45 120000 Rich

 Bipin C Desai 141

SQL> select TRIGGER_NAME from user_triggers;

TRIGGER_NAME

CSTUDENTINSERT
ECTRIG
NUMBEROFPROJS
PERSON1_ST
PERSONV_ST
WHICHENGG

6 rows selected.

insert into personv
(name, dob,income)
values('Jones', '10-jun-68', 61000);
1 row created.

SQL> select * from person;
NAME DOB INCOME STATUS
------- --------- ---------- ------
Smith 31-MAY-70 21000 Med
John 03-APR-68 11000 Poor
Wang 31-MAY-70 60001 Rich
Black 13-MAY-45 120000 Rich
Jones 10-JUN-68 61000 Rich

 Bipin C Desai 142

create table EmpName (
 eid number not null,
 Name varchar2(30),
 primary key(eid));
create table EmpCity (
 eid number,
 City varchar2(15),
 foreign key (eid) references EmpName(eid) on
 delete cascade);
 insert into EmpName values(1,'Smith');
insert into EmpName values(2,'Lee');
insert into EmpCity values(1,'Montreal');
insert into EmpCity values(2,'Laval');
commit;

Another Mutating Trigger

If an employee is deleted, his city
 is also deleted!

 Bipin C Desai 143

create or replace trigger ECTrig
 after delete on EmpCity
 for each row
 declare
 n integer;
begin
select count(*) into n from EmpName;
dbms_output.put _line ('There are ' || n ||' rows in EmpName');
dbms_output.put_line('after cascade delete of EmpCity');
dbms_output.new_line;
end;
.
run
Trigger created.

set serveroutput on;
delete from EmpName where eid = 1;
 *
ERROR at line 1:
ORA-04091: table SCOTT.EMPNAME Is mutating,
trigger/function may not see it
ORA-06512: at "SCOTT.ECTRIG", line 4

ORA-04088: error during execution of trigger ‘
SCOTT.ECTRIG'

To enable dbms_output

 Bipin C Desai 144

Solution: Use statement trigger instead of row trigger
create or replace trigger ECTrig
 after delete on EmpCity
 declare n integer;
 begin
 select count(*) into n from EmpName;
 dbms_output.put ('There are ' || n || ' rows in EmpName');
 dbms_output.put _line ('after cascade delete of EmpCity');
 dbms_output.new_line;
 end;
.
run

There are 1 rows in EmpName
 after cascade delete of EmpCity
1 row deleted.
SQL> select * from EmpName;
EID NAME
----- -------------
 2 Lee
SQL> select * from EmpCity;
EID CITY
------ ---------------
 2 Laval

set serveroutput on;
delete from EmpName where eid = 1;
1 row deleted.

To enable dbms_output

 Bipin C Desai 145

The mutating trigger error occurs due to the protocol used in
Oracle to manage a read consistent view of data. (data read is of the
 same generation)

The error is occurs when a row-level trigger, while executing,
accesses the table on which it is based.
The table is said to be mutating.

Mutation will not occur if a single record is inserted in the table
(using VALUES clause).

If bulk insertion is done or data is inserted from another table
mutation will occur.
The mutating error is not only encountered during queries,
but also for insert, updates and deletes present in the trigger.

It is reported that newer release of the Oracle DBs (9i+) reduces
the impact of the mutating triggers –but triggers still mutates.

 Bipin C Desai 146

create table T (A number, B varchar2(10));

SQL> create or replace trigger Ttrg
 2 before insert or update or delete
 3 on T
 4 for each row
 5 declare
 6 i pls_integer;
 7 begin
 8 select count(1)
 9 into i
 10 from T;
 11 dbms_output.put_line('Trigger success');
 12 exception
 13 when no_data_found then
 14 dbms_output.put_line('Error');
 15 end;
 16 /
Trigger created.

Another example of Mutation

PLS_INTEGER

PLS_INTEGER instead of INTEGER or
NUMBER for an efficient numeric
datatype .

magnitude range for this datatype is –
2147483647 through 2147483647.

require less storage than INTEGER or
NUMBER values,

operations use faster machine arithmetic,

count(1) and count(*)
 returns the number
 of rows

 Bipin C Desai 147

SQL> insert into T values(1, 'ABD');
1 row created.
SQL> update T set A=2; Bulk Update
update T
 *
ERROR at line 1:
ORA-04091: table SCOTT.T is mutating, trigger/function may not see it
ORA-06512: at "SCOTT.TTRG", line 4
ORA-04088: error during execution of trigger 'SCOTT.TTRG'
SQL> create table T1 (A number primary key, B varchar2(10));
SQL> insert into T1 values (1, ‘ABC');
SQL> insert into T1 values (1, ‘ABC');

SQL> insert into T select * from T1; Bulk Insert
insert into T select * from T1
 *
ERROR at line 1:
ORA-04091: table SCOTT.T is mutating, trigger/function may not see it
ORA-06512: at "SCOTT.TTRG", line 4
ORA-04088: error during execution of trigger 'SCOTT.TTRG'

T and T1 have the same schema

 Bipin C Desai 148

create or replace trigger Ttrg
before insert or update or delete on T
Declare i pls_integer;
begin
 select count(1) into I from T;
 dbms_output.put_line('Trigger success');
 exception
 when no_data_found then
 dbms_output.put_line('Error');
 end;
SQL> insert into T select * from T1;
2 rows created.
SQL> select * from T;
 A B
---------- ----------
 1 ABD
 1 ABC
 2 BCD

Sln: Statement level trigger

 Bipin C Desai 149

create table T1 (A number primary key, B varchar2(10));

create table T2 (A number, B varchar2(10) ,
foreign key (A) references T1 on delete cascade);

create or replace trigger T1trg
before insert or update or delete on T1
for each row
Declare i pls_integer;
begin
select 1
into i
from T2
where A = :new.A;
dbms_output.put_line(‘Trigger success');
exception
when no_data_found then
dbms_output.put_line(‘Error: no data’);
end;
/

Final example of Mutation

 Bipin C Desai 150

SQL> insert into T1 values (1, ‘ABC');
1 row created.
SQL> select * from T1;

SQL> select * from t2;
no rows selected

SQL> delete from t1;
delete from t1
 *
ERROR at line 1:
ORA-04091: table SCOTT.T2 is mutating, trigger/function
may not see it
ORA-06512: at "SCOTT.T1TRG", line 4
ORA-04088: error during execution of trigger 'SCOTT.T1TRG'

A B
---------- ----------
 1 ABC

 Bipin C Desai 151

SQL> insert into T1 values (2, ‘BCD');
1 row created.
SQL> insert into T2 values(1, ‘XYZ');
1 row created.
SQL> insert into T2 values (2, ‘WXY');
1 row created.

SQL> delete from T1 where A= 1;
delete from T1 where A= 1
 *
ERROR at line 1:
ORA-04091: table SCOTT.T2 is mutating, trigger/function
may not see it
ORA-06512: at "SCOTT.T1TRG", line 4
ORA-04088: error during execution of trigger 'SCOTT.T1TRG'

 Bipin C Desai 152

Movie ActorSContract

Name
Name Year

Studio Studio

Produce XContract

Name Name

Actors:John(st1),
Mary(st2) ,
Bob(st3),

 Jane(st3)

Studios: st1, st2, st3
Movies: m1,1990

(Produced by st1
with Bob, Jane, Mary),
 m2.1990
 (Produced by st2
 with John)

XContract – exclusive contract
SContract - special contract

 Bipin C Desai 153

create table studio(
name varchar2(12) primary key);
insert into studio values('st1');
insert into studio values('st2');
insert into studio values('st3');

create table xcontract(
aname varchar2(12) primary key,
astudio varchar2(12) not null,
foreign key (aname) references actor(name),
foreign key (astudio) references studio(name));

insert into xcontract
values('John', 'st1');

insert into xcontract
values('Mary', 'st2');

insert into xcontract
values('Bob', 'st3');

insert into xcontract
values('Jane', 'st3')

create table movie(
name varchar2(12), year dec(4),
primary key(name,year));
insert into movie values('m1',1990);
insert into movie values('m2',1990);

create table actor(
name varchar2(12) primary key);
insert into actor values('John');
insert into actor values('Mary');
insert into actor values('Bob');
insert into actor values('Jane');

 Bipin C Desai 154

create table produce(
sname varchar2(12) not null unique,
mname varchar2(12), myear dec(4),
primary key (mname,myear),
-- must give the above together as foreign key
foreign key (mname, myear) references movie(name, year),
foreign key (sname) references studio(name));
insert into produce values('st1', 'm1',1990);
insert into produce values('st2', 'm2',1990);

 Bipin C Desai 155

create table scontract(-- special contract
mname varchar2(12), myear dec(4),
aname varchar2(12), pstudio varchar2(12),
astudio varchar2(12),
primary key(mname, myear, aname),
-- This is equivalent to a m-m-1-1 multiplicity
foreign key (mname,myear) references movie(name,year),
foreign key (aname) references actor(name),
foreign key (pstudio) references studio(name),
foreign key (astudio) references studio(name));

insert into scontract values('m1',1990,'Mary', 'st1', 'st2');
insert into scontract values('m1',1990,'Bob', 'st1', 'st3');
insert into scontract values('m1',1990,'Jane', 'st1', 'st3');
insert into scontract values('m1',1990,'Mary', 'st2', 'st1');
* ERROR at line 1:
ORA-00001: unique constraint (SCOTT.SYS_C004729) violated

 Bipin C Desai 156

insert into scontract values('m2',1990,'John', 'st2', 'st1');
 -- There is no check in consistency John has exclusive contract
with st1
insert into scontract values('m2',1990,'Bob', 'st2', 'st3');
 -- These is no check in consistency movie m2 in 1990 is made by st2
 Bob is under contact to st3
insert into scontract values('m2',1990,'Jane', 'st2', 'st3');
 -- These is no check in consistency movie m2 in 1990 is made by st2
Jane is under contact to st3

SQL> select * from scontract;
MNAME MYEAR ANAME PSTUDIO ASTUDIO
------------ ---------- ------------ ------------ ------------
m1 1990 Mary st1 st2
m1 1990 Bob st1 st3
m1 1990 Jane st1 st3
m2 1990 John st2 st1
m2 1990 Bob st2 st3
m2 1990 Jane st2 st3

 Bipin C Desai 157

SQL> select * from xcontract;
ANAME ASTUDIO
------------ ------------
Jane st3
John st1
Mary st2
Bob st3

SQL> delete from scontract;
6 rows deleted.
insert into scontract values('m1',1990,'Jane','st1','st1');
insert into scontract values('m2',1990,'John','st2','st3');

SQL> select * from scontract;

MNAME MYEAR ANAME PSTUDIO ASTUDIO
-------- ------- --------- --------- ---------
m1 1990 Jane st1 st1
m2 1990 John st2 st3

Does not maintain the consistency
John is under contract to st1 not st3
Jane is under contract to st3 not st1

 Bipin C Desai 158

create table scontract1(
mname varchar2(12),
myear dec(4),
aname varchar2(12),
pstudio varchar2(12),
astudio varchar2(12),
primary key(mname, myear, aname, pstudio, astudio),
-- This is equivalent to a 1 to 1 to 1 to 1 multiplicity
foreign key (mname,myear) references movie(name,year),
foreign key (aname) references actor(name),
foreign key (pstudio) references studio(name),
foreign key (astudio) references studio(name));

 Bipin C Desai 159

insert into scontract1 values('m1',1990,'Mary', 'st1', 'st2');
insert into scontract1 values('m1',1990,'Bob', 'st1', 'st3');
insert into scontract1 values('m1',1990,'Jane', 'st1', 'st3');
insert into scontract1 values('m2',1990,'John', 'st2', 'st1');
insert into scontract1 values('m2',1990,'Bob', 'st2', 'st3');
insert into scontract1 values('m2',1990,'Jane', 'st2', 'st3');

insert into scontract1 values('m1',1990,'Mary', 'st3', 'st1');
 -- Allows the same movie to be made by different studio
 -- Allows the same actor to be under contract to >1 studio!

 Bipin C Desai 160

Movie Actor

PXContract

AName
MName Year

Studio Studio

Produce XContract

PSName ASName

MName

Year

PSName

AName

ASName

Aggregation

To preserve the
consistency of the
existing relationships

MName, Year  PSName
AName  ASName

 Bipin C Desai 161

drop table pxcontract;
create table pxcontract(
mname varchar2(12),
year dec(4),
pstudio varchar2(12),
aname varchar2(12),
astudio varchar2(12),
primary key(pstudio, mname, year),
foreign key (mname,year) references produce(mname,myear),
foreign key (aname) references xcontract(aname));
SQL> insert into pxcontract values('m1',1990, 'st1', 'Mary', 'st2');
1 row created.
SQL> insert into pxcontract values('m1',1990, 'st1', 'Bob', 'st3');
* ERROR at line 1:
ORA-00001: unique constraint (SCOTT.SYS_C004747) violated

 Bipin C Desai 162

Use triggers to maintain consistency

drop table pxcontract;
create table pxcontract(
mname varchar2(12),
year dec(4),
aname varchar2(12),
primary key(mname, year, aname),
foreign key (mname,year)
 references produce(mname,myear),
foreign key (aname) references xcontract(aname));

 Bipin C Desai 163

create view vcontract as select * from scontract;
CREATE OR REPLACE TRIGGER SP_Trig
Instead of INSERT ON vcontract
FOR EACH ROW
Declare pstudio varchar2(12); astudio varchar2(12);
begin
select p.sname into pstudio from produce p
where :new.mname=p.mname
And :new.myear=p.myear;
select x.astudio into astudio from xcontract x
where :new.aname=x.aname;
INSERT INTO scontract values
(:new.mname,:new.myear, :new.aname, pstudio, astudio);
END SP_Trig;
.
run

USE TRIGGER for consistency

 Bipin C Desai 164

insert into vcontract values('m1',1990,'Mary', 'st3', 'st1');
1 row created.

SQL> select * from scontract;

MNAME MYEAR ANAME PSTUDIO ASTUDIO
------------ ---------- ------------ ------------ ------------
m1 1990 Mary st1 st2

insert into vcontract values('m1',1990,'Mary', 'st1', 'st2');

 * ERROR at line 1:
ORA-00001: unique constraint (SCOTT.SYS_C004729) violated
ORA-06512: at "SCOTT.SP_TRIG", line 8
ORA-04088: error during execution of trigger 'SCOTT.SP_TRIG'

 Bipin C Desai 165

insert into vcontract values('m1',1990,'Bob', 'st1', 'st3');
SQL> select * from scontract;

MNAME MYEAR ANAME PSTUDIO ASTUDIO
------------ ---------- ------------ ------------ ------------
m1 1990 Mary st1 st2
m1 1990 Bob st1 st3

insert into vcontract values('m1',1990,'Jane', 'st1', 'st3');
1 row created.

SQL> select * from scontract;

MNAME MYEAR ANAME PSTUDIO ASTUDIO
------------ ---------- ------------ ------------ ------------
m1 1990 Mary st1 st2
m1 1990 Bob st1 st3
m1 1990 Jane st1 st3

 Bipin C Desai 166

insert into vcontract values('m2',1990,'John', 'st2', 'st1');
SQL> select * from scontract;
MNAME MYEAR ANAME PSTUDIO ASTUDIO
------------ ---------- ------------ ------------ ------------
m1 1990 Mary st1 st2
m1 1990 Bob st1 st3
m1 1990 Jane st1 st3
m2 1990 John st2 st1

insert into vcontract values('m2',1990,'Bob', 'st2', 'st3');
SQL> select * from scontract;
MNAME MYEAR ANAME PSTUDIO ASTUDIO
------------ ---------- ------------ ------------ ------------
m1 1990 Mary st1 st2
m1 1990 Bob st1 st3
m1 1990 Jane st1 st3
m2 1990 John st2 st1
m2 1990 Bob st2 st3

 Bipin C Desai 167

insert into vcontract values('m2',1990,'Jane', 'st2', 'st3');

SQL> select * from scontract;
MNAME MYEAR ANAME PSTUDIO ASTUDIO
------------ ---------- ------------ ------------ ------------
m1 1990 Mary st1 st2
m1 1990 Bob st1 st3
m1 1990 Jane st1 st3
m2 1990 John st2 st1
m2 1990 Bob st2 st3
m2 1990 Jane st2 st3

SQL> insert into vcontract values('m1',1990,'Mary', 'st3', 'st1')
 *ERROR at line 1:
ORA-00001: unique constraint (SCOTT.SYS_C004729) violated
ORA-06512: at "SCOTT.SP_TRIG", line 8
ORA-04088: error during execution of trigger 'SCOTT.SP_TRIG'

 Bipin C Desai 168

SQL> select * from scontract;
MNAME MYEAR ANAME PSTUDIO ASTUDIO
------------ ---------- ------------ ------------ ------------
m1 1990 Mary st1 st2
m1 1990 Bob st1 st3
m1 1990 Jane st1 st3
m2 1990 John st2 st1
m2 1990 Bob st2 st3
m2 1990 Jane st2 st3

6 rows selected.
SQL> select * from vcontract;
MNAME MYEAR ANAME PSTUDIO ASTUDIO
------------ ---------- ------------ ------------ ------------
m1 1990 Mary st1 st2
m1 1990 Bob st1 st3
m1 1990 Jane st1 st3
m2 1990 John st2 st1
m2 1990 Bob st2 st3
m2 1990 Jane st2 st3
6 rows selected.

 Bipin C Desai 169

Actor

Name

Movie

Name Year

Role

Studio

Name

Free lance system where actors are not under contract

 Bipin C Desai 170

DATES:

How to specify the beginning weekday of the week

select to_char(trunc(sysdate,'DAY'),'fmDay"," Month DD"," YYYY')
 AS First_week_day from dual;
FIRST_WEEK_DAY

Sunday, November 17, 2002

If we want Monday to be the beginning of the week:

SQL> alter session set nls_territory=FRANCE;
Session altered.
SQL> select to_char(trunc(sysdate,'DAY'),'fmDay"," Month DD",
 " YYYY') AS First_week_day from dual;
FIRST_WEEK_DAY

Monday, November 18, 2002

 Bipin C Desai 171

The DUAL table in Oracle

SQL> describe dual;
 Name Null? Type
 --------------- -------- --------------
 DUMMY VARCHAR2(1)

Contains one row and one column. Can be used to put results

SQL> select power(2,10) from dual;

POWER(2,10)

 1024
SQL> select to_date(sysdate) from dual;

TO_DATE(S

29-SEP-02

 Bipin C Desai 172

SQL> select add_months(sysdate,2) from dual;
ADD_MONTH

18-JAN-04

 SQL> update student
set bdate=(select add_months(bdate,36)from dual)
where sid=8
SQL> select * from student where sid=8;

 SID SNAME MAJOR YEAR BDATE
---- ------------ ----- ----

 8 Brenda COMP 2 13-AUG-80

Lets make Brenda younger

SQL> select * from student where sid=8;
 SID SNAME MAJOR YEAR BDATE
-------- ------------- -------------- --------- ----------------
 8 Brenda COMP 2 13-AUG-77

 Bipin C Desai 173

select to_char(trunc(sysdate,'DAY')) as FirstDayofWeek from dual;
FIRSTDAYO

14-MAR-04

select to_char(trunc(sysdate,'DAY'),'fmDay') as FirstDay from dual;
FIRSTDAY

Sunday

select to_char(trunc(sysdate,'MONTH'),'fmMonth') as Month from dual;
MONTH

March

select to_char(trunc(sysdate),'fmYear') as year from dual;
YEAR

Two Thousand Four

select to_char(trunc(sysdate)) from dual;
TO_CHAR(T

16-MAR-04 Date of query (a Tuesday)

select to_char(trunc(sysdate,'MONTH')) from dual;
TO_CHAR(T

01-MAR-04

select to_char(trunc(sysdate,'YEAR')) from dual;
TO_CHAR(T

01-JAN-04

TRUNCate function and dates truncate to first day of week

Format fully after truncating to first day of week, month, year

 Bipin C Desai 174

select to_char((select DOB from person where Name='Smith'),
 'DAY') As Weekday from dual;
WEEKDAY

SUNDAY

To find the first business day of the week for a particular date:
SQL> select to_char(trunc((select DOB from person where
 Name='Smith'),'DAY') , 'fmDay') from dual;
Monday

To find the first business day of the week two days from a
particular date:
SQL> select to_char(trunc((select DOB from person where
 Name='Smith'),'DAY') + 2, 'fmDay') from dual;
Wednesday

 Bipin C Desai 175

To find the day of the week for a specified date:
SQL> select to_char(to_date('18-Nov-02'), 'Day') As Weekday
 from dual;
WEEKDAY

Monday

Find the first business day after the birthday of Smith:

select to_char(trunc((select DOB from person
 where Name='Smith'),
 'DAY') +2, 'fmDay') As

Smith_Bday2busWeek from dual;

Finding where a date is(half, quarter)

select TO_NUMBER(TO_CHAR((select DOB from person
 where Name='Smith'), 'Q')) as SmithQ from dual;

SmithQ

2

 Bipin C Desai 176

DECODE(expression, if1, then1, if2, then2, …., ifn,thenn, else)

Create tables assignment(
 sid number(7),
 assign# number(2),
 submitdate date
 primary key (sid, assign#))

 insert into assignment values (123, 1, '17-jan-2004');
 insert into assignment values (124, 1, '18-jan-2004');
 insert into assignment values (125, 1, '19-jan-2004');
 insert into assignment values (123, 2, '17-feb-2004');
 insert into assignment values (124, 2, '18-feb-2004');
 insert into assignment values (125, 2, '19-feb-2004');

Create table duedate(
assign# number (2) primary key,
duedate date);
Insert into duedate
 values(1, ‘17-jan-2004’);
insert into duedate
 values(2, '14-feb-2004');

 Bipin C Desai 177

select a.sid, a.assigno,
 decode(trunc(a.submitdate - d.duedate), 0, null, 1, 'one day',
 2, 'two days', 3, 'three days', 4, 'four days' ,'Too late') as Late_days
from assignment a , duedate d
where a.assigno = d.assigno
order by sid, assigno;
 SID ASSIGNO LATE_DAYS
----- ------- ----------
 123 1
 123 2 three days
 124 1 one day
 124 2 four days
 125 1 two days
 125 2 Too late

 Bipin C Desai 178

To calculate the number of business days between two days: store the
following code in a file say: numbusdays.sql

define frdate = '&1'
define todate = '&2'
set verify off
select
 '&frdate' From_Date,'&todate' To_Date,
 1 + to_date('&todate') - to_date('&frdate') -
 ((TRUNC(to_date('&todate'),'D') –
 TRUNC(to_date('&frdate'),'D'))/7)*2
 + DECODE(to_char(to_date('&todate'),'D'),7,-1,0)
 + DECODE(to_char(to_date('&frdate'),'D'),1,-1,0) Business_Days
 from dual
/
Then one can interactively call it:
SQL> @numbusdays 20-Nov-02 24-Dec-02

FROM_DATE TO_DATE BUSINESS_DAYS
--------------- ------------------ ----------------
20-Nov-02 24-Dec-02 25

DECODE (exp, if, then, else, ..)

How many weeends?
 a saturday?
 a sunday?

 Bipin C Desai 179

SQL> create table interval (startdate char(10), enddate char(10));
insert into interval values('1998.04.11','1998.09.30');
insert into interval values('1998.04.15','1998.10.01');
insert into interval values('1998.05.11','1998.06.17');
insert into interval values('1998.06.14','1998.10.12');

SQL> SELECT STARTDATE,ENDDATE
FROM INTERVAL
WHERE TO_DATE('1998.04.17','YYYY.MM.DD') BETWEEN
 TO_DATE(STARTDATE,'YYYY.MM.DD') AND
 TO_DATE(ENDDATE,'YYYY.MM.DD');

STARTDATE ENDDATE
---------- ----------
1998.04.11 1998.09.30
1998.04.15 1998.10.01

 Bipin C Desai 180

If the interval is stored as dates:
SQL> create table intervaldate (startdate date, enddate date);
SQL> insert into intervaldate
select TO_DATE(startdate,'YYYY.MM.DD'),
 TO_DATE(enddate,'YYYY.MM.DD')
 from interval;
SQL> select * from intervaldate;

STARTDATE ENDDATE
--------- ---------
11-APR-98 30-SEP-98
15-APR-98 01-OCT-98
11-MAY-98 17-JUN-98
14-JUN-98 12-OCT-98
.

SQL> select startdate, enddate+1
 from intervaldate;

STARTDATE ENDDATE+1
--------- ---------
11-APR-98 01-OCT-98
15-APR-98 02-OCT-98
11-MAY-98 18-JUN-98
14-JUN-98 13-OCT-98

 Bipin C Desai 181

SQL> SELECT startdate , enddate FROM intervaldate
 WHERE TO_DATE('1998.07.03','YYYY.MM.DD')
 BETWEEN startdate AND enddate ;
STARTDATE ENDDATE
--------- ---------
11-APR-98 30-SEP-98
15-APR-98 01-OCT-98
14-JUN-98 12-OCT-98
SQL> select TO_CHAR(startdate, 'YYYY-MM-DD:HH:MI:SS')
 as starttime from intervaldate;
STARTTIME

1998-04-11:12:00:00
1998-04-15:12:00:00
1998-05-11:12:00:00
1998-06-14:12:00:00

 Bipin C Desai 182

SQL> select TO_CHAR(startdate+
 8/24 + 13/1440 + 12/86400,
 'YYYY-MM-DD:HH:MI:SS') as NewStartTime
 from intervaldate;
 NEWSTARTTIME

1998-04-11:08:13:12
1998-04-15:08:13:12
1998-05-11:08:13:12
1998-06-14:08:13:12
Last day of month:
SQL>select LAST_DAY(enddate)
 as EndofMonth
 from intervaldate;

ENDOFMONTH

30-SEP-98
31-OCT-98
30-JUN-98
31-OCT-98

 Bipin C Desai 183

SQL> select Name,
 Trunc(MONTHS_BETWEEN(Sysdate, DOB)/12) as Age
 from person;
NAME AGE
------ ---
Smith 32
John 34
Wang 32
Age in five years?

select Name,
 Trunc(MONTHS_BETWEEN(ADD_MONTHS(Sysdate,60),
 DOB)/12) as Age from person; NAME AGE

------ ---
Smith 37
John 39
Wang 37

 Bipin C Desai 184

create or replace function time_between (start_tm in date, end_tm in date,
 hours_only varchar2 default 'N') return varchar2 as
-- If "hours_only" is null or "N", the return will be a string formatted like:
-- 2 days, 3 hrs, 5 mins, 10 secs
-- If "hours_only" is not "N", then the return is a value in hours, like 102.325
 ret_val varchar2(80);
 start_sec number;
 end_sec number;
 full_sec number;
 balance number;
 minutes number;
 hours number;
 days number;
--
 function get_sec (time_in in date) return number as
 begin
 return to_number(to_char(time_in,'SSSSS'));
 end;
--
begin
 start_sec := get_sec(start_tm);
 end_sec := get_sec(end_tm);
 -- check if end time is in the same day as start time
 if to_char(start_tm,'YYMMDD') =
 to_char(end_tm,'YYMMDD') then
 full_sec := end_sec - start_sec;
 days := 0;
 else
 days := trunc(end_tm - start_tm);
 if days > 0 then
 ret_val := to_char(days)||' days, ';
 end if;
 if end_sec > start_sec then
 full_sec := end_sec - start_sec;
 else
 full_sec := 86400 - start_sec + end_sec;
 end if;
 end if;

if upper(hours_only) = 'N' then
 if full_sec > 3599 then
 hours := floor(full_sec / 3600);
 balance := mod(full_sec,3600);
 full_sec := balance;
 if hours > 1 then
 ret_val := ret_val || to_char(hours) ||' hrs, ';
 else
 ret_val := ret_val || to_char(hours) ||' hr, ';
 end if;
 end if;
 if full_sec > 59 then
 minutes := floor(full_sec / 60);
 balance := mod(full_sec,60);
 full_sec := balance;
 if minutes > 1 then
 ret_val := ret_val||to_char(minutes)||' mins, ';
 else
 ret_val := ret_val||to_char(minutes)||' min, ';
 end if;
 end if;
 ret_val := ret_val||to_char(full_sec)||' secs';
 else
 -- Calculate the time difference in hours,
 -- to three decimal places
 ret_val := to_char((24 * days) + round((full_sec / 3600),3));
 end if;
 return ret_val;
end;
/
grant execute on time_between to public;
create public synonym time_between for time_between;

 Bipin C Desai 185

select Name, time_between(dob, SysDate, 'N') AS Age
from person
where name='Smith';

NAME AGE
------------ ---
Smith 11866 days, 10 hrs, 38 mins, 14 secs

 Bipin C Desai 186

Oracle Editing SQL Buffer

Command abbrev. Oper. on crnt. line/all lines
append txt a text adds text at the end of a line
change /old/new/ c /old/new/ change old to new in a line
change /txt c /txt delete text from a line
clear buffer cl buff delete all lines in the buffer
del delete a line
get file load file into buffer
input i add one or more lines
input txt iI txt add text as a line
list l list all lines of buffer
list n l n (n) list line n and make it current
list * l * list crnt. Line
list last l last list last line
list m n l m n list lines m – n
save file sav file save buffer to file

 Bipin C Desai 187

Note: cat is a synonym for
 user_catalog

SQL> desc user_catalog;
Name Null? Type
----------- -------- -------------
 TABLE_NAME NOT NULL VARCHAR2(30)
 TABLE_TYPE VARCHAR2(11)

SQL> select * from cat;
TABLE_NAME TABLE_TYPE
---------------- -----------
ASSIGNED_TO TABLE
BONUS TABLE
COURSE TABLE
CRS_SECTION TABLE
DEPT TABLE
DEPTMAJOR TABLE
DISTANCE TABLE
DO_PROJECT VIEW
DO_PROJ_SUP VIEW
DUMMY TABLE
EMAIL_INFO TABLE

 Bipin C Desai 188

SQL> desc assigned_to;
 Name Null? Type
 --------------- -------- -----------
 PROJ# NUMBER(4)
 EMP# NUMBER(4)
 ……….

SQL> select table_name from user_tables;
TABLE_NAME

ASSIGNED_TO
BONUS
COURSE
……….

SQL> select TABLESPACE_NAME from user_tables;
TABLESPACE_NAME

SYSTEM
SYSTEM
TUTOR
TUTOR ……….

 Bipin C Desai 189

SQL> desc user_tables;
 Name Null? Type
 ----------------- -------- --------------
 TABLE_NAME NOT NULL VARCHAR2(30)
 TABLESPACE_NAME VARCHAR2(30)
 CLUSTER_NAME VARCHAR2(30)
 IOT_NAME VARCHAR2(30)
 etc.
SQL> desc user_tab_columns;
 Name Null? Type
 ------------------- -------- -------------
 TABLE_NAME NOT NULL VARCHAR2(30)
 COLUMN_NAME NOT NULL VARCHAR2(30)
 DATA_TYPE VARCHAR2(106)
 DATA_TYPE_MOD VARCHAR2(3)
 DATA_TYPE_OWNER VARCHAR2(30)
 etc.

 Bipin C Desai 190

SQL> desc user_views;
 Name Null? Type
 ------------------- -------- ------------
 VIEW_NAME NOT NULL VARCHAR2(30)
 TEXT_LENGTH NUMBER
 TEXT LONG
 TYPE_TEXT_LENGTH NUMBER
 TYPE_TEXT VARCHAR2(4000)
 OID_TEXT_LENGTH NUMBER
 OID_TEXT VARCHAR2(4000)
 VIEW_TYPE_OWNER VARCHAR2(30)
 VIEW_TYPE VARCHAR2(30)
 SUPERVIEW_NAME

SQL> select view_name from user_views;
VIEW_NAME

DO_PROJECT
DO_PROJ_SUP
TEMP1

 Bipin C Desai 191

SQL> desc user_triggers;
 Name Null? Type
 ----------------- --------- --------------
 TRIGGER_NAME VARCHAR2(30)
 TRIGGER_TYPE VARCHAR2(16)
 TRIGGERING_EVENT VARCHAR2(227)
 TABLE_OWNER VARCHAR2(30)
 BASE_OBJECT_TYPE VARCHAR2(16)
 TABLE_NAME VARCHAR2(30)
 COLUMN_NAME VARCHAR2(4000)
 REFERENCING_NAMES VARCHAR2(128)
 WHEN_CLAUSE VARCHAR2(4000)
 STATUS VARCHAR2(8)
 DESCRIPTION VARCHAR2(4000)
 ACTION_TYPE VARCHAR2(11)
 TRIGGER_BODY LONG

 Bipin C Desai 192

SQL> select TRIGGER_NAME from user_triggers;
TRIGGER_NAME

EMP_SAL_RAISE
PERSON1_ST

select TRIGGER_NAME,TRIGGER_TYPE,TRIGGERING_EVENT,TABLE_OWNER
from user_triggers
where TRIGGER_NAME='PERSON1_ST';

TRIGGER_NAME TRIGGER_TYPE TRIGGERING_EVENT TABLE_OWNER
------------ -------------- ---------------- -----------
PERSON1_ST AFTER EACH ROW INSERT SCOTT

 Bipin C Desai 193

SQL> SET PAGESIZE 66
SQL> COLUMN object_type FORMAT A20
SQL> COLUMN object_name FORMAT A30
SQL> COLUMN status FORMAT A10
SQL> BREAK ON object_type SKIP 1
SQL> SELECT object_type, object_name, status
 FROM user_objects
 WHERE object_type IN ('PACKAGE','PACKAGE BODY',
 'FUNCTION','PROCEDURE',
 'TYPE','TYPE BODY',

 'TRIGGER');

OBJECT_TYPE OBJECT_NAME STATUS
--------------- ------------------ ----------
FUNCTION BUSINESS_DAYS VALID
TRIGGER PERSON1_ST VALID

 Bipin C Desai 194

select text
from user_source
where name='WORKING_DAYS';

TEXT

FUNCTION working_days(date1 IN DATE, date2 IN DATE)
RETURN NUMBER IS workdays NUMBER;
BEGIN
 workdays := TRUNC(date2) - TRUNC(date1) + 1
 - ((TRUNC(to_date(date2,'D'))-TRUNC(to_date(date1),'D'))/7)*2;
 IF TO_CHAR(date2,'D') = '7' THEN
 workdays := workdays - 1;
 END IF;
 IF TO_CHAR(date1,'D') = '1' THEN
 workdays := workdays - 1;
 END IF;
 RETURN(workdays);
end;

 Bipin C Desai 195

select text
from user_source
where name=PERSONV_ST';

TEXT
--
TRIGGER personv_st
INSTEAD OF INSERT ON PERSONV
FOR EACH ROW
DECLARE STATUS CHAR(4);
BEGIN
STATUS := 'Poor';
IF (:new.income > 20000) THEN
STATUS := 'Med'; END IF;
IF (:new.income > 60000)THEN
STATUS := 'Rich'; END IF;
INSERT INTO person VALUES(:new.name, :new.dob, :new.income, STATUS);
END person_st;

 Bipin C Desai 196

TEXT

FUNCTION working_days(date1 IN DATE, date2 IN DATE)
RETURN NUMBER IS workdays NUMBER;
BEGIN
 workdays := TRUNC(date2) - TRUNC(date1) + 1
 -
((TRUNC(to_date(date2,'D'))-TRUNC(to_date(date1),'D'))/7)*2;
 IF TO_CHAR(date2,'D') = '7' THEN
 workdays := workdays - 1;
 END IF;
 IF TO_CHAR(date1,'D') = '1' THEN
 workdays := workdays - 1;
 END IF;
 RETURN(workdays);
end;

select object_name
from user_procedures;
OBJECT_NAME

WORKING_DAYS

select text
from user_source
where name='WORKING_DAYS';

 Bipin C Desai

Relation Algebra, Bags and Constraints

 To be used in the spirit of copy-forward! Pl. see: https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

 Notes

Bipin C. Desai

2 Bipin C Desai

BAGS

In a set, there are no duplicates.

A set (collection of similar objects) having multiple occurrences of
one or more members is called a “bag”.

Implementation of relational model allow a relation(table) to have
duplicates.

This is specially so for intermediate results(a convenience) and if no
primary keys are defined for a table.

Thus in a relation that is a bag, duplicate tuples are allowed(though
not required – so a bag may have no duplicates at a given point in
time.)

A stored table is not a bag; since constraints enforcements require that
duplicates are not stored (each row has an UNIQUE row identifier)

3 Bipin C Desai

I n st a n ce
R w h ich is
n o t a b a g :

A B C

a1 b1 c1

a1 b2 c2

a3 b1 c1

a4 b2 c2

a5 b5 c5

Faster projection operations: no need to check duplicates for each
tuple in the output relation

Correct computation compute the average of values under attribute

B in the projection of R.

Faster bag Unions: Computing (R Bag S) is cheaper than (R Set S).

Given R has n tuples and S has m tuples, then the costs of evaluating

these queries would be O(n + m) and O(n * m), respectively.

R Bag S  R B S R Set S  R S S  R  S

B C

b1 c1

b2 c2

b1 c1

b2 c2

b5 c5

ПBCR without
eliminating the
duplicates tuples
is a bag!

4 Bipin C Desai

R B S (bag union of R and S): the bag of tuples that are in R, in S,
or in both. If a tuple t appears n times in R, and m times in s, then t

 appears n+m times in bag R B S

 R B S = { t:k | t:n  R  t:m  S  k = n+m }

R B S(bag intersection of R and S): the bag of tuples that appear

in both R and S. If a tuple t appears n times in R, and m times in S,

then the number of occurrences of t in bag R B s is min(n,m)

 R B S = { t:k | t:n  R  t:m  S  k = min(n,m) }

R B S (bag difference of R and S): is defined as follows:

 R B S = { t:k | t:n  R  t:m  S  k = max(0, n-m) }

 S B R = {t:k | t:n  R  t:m  S  k = max(0, m-n) }

5 Bipin C Desai

A B

a1 b1

a2 b2

a1 b1

a1 b1

a1 b1

a2 b2

a2 b2

a3 b3

A B

a1 b1

a2 b2

a1 b1

a1 b1

A B

a1 b1

a2 b2

a2 b2

a3 b3

A B

a1 b1

a2 b2

a1 b1

A B

a1 b1

a2 b2

a1 b1

a1 b1

A B

a1 b1

a2 b2

a2 b2

a3 b3

a1 b1

 R S R S

R B S R B S

A B

a1 b1

a1 b1

R -B S

A B

a2 b2

a3 b3
S -B R

min(1,3)

min(1,2)

max(0,3-1)

min(2,3)

If there was

 another (a1,b1)

6 Bipin C Desai

BAG PROJECTION

Let R be a relation scheme, and R be a bag over R.

 The projection operator is used to produce, from R, a new bag

that has only some of R’s columns

If elimination of one or more attributes during the projection causes

the same tuple to be created from several tuples, these multiple

tuples are not eliminated from the result of a bag-projection

A B C

a1 b1 c1

a1 b2 c2

a3 b1 c1

a4 b2 c2

a5 b5 c5

B C

b1 c1

b2 c2

b1 c1

b2 c2

b5 c5

7 Bipin C Desai

BAG SELECTION CR

The tuples in the output relation are those that satisfy the
predicate C, which involves attributes of R

Duplicates are eliminated in a set selection but not so from
the result of a bag-selection

Note: The selection operation  in RA is not the same as the
SELECT clause in SQL which is the projection part of the
DML component of SQL

A B C

a1 b1 c1

a1 b1 c2

a3 b1 c1

a4 b2 c2

a5 b5 c5
B = b1 (R):

A B C

a1 b1 c1

a1 b1 c2

a3 b1 c1

A B C

a1 b1 c1

a1 b1 c2

a1 b1 c1

a1 b2 c2

a5 b5 c5 B = b1 (S):

A B C

a1 b1 c1

a1 b1 c2

a1 b1 c1

R - not a bag S - a bagNot a bag
A bag

8 Bipin C Desai

Cartesian Product of Bags
Given R and S, then R B S is the bag of tuples formed by
concatenating pairs of tuples, the first of which comes from R and
the second from S.

R B S = { t1.t2 | t1 R  t2  S }

As in the set cartesion product, each tuple of R is paired with
each tuple of S: however, in bag product each tuple is used
regardless of whether it is a duplicate or not.

Hence, if a tuple t1 appears m times in a relation R, and a tuple t2
appears n times in relation S, then tuple t1.t2 appears m*n times
in the bag-product R B S

Joins of Bags ⨝ B(predicate)

The join of bags R ⨝ B(predicate) S is computed in the same way as

the join of sets; however, duplicates are not eliminated!

9 Bipin C Desai

B C

b2 c2

b3 c3

b3 c3

A B

a1 b1

a1 b1

A R.B S.B C

a1 b1 b2 c2

a1 b1 b3 c3

a1 b1 b3 c3

a1 b1 b2 c2

a1 b1 b3 c3

a1 b1 b3 c3

B C

b1 c2

b3 c3

A B

a1 b1

a1 b1

A B C

a1 b1 c2

a1 b1 c2

R
S

R B S

R ⨝ B(R.B=S.B) T

R T

10 Bipin C Desai

Constraints on Relations

Relational algebra offers a convenient way to express a wide
variety of constraints, such as referential integrity and FD’s.

There are two ways to express constraints in RA

If r is a relational algebraic expression, then r = Φ is a constraint
that says “the value of r must be empty”

If r and s are relational algebraic expressions, then r  s is a
constraint that says “every tuple in the result of r is in the result of
s” (even when r and s are bags)

A RA constraint may be expressed in more than one way; i.e.
r  s could be written as r  s = Φ

If r  s,  no tuple in r that is not in s, and hence r  s = Φ

The constraint r = Φ could be rewritten as: r  Φ

11 Bipin C Desai

Referential integrity
If we have a value v in a tuple t of a relation R, then v must
also appears as a component of some tuple s of relation S

Example: if we have a tuple (s,c,g) in relation
Enrol(sid,crsno,grade), then there must be a student with
sid = s and a course with crsno = c such that s has
taken/taking c.

The values s and c in Enrol are “referring” to some values
outside this relation, and these values must exist in the Student and

Course relations Course(crsno, name, credits)

 crsno Enrol   crsno Course

 or equivalently

  crsno Enrol -  crsno Course = Φ

12 Bipin C Desai

Functional Dependency

Definition: If two tuples of a relation R agree on the attributes X,

then they must also agree on the attributes Y.

Student(sid,name,dob, gender), sid  name

To express the FD: sid  name in RA, construct pairs of Student
tuples, using Cartesian product, and see if there is a violation of
this FD, using selection with sids equal but names not.

To assert the constraint, we equate the result must be null.

(S, (S1, Student) (S2, Student))

S1.sid=S2.sid S1.name S2.name S = Φ

13 Bipin C Desai

Domain Constraints

Empl (Empl#, name,dob, gender, salary)

• To express the domain constraint:

 The only valid values for the attribute gender are ’F’ and ’M’

g e n d e r  ’F’ AN D g e n d e r  ’M ’ (Empl) = Φ

• To express the following constraint?

 Maximum salary of every employee is $30,000

 salary> 30000 (Empl) = Φ

Th ese a r e exam p les o f dom a in const ra int s

14 Bipin C Desai

Bags in DBMS

create table dept(

 dcode number(3),

 dname varchar2(30),

 location varchar2(30))

/

insert into dept values (100, 'CS', 'EV300');

insert into dept values (100, 'CS', 'EV300');

insert into dept values (100, 'CS', 'EV300');

/

15 Bipin C Desai

SQL> select * from dept;

 DCODE DNAME LOCATION

---------- ------------------------------ ------------------------------

 100 CS EV300

 100 CS EV300

 100 CS EV300

 100 CS EV300

Without a primary key ORACLE/MySQL/MariaDB

 ALLOWS DUPLICATES!
SQL> desc dept;

 Name Null? Type

 --------------------------------- -------- ----------------------------

 DCODE NUMBER(3)

 DNAME VARCHAR2(30)

 LOCATION VARCHAR2(30)

16 Bipin C Desai

SQL> alter table dept add(constraint pk_const primary key(dcode));

ERROR at line 1:

ORA-02437: cannot validate (SCOTT.PK_CONST) –

 primary key violated

Remove duplicate records
delete from dept

where rowid in (

 select rowid

 from dept

 minus

 select max(rowid)

 from dept d group by d.dcode);

3 rows deleted.

SQL> select * from dept;

DCODE DNAME LOCATION

---------- -------------- ------------------------

 100 CS EV300

17 Bipin C Desai

SQL> alter table dept add(constraint pk_const primary key(dcode));

Table altered.

SQL> desc dept;

 Name Null? Type

 ------------------------------------- ------------ ----------------------------

 DCODE NOT NULL NUMBER(3)

 DNAME VARCHAR2(30)

 LOCATION VARCHAR2(30)

18 Bipin C Desai

How about MySql:

create table dept(
 dcode numeric(3),
 dname varchar(30),
 location varchar(30));

insert into dept values (100, 'CS', 'EV300');
insert into dept values (100, 'CS', 'EV300');
insert into dept values (100, 'CS', 'EV300');

mysql> select * from dept;
+-------+-------+----------+
| dcode | dname | location |
+-------+-------+----------+
100	CS	EV300
100	CS	EV300
100	CS	EV300
+-------+-------+----------+
 MYSQL ALLOWS DUPLICATES

No primary key

19 Bipin C Desai

Eliminate Duplicates rows

CREATE TEMPORARY TABLE Temp
 select distinct * from dept; --Temp table
delete from dept;
insert into dept
 select * from Temp;

mysql> desc dept;
+----------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+--------------+------+-----+---------+-------+
dcode	decimal(3,0)	YES		NULL	
dname	varchar(30)	YES		NULL	
location	varchar(30)	YES		NULL	
+----------+--------------+------+-----+---------+-------+
3 rows in set (0.00 sec)

20 Bipin C Desai

mysql> alter table dept modify column dcode numeric(3) primary
key;

mysql> desc dept;
+----------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+--------------+------+-----+---------+-------+
dcode	decimal(3,0)		PRI	0	
dname	varchar(30)	YES		NULL	
location	varchar(30)	YES		NULL	
+----------+--------------+------+-----+---------+-------+

mysql> insert into dept values (100, 'CS', 'EV300');
ERROR 1062: Duplicate entry '100' for key 1

MariaDB [test]>select * from dept;
+-------+-------+----------+
| dcode | dname | location |
+-------+-------+----------+
| 100 | CS | EV300 |
+-------+-------+----------+
1 row in set (0.000 sec)

 Bipin C Desai 1

Past & Future(the past re-dressed)!

Bipin C. DESAI

 To be used in the spirit of copy-forward! https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

 Notes

2 Bipin C Desai

Early methods of managing data: did not use SQL!

Definition of data was locked in application programs
Data in compact form on external media
 punched cards (10x80), punched paper tape, magnetic tapes

Computer Museum

3 Bipin C Desai

The HDM introduced in 1960s by IBM in IMS
-it is based on the parent-child model.

Parent record type, children record types
These record types are organized in the form of a rooted tree

(hence, no cycles).
Only one-to-many or one-to-one relationship can be represented
Many-to-many relationship requires duplication

Hierarchical Data Model (HDM)

Enrol Course Student

Did not use SQL - but not a NoSQL DB!!

4 Bipin C Desai

CID Cno Desc Credits

SID Name DOB Misc info

CID Cno Desc Credits

SID Name DOB Misc info

Duplication of
 records and
 many-to-many
 relationship in
 HDM

5 Bipin C Desai

CID Cno Desc Credits SID Name DOB Misc info

CID Cno Desc Credits

SID Name DOB Misc info

Virtual records and implementation of
 many-to-many relationship in HDM

6 Bipin C Desai

HDM databases has features for ‘fixed pattern” usage:
Pros:
Since the structure is fixed data access faster
HDM the relationships is fixed - easy for data integrity
HDM represent many data in normally used

 – all banking transactions belong to a given account
Queries are predictable and uses the hierarchy

Cons:
Duplication for many-to-many relationships;
Difficult to change schema -

IMS currently is in version 15+ and is available for z/OS
offers SQL for IMS!

7 Bipin C Desai

Network Data model (DBTG)

In the NDM is based on the set with an owner and a member record
types concept : the DBTG set

Each DBTG set can have any number of set occurrences
 (a number of instances of linked records).
many-to-many links are not allowed,
each set occurrence has precisely one owner,
and has zero or more member records.

A member record in a set can participate in only one occurrence of
 a given set at any point.

However, any record can participate simultaneously in several set
 occurrences of different DBTG sets.

Did not use SQL - but not a NoSQL DB!!

8 Bipin C Desai

CID Cno Desc Credits SID Name DOB Misc info

 FinalGrade

Relationship_link

CourseLink StudentLink

GradeLink

Representing a many-to-many relationship in NDM
 by two sets and a dummy record to store the attribute
of the relationship

Enrol Course Student

9 Bipin C Desai

Object Oriented World & ODL

 In an object oriented design, the “part of the world” we want
to model is thought of as being composed of objects

 Everything is an object and “similar” objects are instances of
objects called class
People, Employees, Bank accounts, Students, Course,

Airline flights
 A class simply represents a grouping of similar objects
 Every object is an instance of a class and has a unique object

identification (OID)
 All objects that are instances of the same class have the same

properties and behavior(interaction of objects)
ODL (Object Definition Language) is a proposed standard language for

specifying structure of databases
 ODL is an extension of IDL (Interface Description Language), a

component of CORBA (Common Object Request Broker Architecture)

10 Bipin C Desai

Class Declarations

A declaration of a class in ODL, consists of:
The keyword class
The name of the class
A bracketed { …} list of properties of the class

class<name> {

 <list of properties>

};

class student {

 …

};

11 Bipin C Desai

Properties of ODL classes

 ODL classes can have three kinds of properties:
Attributes

 properties whose types are built from primitive/basic
types such as integers, strings,…

Relationships
 properties whose type is either a reference to an

object

 (x-one) or a collection of such references (x-many),

 where x could be one or many.
Methods

 functions that may be applied to objects of the class

12 Bipin C Desai

Attributes in ODL

 Attributes are the simplest kinds of properties
 An attribute describes some aspect of an object by

associating, with the object, a value of some simple type
 For example, attributes of a Student object

Student ID
Name
Address
E-mail

13 Bipin C Desai

Keys in ODL
 In ODL, we declare keys using the keyword key

If a key has more than one attribute, we surround them by (…)
Example: (two attributes forming a key)

 class Movie

 (extent Movies key (title, year)) {

 attribute string title;

 … };
If a class has more than one key, we may list them all, separated

by commas
Example: (A class with two keys)

class Employee

 (extent Employees key empID, SIN) {…};

14 Bipin C Desai

Single-Value Constraints in ODL

 Often, we should enforce properties in the database saying
that there is at most one value playing a particular role
For example:

that a movie object has a unique title, year, length,
and film type

that a movie is owned by a unique studio

15 Bipin C Desai

Single-Value Constraints

 In ODL:
An attributes is not of collection type
 (Set, Bag, Array, … are example of collection types.)
A relationship is either a class type or (a single use of) a

collection type constructor applied to a class type.
 Recall that in E/R:

attributes are atomic
an arrow () or a value on the connecting line can be

used to express the type of relationship(multiplicity)
How about multi-valued? attributes (No) but

relationships (Yes)

16 Bipin C Desai

Type system
A type system consists of

Basic types
Type constructors: recursive rules whereby

complex types are built from simpler ones
 Atomic types

Integer Float

Char Character String

Boolean Enumeration

Enumeration is a list of names declared to be synonyms for
integers

 Class types
Movie

17 Bipin C Desai

Type constructors in ODL

 Set
Set <integer>
Set <Movie>

 Bag
Bag <integer>
Bag <Movie>

 Array
Array <integer, 10>
Array <Movie, 3>

 Structure
Struct Address {string street, string city}

 List
List <integer>
List <Student>

 Dictionary <keyType, valueType>
Dictionary<Student, string>

 N o t e :
 Set , Bag , Ar r ay, List an d

D ict io n ar y a r e ca l led
co lle ct io n t yp e s

 Co llect io n t yp e can n o t b e
ap p lied r ep eat ed ly
(n est ed)

 E.g ., i t is i lle g a l t o
w r i t e
Se t <Ar r ay<in t eg er >
>

18 Bipin C Desai

Example

class Movie {

 attribute string title;

 attribute integer year;

 attribute integer length;

 attribute enum Film {Colour, BlackAndWhite} filmType; };

 class Star {

 attribute string name;

 attribute Struct Address {

 string street,

 Array <char, 10> city

 } homeAddress;

 attribute Struct Address officeAddress; };

(“The Barbarian Invasions ”, 2003, 112, Colour)

is an object, i.e., an instance of the class Movie

(structure with non-atomic type)

19 Bipin C Desai

More Examples

class Student {

 attribute string ID;

attribute string lastName;

 attribute string firstName;

attribute integer dob;

 attribute string program;

 attribute Struct Address {

 string street,

 string city

 } homeAddress;

};

class Course {

 attribute string courseNumber;

 attribute string courseName;

attribute integer NoOfCredits;

 attribute string department;

};

20 Bipin C Desai

Expressing Relationships in ODL

 How are Movies and Stars related?
 Movies have actors/actresses(Stars), and Stars have roles in

Movies!
 Every movie has a star (or stars)
 In ODL the interaction of classes is expressed by a construct

called “relationship”!
 To take into account the fact that a relationship could involve

more than one instance of an object from the related class it is
expressed as a Set

 Note: In ODL relationship(s) is(are) stored in an object as
“OID pointer(s)”; such relationship(s) is(are) not attribute(s)!

21 Bipin C Desai

Relationship in ODL: an Example
 starOf is a relationship between Movie and Star

class Movie {

attribute string title;

attribute integer year;

attribute integer length;

attribute enum Film {Colour, B&W} filmType;

relationship Star starOf;

};

22 Bipin C Desai

Is there a problem here?
Hint: inverse relationship

 How are Movies and Stars related?
 Not only every movie has a star
 But also every star has acted in some movie
 To fix this in the Star class, we should add the line:

relationship Movie starredIn;

class Star {
attribute string name;
attribute Struct Address {

string street,
string city
} address;

relationship Movie starredIn; };

23 Bipin C Desai

Inverse Relationships

 We are omitting a very important aspect of the relationship
between movies and stars

 We need a way to ensure that if a star S is starOf movie M,
then movie M is starredIn for star S

 In ODL that is done by defining inverse of a relationship for
each class.

M o vies St ar s

St a r r ed In

St ar O f

24 Bipin C Desai

class Movie {
 attribute string title;
 attribute integer year;
 attribute integer length;
 attribute enum Film {colour, B&W} filmType;

relationship Star starOf
inverse Star::starredIn;

};

class Star {
 attribute string name;
 attribute Struct Address {
 string street,
 string city
 } address;
 relationship Movie starredIn
 inverse Movie::starOf;
};

What is the problem here!
 - how many actors in a movie?
 - how many movies credits for

an actor?

25 Bipin C Desai

Relationships in ODL
 Our model is not quite complete: it is missing an important

point!
 A movie typically has several actors and each actor is

featured in many movies.
 To fix this, we need to express the relationship as a set:

relationship Set<Star> stars;

class Movie {
 attribute string title;
 attribute integer year;
 attribute integer length;
 attribute enum Film {colour, B&W} filmType;

relationship Set<Star> starOf
inverse Star::starredIn;

 };

class Star {
 attribute string name;
 attribute Struct Address {
 string street,
 string city
 } address;
 relationship Set<Movie> starredIn
 inverse Movie::starOf;
 };

Why is this not a set?

The inverse relationship only specifies the name of the relationship in Star;

 the set is in Star not in Movie What about attributes of a relationship?

26 Bipin C Desai

class Studio {

attribute string name;

attribute string address;

relationship Set<Movie> owns inverse Movie::ownedBy;

};

 What about inverse? Every Movie is owned by some Studio

class Movie {
attribute string title;
attribute integer year;
attribute integer length;
attribute enum Film {color, blackAndWhite} filmType;
relationship Set<Star> starOf inverse Star::starredIn;
relationship Studio ownedBy inverse Studio::owns;
};

Suppose we introduce another class, Studio, representing companies that produce
movies

How are Movies and Studios related? Every Studio owns several Movies

27 Bipin C Desai

Multiplicity of relationships
 In general, when we have a pair of inverse relationships,

there are four cases:
The relationship is unique in both directions (one case)
The relationship is unique in just one direction (two cases)
The relationship is not unique in any direction (one case)
The multiplicity thus refers to the one of these

relationships; also denoted as 1-1 (one-one), 1-M (one-
many), M-1 (many-one), and M-N (many-many).

28 Bipin C Desai

Multiplicity of relationships: many-many

 A many-many relationship from a class C to a class D is one
in which, for each C there is a set of Ds associated with C; in
the inverse relationship, a set of Cs is associated with each
D

Example: each student can take many courses and each course
can be taken by more than one student

class Student {
. . .
relationship Set<Course> takes inverse Course::takenBy;
};

class Course {
. . .
relationship Set<Student> takenBy inverse Student:: takes;
};

29 Bipin C Desai

Multiplicity of relationships: many-one

 A many-one relationship from class C to a class D, is one
where for each C there is a at most one D, but no such a
constraint in the reverse direction (similarly for one-many

Example, many employees may work in the same department, but
each employee works only in one department

class Department {
. . .
relationship Set< Employee > workers inverse

Employee::worksIn;
};

class Employee {
. . .
relationship Department worksIn inverse

Department::workers;
};

Note: There is one-to-many
relationship from Employee to
Department

30 Bipin C Desai

Multiplicity of relationships: one-one
 A one-one relationship from class C to class D is one that for

each C there is a at most one D, and conversely, for each D
there is at most one C

Example: each department has at most one employee as its
manager and each employee can manage at most one
department

class Employee {
. . .
relationship Department ManagerOf
 inverse Department::manager;
};

class Department {
. . .
relationship Employee manager
 inverse Professor:: ManagerOf;
};

31 Bipin C Desai

Inheritance in Object Oriented System and Subclasses

 Objects can be organized into a hierarchical inheritance
structure

 A child class (or subclass) will inherit properties form a
parent class (or all superclasses) higher in the hierarchy.

 Often, a class contains objects that have special properties
not associated with all members of the class

 If so, we find it useful to organize the class into subclasses,
each subclass having its own special attributes and/or
relationships

Pe r so n

Pro fe sso rSt u d e n t

32 Bipin C Desai

Subclasses in ODL
 We define a class C to be a subclass of another class D by

following the name C in its declaration with a keyword
extends and the name D

class Cartoon extends Movie {

relationship Set<Star> voices;

};

 A subclass inherits all the properties of its superclasses

So, each cartoon object has title, year, length, filmType, and
inherits relationships stars and ownedBy from Movie, in
addition to its own relationship voices.

33 Bipin C Desai

class Student extends Person {
 attribute string ID;

attribute string program;

};

Pe r so n

Pro fe sso rSt u d e n t
class Professor extends Person {
 attribute string EmpID;

attribute set<string> interest;
};

class Person {
 attribute string lastName;
 attribute string firstName;

attribute integer age;
attribute Struct Address {

 string street,
 string city
 } homeAddress;

};

34 Bipin C Desai

Inheritance in ODL

A class may have more than one subclass.
A class may have more than one class from which it

inherits properties; those classes are its superclasses
Subclasses may themselves have subclasses, yielding

a hierarchy of classes where each class inherits the
properties of its ancestors.

35 Bipin C Desai

Multiple Inheritance in
ODL

Pe r so n

Pro fe sso r St u d e n tEm p loye e

La b I n st r u ct o rTA

M ov ie

M u rd e r M yst e r y

Ca r t o o n M u rd e r M yst e r y

Ca r t o o n

class MurderMystery extends Movie {

attribute string weapon;

};

class CartoonMurderMystery extends Cartoon : MurderMystery;

36 Bipin C Desai

name addr permit

Bars

Serves Frequents

Beers PatronsLikes

name namebrew addr

Beers-Bars-Patrons

37 Bipin C Desai

class Beers {

attribute string name;

attribute string manf;

relationship Set<Bars> servedAt

inverse Bars::serves;

relationship Set<Patrons> fans

inverse Patrons::likes;

}

class Bars {

attribute string name;

attribute Struct Addr

{string street, string city, string PC}

address;

attribute Enum SAQ {full, beer,
BYOB,none} PermitType;

relationship Set<Patrons> customers

inverse Patrons::frequents;

relationship Set<Beers> serves

inverse Beers::servedAt;

}Name is given to structure
& enumeration type for
possible reuse

38 Bipin C Desai

class Patrons {

attribute string name;

attribute Struct Bars::Addr

address;

relationship Set<Beers> likes

inverse Beers::fans;

relationship Set<Bars> frequents

inverse Bars::customers;

}

Reuse – qualify the name with the class
for disambiguation

39 Bipin C Desai

name addr permit

Bars

Serves Frequents

Beers PatronsLikes

name namebrew addr

Price

Sells

Attributes of Relationships

40 Bipin C Desai

Bars Beers

Charges

Price

Sells1 1
1

The attribute of a relationship converted into a
three-way relationship!

If price depended only on the beer, then we could use
two binary relationships: charge-beer and beer-bar.

41 Bipin C Desai

Bars Beers Charges

BBC

BarServe BeerPrice WhatPrice

M M M

1 1 1

(GobletOr, BrewXXX, $4.50)
(GobletOr, BrewX, $4.25)

(CanuckShack, BrewX, $4.10)

42 Bipin C Desai

class Charges {

attribute real price;

relationship Set<BBC> HowMuch inverse BBP::WhatPrice;

}

class BBC {

relationship Bars BarServe inverse ...

relationship Beers BeerPrice inverse BeerCharges ...

relationship Charges WhatPrice inverse Charges::HowMuch;

}

Inverses must be added to Bars, Beers.

The same price may be charged at many
bars!

43 Bipin C Desai

class Beers {

attribute string name;

attribute string manf;

relationship Set<Bars> servedAt inverse Bars::serves;

relationship Set<Patrons> fans inverse Patrons::likes;

relationship Set <BBC> BeerCharges inverse BBC::BeerPrice }

44 Bipin C Desai

From the internet to the Web

Early 80s: Archie, Veronica; internet file sharing finding systems
Late 80s early 90s

HTTP/HTML Tim Berners-Lee, Robert Caillau
Text based browser, Lynx, start of Netscape

 HTTP request-response protocol between a client and a server
HTTP session is a sequence of requests-responses
HTML - very simple text markup language

 included features for simple formatting and display
HTML based on ideas existing in the late 1980s including:

TeX/LaTex, Troff,
SGML and
the early word processing software

(WordStar, WordPerfect, Word)
 May 1994 CERN – Geneva: The first World Wide Web
conference

45 Bipin C Desai

Navigation Workshop for the Web
May 1994

46

 Bipin C Desai

SGML and HTML are mark up languages for information(textual)

HTML was too simple and not extensible

SGML was extensible but too complex.

None of these languages do anything: none of these languages are
Turing complete

They provide a way to present information which is wrapped in tags.
Note the evolution of data/metadata: metadata in program;
metadata in schema; metadata with the data

The tags are commonly accepted by a community/group who want to
exchange information.

SGML and XML specify the content and structure of a document in a
way that allows particular presentations to be generated as needed

Hence XML
EXtendible
Markup
Language

47 Bipin C Desai

<!doctype linuxdoc system>
<!-- This a sample SGML file. Comments can appear anywhere It can
go over a number of lines. -->
<article>
<!-- Article type document -->
<title>Sample SGML Document
<!-- Always give a Title. Should be descriptive -->
<author>Bipin C. DESAI
<date>March 2000
<!-- Note the tag minimization the end tags are assumed by the
occurrence of a new tag -->
<abstract>
This document is a sample document using the simple Linuxdoc-
SGML DTD: used to write all documents for Linux. There are other
DTDs and you can create your very own DTD. However, you have to
create all the scripts for its translation to other formats.
</abstract>

48

 Bipin C Desai

<!ELEMENT xslNotes - O (title,author,para+)>
<!ELEMENT title - O CDATA>
<!ELEMENT author - O CDATA>
<!ELEMENT para - O CDATA>

A sample DTD saved as notes1.dtd

<?xml version="1.0"?>
<!DOCTYPE xslNotes SYSTEM "notes1.dtd" >
 <xslNotes>
 <title>XSL Notes</title>
 <author>Bipin C. Desai</author>
 <para> This is paragraph 1.
 <para> This is paragraph 2.
 </xslNotes>

Use of the sample DTD

O optional end tag
CDATA character data

49

 Bipin C Desai

Why separate content and structure from presentation and behavior

 Once coded, the information can be reused in many formats

 Device/Media-independent publishing

 One-on-one marketing

 Intelligent downstream document processing

 Large-scale information management.

 XML (Extensible Markup Language): A subset of SGML (ISO
8879) designed for easy implementation

50

 Bipin C Desai

Information in XML form has to be rendered using appropriate
formatting mechanism

 XML document contains the syntax,

tags are used to provide “keys”

content within the tags represent the “value”

Tags have no predefined meaning but is agreed to by parties involved
in the exchange of information

XML by itself conveys only content and structure, not presentation or
behavior

51 Bipin C Desai

XML data is stored in plain text format
independent of software/hardware.

 makes it easy to share data

XML Simplifies Data Interchange

XML applications are designed and adapted to read xml data.

XML Simplifies Platform Changes

New platforms are designed/built so that they can use existing and
 new XML data
Since all new appliances implement XML features, XML data
can be used with diverse devices

------- is fresher because more people eat it,
more people eat it because ------- is fresher!

52 Bipin C Desai

XQuery is to XML what SQL is to relational databases.

XQuery was designed to query XML data.

 XQuery for XML is what SQL for databases
 XQuery is built on XPath expressions
 XQuery is supported by all major databases

Path Expressions (no joins!)
XQuery uses path expressions to navigate through
 elements in an XML document.
XPath is used to address (select) parts of documents using
 path expressions
A path expression is a sequence of document step/tags separated by “/”

Each step operates on the set of instances produced by the previous step
Selection predicates may follow any step in a path, in []

53 Bipin C Desai

The XML schema defines:
 what are the components(elements) in a

 corresponding document
Order of these elements
Number of occurrences
Element’s contents – could it be empty or it is required and

its contents
Data types, default values

XML Schema

54 Bipin C Desai

<?xml version="1.0"?>
<nns:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<nns:element name=“memo">
 <nns:complexType>
 <nns:sequence>
 <nns:element name="to" type="nns:string"/>
 <nns:element name="from" type="nns:string"/>
 <nns:element name=“subject" type="nns:string"/>
 <nns:element name="body" type="nns:string"/>
 </nns:sequence>
 </nns:complexType>
</nns:element>

</nns:schema>

55 Bipin C Desai

Title Authors
array

Publication (Name,
Vol, Date, pages)

Meeting Subject
set

Report of
the Priorities
Workshop

[Caillau,
Desai]

(Computer Networks
and ISDN Systems;
Vol. 27-2,;November
1994; pp. 334-336)

WWW-I {Web, searching}

Three
Paradoxes of
Big data

[Richards,
King]

(Stanford, CA,;;Sept,
2013,;pp102-1050)

Making
End Meet

{Big Data,
security, privacy]

 A not too correct XML schema to express this type of
 information is given in the next slide.

Exercise: complete the xml schema and create the xml doc
for the above data!

56 Bipin C Desai

<pns:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”>
<pns:element name=“papers” type=“Publications” />
<pns:element name=“tittle”>
 <pns:complexType>
 <pns:sequence>
 <pns:element name=“usual_title” type=“pns:string”/>
 <pns:element name=“alt_title” type=“pns:string”/>
 </pns:sequence>
 </pns:complexType>
</pns:element>
…………..
<pns:complexType name=“Publications”>
 <pns:sequence>
 <pns:element ref=“title” minOccurs=“0” maxOccurs=“unbounded”/>
 <pns:element ref=“authors” minOccurs=“0” maxOccurs=“unbounded”/>
 <pns:element ref=“publication” minOccurs=“0” maxOccurs=“1”/>
 <pns:element ref=“meeting” minOccurs=“0” maxOccurs=“1”/>
 <pns:element ref=“subjects” minOccurs=“0” maxOccurs=“unbounded”/>
 </pns:sequence>
</pns:complexType>
</pns:schema>

57 Bipin C Desai

Predicates (where clause)
XQuery uses predicates to limit the extracted data from
 XML documents

Storing XML data
BLOB
Decompose and save as tables

1 Bipin C Desai

Storage Devices, Files, and Indexing

 Bipin C. Desai

 To be used in the spirit of copy-forward! https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

2 Bipin C Desai

Storage Device Selection Criteria

Capacity vs. cost (What will $100 buy?
How much for 1 Megabytes?)

Cost per megabytes of storage has taken a plunge
 Alas, the need for it has bounded as well.

Permanence
Portability
Relative cost
Performance (Latency, transfer /access rate)
Record size - buffer size, file size.
Accessing method - random/direct or sequential
Data transfer rate
Seek time - time to move read/write head:

average, minimum, maximum
Latency - rotational delay (rpm)

3 Bipin C Desai

Memory Hierarchy
Speed Technology Application
1-10's nsec I2L fast cache

 nmos high speed MM
 bipolar buffer

100's nsec nmos main memory
 core

100's sec CCD fast back up
 bubbles

1-10's msec floppy disk main back up
 fixed head disk
 moving head disk

10's msec magnetic tape security/back up
100s of ms optical memory large mass

 tape library memory,
system archives

4 Bipin C
Desai

Disks: Can retrieve random page at fixed cost
But reading several consecutive pages is much cheaper

than reading them in random order
Tapes: Can only read pages in sequence
 Cheaper than disks; used for archival storage – extinct??
File organization: Method of arranging a file of records on

external storage.
Record id (RID) is sufficient to physically locate record
Indexes are data structures that allow us to find the

record ids of records with given values in index search
key fields

Architecture: Buffer manager stages pages from external
storage to main memory buffer pool. File and index layers
make calls to the buffer manager.

Data on External Storage

5 Bipin C
Desai

Costs too much. $100 will buy 32GB of DRAM or 1TB
SSD today.

Main memory is volatile. We want data to be saved
between runs. (Obviously!)

Typical storage hierarchy:
Cache
Main memory (RAM) for currently used data.
Disk for the main database (secondary storage).
Tapes for archiving older versions of the data

(tertiary storage).

Store the database in Main Memory!

6 Bipin C Desai

EXTERNAL STORAGE MEDIUMS

Read/Write Write once read many times(WORM)
 (used for archives)

Magnetic Tape Disks/tapes
Disk Robotic storage media
RAID(Redundant CD-Rom.

array of
inexpensive
disks

READ: transfer data to main memory.
WRITE: transfer data to external device.
READ/WRITE are much slower than main-memory operations!

7 Bipin C
Desai

Disks
• Secondary storage device of choice:

 HDD are being replaced by SSD.
• Main advantage over tapes: random access vs. sequential.
• Data is stored and retrieved in units called disk blocks or

pages.
• Unlike RAM, time to retrieve a disk page varies depending

upon location on disk.
– Therefore, relative placement of pages on disk has

major impact on DBMS performance!

8 Bipin C
Desai

Components of a Hard Disk

 The platters spin (7200rpm).
 The arm assembly is moved in

or out to position a head on a

desired track. Tracks under

heads make a cylinder

(imaginary!).
Only one head reads/writes

at any one time.
Block size is a multiple

 of fixed sector size

Disk head

Arm assembly

Platters

Spindle

Arm movement

Tracks

Sector

SSDs do not have moving parts
 but a finite number of cycles

9 Bipin C Desai

Seek Time
Seek Time = c1 + c2 * (number of cylinders to be traversed).
Here c1 and c2 are constants for a given model of disk drive.
Average Seek Time = time to move over 1/3 cylinders.
Seek time can be reduced by:

- distributing a file over a number of disk units and
- limiting the range of cylinders on any disk unit.

Rotational Latency
The delay between the completion of the seek and the
actual transfer of data.

For a disk rotating at r (RPM)
 tl = 60 * 1000 milliseconds

2* r

RPM Latency
10000 3 msec
 7200 4.1 msec
 6000 5 msec
 3000 10 msec
 2400 12.5 msec

10 Bipin C
Desai

Accessing a Disk Page

• Time to a read or a write a disk block:
– seek time (moving arms to position disk head on track)
– rotational delay (waiting for block to rotate under head)
– transfer time (actually moving data to/from disk surface)

• Seek time and rotational delay dominate.
– Seek time varies from about 1 to 20msec
– Rotational delay varies from 0 to 10msec
– Transfer rate is about 1msec per 4KB page

• Key to lower I/O cost: reduce seek/rotation delays!
Hardware vs. software solutions?

SSD obsoletes these!

11 Bipin C Desai

Response time = seek time + latency time + transfer time
 (5-20 msec) (3-5 msec).

Transfer time = size of transfer/rate of transfer.
Size of transfer corresponds to the data of interest
 (excluding format information, etc.)
Sequential Read of a number of blocks.
Transfer time = avg. seek time + latency time +

 (block transfer time) * number of blocks
 + (min. seek time + latency) * number of cylinders
Problems: Disk scheduling in multi-process environment
Approximation: Transfer time = tefb * # of blocks,
 Here, tefb is the effective formatted block transfer time.
 tefb  1.10 * tb , where tb is the block transfer time
to account for the format information and the ignored seek
and latency time.
Block transfer time = block size/ rate of transfer

12 Bipin C Desai

Random Read of a # of blocks
Transfer time = number of blocks * (seek + latency + tb)

Sequential Read from a number of contiguous cylinders
Transfer time = seek time +latency time + tefb * # of block +
 (min seek time + latency time) * (# of cylinders -1)

13 Bipin C Desai

File Organisation
sequential
indexed sequential
direct access
other method

Choice
 - external storage device available simple
 - use of the file - type of queries x = y
 - number of keys range
 - mode of retrieval - seq. random Boolean x=y
 - mode of update batch
 - economy of storage on-line
 - frequency of use of a file
 - growth potential of a file
 - methods available in the development environment

the storage required for the file organization
the time required to read a random record
the time required to read the next record
the time required to add a record
the time required to update a record
the time required to read all records
the time required to reorganize a file

14 Bipin C Desai

Updates:
 - insert in sequence
 at end, at first available location
 - delete - compress first available location
 flag as deleted
 - modify selected record space for update
 record size with respect to size of original record
 - modify all records

Primary Key Retrieval
Four (three) possible choices -

- serial file - no order (pile)
- sequential - ordered wrt primary key
- indexed sequence
- direct access

15 Bipin C Desai

Serial Files (PILE)
Access a random record
Access to Next Record
Inserting Record
Deleting a Record
Modifying a Record
Reorganisation
Single Disk Drive
Two or more Disk Drives

Sequential File
Access a random record
Access to Next Record
Inserting Record
Deleting a Record
Modifying a Record
Reorganisation
Single Disk Drive
Two or more Disk Drives

Access to Next Record
Probability of record in same block = 1 - 1/ bf

Probability of record not same block = 1/bf

Expected time to get next record.
= 0 * (1 - 1/ bf) + 1 * (1/ bf)*(ts + tl + tb)

 = 1/ bf*(tefb)

16 Bipin C Desai

Modify-in-place or Delete a Record
 - Find it in T f (Time to find random record)
 - Max. time to modify or mark it as deleted, and wait
 2T l - block txf time
 - Rewrite it in time = block txf time

Total time = T f + 2T l

17 Bipin C Desai

Sector Addressable Disks

- fixed length arcs of a track - track is divided into an
 integral number of sectors.
 - amount of data is fixed by O.S. or by the hardware.

- simplifies allocation of storage space
- simplifies address calculations

 - simplifies synchronisation of I/O &
 computation in sequential processing.

The division of a track into sectors:
-may be implemented completely by hardware or
- by software controlled formatting operation.

Block is a fixed number of bytes that is moved as a unit
between storage devices and the main memory. Made up a
number of disk sectors.

18 Bipin C
Desai

Arranging Pages on Disk

• `Next’ block concept:
– blocks on same track, followed by
– blocks on same cylinder, followed by
– blocks on adjacent cylinder

• Blocks in a file should be arranged sequentially on disk (by
`next’), to minimize seek and rotational delay.

• For a sequential scan, pre-fetching several pages at a time
• “De-fragmentation” to increase access

19 Bipin C
Desai

RAID
• Disk Array: Arrangement of several “inexpensive” disks that

gives abstraction of a single, large disk.
• Goals: Increase performance and reliability.
• Two main techniques:

– Data striping: Data is partitioned; size of a partition is called
the striping unit. Partitions are distributed over several disks.

– Redundancy: More disks => more failures. Redundant
information allows reconstruction of data if a disk fails.

• Level 0: No redundancy
• Level 1: Mirrored (two identical copies)

– Each disk has a mirror image (check disk)
– Parallel reads, a write involves two disks.
– Maximum transfer rate = transfer rate of one disk

20 Bipin C
Desai

• Level 0+1: Striping and Mirroring
– Parallel reads, a write involves two disks.
– Maximum transfer rate = aggregate bandwidth

• Level 3: Bit-Interleaved Parity
– Striping Unit: One bit. One check disk.
– Each read and write request involves all disks; disk array can

process one request at a time.
• Level 4: Block-Interleaved Parity

– Striping Unit: One disk block. One check disk.
– Parallel reads possible for small requests, large requests can

utilize full bandwidth
– Writes involve modified block and check disk

• Level 5: Block-Interleaved Distributed Parity
– Similar to RAID Level 4, but parity blocks are distributed over

all disks

21 Bipin C
Desai

Disk Space Management

• Lowest layer of DBMS software manages space on disk.
• Higher levels call upon this layer to:

– allocate/de-allocate a page
– read/write a page

• Request for a sequence of pages must be satisfied by
allocating the pages sequentially on disk! Higher levels don’t
need to know how this is done, or how free space is managed.

22 Bipin C
Desai

DBMS: Buffer Management

• DBMS operates on data in main memory
• Buffer management maintains a table <frame#, pageid>

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

Reference Dirty
 Count bit

RC DB

23 Bipin C
Desai

When a Page is Requested ...

• If requested page is not in pool:
– Choose a frame for replacement (LIFO, FIFO, LRU(RC),

modified (DB), etc.)
– If frame is dirty (changed since read into buffer), write it to

disk(replacement frame scheme looks for non-dirty frame
– Read requested page into chosen frame

• Increment the reference count (RC) of the page and return its
address.

 If requests can be predicted (e.g., sequential scans)
 pages can be pre-fetched

24 Bipin C
Desai

More on Buffer Management

• When a frame is released by an application, the RC is
decremented and if the frame is changed, the dirty bit for the
frame is set.

• A frame in the buffer may be requested many times,
concurrently(reads – not update/write)
– a RC is used to indicate the number of concurrent use of a

frame. A frame is a candidate for replacement iff RC = 0.
– Priority if dirty bit is not set(not modified)

• Concurrency control and recovery may entail additional I/O
when a frame is chosen for replacement.

25 Bipin C
Desai

Buffer Replacement Policy

• Frame is chosen for replacement by a replacement policy:
– Least-recently-used (LRU), Clock, MRU etc.

• Policy can have big impact on # of I/O’s; depends on the
access pattern.

• Sequential flooding: Nasty situation caused by LRU +
repeated sequential scans.
– # buffer frames < # pages in file means each page request

could cause an I/O.

26 Bipin C
Desai

DBMS vs. OS File System

• Differences in different level of support in different OS:
portability issues

• Some limitations, e.g., files can’t span disks.
• Buffer management in DBMS requires ability to:

– Manage RC and DB of frames in buffer pool, force a page to
disk (important for implementing concurrency control and
recovery),

– adjust replacement policy, and pre-fetch pages based on
access patterns in typical DB operations.

27 Bipin C
Desai

Data Record Formats: Fixed Length

• Information about field types same for all records in a
file; stored in system catalogs.

• Finding i’th field does not require scan of record.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

28 Bipin C
Desai

Data Record Formats: Variable Length

• Two alternative formats (# fields is fixed):

 Second offers direct access to i’th field, efficient storage
of nulls (special don’t know value); small directory overhead.

4 $ $ $ $

Field
Count

Fields Delimited by Special Symbols

F1 F2 F3 F4

F1 F2 F3 F4

Array of Field Offsets

29 Bipin C
Desai

Page Formats: Fixed Length Records

Record id = <page id, slot #>. In first alternative, moving
records for free space management changes rid; may not
be acceptable.

Slot 1
Slot 2

Slot N

.

N M10. . .
M ... 3 2 1

PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M
11

number
of records

number
of slots

30 Bipin C
Desai

Page Formats: Variable Length Records

Record ID = <Page #, Slot#>

Slots contains address or offset of record

Can move records on the page without changing the record
ID (RID);

Can also be used for fixed-length records!

Pointer
to start
of free
space

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

SLOT DIRECTORY

N . . . 2 1
20 16 24 N

slots

31 Bipin C
Desai

Files of Records
• Page or block is OK when doing I/O, but higher levels of

DBMS operate on records, and files of records.
• FILE: A collection of pages, each containing a collection of

records. Must support:
– insert/delete/modify record
– read a particular record (specified using record id)
– scan all records (possibly with some conditions on the

records to be retrieved)

32 Bipin C
Desai

Unordered (Heap) Files
• Simplest file structure contains records in no particular order.
• As file grows and shrinks, disk pages are allocated and de-

allocated.
• To support record level operations, we must:

– keep track of the pages in a file
– keep track of free space on pages
– keep track of the records on a page

• There are many alternatives for keeping track of these details.

33 Bipin C
Desai

Heap File Implemented as a List

• The Heap file name and its header page address must
be stored in a catalog.

• Each page contains 2 `pointers’ (forward, reverse) plus
data.

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages

34 Bipin C
Desai

Heap File Using a Page Directory

• The entry for a page can include the amount of free space
on the page.

• The directory is a collection of pages; for example
implemented as a linked list

• Much smaller than linked list of all HF pages!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

35 Bipin C
Desai

System Catalogs
• Catalogs are stored as tables.
• For each table:

– name, file name, file structure (e.g., Heap file)
– attribute name and type, for each attribute
– index name, for each index
– integrity constraints

• For each view:
– view name and definition

• For each index:
– structure (e.g., B+ tree) and search key fields

• Plus statistics, authorization, buffer pool size, etc.

36 Bipin C Desai

Heap files: Suitable when typical access requires access to
all records in a file.

Sorted Files: Suitable in cases where the records must be
retrieved in some order wrt a “key”, or access to a records
 in a `range’ of key values is needed.

Hashed Files: Suitable when random access to records with
a given key value is required.

Alternative File Organizations

37 Bipin C Desai

B: The number of blocks (pages) for data
bf: Blocking factor(# records per block)
tefb : Effective time to read or write block

 Heap File Sorted File Hashed
File

Scan all
 recs

Btefb Btefb 1.25 Btefb

Equality
Search

0.5 Btefb tefb log2B tefb

Range
Search

Btefb tefb (log2B + #
of blocks with
matches)

1.25 Btefb

Insert 2tefb Search + Btefb 2tefb
Delete Search + tefb Search + Btefb 2tefb

Hash 1.25: since pages are only 80% full for avoiding overflows

38 Bipin C
Desai

INDEX

39 Bipin C Desai

An index is created to speed up access to the records in a
file with a given value for a search key fields.

Any subset of the fields of a record can be used as
 search key for an index on the relation.

Search key may not be the same as primary key

An index contains a collection of data entries, and supports
efficient retrieval of all records with a given search key
value K.

40 Bipin C
Desai

B+ Tree Indexes
 Internal nodes (pages) have index entries; only used for navigation:
 Leaf pages contain data entries, and are chained (prev & next)

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf

Pages

Pages
(Sorted by search key)

Leaf

41 Bipin C
Desai

Example B+ Tree

• Find 28*? 29*? All > 15* and < 30*
• Insert/delete: Find data entry in leaf, then change it. Need

to adjust parent sometimes.
– And change sometimes bubbles up the tree

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

Note how data entries
in leaf level are sorted

42 Bipin C
Desai

Hash-Based Indexes

• Good for equality selections.
• Index is a collection of buckets.

– Bucket = primary page plus zero or more overflow
pages.

– Buckets contain data entries.
• Hashing function h: h(r) = bucket in which (data entry for)

record r belongs. h looks at the search key fields of r.
– No need for “index entries” in this scheme.

43 Bipin C
Desai

Alternatives for contents of an Index
• In an index entry k* we can store:

Alternative 1: The actual data record with key value k, or

Alternative 2: <k, rid of data record with search key value k>, or

Alternative 3 <k, list of rids of data records with search key k>
• Choice of alternative for data entries is orthogonal to the indexing

technique used to locate data entries with a given key value k.
– Examples of indexing techniques: B+ trees, hash-based

structures
– Typically, index contains auxiliary information that directs

searches to the desired data entries

44 Bipin C
Desai

Alternatives for Data Entries
• Alternative 1:

– If this is used, index structure is a file organization for
data records (instead of a Heap file or sorted file).

– At most one index on a given collection of data records
can use Alternative 1. (Otherwise, data records are
duplicated, leading to redundant storage and potential
inconsistency.)

– If data records are very large, # of pages containing data
entries is high. Implies size of auxiliary information in
the index is also large.

45 Bipin C
Desai

Alternatives for Data Entries
• Alternatives 2 and 3:

– Data entries typically much smaller than data records.
Better than Alternative 1 with large data records,
especially if search keys are small. (Portion of index
structure used to direct search, which depends on size of
data entries, is much smaller than Alternative 1.)

– Alternative 3 more compact than Alternative 2, but leads
to variable sized data entries even if search keys are of
fixed length.

46 Bipin C
Desai

Index Classification
• Primary vs. secondary: If search key contains primary key,

then it is called primary index.
– Unique index: Search key contains a candidate key.

• Clustered vs. un-clustered: If the order of the data records is
the same as, or `close to’, the order of the data entries, then the
index is called a clustered index: else un-clustered.
– Alternative 1 implies clustered; in practice, clustered also

implies Alternative 1 (since sorted files are rare).
– A file can be clustered on at most one search key.
– Cost of retrieving data records through index varies greatly

based on whether index is clustered or not!

47 Bipin C
Desai

Clustered vs. Unclustered Index
Suppose that Alternative (2) is used for data entries, and that the data
records are stored in a Heap file.
– To build clustered index, first sort the Heap file (with some free

space on each page for future inserts).
– Overflow pages may be needed for inserts. (Thus, order of data

recs is `close to’, but not identical to, the sort order.)

CLUSTERED

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

UNCLUSTERED

48 Bipin C
Desai

Cost Model for Our Analysis

We ignore CPU costs, for simplicity:
– B: The number of data pages
– R: Number of records per page
– D: (Average) time to read or write disk page
– Measuring number of page I/O’s ignores gains of pre-

fetching a sequence of pages; thus, even I/O cost is only
approximated.

– Average-case analysis; based on several simplistic
assumptions.

These are only estimates to show the overall trends!

49 Bipin C
Desai

Comparing File Organizations

• Heap files (random order; insert at eof)
• Sorted files, sorted on <age, sal>
• Clustered B+ tree file, Alternative (1), search key <age, sal>
• Heap file with un-clustered B + tree index on search key

<age, sal>
• Heap file with unclustered hash index on search key <age,

sal>

50 Bipin C
Desai

Operations to Compare

Scan: Fetch all records from disk
Equality search
Range selection
Insert a record
Delete a record

51 Bipin C
Desai

Assumptions
• Heap Files: Equality selection on key; exactly one match.
• Sorted Files: Files compacted after deletions.
• Indexes: Alt (2), (3): data entry size = 10% size of record

– Hash: No overflow buckets.
• 80% page occupancy => File size = 1.25 data size

– Tree: 67% occupancy (this is typical).
• Implies file size = 1.5 data size

• Scans: Leaf levels of a tree-index are chained.
– Index data-entries plus actual file scanned for unclustered

indexes.
• Range searches:We use tree indexes to restrict the set of data

records fetched, but ignore hash indexes.

52 Bipin C
Desai

Cost of Operations
 (a) Scan (b) Equality (c) Range (d) Insert (e) Delete

(1) H eap BD 0.5BD BD 2D Search
+D

(2) Sorted BD Dlog 2B D(log 2 B +
pgs with
match recs)

Search
+ BD

Search
+BD

(3)
C lustered

1.5BD Dlog F 1.5B D(log F 1.5B
+ # pgs w.
match recs)

Search
+ D

Search
+D

(4) Unclust.
Tree index

BD(R+0.15) D(1 +
log F 0.15B)

D(log F 0.15B
+ # pgs w.
match recs)

Search
+ 2D

Search
+ 2D

(5) Unclust.
H ash index

BD(R+0.125) 2D BD Search
+ 2D

Search
+ 2D

These are estimates using many simplifying assumptions

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

53 Bipin C
Desai

Understanding the Workload

• For each query in the workload:
– Which relations does it access?
– Which attributes are retrieved?
– Which attributes are involved in selection/join conditions? How

selective are these conditions likely to be?
• For each update in the workload:

– Which attributes are involved in selection/join conditions? How
selective are these conditions likely to be?

– The type of update (INSERT/DELETE/UPDATE), and the
attributes that are affected.

54 Bipin C
Desai

Choice of Indexes

• What indexes should we create?
– Which relations should have indexes? What field(s) should be

the search key? Should we build several indexes?
• For each index, what kind of an index should it be?

– Clustered? Hash/tree?

• One approach: Consider the most important queries in turn.

Consider the best plan using the current indexes, and see if a better

plan is possible with an additional index. If so, create it.
– Obviously, this implies that we must understand how a DBMS

evaluates queries and creates query evaluation plans!
– For now, we discuss simple 1-table queries.

• Before creating an index, must also consider the impact on
updates in the workload!

55 Bipin C
Desai

Index Selection Guidelines
• Attributes in WHERE clause are candidates for index keys.

– Exact match condition suggests hash index.
– Range query suggests tree index.

• Clustering is especially useful for range queries; can also
help on equality queries if there are many duplicates.

• Multi-attribute search keys should be considered when a WHERE
clause contains several conditions.
– Order of attributes is important for range queries.
– Such indexes can sometimes enable index-only strategies for

important queries.
• For index-only strategies, clustering is not important!

• Try to choose indexes that benefit as many queries as possible.
Since only one index can be clustered per relation, choose it based
on important queries that would benefit the most from clustering.

56 Bipin C
Desai

Examples of Clustered Indexes

B+ tree index on E.age can be used to get
qualifying tuples.

How selective is the condition?

Is the index clustered?

Consider the GROUP BY query.

If many tuples have E.age > 10, using
E.age index and sorting the retrieved
tuples may be costly.

Clustered E.dno index may be better!

Equality queries and duplicates:

Clustering on E.hobby helps!

SELECT E.dno
FROM Emp E
WHERE E.age>40

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>10
GROUP BY E.dno

SELECT E.dno
FROM Emp E
WHERE E.hobby=Stamps

57 Bipin C
Desai

Indexes with Composite Search Keys
Composite Search Keys: Search on a

combination of fields.

Equality query: Every field value is
equal to a constant value. E.g.
wrt <sal,age> index:

age=20 and sal =75

Range query: Some field value is
not a constant. e.g.:age =20;

 or age=20 and sal > 10

Data entries in index sorted by search
key to support range queries.

Lexicographic order, or

Spatial order.

sue 13 75

bob

cal

joe 12

10

20

8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

58 Bipin C
Desai

Composite Search Keys

• To retrieve Emp records with age=30 AND sal=4000, an index on
<age,sal> would be better than an index on age or an index on sal.
– Choice of index key orthogonal to clustering etc.

• If condition is: 20<age<30 AND 3000<sal<5000:
– Clustered tree index on <age,sal> or <sal,age> is best.

• If condition is: age=30 AND 3000<sal<5000:
– Clustered <age,sal> index much better than <sal,age> index!

• Composite indexes are larger, updated more often.

59 Bipin C
Desai

Index-Only Plans

• A number of queries
can be answered
without retrieving
any tuples from one
or more of the tables
involved if a
suitable index is
available.

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND
 E.sal BETWEEN 3000 AND 5000

<E.dno>

<E.dno,E.sal>
Tree index!

<E. age,E.sal>
 or
<E.sal, E .age>

Tree index!

60 Bipin C
Desai

Index-Only Plans (Contd.)

• Index-only plans are
possible if the key is
<dno,age> or we
have a tree index
with key <age,dno>
– Which is better?
– What if we

consider the
second query?

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age=30
GROUP BY E.dno

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>30
GROUP BY E.dno

Bipin C. DESAI

61 Bipin C
Desai

Index-Only Plans (Contd.)

• Index-only plans
can also be found
for queries
involving more than
one table;

SELECT D.mgr
FROM Dept D, Emp E
WHERE D.dno=E.dno

SELECT D.mgr, E.eid
FROM Dept D, Emp E
WHERE D.dno=E.dno

<E.dno>

<E.dno,E.eid>

62 Bipin C
Desai

Summary

• Many alternative file organizations exist, each appropriate in some
situation.

• If selection queries are frequent, sorting the file or building an
index is important.
– Hash-based indexes only good for equality search.
– Sorted files and tree-based indexes best for range search; also

good for equality search. (Files rarely kept sorted in practice;
B+ tree index is better.)

• Index is a collection of data entries plus a way to quickly find
entries with given key values.

63 Bipin C
Desai

Summary (Contd.)

• Data entries can be actual data records, <key, rid> pairs, or
<key, rid-list> pairs.
– Choice orthogonal to indexing technique used to locate

data entries with a given key value.
• Can have several indexes on a given file of data records,

each with a different search key.
• Indexes can be classified as clustered vs. unclustered,

primary vs. secondary, and dense vs. sparse. Differences
have important consequences for utility/performance.

64 Bipin C
Desai

Summary (Contd.)

• Understanding the nature of the workload for the application, and
the performance goals, is essential to developing a good design.
– What are the important queries and updates? What

attributes/relations are involved?
• Indexes must be chosen to speed up important queries (and perhaps

some updates!).
– Index maintenance overhead on updates to key fields.
– Choose indexes that can help many queries, if possible.
– Build indexes to support index-only strategies.
– Clustering is an important decision; only one index on a given

relation can be clustered!
– Order of fields in composite index key can be important.

65 Bipin C Desai

Database Index
&

Performance Optimization

Bipin C. DESAI

66 Bipin C Desai

67 Bipin C Desai

Create INDEX

MariaDB [test]> create index cntr_indx on member(country);
Query OK, 0 rows affected (0.061 sec)
Records: 0 Duplicates: 0 Warnings: 0

Creating an index on multiple columns

MariaDB/MySQL allows composite(multi-column) index
(up to 16 columns)
 Usually 2 or 3 columns are sufficient

CREATE INDEX index_name ON TableName (Col1, COL2, COl3);

68 Bipin C Desai

Drop INDEX

Drop index syntax

ALTER TABLE table_name DROP INDEX index_name;

Rename index syntax

ALTER TABLE table_name RENAME INDEX index_name
 TO new_index_name;

Show indexes syntax

SHOW INDEX FROM tableName;

69 Bipin C Desai

EXPLAIN
One can use EXPLAIN to see how the DB executes a DML statement
DML statements are:
SELECT, DELETE, INSERT, REPLACE, and UPDATE statements.
EXPLAIN gives execution plan information from the built-in DB
optimizer

The null for the “possible_keys” and “key” above are both NULL
This indicates that the DB does not have an index it can use
The DB will access 2625 rows to generate the result

70 Bipin C Desai

Extra –
Use of predicate
index

1 Bipin C Desai

SQL III - Relational Object Features

 To be used in the spirit of copy-forward! https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

Notes

Bipin C. Desai

2 Bipin C Desai

o Handling complex data and OO Concept
o Using structured data types and inheritance in SQL
o Object Identity (OID) and reference types in SQL
o Implementing Object features in relational DBMS
o Persistent Programming Languages
o Include object orientation and constructs to deal with added

data types in RDBMS.
o Add complex types, including non-atomic values such as

nested relations.
o Extend modeling features while retaining the declarative

access to data
o Preserve compatibility with SQL

3 Bipin C Desai

123 Smith D1 P1 5 L1

P2 30 L1

234 Ma D2 P1 20 L1
P3 10 L2
P4 5 L3

345 Russo D1 P1 35 L1

Example of a non-normal form (NNF)
relation

This is what we started with!

4 Bipin C Desai

123 Smith D1 P1 5 L1

P2 30 L1

234 Ma D2 P1 20 L1
P3 10 L2
P4 5 L3

345 Russo D1 P1 35 L1

A non-normal form relation →
Nested relation

• Abandon atomic attribute requirement by conceptually allowing

 nested relations — relations within relations
• Maintain the mathematical foundation of relational model
• Allow NNF i. e, non-normal form

5 Bipin C Desai

Title Authors
array

Publication (Name,
Vol, Date, pages)

Meeting Subject
set

Report of
the Priorities
Workshop

[Caillau,
Desai]

(Computer Networks
and ISDN Systems;
Vol. 27-2,;November
1994; pp. 334-336)

WWW-I {Web, searching}

Three
Paradoxes of
Big data

[Richards,
King]

(Stanford, CA,;;Sept,
2013,;pp102-1050)

Making
End Meet

{Big Data,
security, privacy]

Example of a relation with complex data

 including: array, composite data, sets

Complex data

6 Bipin C Desai

Title Authors

Report of the Priorities
Workshop

Caillau,

Report of the Priorities
Workshop

Desai

Three Paradoxes of
Big data

Richards

Three Paradoxes of
Big data

King

Decomposition of complex data into

 4NF decomposition!

A 4NF relation does not have any multivalued dependency of the form
 X →→ Y
Report of the Priorities Workshop →→ {Caillau, Desai}

7 Bipin C Desai

Title Name Vol, Date pages

Report of the Priorities
Workshop

Computer
Networks
and ISDN
Systems

Vol.
27-2

Nov.
1994

pp. 334-336

Three Paradoxes of Big
data

Stanford,
CA

Sept,
2013,

pp102-1050

Decomposition of complex data into

 4NF decomposition (contd.)!

8 Bipin C Desai

Title Meeting

Report of the Priorities Workshop WWW-I

Three Paradoxes of Big data Making End Meet

Title Subject

Report of the Priorities Workshop Web

Report of the Priorities Workshop searching

Three Paradoxes of Big data Big Data

Three Paradoxes of Big data security

Three Paradoxes of Big data privacy

Decomposition of complex data into

 4NF decomposition (contd.)!

9 Bipin C Desai

Postgresql

Ingres was one of first relational ‘open source” relational

Database that was developed in the early 1970s at UoC, Berkley

It gave rise to, among others, SysBase, Microsoft SQL server etc.

 Ingres was followed by Postgres and Postgresql

It is available for various versions of Linuses and other OS.

To install in
• fedora core: dnf -y install postgres*
• Debian, Ubuntu: apt install postgresql postgresql-contrib

10 Bipin C Desai

PostgreSQL is sometimes called an "object-relational database"

because it supports table inheritance.

Most of the ORDBMS features were removed from the

 Postgres and became PostgreSQL.

Once PostgresSQL is installed the database is initialized using:

initdb -D /path-to/postgres/data

One can now start the database server using:

 pg_ctl -D /path-to/postgres/data -l logfile start

Once the server is running, a database could be created using:

createdb testdb

11 Bipin C Desai

Postgresql shell

The shell can be started using the command: psql

 To exit from psql use: \q or CTRL-D

 To get a list of commands use: \?

 To use a particular database use: \c nameofDB;

 To list all the databases use; \l;

To stop Postgresql server use the command

pg_ctl -D /path-to/postgres/data -l logfile stop

12 Bipin C Desai

Postgres objects

 CREATE TABLE publication (

 title text primary key,

 authors text[],

 meeting text,

 publication text[][],

 topics text []

);

1 dimensional array

2 dimensional array

13 Bipin C Desai

postgres=# \d+ publication;
 Table "public.publication"
 Column | Type | Modifiers | Storage |Stats target|Description
-------------+--------+-----------+----------+------------+-----------
 title | text | not null | extended | |
 authors | text[] | | extended | |
 meeting | text | | extended | |
 publication | text[] | | extended | |
 topics | text[] | | extended | |
Indexes:
 "publication_pkey" PRIMARY KEY, btree (title)

Has OIDs: no

14 Bipin C Desai

insert into publication values(

'Report of the Priorities Workshop',

ARRAY['Caillau', 'Desai'],

'WWW-I',

ARRAY[['event', 'Computer Networks and ISDN Systems'],

['volume','27-2'], ['year', 'November 1994'], ['pages','pp. 334-336']],

ARRAY['Web', 'searching']);

postgres=# select * from publication;
Report of the Priorities Workshop | {Caillau,Desai} | WWW-I |
{{event,"Computer Networks and ISDN Systems"},{volume,27-2},
{year,"November 1994"},{pages,"pp. 334-336"}} | {Web,searching}
(1 row)

15 Bipin C Desai

Use the unnest() function to convert array to set of rows:

SELECT *

 FROM (

 SELECT *, unnest(authors) allauthors

 FROM publication) x

 WHERE allauthors LIKE 'Cail%';

title | authors | meeting | publication | topics | allauthors

Report of the Priorities Workshop | {Caillau,Desai} | WWW-I |

{{event,"Computer Networks and ISDN Systems"},{volume,27-2},

{year,"November 1994"},{pages,"pp.334-336"}} |

{Web,searching} | Caillau

16 Bipin C Desai

SQL 1999 extended to support complex types:

Collection and large object types

Nested relations are an example of collection types

Structured types: arbitrary hierarchies and composite attributes

Inheritance

Object orientation: object identifiers and references

SQL 1999 is yet to be fully implemented in most DBMS (2014)

Examples of OODBMS are:

ObjectStore, Objectdatabase++, Objectivity/DB, etc.

Some RDBMS have introduced some object features

OODBMS feature including using object oriented language to
manipulate database objects along with the others of RDBMS

(ACID, Query language, Recovery)

17 Bipin C Desai

Oracle: Creating type (class)and a nested table1

CREATE OR REPLACE TYPE person_typ AS OBJECT (

idno NUMBER,

name VARCHAR2(30),

phone VARCHAR2(20),

MAP MEMBER FUNCTION get_idno RETURN NUMBER,

MEMBER PROCEDURE display_details

(SELF IN OUT NOCOPY person_typ));

/

Type created.
The SELF parameter denotes the

 object instance currently invoking

 the method. NOCOPY allows passing

 the argument by reference (i.e., not

 copying the argument to the method)
1

 Based on old Oracle documents

18 Bipin C Desai

Member Methods for Comparing Objects

An object type, with multiple attributes of various data types,

has no predefined axis of comparison.

Methods should be specified to compare & order object type variables

The option is to define an map method or an order method for

comparing objects, but not both.

Map Methods

Map methods return values that can be used for comparing and

sorting.

Return values can be any built-in data types(except LOBs and BFILEs)

Order Methods

An order method directly compares values for two particular objects.

19 Bipin C Desai

SQL> desc person_typ;

 Name Null? Type
 ------- ------- -------------
 IDNO NUMBER
 NAME VARCHAR2(30)
 PHONE VARCHAR2(20)

METHOD

 MAP MEMBER FUNCTION GET_IDNO RETURNS NUMBER

 MEMBER PROCEDURE DISPLAY_DETAILS

20 Bipin C Desai

CREATE OR REPLACE TYPE BODY person_typ AS

MAP MEMBER FUNCTION get_idno RETURN NUMBER IS

BEGIN

RETURN idno;

END;

MEMBER PROCEDURE display_details

 (SELF IN OUT NOCOPY person_typ) IS

BEGIN -- use the put_line procedure of the DBMS_OUTPUT

 -- package to display details

DBMS_OUTPUT.put_line(TO_CHAR(idno)|| ' - '|| name|| ' - ' || phone);

END;

END;

/

Type body created.

CREATE OR REPLACE TYPE
people_typ AS TABLE OF

 person_typ; -- nested table type

/

21 Bipin C Desai

Creating an Instance of a VARRAY or Nested Table

To create an instance of a collection type by calling the constructor

method of the type.

The constructor method is the name of the type.

The elements of the collection is a comma-delimited list of arguments

to the method, for example.

person_typ(1, 'John Smith', '1-650-555-0135')

22 Bipin C Desai

- Create a table that contains an instance of the nested

table type people_typ, named people_column,

-use the constructor method in a SQL statement to insert values into

people_typ.

Example: Using the Constructor Method to Insert Values into a

 Nested Tab

CREATE TABLE people_tab (

group_no NUMBER,

people_column people_typ) -- an instance of nested table

NESTED TABLE people_column STORE AS people_column_nt

/

Table created.

23 Bipin C Desai

INSERT INTO people_tab VALUES (100,

people_typ(person_typ(1, 'John Smith', '1-650-555-0135'),

person_typ(2, 'Diane Smith', NULL))) ;

1 row created.

Create a department_persons Table Using the DEFAULT Clause

CREATE TABLE department_persons (

dept_no NUMBER PRIMARY KEY,

dept_name CHAR(20),

dept_mgr person_typ DEFAULT person_typ(10,'John Doe',NULL),

dept_emps people_typ DEFAULT people_typ())

NESTED TABLE dept_emps STORE AS dept_emps_tab;

Table created.

instance of nested

 table type

24 Bipin C Desai

SQL> desc department_persons;

 Name Null? Type
 ---------- -------- ----------------
 DEPT_NO NOT NULL NUMBER
 DEPT_NAME CHAR(20)
 DEPT_MGR PERSON_TYP
 DEPT_EMPS PEOPLE_TYP

INSERT INTO department_persons VALUES

(101, 'Physical Sciences', person_typ(65,'Vrinda Mills', '1-650-555-0125'),

people_typ(person_typ(1, 'John Smith', '1-650-555-0135'),

person_typ(2, 'Diane Smith', NULL)));

INSERT INTO department_persons VALUES

(104, 'Life Sciences', person_typ(70,'James Hall', '1-415-555-0101'),

people_typ()) -- an empty people_typ table

-- Note that people_typ() is a literal invocation of the constructor

-- method for an empty people_typ nested table.

/

25 Bipin C Desai

select * from department_persons;
DEPT_NO DEPT_NAME
---------- --------------------
DEPT_MGR(IDNO, NAME, PHONE)

DEPT_EMPS(IDNO, NAME, PHONE)

 101 Physical Sciences
PERSON_TYP(65, 'Vrinda Mills', '1-650-555-0125')
PEOPLE_TYP(PERSON_TYP(1, 'John Smith', '1-650-555-0135'),
PERSON_TYP(2, 'Diane Smith', NULL))
 104 Life Sciences
PERSON_TYP(70, 'James Hall', '1-415-555-0101')
 DEPT_NO DEPT_NAME
---------- --------------------
DEPT_MGR(IDNO, NAME, PHONE)
--
DEPT_EMPS(IDNO, NAME, PHONE)
--
PEOPLE_TYP()

26 Bipin C Desai

Nesting Results of Collection Queries
SELECT d.dept_emps

FROM department_persons d;

The column dept_emps is a nested table collection of person_typ

type.

The dept_emps collection column appears in the SELECT list as an

Ordinary scalar column.

Querying a collection column in the SELECT list this way nests the

 elements of the collection in the result row that the collection is

 associated with.

Example shows the query retrieving the

nested collection of employees from the

department_persons table

DEPT_EMPS(IDNO, NAME, PHONE)
--
PEOPLE_TYP(PERSON_TYP(1, 'John Smith', '1-650-555-0135'),
PERSON_TYP(2, 'Diane Smith', NULL))
PEOPLE_TYP()

27 Bipin C Desai

Unnesting Results of Collection Queries

Not all tools or applications can deal with results in a nested format.

To view collection data using tools that require a conventional

format, one must un-nest, the collection attribute of a row into

one or more relational rows using a TABLE expression

TABLE expressions enable you to query a collection in the FROM

clause as a table.

In effect, you join the nested table with the row that contains

 the nested table.

28 Bipin C Desai

TABLE expressions can be used to query any collection value

expression, including transient values such as variables and

parameters.

Example Un-nesting Results of Collection Queries

SELECT e.*

FROM department_persons d, TABLE(d.dept_emps) e;

 IDNO NAME PHONE

---------- ------------------------------ --------------------

 1 John Smith 1-650-555-0135

 2 Diane Smith

29 Bipin C Desai

Creating and Populating Simple Nested Tables
CREATE TABLE students (

graduation DATE,

math_majors people_typ, -- nested tables (empty)

chem_majors people_typ,

physics_majors people_typ)

NESTED TABLE math_majors STORE AS math_majors_nt

 -- storage tables

NESTED TABLE chem_majors STORE AS chem_majors_nt

NESTED TABLE physics_majors STORE AS physics_majors_nt;

Table created.

30 Bipin C Desai

SQL> desc students;

 Name Null? Type
 ------------ -------- --------------
 GRADUATION DATE
 MATH_MAJORS PEOPLE_TYP
 CHEM_MAJORS PEOPLE_TYP
 PHYSICS_MAJORS PEOPLE_TYP
The NESTED TABLE..STORE AS clause specifies storage
names for nested tables.
Elements of a nested table are actually stored in a
separate storage table.
Storage names -used to create an index on a nested table.
CREATE INDEX math_idno_idx ON math_majors_nt(idno);
CREATE INDEX chem_idno_idx ON chem_majors_nt(idno);
CREATE INDEX physics_idno_idx ON physics_majors_nt(idno);

31 Bipin C Desai

INSERT INTO students (graduation) VALUES
 ('01-JUN-03');

SQL> select * from students;
GRADUATION

MATH_MAJORS(IDNO, NAME, PHONE)

CHEM_MAJORS(IDNO, NAME, PHONE)

PHYSICS_MAJORS(IDNO, NAME, PHONE)

01-JUN-03

32 Bipin C Desai

UPDATE students

SET math_majors =

people_typ (person_typ(12, 'Bob Jones', '650-555-0130'),

person_typ(31, 'Sarah Chen', '415-555-0120'),

person_typ(45, 'Chris Woods', '415-555-0124')),

chem_majors =

people_typ (person_typ(51, 'Joe Lane', '650-555-0140'),

person_typ(31, 'Sarah Chen', '415-555-0120'),

person_typ(52, 'Kim Patel', '650-555-0135')),

physics_majors =

people_typ (person_typ(12, 'Bob Jones', '650-555-0130'),

person_typ(45, 'Chris Woods', '415-555-0124'))

WHERE graduation = '01-JUN-03';

33 Bipin C Desai

GRADUATION

MATH_MAJORS(IDNO, NAME, PHONE)

CHEM_MAJORS(IDNO, NAME, PHONE)

PHYSICS_MAJORS(IDNO, NAME, PHONE)

01-JUN-03
PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '650-555-0130'),
PERSON_TYP(31, 'Sarah Chen', '415-555-0120'),
PERSON_TYP(45, 'Chris Woods', '415-555-0124'))

PEOPLE_TYP(PERSON_TYP(51, 'Joe Lane', '650-555-0140'),
PERSON_TYP(31, 'Sarah Chen', '415-555-0120'),
PERSON_TYP(52, 'Kim Patel', '650-555-0135'))

PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '650-555-0130'),
PERSON_TYP(45, 'Chris Woods', '415-555-0124'))

SQL> select * from students;

34 Bipin C Desai

select owner, object_name, object_type

 from ALL_OBJECTS

 where object_type = 'TYPE'and owner='BCDESAI';

select owner, object_name, object_type

 from ALL_OBJECTS

 where object_type = 'TABLE' and owner='BCDESAI';

35 Bipin C Desai

• Following are some slides from

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
corrected for

Oracle by BCD

36 Bipin C Desai

Structured Types and Inheritance in SQL

Structured types (a.k.a. user-defined types) can be declared &

 used in SQL

 create type Name as object
 (firstname varchar(20),
 lastname varchar(20))

 final
create type Address as object
 (street varchar(20),
 city varchar(20),
 zipcode varchar(20))

not final
– Note: final and not final indicate whether subtypes can

be created

37 Bipin C Desai

SQL> desc Name;

 Name Null? Type

 --- -------- ----------------------------

 FIRSTNAME VARCHAR2(20)

 LASTNAME VARCHAR2(20)

SQL> desc address;

 address is NOT FINAL

 Name Null? Type

 --- -------- ----------------------------

 STREET VARCHAR2(20)

 CITY VARCHAR2(20)

 ZIPCODE VARCHAR2(20)

38 Bipin C Desai

Structured Types and Inheritance in SQL

• Structured types can be used to create tables with composite

 attributes
 create table person (

name Name,
address Address,
dateOfBirth date)

• Dot notation used to reference components: name.firstname
SQL> desc person;

 Name Null? Type

 --- -------- -------------------

 NAME NAME

 ADDRESS ADDRESS

 DATEOFBIRTH DATE

39 Bipin C Desai

Structured Types (cont.)

• User-defined row types

create type PersonType as object (
name Name,
address Address,
dateOfBirth date)
not final

• Once a type is created, we can create one or more tables using
our (user-defined) type
 create table customer of CustomerPersonType

Warning: Type created with compilation errors.

SQL> show errors

Errors for TYPE PERSONTYPE:

LINE/COL ERROR

-------- ---

0/0 PL/SQL: Compilation unit analysis terminated

2/6 PLS-00320: the declaration of the type of this expression is

 incomplete or malformed

40 Bipin C Desai

Structured Types (cont.)

• Alternative method which uses unnamed row types.

 create table person_r(
name row(firstname varchar(20),

 lastname varchar(20)),
address row(street varchar(20),

 city varchar(20),
 zipcode varchar(20)),

dateOfBirth date)

row is not supported in oracle!!!

41 Bipin C Desai

Methods

In ORDMS, we can add a method declaration with a structured type.

method ageOnDate (onDate date)

returns interval year

Method body is given separately.

create instance method ageOnDate (onDate date)

returns interval year

for CustomerType

begin

return onDate - self.dateOfBirth;

end

We can now find the age of each customer:

select name.lastname, ageOnDate (current_date)

from customer

42 Bipin C Desai

Constructor Functions
Constructor functions are used to create values of structured types

create function Name(firstname varchar(20), lastname varchar(20))
returns Name
begin
 set self.firstname = firstname;
 set self.lastname = lastname;
end

To create a value of type Name, we use
 new Name(‘John’, ‘Smith’)

Normally used in insert statements
insert into Person values
 (new Name(‘John’, ‘Smith),
 new Address(’20 Main St’, ‘New York’, ‘11001’),
 date ‘1960-8-22’);

43 Bipin C Desai

Type Inheritance
Suppose that we have the following type definition for people:

create type Person
 (name varchar(20),

 address varchar(20))

Using inheritance to define the student and teacher types
 create type Student
 under Person
 (degree varchar(20),
 department varchar(20))
 create type Teacher
 under Person
 (salary integer,
 department varchar(20))

Subtypes can redefine methods by using overriding method in place
of method in the method declaration

44 Bipin C Desai

Multiple Type Inheritance

SQL:1999 and SQL:2003 do not support multiple inheritance

If our type system supports multiple inheritance, we can define
a type for teaching assistant as follows:

create type Teaching Assistant
 under Student, Teacher
To avoid a conflict between the two occurrences of department
we can rename them
 create type Teaching Assistant
 under
 Student with (department as student_dept),
 Teacher with (department as teacher_dept)
Each value must have a most-specific type

©Bipin C. DESAI

45 Bipin C Desai

Table Inheritance

Tables created from subtypes can further be specified as subtables
E.g. create table people of Person;
 create table students of Student under people;
 create table teachers of Teacher under people;
Tuples added to a subtable are automatically visible to queries on the
super-table

E.g. query on people also sees students and teachers.
Similarly updates/deletes on people also result in updates/deletes
 on subtables
To override this behaviour, use “only people” in query

Conceptually, multiple inheritance is possible with tables
e.g. teaching_assistants under students and teachers
Not supported in SQL currently: So we cannot create a person
(tuple in people) who is both a student and a teacher

46 Bipin C Desai

JSON Objects

SGML  XML  JSON

JSON Java Script Object Notation

MariaDB [test]> select JSON_OBJECT
('name', 'Don Duck',
'IQ', 'Calm Genius') as top_duck;
+---+
| top_duck |
+---+
| {"name": "Don Duck", "IQ": "Calm Genius"} |
+---+
1 row in set (0.001 sec)

47 Bipin C Desai

 Bipin C Desai 48

49 Bipin C Desai

Brewer’s (CAP) Theorem
There are three core systemic requirements that exist in a special

 inter-relationship when it comes to designing and deploying

 applications in a distributed environment

The three requirements are:

 Consistency,

 Availability and

 Partition Tolerance

 Compare these with the ACID property that is the traditional

 requirement

Atomicity – all or nothing

Consistency - the data goes from one consistent state to another

Isolation – a transaction is guaranteed to run as if it was the only one

Durability – any changes made by a transaction are persistent

50 Bipin C Desai

• Bridge

•B •C •D

•G

•A

•E •F

•H

•J •K

• I

• Bridge
• Articulation
• points

A distributed system with articulation points (cut vertex)

 removing which disconnects the graph and bridges(connects

 subgraphs)

51 Bipin C Desai

Brewer’s (CAP) Theorem
Consistency: A constraint of distributed systems that multiple values

 for the same piece of data are not allowed. Atomicity guarantees

 that all changes made by a transaction are made or there would

 be no changes

Availability: Availability means that a service is available. Sites

 must not to go down at busy periods just because they are busy.

Partition Tolerance: A partition happens when, say, a bridge fails

or an articulation node goes down

This causes the network to be partitioned.

Temporary partitions are a possible and critical systems should be

 tolerant to such events

52 Bipin C Desai

Dealing with CAP – only two could be guaranteed!

 Drop Partition Tolerance

 Run on one system or have bullet proof distributed system

(not possible)

 Drop Availability Tolerance

 Economically and political downside.

 Drop Consistency Tolerance :

This is the obvious choice in most cases.

Easy to deal with – the masses will not know!!!

53 Bipin C Desai

NoSQL

New database applications and new databases – non-relational

Abandon the ACID property – substitute performance, scalability etc.

Group most often required data items together

– abandon normalization and the relational approach and hence

 eliminate joins

Cluster friendly- allow use of multitude of cheap servers

 – distributed and partitioned

- No fixed schema (not really!)

54 Bipin C Desai

NoSQL
Category of “model” and some implementations

Column family: BigTable(Google),Cassandra, Druid, Hadoop/HBase

Unique keys point to multiple columns.

The columns are arranged by column family.

Document: Apache CouchDB, Couchbase, MongoDB

Lotus Notes and are similar to key-value stores for semi-structured data

The semi-structured documents are stored in JSON like formats.

Key-value: Dynamo(Amazon), FoundationDB, MemcacheDB, Redis

A unique key with pointers to items of data: to implement.

inefficient when accessing small portion of data

Graph: Allegro, Neo4J, InfiniteGraph, OrientDB

A graph theory based model is used

See: http://nosql-database.org/ for a list of NoSQL databases

55 Bipin C Desai

Hadoop is a software approach to implements massively
 parallel computing. http://hadoop.apache.org/

Hadoop modules:
Hadoop Common: The common utilities that support the other
 Hadoop modules.
Hadoop Distributed File System (HDFS™):
A distributed file system that provides high-throughput access
 to application data.
Hadoop YARN: A framework for job scheduling and cluster
resource management.
Hadoop MapReduce: A YARN-based system for parallel
processing of large data sets.
These modules provide feature that allow data to be spread across
thousands of servers with little reduction in performance

Hadoop

56 Bipin C Desai

• Semi join ⋉ ⋊
• A technique used to support join when a relational database is
• distributed over a number of nodes.
• Suppose table R is on node r and S is on node s and the common
• attribute of R and S is C.
• In semi-join of R S, we proceed as follows⋉
• we send ∏C R from node r to node s

• at node we do a join of (∏C R ⋈ ∏C S)

• send the result to node r where we do
• R (⋈ ∏C R ⋈ ∏C S)

• MapReduce, apply semi join like concept and distribute
• the computation over the nodes
• Answer to the processing needs of large amount of data

57 Bipin C Desai

• Paintings by Evelyn de Morgan

• Cassanda (1898) • Helen of Troy (1898)

58 Bipin C Desai

Apache Cassandra

Cassandra is a NoSQL Column family implementation

 Some of the strong points of Cassandra are:

 Highly scalable and highly available with no single point of failure

 NoSQL column family implementation

 Very high write throughput and good read throughput

 SQL-like query language (since 0.8) and support search through
secondary indexes

 Tunable consistency and support for replication

 Flexible schema

59 Bipin C Desai

/usr/bin/cqlsh

Connected to Test Cluster at localhost:9160.

[cqlsh 4.1.1 | Cassandra 2.0.10 | CQL spec 3.1.1 | Thrift protocol 19.39.0]

Use HELP for help.

cqlsh> CREATE KEYSPACE testkeyspc WITH REPLICATION = { 'class' :
'SimpleStrategy', 'replication_factor' : 1 };

cqlsh> use testkeyspc;

Keyspace is a “database”

60 Bipin C Desai

cqlsh:testkeyspc> describe keyspace;

CREATE KEYSPACE testkeyspc WITH replication = {

 'class': 'SimpleStrategy',

 'replication_factor': '1'

};

cqlsh:testkeyspc> >create table salon(

 ... sname text primary key,

 ... saddress text);

61 Bipin C Desai

Salon

Beer

PatronFrequents

Serves

• Exercise: Install Cassandra on your desktop/laptop

and implement this model

