Notes

Files and Databases

Notes
for

Files and Databases

Bipin C. DESAI

Concordia University
Montreal

BytePress

Limit of Liability/Disclaimer of Warranty:

The authors and the publishers have taken care to prepare this book. However, there is no warranty of the
accuracy, completeness or presentation of the latest version/generation of any system discussed in this book. The
reader must be aware of the fact that software systems often have multiple bugs and are not well thought out, and
are usually suitable for limited situations and/or data combinations. Hence the user must be responsible for the
appropriate application of any technique and use of any software or code examples.

Furthermore, there is no assurance whatsoever of the possible usefulness or commercialization of any programs,
scripts and examples given in this book.

Any references given are based on their existence at the time of writing and the authors and the publishers do not
endorse them or imply any usefulness of the information found therein. The reader must be aware that any web
site cited may change, disappear or change their terms of service.

This document in electronic form, bearing a CopyForward permission, could be used for personal use and/or
study, free of charge Anyone could use it to derive updated versions. The derived version must be published
under CopyForward. All authors of the version used to derive the new version must be included in the updated
version in the existing order, followed by name(s) of author(s) producing the derived work. Such derived
version must be made available free of charge in electronic form under CopyForward. Any other means of
reproduction requires that annual profits(income minus the actual production costs) should be shared with
established charitable organizations for children. This annual share must be at least 25% of the profits and the
organization being supported must have a very modest administrative charges(20-30% of their annual budget
and this sharing amount must be at least 15% of the gross annual revenue). The 25% of the profits is the
minimum and the original creator of the digital content may increase it to up to 40%. The derived contents
would be governed by the term of the original creator of contents.

Readers who found a CopyForward content or any derived work useful are encouraged to also make a donation
to their favourite children charity. Make sure to choose charity which has very modest administrative charges or
give directly to some deserving children in your community.

This children’s charity contribution requirement of CopyForward is civil and moral! It would be judged in the
court of public opinion and the author and all author(s) of this and any derived works allow(s) interested
party/parties to take legal actions against the violator of the spirit of sharing.

Published by: Electronic Publishing BytePress.com Inc.
ISBN: 978-1-988392-16-5

Notes

Files and Databases
Introduction

& Bipin C. Desai

PI. see: https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

' Bipin C Desai

Objectives
* Concepts and use data models(E-R, RDM, unstructured)
* Intro. To the Relational database management systems (RDBMS)
* Query languages (Relational Algebra & Calculus, SQL)
* Concepts of checks, assertions, and triggers.

* Database design and web-programming including: HTML, Javascript,
PhP — design/implementation of a real application.

' Bipin C Desai

Data

Where does data come from?

Records of status
Operation of organizations
Data + action — more data

What to record
Legal and traditional commitments
cost of recording and preserving the records

Data + Algorithm — Programs +++

' Bipin C Desai

Computers

Jacquard machine - 1804
Textile weaving machine

Pattern controlled by punched cards (first input device)

Charles Babbage:

Difference Engine — 1832

Analytical Engine - no funds
Processor, storage, input device, output device
Partially completed in 1910
Fully programmable

First programmer: Lady Lovelace -Ada (daughter of Byron- the poet)

US Census-

Hollerith and the tabulating machine — used punched cards
1911 -Computing-Tabulating-Recording Company » IBM

' Bipin C Desai

Computers

1930 Vennevar Bush » an analog computer »-Differential Analyzer

Programming an
analog computer

(' Bipin C Desai

Computers
1934 James Hilton wrote GoodBye Mr. Chips in 4 days-£50 a royalty!

1939-1843 Howard Aiken and IBM
» Mark | (mechanical) Mark IV (vacuum tube)
1939 Atanasoff/Berry lowa State
1943 Digital computer- Colossus (UK)
1945 Eniac (USA)
1949 Manchester Mark |

https://www.britannica.com/technology/computer/The-first-computer

(' Bipin C Desai

1945

Feb. 4-11 Yalta conference: Decide Europe’s re-organization

April 30 Hitler commits suicide

May 8 Armistice day

March-July: Interim committee for the deployment of the Atomic bomb,

Members of Committes

Dr., Vannevar Bush

Dr. Earl T. Compton

Dr. James B. Conant

Mr. George L. Harrisom, Aoting Chakrman

Boa Toml babl .o

July: Final report of the interim cmt. & a press statement on dropping the
bomb(s)
July: Publication(The Atlantic, July, 1945) of As We May Think
by VANNEVAR BUSH concept of linked documents

https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
August: Most of the Japanese forces have been defeated

August 6 US drops atomic bomb on Hiroshima
August 9 US drops atomic bomb on Nagasaki

' Bipin C Desai

Late 1940s
End of colonization, and new ones -digital and internet based?
https://en.wikipedia.org/wiki/Decolonisation _of Asia - /Nakba
1950s
Development of the digital computers
1960
Concept of wide area network, ARPANET, packet transmission
Early databases
1970s
TCP/IP protocol, Relational Databases, SQL — IBM a late R-DBMS starter
Time sharing, multi-tasking. IBM and the effective end of Usain anti-
monopoly law applications. Birth of PC and DOS -drop-out kid wonder!
1980s
Commercialization of the internet, ISPs,
Hypertext, HTML, HTTP, OODB
1990s
Web browsers, search engines, massive data collection, tracking
21% Century
NoSQL, OSN, more drop-out billionaires, AI, LLM, Internet colonization

' Bipin C Desai

IBM 026 keypunches, IBM 1403 line printer and IBM 729 tape drives IBM 7090 computer
https://commons.wikimedia.org/w/index.php?curid=17267381

https://commons.wikimedia.org/w/index.php?curid=2878809

Bipin C Desai

9

Modelling:

Represent (approximate)
-physical thing,
-conceptual thing

Broomstick stability control
Application:

Stability of rockets such
as: Saturn V

Bipin C Desai

10

Saturn V - The Real thing — 1969

wikimedia.org/w/index.php?curid=6448924

{4 Bipin C Desai !
Data deluge and exploitation:
The Beginning!
http://www94 .web.cern.ch/WWW94/Images/ClosingPanel/Closingpanel1.html
12

(v Bipin C Desai

LI i T P L Ry
Constantine the Great
https://www.flickr.com/photos/yorkminster/5390106900/

'Bipin C Desai B
] g ¥
Imperial ambitions
_ AN
58
. !
émpire ‘_b’yilt' on , s
At FILGY.D TYHGE 4
https://www.economist.com/leaders/2016/04/09/imperial-ambitions
14

‘Bipin C Desai

Recent Disasters in Database Related Projects

HORIZON
https://en.wikipedia.org/wiki/British_Post Office scandai

PHOENIX:

https://pipsc.ca/news-issues/press-releases/press-release-phoenix-pay-system-turns-nine-billion-

dollar-breakdown
https://spectrum.ieee.org/canadian-governments-phoenix-pay-system-an-incomprehensible-failure
https://en.wikipedia.org/wiki/Phoenix_pay system
https://ottawacitizen.com/opinion/desousa-9-years-of-phoenix-the-payroll-disaster-thats-burning-workers
https://ottawacitizen.com/news/feds-spending-1-billion-on-maintaining-public-servant-pay-system-over-two-years

-as-it-tries-to-fix-phoenix-issues

SAAQClick
https://globalnews.ca/news/11153545/quebecs-saaqclic-scandal-500-million/

Unity
Lack of knowledge, trasperancy, over hype by marketing people,

ignorance of elected officers, fear of challenging authority and its reults

' Bipin C Desai b

Files and Databases
Introduction

@ Bipin C. DESAI

PI. see: https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

(' Bipin C. DESAI 1

= zabe

3sanb

TeUOSIag

UNIX
MariaDB /MySQL
access
create,insert,
select

Modelling
E-R

RDM, RA
SQL, VIews,
triggers
Query Processing,

Major Projects
design
Normalization

Examples stc.

RA/RC/SQL
Group
discussions to
resolve Implementation
problems testing
documentation
demo

Design Process
FDs & Normalization

ODL

Datalog?

(' Bipin C. DESAI ’

Modeling techniques (E-R, ODL, UML)
Basic relational model
Design of database applications

Database programming (MySQL,
SQL, PHP, HTML, CSS, Javascript)

dr ' Bipin C. DESAI

Real and abstract
Objectsthings and thei
interactions

|

Requirements
for data processing
applications

l

Entities and
relationships
to be modeled

dr Bipin C. DESAI

DBMS! What 1s 1t?

Database is an integrated data collection
(Logically consistent and persistent)

It 1s derived from the model of a set of
applications for a real world enterprise.

DBMS is a software package designed to make
managing almost any database.

DBMS offers: data independence, efficiency,
Integrity, security, concurrency, recovery

dr Bipin C. DESAI

Why Database?

Information Age: 30-40% of world trade and growing
Web(Unstructured data) and .com Email, -
Digital Library | g’gﬁ[tainment
Human Genome Project Shopping

Day to day operation of Mama/Papa Store

List of titles, artist, and download site of shared files.

Information about employees, departments, projects,
etc. in an organization

Information about students, courses, enrollments,
professors, etc. in an educational institute

Information about books, videos, albums, members, etc.
in a library

d ' Bipin C. DESAI

DBMS is a complex set of software packages:

- create new databases, store and manage data -
provide application development and support
environment
Application Support: Gives developers tools to build
applications for using the data. Allows easy method for
users to query and modify the data
Persistent storage: Support the storage of data
Transaction management: Controls concurrent access
to data from many users
Supports the ACID properties .

Atomicity Concurrency Integrity Durability

' Bipin C. DESAI

M

Cust-No
Cust-
Name

pL| Address Y

nser ! Programcredit' —
c 0S » Customer :
ustomer liste th data d 2N Master Marketing

Oftust-Name ~__File _~

——————jddress
copoL Part-No N
User 2 Program Qty-Ordered [~]
ricé R . .
i 03 Invoice Accounting
onthly invoi with data delfPsart-No Master | 9

Part-Descr File
Vendor-No

User 3 PASCAL Qty-In-Stock

Program |Qty iy
with data def§.Mder

Inventory

Bl i

1”4

arehouse

M aster
File

Parts list

' Bipin C. DESAI

Pros & Cons of file based system

Sharing not possible data definition is “locked” in
application programs which “owns” the file and the data in it

Redundancy of data: Same data is duplicated perhaps in
slightly different format over various files

Multiple updates: Changes have to be made to all files
containing the same data. Possibility of inconsistency

Waste of storage space:

Reliability and better local control

o Bipin C. DESAI 9
Naive User Casual Users Web User
Application Application Application
DBA
Database Management System
Online Online Online
storage storage storage

dr Bipin C. DESAI

10

User 1

A
v

\pplication
ustomer lis

DBMS -

\pplication2— ’ J 0S

Database

Mionthly invoi

Data Items
: Qty-Orderd
Cust-No Price

i i > Cust-Name Part-descr
pplication. Address Vendor-No
Parts list Credit-Code Qty-In-Stock
Description Qty-On-
Part-No Order

c c
[72] (724
D D
- -
w N
I ¥ I h

dr ' Bipin C. DESAI 11

Pros & Cons of DBMS

Reduce data redundancy and avoiding inconsistency
Provide Concurrent access
Offer Centralized control

- security(appropriate authorization and its
control),

- integrity(constraints and their enforcements)

- reliability(backups and replication)

Data abstraction and independence

dr ' Bipin C. DESAI 12

First Step: Data Models

¥ Data Model: concept to describe data

¥¥Schema: description of a collection of data
using a specific data model

¥¥Relational Model: Based on the concept of
relation(table with rows and columns)

' Bipin C. DESAI

13

A Data Model is a collection of concepts for describing
Entities(objects) and relationships among them

Expressing the semantics and constraints from the real world

Object-Based Modeling Techniques
Entity-Relationship (ER) Model
Object-Oriented (OO) Model

Record-Based Models
Hierarchical Model: used by earliest DBMS — IBM’s IMS
Network Model: second generation DBMS - DBTG

Relational Model: the first based on theory - relations
(RA, RC, Datalog)

dr ' Bipin C. DESAI

14

Employee Name Employee Name

Employee Phone Number Employee SIN
Employee Salary

Employee Name
Employee Phone Number
Employee SIN
cmployee Address
Employee Annual Salary
Employee YTD Salary

Employee Name string
Employee Phone Number digits
Employee SIN digits
Employee Address string
Employee Annual Salary money units
Employee YTD Salary money units

e’ Bipin C. DESAI

15

Three level Concepts

Vitew 0 U ser | Vigew - U ser) Viiew - U ser

\Logicallndetpendence /

A\J

Conceptual $chem o

. A
Physical [gdependence

Physical Schem o
A

R

dr ' Bipin C. DESAI

16

£

. . Employee name SIN
logical view ~
Employee address Annual salary
NS \ /

User 1 User 2

Employggfhame: string

SP* dec, key
onceptual view Employee address: string

Employee health card No: string,
unique
Annual salary: flogt

\
DBA \ Employee name: string length 25 offset 0
SIN: 9 dec offset 25 unique

nternal view Employee health card No: string length 10 offset 34 unique

Employee address: string length 51 offset 44

Annual salary: 9,2 dec offset 95

dr ' Bipin C. DESAI

Three levels & Independence

J . . .
**User View: How users view data - derived
from conceptual view-

** Conceptual Schema: Logical structure of
the database

o Physical Schema: The actual files and
indices used

*“*Schema defined using DDL

d ' Bipin C. DESAI

Data Independence: modify definition of schema at one

level without affecting a schema definition at a higher

level.

Logical Data Independence: modify logical schema

without causing application programs to be rewritten
adding new fields to a record or changing the type of a field

Physical Data Independence: modify physical schema

without causing logical schema or applications to be

rewritten

changing file structure from sequential to direct access

dr ' Bipin C. DESAI

19

University Database

“*External Schema:

Course Enrol(C#:char, Number:int);
*Conceptual Schema:

Student(S#, Name, Dept)
Course(C#, Cname, Credits)
Enrollment(C#, S#, grade)
**Physical Schema:

files, indexed on S#, C#, etc

dr Bipin C. DESAI

20

A database schema is a description of a

particular collection of data, using a given

data model

Part of a schema for a university. database in
relation model would contain among others,

the following:
Students (sid, name, department,dob, address)

An-instance of a3 database schemaisthe
sig m department dob address
ettatrco et o ihedatafhase—=at—=
111 | Johm Smith " ['CS _ 12-0I-8 22 Pine, #1203
P Ci BP0 TNEE 1IN TIM[81.08-73 | 2000 St. Marc
3334445 | Youwong Li | CS 23-11-79 1150 Guy
cfr Bipin C. DESAI 21

The Architecture of a DBMS

** There are 3 types of input to Queries
DBMS: Mloait cation s/wca“o n$
¢ Access via queries —
¢ Updates to data Query L
¢ Updates to model Processor Transéction
U nitial database creation, 1 Mana ger
D addition to schema components Storage | —
H'schema modifications Manager
Data
Metadata

d ' Bipin C. DESAI

22

** The query processor handles:

¢ Queries
¢ Updates

** The job of the query processor

Queries

A4

Schema ————
Modification M odification {

At o Query
which includes an optimizer Processor ‘r\ .
o ransaction
¢ To find the “best way to carry out i Manager
a requested operation Storage | —

¢ To issue commands to the storage | Manager

manager that will carry them out.

Data
Metadata

d ' Bipin C. DESAI

23

“*The job of the storage
manager 1s

¢ To obtain requested
information from the data

storage

¢ To modify the information tq Storage
the data storage when
requested.

Queries

Schema 7
M odification{wcatlon\,
208

Query
Processor [[———
[ransaction
! Manager
—
Manager
Data
Metadata

dr ' Bipin C. DESAI

24

Queries

\/ .
** The transaction manager

- - Schema PR
is responsible for the) PG S S/wca’uo ns
enforcing ACIDity —
¢ several concurrent 5 Query |
transactions(one or more rocessor Transaction
queries) do not interfere with } Manager
each other I\%to rage | —
¢ the system will not lose data anager
even if there are failures
(dzne through Recovery Data
subsystem) Metadata
cfr Bipin C. DESAI 25
o) Queries
** Database contents include:
Schema | | yro gification$
¢ Metadata for the DBMS Mlodification 3
and one or more databases T
¢ Data belonging to one or Pr%l(J: g ;g or T——
more databases i [ransaction
€ Access aids such as indices Storage Manager
and statistics M an ag o —
Data
Metadata

dr ' Bipin C. DESAI

26

The Structure of a DBMS

#y
alve user
fjons

Telecom systen

v
Compiled

Query

Ay

Casual user}}

r_____J

processor

|

| DBMSand

ser interface

[

Compiled

pplicatior
program

;’;atchlier

Q

clecom systen

N

—

$ datamanage

|

OSorown
file manager

!

OSdisk
manager

ata Files and

ta Dictiona

DDL com pilef

clecom systen

dr ‘Bipin C. DESAI

27

Database Design Process

and

Conceptual Design

dr ‘Bipin C. DESAI

28

Object-Oriented
DBM S

S
/ODL\
Requirements Relation

for a set of \
applications

Relation
E/R al
DBMS

(' Bipin C. DESAI

29

L
&

(' Bipin C. DESAI

30

Il & Il
Il & I
DS

(d’ Bipin C. DESAI

31

Relational Model

(tables)

set of table names

properties

program

In this model,the data is organized in relations

Relational database schema: DDL component of SQL

list of attributes for each table and their

Examples of tables from a university database:

Student : stud _number, name, address,

Department: name, budget code,room,phone

' Bipin/&. DES i
CEPERTYee - name numhear eredits

32

Definition
of the
Problem

A 4

Analysis:
Systems,
Procedures

v

Preliminary
Design

v

Hardware
Software
Reguirements

\ 4

Final Design

v

Implementation
and
Testing

v

Installation
Operation &
Tuning

dr ' Bipin C. DESAI

33

O Definition of the problem

U Study underlyine applications(Procedure Manuals, Interviews etc.)

Database Design Process

* What are the entities and relationships involved?

* What details about them should be in the database?
* What are the procedures, business rules, constraints?
* Who are the users? What do they need?

O Preliminary Conceptual desion:

* ER Model

dr ' Bipin C. DESAI

34

Database Design Process

O Software/Hardware Requirements
* UML for software design

O Final Desion: Schema Refinement: (Normalization)

* Check relational schema for redundancies and related
anomalies.

* External Schemas, indices, views, access methods

O Application programs, forms, reports, user interfaces

O implementation and testing

U rnstallation and Ti uning:

* Data Distribution, Physical re-design

* Performance, Security, Backup & Recovery.

d ' Bipin C. DESAI 35

ER Model sin grad

“* Entity: Real-world object
distinguishable from other
objects.

¢ An entity is described using a
set of attributes.

“* Entity Set: A collection of similar CREATE TABLE Employees

Employees

entities. (sin CHAR(9),
eie . name CHAR(25),
¢ All entities in an entity set grade INTEGER,

have the same set of attributes. pRIMARY KEY (sin))

¢ Each entity set has a key.
¢ Each attribute has a domain.
¢ Can map entity set to a relation

A Bipin C.@BSI Y . 36

mysgl> CREATE TABLE Employees
(sin CHAR(9),
name CHAR(25),
grade INTEGER,
PRIMARY KEY (sin));
Query OK, 0 rows affected (0.00 sec)
mysgl> show tables;

F———_——— +
| Tables in dblls |
fomm [—— +
| Employees |
- = +
o Bipin C. DESAI

mysqgl> desc Employees;

e o - +———— F————_———— - +
| Field | Type | Null | Key | Default | Extra |
e Fomm - t—————= +————- fom— - Fo—————- +
sin	char(9)	NO	PRI		
name	char(25)	YES		NULL	
grade	int(11)	YES		NULL	
e fommm - t-————- t-———- fomm - e +

3 rows in set (0.00 sec)

Note: size of integer is defaulted to 11

The Extra field contains any additional information that is
available about a given column.

The value is auto_increment for columns that have the
AUTO_INCREMENT attribute and empty otherwise.

dr ' Bipin C. DESAI

CREATE TABLE Department
(did mediumint not null auto increment,
dname CHAR(16),
bcode char(12),
PRIMARY KEY (did));
Query OK, 0 rows affected (0.04 sec)

mysqgl> desc Department;

fom———— Fom e fom fo———- R Fmm +
| Field | Type | Null | Key | Default | Extra |
fo—m———— fomm - fo————- to———= fommm————— Fomm e +
did | mediumint (9) | NO | PRI | NULL | auto increment |
| dname | char(16) | YES | | NULL \ |
| bcode | char(l2) | YES | | NULL \ |
fo—m———— Fommmm - fo————- to———- fommmm———— Fomm e +
3 rows in set (0.00 sec)
o' Bipin C. DESAI 39

Entities and entity sets

Qname Qcode>

Department
set—

did
T attribute —

All employees, and departments have the same set of
properties(attributes)

To distinguish one instance of an entity in an entity set from
others, we introduce an identifying attribute

Thisisthe primary key and itis underlined

dr ' Bipin C. DESAI 40

Entity — Real world object distinguishable from other
objects of the same type

Entity Set -- A collection of similar entities: all have
same set of properties

ODL.:
Object corresponds to entity Class corresponds to entity set

Course

Student

dr ‘Bipin C. DESAI

41

@Q ’ \ budget Employees
supervisor
Employees| Departments

“* Relationship:

¢ Association among 2 or more entities.
“* Relationship Set: Collection of similar relationships.

¢ An n-ary relationship set R expresses an association among n

entity sets E1 ... En; each relationship in R involves entities el
€ El, ...,en € En

Same entity set could participate in different relationship sets, or
in different “roles” in same set.

dr Bipin C. DESAI

42

T TaTe
Total participation of all
Employees|™ Departments | employees & departments

In the WorksIn relationship
No Employee or Department

ay exist without being relate
o e

1
Employees @ Departments Many to one relationship:

many employees in a
department;
but an employee is

- assigned to only one
\ department

Employees Departments

L DY

Alternate way of showmg a many-to-one relationship

dr ' Bipin C. DESAI 43

Entities and entity sets

Movie Star

Movie Star

\ One to many relationship between
‘M a movie and its male lead(“hero”):
Indicated by a arrow pointing to the “one

side” — A movie has but one main role,
The star may be a lead in many movies

@ Bipin C. DESAI 44

Entities and entity sets
Gansd
M ovie Star

Movie «@ Star

\ Many to many relationship between
@ movies and its stars. Each movie may
have many stars and each star may have

featured in many movies. Indicated by no
arrows on the connecting lines.

d ' Bipin C. DESAI 45

Entities and entity sets

Gddres
Movie 4@» Star

How about a movie and the roles(characters) in it and the stars
playing them!

6
9
£

A
1

@ Bipin C. DESAI 46

Entities and entity sets
Movie @ Character

N\ I

How about a movie, the roles ,@

(characters) in it and the stars
playing them! Star

Scarlett O'Hara - Vivien Leigh ‘ ‘
Rhett Butler- - Clark Gable ~ 0aM&> @dres

Alex Guinness plays eight members of the D'Ascoyne family in
Kind hearts and coronets(1949)
Matt Damon played the lead in the Bourne triology.

g

B

e’ Bipin C. DESAI

47

Entities and entity sets

G Game

Employee Dependents

An employee
may have 0 ton

Employees <' . Dependents

All dependents must be related

Total participation
P P to some employee(but only one!)

e’ Bipin C. DESAI

48

E/R model 1s a graphical approach to database modeling
E/R is widely used in database design
E/R model grew out of modeling application database

No standard for E/R diagrams: a number of variations

Entity set A Inheritance
<> Relationship set El Weak entity set

Attribute
Kev Attribut @Veak relationship se
AL ey ripute
N X —_—

X X
Type of relationship ; <>_
Referential —_—
i’ Bipin C. DESAI mrtegtity J

(oon>
g,

In the WorkslIn relationship
Employees| Departments

(ooa))
e

2 e 1
Employees| Departments Many to one relationship:

many employees in a
department;

e -
b 1 i
@? \ GO G s o

department
Employees| @ — ’|Departments

Alternate way of showing a many-to-one relationship

e’ Bipin C. DESAI 50

Key Constraints

** Consider Works In: ! !

An employee can

) Employees | Manage
work in many

departments; a dept
P P A department can have/6nly one manager,
can have many

employees. an employee could manage many departments

** In contrast, each dep
has at most one
manager, according {Q
the Fkey constrain
on Manages.

qg

Departments

d ' Bipin C. DESAI 51

CREATE TABLE WorksIn
“ Relationship sets can have (sin CHAR(9),

attributes did INTEGER,
< 1In translating a DOA DATE,
relationship set to a PRIMARY KEY (sin, did),
relation, attributes of the FoRFIGN KEY (sin)
relation mustinclude: REFERENCES Employees,
¢ Keys for each FOREIGN KEY (did)

participating entity set REFERENCES Departments)
(as foreign keys).

OThis set of attributes
forms superkey for

the rel.ati.on. If a relationship is 1-to-1 primary
¢ All descriptive key is from either of the ‘1’ side,
attributes. the other side is a foreign key

dr ' Bipin C. DESAI 52

‘_<>_%

If a binary relationship between two entity sets is 1-to-1,
- the primary key of the relationship is the key of the entity from
either of the ‘1 side, the other side is a foreign key(would be

unique) < >

If a binary relationship between two entity sets is 1-to-many,
- the primary key of the relationship is from the
‘m’ side, the ‘1’ side is the foreign key (would be unique)

If a binary relationship between two entity sets is m-to-n,
- the primary key is composite, consisting
of the primary key of the entities from each side of the relationship

d’ Bipin C. DESAI

53

Alternate methods of
showing the same model!

o T

Employees |

qf’ Q
Employees [© Departments

budget

Departments

dr Bipin C. DESAI

54

CREATE TABLE Manages

** Map relationship to a (sin’ CHAR(9),

ble- did INTEGER,
table: DOA DATE,
¢ Note that did is the PRIMARY KEY (did),
key now!
¢ Separate tables for)
Employees and
Departments. CREATE TABLE DeptMgr
** Since each department (did INTEGER, N1 for Dept. w/o
has a unique manager, manager!
we cquld instead sin CHAR(9),
combine Manages and DOA DATE,
DepartmentS. PRIMARY KEY (dld),

FOREIGN KEY (sin) REFERENCES Employees)

dr Bipin C. DESAI 55

Participation Constraints
** Every department has a manager (a business rule) =
participation constraint:

¢ The participation of Departments in Manages is fozal
(all instances of Department must have a manager; participation of Employees is
partial i.e., not all employees are managers).

Every did value in Departments table must appear in a row of the
Manages table (with a non-null sin value!)

d

' Departments

Note: yet another method of
showing a many-to-one
relationship and

total participation!!!

d’ Bipin C. DESAI 56

Participation Constraints: SQL

** A participation constraints involving one entity set in a binary
relationship, can be expressed as follows without resorting to
CHECK constraints.

CREATE TABLE DeptMgr Every department must
(did INTEGER, have a manager!
dname CHAR(20),
budget REAL,
sin CHAR(9) NOT NULL,

DOA DATE,

ON DELETE NO ACTION)

dr Bipin C. DESAI 57

s

Departments

CREATE TABLE Manages
(sin CHAR(9) NOTNULL, @
did INTEGER NOT NULL,
DOA DATE,

PRIMARY KEY (did),
FOREIGN KEY (sin) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)

Here a department can exist without a manager.

We couldn’t insert an occurrence of this relation
without having an occurrence of a department

and employee! Once inserted, does firing the manager
create problems?

dr Bipin C. DESAI 58

d

' Departments

CREATE TABLE WorkIn
(sin CHAR(9) NOTNULL,
did INTEGER NOT NULL,
DOA DATE)

To ensure total participation of department in WorklIn, each

did value must be in at least one tuple of WorkIn:
enforced by assertion

dr Bipin C. DESAI 59

** A weak entity can be identified uniquely only by considering the
primary key of another strong-owner entity.

¢ Owner entity set and weak entity set must participate in a one-to-
many relationship set (1 owner, many weak entities).

¢ Weak entity set must have total participation in this identifying
relationship set.

Employees [¢ @ Dependents

dr Bipin C. DESAI 60

“* Weak entity set and identifying relationship set
are translated into a single relation.

¢ Weak entity = total participation

¢ When the owner entity is deleted, all owned
weak entities must also be deleted.

CREATE TABLE Covers
(dname CHAR(20),
DOB DATE,
Type INTEGER,
Cost FLOAT,
sin CHAR(9) NOT NULL,

ON DELETE CASCADE)

e’ Bipin C. DESAI

61

Generalization, Specialization CoameD

+If we declare A ISA B, every
A entity is also considered to Employees

be a B entity. However+o
implemented always ours_worked) /N

* Overlap constraints: Can two

Generllization

subclasses contain the same

Hourly_Emp

/@ alization

Salary_Emp

instance of an entity? Can

Carole be an Hourly_Emps as Covering constraints: Does every

well as a Salary_Emps? Employees entity also have to be
- | an Hourly_Emps or a Contract_

(Allowed/disallowed) Emps entity? (Yes/no)
** Reasons for using ISA relationship:
¢ To add attributes specific to a subclass.

¢ To identify subset of an entity set that participate in a

relationship.

dr ' Bipin C. DESAI

62

TSA relationship to
Relations sin |

Employees

Create 3 relations:
Employees(Sin, Name, Grd), @ A .

Hourly Emps(Sin, Hwage, Hwrkd) and |
Salary Emps(Sin, AnnualPay). Hourly_Emp Salary_Emp

* Every employee is recorded in Employees. For hourly
employees, value for additional attribute are recorded in
Hourly Emps; if referenced Employees tuple 1s deleted,
Hourly Emps tuple must also be deleted.

¢ Queries involving all employees easy, those involving just
Hourly Emps require a join with Employee to get inherited

attributes.

dr ' Bipin C. DESAI 63

ISA relationship to n
Relations |

Employees

n

|
o

hourly_wage

Hourly_Emp% Salary_Emp
+* Create two relations:

** Hourly Emps(Sin, Name, Grd, HWrkd, Hwages) and
Salary Emps (Sin, Name, Grd, AnnualPay).

X/

Each employee must be in one of these two subclasses.
All employees require accessing Two relations

@ Bipin C. DESAI 64

. nam
Aggregation
“** Aggreqgation: Employees
models a
relationship, @ewis CantilD
involving entity

relationship set, as Gtarted_op (dname)
an entity set. The Cpbudged

aggregated entity | pro,-ectsnepartments

Participates in - o

other
relationships. 0 Aggregation vs. ternary relationship:
¢ Supervise + Supervisesis a distinct relationship,

mapped to tabIeWith its attribute.

like any other

—reratronsnip-set:
@ Bipin C. DESAI 65

Binary vs. Ternary Relationships

‘ | doas
«* If each policy is @

owned by just
ONE employee: Bad design

on Policy
requires that it
can only cover

one dependent. Better design

@ Bipin C. DESAI 66

CREATE TABLE Policy (

policy# INTEGER,
* The key cost REAL,

constraints allow sin CHAR(9) NOT NULL,
us to combine

Purchaser with
Policy and Covers

with Dependents.)

** Participation CREATE TABLE Dependents (
constraints lead dname CHAR(20),
to NOT NULL dob DATE,

. olicy# INTEGER,
constraints. oy

@ Bipin C. DESAI

67

An example where aternary relation is better than a

number of binary relations is the following:

Parts Dept.

Key: Part#, Dept#, Supl#

Supplier

dr ' Bipin C. DESAI

68

Parts Dept.

Supplier

dr ' Bipin C. DESAI

“* Supplies relates entity sets Parts, Departments and Suppliers, and
has descriptive attributes price, quantity etc.

** A number of binary relationships may not convey the semantics

** Supplier *CanSupply” Part, Dept. “‘Uses” Part, and Dept. **Can

Buy” from Supplier does not imply that Dept has a PO to buy Part
from S.

¢ How do we record the following: which part, quantity price?

dr ' Bipin C. DESAI

A department can order only one part from a supplier?

Parts

T

Dept.

Supplier

/

Coe D

o' Bipin C. DESAI 71
Introduce a new
entity-set which
Parts represents the Dept.
multi-way
relationship
X
’ Schema of X could be
XID, P#, D#, S#, Qty, ...
What are the schema of the
binary relationship?
Supplier

dr ‘Bipin C. DESAI

72

Constraints Beyond the ER Model

** Functional dependencies:
\ | department can order only one part from a given supplier.
O Can’t express this in ternary Supplies relationship.
¢ Normalization refines ER design by considering FDs.
** Inclusion dependencies:
¢ Special case: Foreign keys (ER model can express these).

4. g., At least 1 person must report to each manager. (Set of sin
values in Manages must be subset of supervisor ssn values in
Reports To.)

J .
** General constraints:

L 2 g., Managers discretionary budget less than 10% of the
combined budget of all departments he or she manages.

dr Bipin C. DESAI

73

Databases — the generations

Notes

(e Bipin C. Desai

PI. see: https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

dr: Bipin C Desai

FIRST GENERATION
1950s —Refinement of storage media, magnetic tape, drums, disks
Early 1960s: Disk access method based on
Index Sequential Access Method(ISAM)
Mid 1960s:Emergence - Information Management System(IMS)-IBM
developed in 1966 along with NASA(Rockwell and Caterpillar)
to support the Apollo/Saturn V program
Current version is IMS 15.4 and runs on IBM z platform
It 1s still being marketed, used in banking etc.
promises > 250*10° transactions per day
1959 : CODASYL(Conf./Committee on Data Systems Languages)
later to become Database Task Group (DBTQG),
DBTG developed the network model and its implementation
Integrated Data Store (IDS),
Integrated Database Management System (IDMS)
both still marketed and supported.

r: Bipin C. DESAI

SECOND GENERATION

1970 Codd’s paper about relations

1973/1974 Ingres(UC Berkley, M. Stonebraker, E.Wong)
System R(IBM), Berkley/DB (Sleepy Cat Software, Oracle)
QUEL, SEQUEL(Ingres) and SQL(System R)

1978 Oracle

1981 Informix (IBM)

1984 System R(IBM)

1987 Postgres

1993 mSQL (mini SQL by D. Hughes)
mSQL used in the development of early dynamic Web
applications including CrsMgr and ConfSys

1995 MySQL - bought by Sun in 2008 price- $1billion
— Sun was taken over by Oracle

2009 Mariadb — a fork of MySQL

r: Bipin C. DESAI

THIRD GENERATION

2004 MapReduce paradigm shift to lower level!
Map(distribute tasks to nodes to filter local data) and then
Reduce(process result in parallel)

2005 Hadoop (Apache)

2008 Cassandra, Hbase,

2009 MongoDB

r: Bipin C. DESAI

Simple SQLPlus & SQL

@ Bipin C. DESAI

r+ Bipin C. DESAI

Getting & Installing {Apache, Oracle, PHP} or, XAMPP

Consult:

http://www.oracle.com/technology/tech/php/htdocs/inst php apache windows.html
or whatever is the currrent URL
For Oracle you need to register with OTN

MySQL/Mariadb
https:/www.apachefriends.org/download.php

The projects are to be demonstrated on one of the systems in our labs.
So if you develop the projects on your own systems, make sure you could:

- Upload all the code to CrsMgr
- Have it run on one of AITS systems which has one of the above configurations

- It work ifi :
tworks as specified 1 e notes uses Oracle, MySQL, MariaDB

r: Bipin C. DESAI

Connecting to SQLPlus

SQLPlus is a “user friendly interface” to ORACLE SQL to be used
interactively.

You need Oracle USERID/PASSWORD and appropriate permission
to a Oracle DB.

May connect remotely using a secure shell (e.g., Putty)

o sunset.cs.concordia.ca - PuTTY @@E
o

[alpha:boedesai] 101 => sgqlplus
SQL*Plus: Release 9.0.1.0.0 - Production on Mon Sep 20 10:04:53 2004
{c) Copyright 2001 Oracle Corporation. All rights reserved.

Enter user-name: bod orcl
Enter password:

Connected to:
Oracle9i Release 9.2.0.3.0 - Production

JServer Release 9.2.0.3.0 - Production

SQL> w

ch

Bipin C. DESAI

Download and install Oracle (the version changes over time)
Typically - start database (unless it has been installed as service which starts
on boot)

From Start select RunSQL command line

Connect to oracle:

& Ruyp SOL Command Line

SQL*Plus: Release 18.2.8.1.0 — Production on Fri May 23 16:46:37 2008
Copyright <c> 1982, 28085, Oracle. All rights reserved.

2QL>» connect bcdesai

Enter password:

Connected.

SQL>* create tablespace hecd

2 logging

datafile ‘c:“Oracleworadatasbcd’
gsize 3Zm
autoextend on
next 32m maxsize 512Zm
extent management local;

Tablespace created.

SQL>

o BB ISR

create table student
(SID NUMBER(7) primary key not null,

SNAME VARCHARZ2(20), .

To execute a text file containing sql
MAJOR CHAR(4), statements interactively from the sql
YEAR NUMBER(1), rompt (@ foll zb the fi llq
BDATE DATE) pa‘t’h tlz) Elsee oHowed by Hhe td
tablespace bcd pctfree 2; P

sql>@student.sql

c* sunset.cs.concordia.ca - PuTTY EJ@|E|
SOL> ¢reate table student A
2 (SID WUMBER(T7) primary key not null,
3 SHAME VARCHARZ2 (20},
4 MAJOR. CHAR(4),
L3 YEAR HUMEER (1),
6 BEDATE DATE} ;

Table created.

soL> [3z
—

r+ Bipin C. DESAI

Connecting to MySQL/MariaDB

MySQIl/Mariadb has a simpler text based interface

used for connecting to the database

running locally or on a server accessed using a terminal emulator
Putty is one used in WinX

Again the DB server must be running and one needs
a user ID and password for the database to be used
shell> mysql —u username —p password

If the ID/PW are correct, one gets the prompt from the database

r: Bipin C. DESAI

Enter password:

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 96773

Server version: 10.3.17-MariaDB MariaDB Server

Copyright (c¢) 2000, 2018, Oracle, MariaDB Corporation Ab and
others.

Type 'help;' or "\h' for help. Type "\¢' to clear the current input
statement.

MariaDB [(none)]> connect test;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Connection 1d;: 29348
Current database: test

r+ Bipin C. DESAI

11

mysql> create table student
(SID DECIMAL(7) primary key not null,

SNAME VARCHAR (20), To execute a text file containing sql

MAJOR CHAR(4), statements interactively from the sql
YEAR DEC(1), prompt use (@ followed by the full
BDATE DATE); path to file

sql>@student.sql

in MySQL use “source student.sql”

mysgl> desc student;

t—————— = +————— +————— o +—————— +
| Field | Type | Null | Key | Default | Extra |
e fom e e it - fommm fom———— +
SID	decimal(7,0)	NO	PRI	NULL	
SNAME	wvarchar (20)	YES		NULL	
MAJOR	char (4)	YES		NULL	
YEAR	decimal(1,0)	YES		NULL	
BDATE	date	YES		NULL	
t—————— - - +————— e ————— o +
)

r: Bipin C. DESAI

12

Inserting Data in a table — table must exist!

£ sunset.cs.concordia.ca - PuTTY E]@|g|
5QL> insert into student wvalues(8, 'Brenda', 'COMP', '2', "13-AUG-T7 ") »

1 row created.

5QL> insert into student wvalues(1l0, 'Dupont’, '"ENGL', "1", "13-MAY-80") ;
1 row created.

5QL> insert into student values(13, 'Kelly', 'SENG', '4', "12-AUG-80 ") ;
1 row created.

5QL> insert into student values(1l4, 'Jack',6K 'CSAP','1", "12-FEB-T77")

1 row created.

SQL> v

Date format in MySQL isyyyy-mm-dd;

Value order as in schema for the table

MariaDB [test]> insert into student values
(8, 'Brenda’, 'COMP', 2, '1977-8-13");

r+ Bipin C. DESAI

13

MariaDB [test]> \l tcsh -- escape to interative shell (tcsh)

101 => emacs -nw students.sql

104 => more students.sql

insertinto student values(10, "Dupont”, 'ENGL', 1, '1980-05-13');
insert into student values(13, 'Kelly', 'SENG', 4,'"1980-08-12');
insert into student values(14, 'Jack’', 'CSAP', 1, '1970-02-12";

105 => exit

exit

MariaDB [test]>system cat students.sql;

create table student

(SID DECIMAL(7) primary key not null,

SNAME VARCHAR (20),

MAJOR CHAR(4),

YEAR DEC(1),

BDATE DATE);

insert into student values(10, "Dupont”, 'ENGL', 1, '1980-05-13');
insertinto student values(13, 'Kelly', 'SENG', 4,'"1980-08-12");
insert into student values(14, 'Jack’, 'CSAP', 1, '1970-02-12";
MariaDB [test]>

r: Bipin C. DESAI

14

students.sql - GNU Emacs at ConfSys (on ConfSys)

File Edit Options Buffers Tools SQL Help

create table student

(SID DECIMAL(7) primary key not null,

SNAME VARCHAR (20),

MAJOR CHAR(4),

YEAR DEC(1),

BDATE DATE);

insert into student values(10, "Dupont", 'ENGL', 1, '1980-05-13');
insert into student values(13, 'Kelly', 'SENG', 4,'1980-08-12');
insert into student values(14, 'Jack', 'CSAP', 1, '1970-02-12');

-:-—- students.sql All L8 (SQLLANSI] +2)

Use +,-,0 for further adjustment

' Bipin C. DESAI s
MariaDB [test]>
MariaDB [test]> source students.sql;
Query OK, 1 row affected (0.028 sec)
Query OK, 1 row affected (0.050 sec)
Query OK, 1 row affected (0.050 sec)
MariaDB [test]> select * from student;
+-———- 4= $-————- 4-————- ittt +
| SID | SNAME | MAJOR | YEAR | BDATE |
+--——- - - $-————- $m— - +
10	Dupont	ENGL	1	1980-05-13
13	Kelly	SENG	4	1980-08-12
14	Jack	CSAP	1	1970-02-12
+-—-—- $-—————- $-—————- $-————- ittt +
3 rows in set (0.001 sec)
MariaDB [test]>
16

('TI'

Bipin C. DESAI

Find all students (ORACLE)
SQL> select * from student;

SQL>column major format a5

SQOL>column sname format al2 S1D

SNAME

13-AUG-77
13-MAY-80
12-AUG-80

SID SNAME MAJO
8 Brenda COMP

10 Dupont ENGL
13 Kelly SENG
14 Jack CSAP

12-FEB-77

SQL>column sid format 9,9 format not available in MySQL

MAJOR YEAR BDATE

SQL>column major format ab

8 Brenda
SQL>column year format 999 1,0 Dupont

1,3 Kelly
SQL>column bdate format al2 ; 4 5.0k

COMP
ENGL
SENG
CsapP

2 13-AUG-77
1 13-MAY-80
4 12-AUG-80
1 12-FEB-77

r+ Bipin C. DESAI

17

e tm———— t—— +
| sid | sname | major |
+————- e o +
8	Brenda	COMP
10	Dupont	ENGL
13	Kelly	SENG
14	Jack	CSAP
+————- t——————— t——— +

4 rows in set (0.001 sec

MariaDB [test]> select * from student;

1997-08-13
1980-05-13
1980-08-12
1970-02-12

r: Bipin C. DESAI

18

select s.sname

from student s

where to date(s.bdate) like '%13%";

select s.sname

from student s

where s.bdate like '%13%';

SNAME e N
""""""" | sname |
Brenda e +
Dupont | Brenda |

| Dupont |

fomm——— - +

SQL script: date.sql 2 rows in set (0.000 sec)
& Bipin C. DESAI 19

Find students born in August

select s.sname

select s.sname from student s
from student s where s.bdate like '%-08-%';
where to_date(s.bdate) like '%AUG%'; !
| sname |
fomm - +
SNAME | Brenda |
____________ | Kelly |
Brenda to—m oo +
jK@Hy 2 rows 1n set(0.000 sed

SQL script: month.sql

4 Bipin C. DESAI 20

Find student born in 1977

select s.sname
from student s
where to_date(s.bdate) like '%77%';

select s.sname from student s

SNAME where s.bdate like '%80-%';
------------ F——_—— - -t
Brenda | sname |
- +
Jack
| Dupont |
| Kelly |
SQL script: year.sql R +

2 rows in set (0.001 sec)

r+ Bipin C. DESAI

21

create table dept
(DEPT CHAR(20) not null,
CODE CHAR(4) primary key not null);

insert into dept values('Computer Science', 'COMP");
insert into dept values('Decision Science', 'DISC');

create table deptmajor

(CODE CHAR(4),

MAJOR CHAR(20),

primary key (CODE, MAJOR))

insert into deptmajor values('COMP', 'COTH");
insert into deptmajor values('COMP', 'SENG");
insert into deptmajor values('COMP', 'CSAP");
insert into deptmajor values('DISC', 'OPRS');

r: Bipin C. DESAI

22

create table course

(CNAME CHAR(20),

CNUMBER CHAR(8) primary key NOT NULL,
CREDITS NUMBER(2),

ODEPT CHAR(4),

foreign key (ODEPT) references dept(code)

on delete cascade)

insert into course values('C++','COMP248',3,'COMP");

insert into course values('DATA STRUCTURES ',/ COMP352',3,
'COMP");

insert into course values('OPERATING SYSTEMS','COMP346',4
, COMP");

insert into course values('DATABASE','COMP353'4,'COMP");
insert into course values('Operation Research','DISC253',4,'DISC");

r: Bipin C. DESAI

create table crs_section

(SECID NUMBER(6) primary key NOT NULL,
COURSE_NUM CHAR(S),

SECTION CHAR(2),

SEMESTER CHAR(4),

YEAR CHAR(4),

SCHEDULE CHAR(10),

ROOM CHAR(7));

insert into crs_section values

(85,,COMP352"'A",'FALL', '1998',' TH16001715','H123");
insert into crs_section values
(90,,COMP353",'B",'FALL','1999''MW08451000',’H631");
insert into crs_section values

(95, DISC253",'B",'FALL','1999',"MW10151130','H631");

r: Bipin C. DESAI

create table prereq
(COURSE_ Number CHAR(S),

PREREQ CHAR(8), primary key (course number, prereq));
insert into prereq values('COMP353','COMP352");

insert into prereq values('COMP353','COMP346");
insert into prereq values('COMP352','COMP248");

create table enrollment
(STUDENT NUMBER NUMBER(3) not null,

SECTION ID NUMBER(6) not null, GRADE CHAR(1),
primary key(student number, section id));

insert into enrollment values(8,85,null);
insert into enrollment values(10,90,null);
insert into enrollment values(8,90,null);
insert into enrollment values(14,90,null);
insert into enrollment values(14,95,null);

' Bipin C. DESAI 25

Find details of studs. taking a course offered by the “DISC” dept.

select s.SID, s.SNAME, s.MAJOR, s.YEAR, s.BDATE
from student s, dept d, course ¢, crs_section r, enrolment e
where ¢.ODEPT=d.CODE and

r.COURSE NUM=c.CNUMBER and

r.SECID=e.SECTION ID and

¢.STUDENT NUMBER = s.SID and

d.CODE="DISC";
SID SNAME MAJOR YEAR BDATE
1,4 Jack CSAP 1 12-FEB-77

SQL script: ex-select3.sqgl

' Bipin C. DESAI 26

Find student who are registered in a course offered by
their majoring dept.

select * from student
where student.sid in
(select s.sid from student s, dept d, course ¢, crs_section r, enrollment ¢
where

c.ODEPT=d.CODE and -- ¢ Offering Dept same as the d dept
s.MAJOR=c.ODEPT and -- s major Dept same as the c. ODEPT
r.COURSE NUM=c.CNUMBER and -- the section is for the course ¢
.SECID=e.SECTION ID and -- r course section same as € section
e.STUDENT NUMBER = s.SID);

SID SNAME MAJOR YEAR BDATE

8 Brenda COMP 2 13-AUG-80

" Bipin C. DESAI 27

Find students who are currently registered.

select * from student sql > @ex-selectl.sql

where student.sid in
(select s.sid
from student s, dept d, course ¢, crs_section r, enrolment e
where ¢.ODEPT=d.CODE and

r.COURSE NUM=c.CNUMBER and

r.SECID=e.SECTION ID and e.STUDENT NUMBER =
s.SID);
SID SNAME MAJOR YEAR BDATE
8 Brenda COMP 2 13-AUG-80
1,0 Dupont ENGL 1 13-MAY-80
1,4 Jack CSAP 1 12-FEB-77

" Bipin C. DESAI 28

select s.SID, s.SNAME, s. MAJOR, s.YEAR, s.BDATE
from student s, dept d, course ¢, crs_section r, enrolment e
where ¢.ODEPT=d.CODE and
r.COURSE NUM=c.CNUMBER and
r.SECID=e.SECTION _ID and
¢.STUDENT NUMBER = s.SID and
d.CODE="'COMP";

SQL> @dex-select2.sqgl

SID SNAME MAJOR YEAR BDATE
8 Brenda COMP 2 13-AUG-80
1,0 Dupont ENGL 1 13-MAY-80
8 Brenda COMP 2 13-AUG-80
1,4 Jack CSAP 1 12-FEB-77
& Bipin C. DESAI 29

The DUAL table in Oracle

SQL> describe dual;
Name Null? Type
DUMMY VARCHAR2 (1)

Contains one row and one column. Can be used to put results

SQL> select power(2,10) from dual;
POWER (2,10)

1024
SQL> select to_date(sysdate) from dual;

select sysdate from dual;

TO_DATE (S

29-SEP-02

r: Bipin C. DESAI

30

SQL> select add months(sysdate,2) from dual;
ADD MONTH

29-NOV-02

SQL> update student Lets make Brenda younger

set bdate=(select add months(bdate,36)from dual)

where sid=8 update student

set bdate= add months(bdate,36)
where s1d=8

SQL> select * from student where sid=8;

SID SNAME MAJOR YEAR BDATE
8 Brenda COMP 2 13-AUG-§9_aye-77
" Bipin C. DESAI 31
Editing SQL Buffer
Command abbrev. Operation on crnt. line/all Jjii
append txt a text adds text at the end of a line
change /old/new/ c /old/new/ changeold tonew in aline
change /txt C /txt delete text from a line
clear buffer cl buff delete all lines in the buffer
lete del delete the current line
lete n del n delete linen
lete last del last delete the last line of the buffer
lete n,m del n,m delete lines n - m from buffe}
e ed edit the buffer or a file
t file load file into buffer
input [add one or more lines
input txt i txt add text as a line
st exit temp to OS, exit back to SQLPIus
list I list all lines of buffer
list n [n(n) list line n and make it current
list * | * list current. line

ch

Bipin C. DESAI

32

"L Editing SQL Buffer
)

her useful commands:

ter user userid identified by newpassword

1 nameoffile

pDINmMents

r multi-line comments */

for a single line comment

- comments that can start anywhere in a line up to the eol

mand abbrev. Operation on crnt. line/all line
it|]ast [last list last line
itlm n lmn listlinesm -n
vie file sav file save buffer to file
n / execute the commands in buffer

r: Bipin C. DESAI

33

create table student -- we will create a table for students
(SID NUMBER(7) primary key not null, --not null is redundant
SNAME VARCHARZ2(20), --varchar? is a variable length string
/*
We will now define
the student’s major and year
*/
MAJOR CHAR(4),
YEAR NUMBER(1),
rem BDATE is his/her birth date
rem It can be used to compute the age which is not stored.
BDATE DATE)

r: Bipin C. DESAI

34

The editor used for the ed command is the default editor set
using

setenv EDITOR {emas| vi | gedit | xemacs | ndedit} for
tcsh/csh

export EDITOR={ emas| vi | gedit | xemacs | ndedit} for bash

Alternatively, you can set up your editor using the define
command:

SQL> define _editor=emacs

ch

Bipin C. DESAI

35

SQL> define _USER=scott

SQL> define _PW=tiger Show user defined varaibles
SQL> define /

DEFINE _CONNECT_IDENTIFIER ="cind" (CHAR)
DEFINE _SQLPLUS_RELEASE ="902000100" (CHAR)
DEFINE _EDITOR ="emacs" (CHAR)

DEFINE _O_VERSION ="Oracle9i Enterprise Edition Release
9.2.0.1.0 - Production

With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production" (CHAR)

DEFINE _O_RELEASE ="902000100" (CHAR)
DEFINE _RC ="0" (CHAR)

DEFINE _USER ="scott" (CHAR)

DEFINE _PW ="tiger" (CHAR)

ch

Bipin C. DESAI

36

MySQL/Mariadb do not have, to date some of these interactive
terminal based features

For most of the current versions of DB server have added
web based functions

One can use phpMyadmin mySQLweb

r+ Bipin C. DESAI

37

A short introduction to
ER & SQL

Notes

@ Bipin C. Desai

PL. see: https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

dr: Bipin C Desai

Database Languages

“* A Database Management System (DBMS) provides two types
of languages; they may also be viewed as components of the
DBMS language:

¢ Data Definition Language (DDL)
O anguage (notation) for defining and modifying a
database schema

LTt includes syntax for declaring tables, indexes, views,
constraints, etc.)

¢ Data Manipulation Language (DML)
O anguage for accessing and manipulating the data

(organized/stored according to the appropriate data
model)

< Bipin C Desai

Query Languages

** Theoretical:

Relational Algebra, Relational Calculus, Datalog
“* Commercial: SQL
** First there were two: SEQUEL (Ingres) and SQL(R)
* SQL developed originally at IBM in 1976

¢ First standard: SQL-86

¢ Seccond standard: SQL-92

¢ Latest standard: SQL-99, or SQL3,

SQL3 standard has over 1,000 pages of
document

“* SQL is the de-facto standard for RDBMS
** The SQL query language components:
¢ DDL (e.g., create)
¢ DML(e.g., select, insert, update, delete)

< Bipin C Desai

Simple SQL Queries

A SQL query has a form:
SELECT . ..
FROM . ..
WHERE . . .;
The SELECT clause defines the schema of the result
The FROM clause gives the source relation(s) of the query

The WHERE clause is one or more predicates to ‘select” the
tuples of interest.

The query result is a relation and it i1s unnamed.

< Bipin C Desai

Example “theoretical” SQL Query

Relation schema:
Course (Cno, Cname, credits)
Query in natural language (English):
Find all the courses stored in the database
Query in SQL.:
SELECT x
FROM Course;
Here the “x“ mn “SELECT *” means all attributes in
the relation(s) involved.

< Bipin C Desai

More Examples SQL Query

** Relation schema:

Movie (title, year, length, filmType)
Query in natural language (English):

Find the titles of all movies stored in the database
Query in SQL:

SELECT title

FROM Movie;
Relation schema:

Student (SID, FirstName, LastName, Address, GPA)
Query in natural language (English):

Find the SID of every student whose GPA is greater than 3
Query in SQL:

SELECT SID

FROM Student

WHERE GPA > 3;

< Bipin C Desai

The “WHERE” clause

The expressions that may follow WHERE are conditions
Standard comparison operators 0 includes { =, <>, <, >, <=,>=}

The values that may be compared include constants and attributes of
the relation(s) mentioned in FROM clause

Simple expression

A 0 Value Where A, B are attributes and

AOB 0 is a comparison operator
We may also apply the usual arithmetic operators, +,-,*,/, etc. to

numeric values before comparing them
(year - 1930) * (year - 1930) < 100
The result of a comparison is a Boolean value TRUE or FALSE

Boolean expressions can be combined by the logical operators AND,
OR, and NOT

< Bipin C Desai

** Relation schema: Movie (title, year, length, filmType)

L)

% Query: Find the titles of all color movies produced in 1950
** Query in SQL:
SELECT title
FROM Movie
WHERE filmType = "color’ AND year = 1950;
@ Query: Find the titles of color movies that are either made after
1970 or are less than 90 minutes long
** Query in SQL:
SELECT title
FROM Movie

WHERE (year > 1970 OR length < 90) AND filmType =
"color’;

Note the precedence rules, when parentheses are absent:
AND takes precedence over OR,
and NOT takes precedence over both

< Bipin C Desai

An example of using SQL
from E-R to RDBMS

© Bipin C. Desai

< Bipin C 9
Dept
P Prereq
! 1
DM m n
n
Major N Course
1 1
Stud-major
n n
Studen L m - Crs_section
t

e Bipin C

10

SQL DDL example:
< P

j

Student

create table student BDATE

(SID NUMBER(3) primary key not null,
SNAME VARCHAR2(20),

MAJOR CHAR(4),

YEAR NUMBER(1),

BDATE DATE)

/

e/

I Bipin C

11

insert into student values
(8,'Brenda’,/COMP"',"2','13-AUG-77");
(8,'Brenda’,/COMP"',',“1977-08-13");
insert into student values
(10,"Mary','ENGL','1",'13-MAY-80");
(10,"Mary','ENGL','1',°1980-5-13");
insert into student values
(13,'Keily','SENG",'4','12-AUG-80");
insert into student values
(14,‘Jack',)CSAP','1",'12-FEB-77");

I Bipin C

12

Many to one relationship

A department offers many courses
A given course can be offered by only one department

Thereis no standard regarding the direction of arrow
for the “one” entity.

Course [(@b —#epartm en|t
Alternate ways of representing

The “one” of the many-to-one
relationship, arrow either pointing to entity on
the “one side” or pointing to the relationship

< Bipin C Desai

13

create table course
(COURSE NAME CHAR(20),

COURSE NUMBER CHAR(8) primary key NOT
NULL,

CREDIT HOURS NUMBER(2),
OFFERING DEPT CHAR(4))

tablespace TUTOR pctfree 5

/ Note how the relationship
w/o an attribute is
“merged” with one of the
entity

I Bipin C

14

insert into course values
('C++','COMP248',3,'COMP");

insert into course values
('DATA STRUCTURES ','COMP352',3,'COMP");

insert into course values
('OPERATING SYSTEMS',COMP346',4,'COMP");

insert into course values
('DATABASE','COMP353',4,'COMP’);

ke Bipin C

15

drs_section

_odept X credits

NB: Here course section (crssection) is really a “weak” entity;
However, in most cases it is promoted a “strong” entity
by introducing an identifying key attribute section ID (secid)

e Bipin C

16

create table crs_section
(SECID NUMBER(6) primary key NOT NULL,
COURSE NUM CHAR(8),

SECTION CHAR(2),

Note: We have replaced an
SEMESTER CHAR(4), entity and the relationship
YEAR CHAR(4), With a single relation
SCHEDULE CHAR(10),
ROOM CHAR(7))

tablespace TUTOR pctfree 2
/

ke Bipin C

17

insert into crs_section values
(85,'COMP352"'A','FALL', '1998','TH16001715','H123");
insert into crs_section values

(90,/COMP353",'B",'FALL",'1999''"MW08451000','H631");

e Bipin C

18

create table enrolment

(STUDENT NUMBER NUMBER(3) not null,
SECTION_ID NUMBER(6) not null,
GRADE CHAR(1),

primary key(student number, section _1d))

tablespace TUTOR pctfree

/ insert into enrolment values(8,85,null);
msert into enrolment values(10,90,null);
insert into enrolment values(8,90,null);
insert into enrolment values(14,90,null);
& Bipin C 19

Find details of studs. taking a course offered by the “DISC” dept.

select s.SID, s.SNAME, s. MAJOR, s.YEAR, s. BDATE
from student s, dept d, course ¢, crs_section r, enrolment e
where ¢c.ODEPT=d.CODE and
r.COURSE NUM=c.CNUMBER and
r.SECID=e.SECTION_ID and
e.STUDENT NUMBER = s.SID and
d.CODE="'DISC';

SID SNAME MAJOR YEAR BDATE

More examples of using E-R modeling

© Bipin C. Desai

I Bipin C

21

Professors have a SIN, a name, an age, a rank, and a research specialty.

Projects have a project number, a sponsor name (e.g., NSERC),
a starting date, an ending date, and a budget.

Graduate students have a SIN, a name, an age, and a degree program
(e.g., M.S. or Ph. D.).

Each project is managed by a professor (principal investigator).

Each project is worked on by one or more professors (co-investigators).

Professors can manage and/or work on multiple projects.

Each project is worked on by one or more graduate students (research

assistants).

When a graduate student works on a project, is supervised by a
participating professor.

Graduate students can work on multiple projects.

Departments have a chairman who runs the department.

Professors work in one or more departments(%time)

Graduate students have one major department for their degree.

Each graduate student has another, more senior graduate student
(student advisor)

Departments have a department number, a department name, and a main office.

I Bipin C

22

SIN, Rank, Expertise

T project
i/ I’OJ ec
Professon 1
1 !

) Major 4rStudent

Dept.

1 One side of
relationship .
total participation__{

Dno, Dname, Office

& Bipin C \/ \/

In a company database, you need to store information about

employees (SIN,salary and phone),

departments (dno, dname, budget), and

children of employees (with name and age as attributes).
Employees work in departments;

Each employee works in only one department;

A department could have many employees;

Each department is managed by an employee;

Each department has only one manager(an employee);
A manager could manage many departments

A child can only be identified by name

An employee has only one child with a given name
only one parent can declare a child as a dependent

e Bipin C

1 m
Empl. anage Dept.
m
1
Repende
Child
< Bipin C

Each musician that records at Notown has an SIN, a name,
an address, and a phone number.
Musicians often share the same address,
no address has more than one phone.
Each instrument that is used in songs recorded at Notown has a name and
a musical key
Each album that is recorded on has a title, a copyright date, and
an album identifier.
Each song recorded has a title and an author.
Each musician may play several instruments, and
a given instrument may b e played by several musicians.
Each album has a number of songs on it,
but no song may appear on more than one album.
Each song is performed by one or more musicians, and
a musician may perform a number of songs.
For each album, there is exactly one musician that acts as its producer.
A musician may produce several albums.

I Bipin C

Poor musicians can

have only one address

Musician 1
<®> Album
n

|
‘®
"
n
[nstrument Song

Notes: Since a songs must appear on only one album, Appear is a many to one
relationship. Similarly for Produces. Album requires total participation in Produces.
Some songs may not be recorded and there may be some instruments that nobody can play!

< Bipin C 27

Entity Set

PN

Weak many n Total participation
of entiry in
Entity Set ; to many relationship
ISA: specialization

role name

or generalization

SRR/
o one

Total
Alternate E-R notations 9eneralization

< Bipin C 28

* A one-one relationship between Department and its chair (
a dept. has one chair and a prof. is the chair of at most one
dept) is represented by

arrows pointing to both Department and Professor or
¢ indicated by a line with the number 1 on it.
¢ Sometimes the arrow is in the opposite
direction(pointing to the diamond)

stNam
Professor 1 1 epartmenft

\ E— alternate +——
direction S 3

- Bipin C Desai

29

ODL allows only binary relationships, i.e.,
relationships involving two classes.

E/R model makes it convenient to define
(n-ary) relationships — relationships involving
n entity sets

A n-ary relationship in an E/R diagram is
represented by lines from the relationship
(diamond) to each of the participating entity sets
(rectangles).

= Bipin C Desai

30

N-ary Relationships

Student Course

Multiplicity of this ternary relationship: ntonton
Enroll(sid(fk —Student), cno(fk — Course),, sys(tk — System), grd)
What is the problem here?

What is the schema for Enroll?
How is the n:n:n relationship mapped to a relation(table)?

< Bipin C Desai 31

N-ary Relationships

System

Student @ Course

nrol

h

Multiplicity of this ternary relationship: ntonton

Account(sid(fk —Student), cno(fk — Course), sys(fk — System), uid)
Enroll(sid(fk —Student), cno(fk — Course), grd)

< Bipin C Desai 32

N-ary Relationships

Multiplicity of this N-ary relationship: n,----n, ----- n,
Any of this n, could be 1
Any of this could be multiple

< Bipin C Desai

33

<_<>_%

If a binary relationship between two entity sets is 1-to-1,
- the primary key of the relationship is the key of the entity from
either of the ‘1’ side, the other side is a foreign key (would be unique)

‘_<>_

If a binary relationship between two entity sets is 1-to-many,

- the primary key of the relationship is from the ‘m’ side, the ‘1’ side 1is
theforeign key (would be unique)! This ‘convention’may be reversed for
convenience -specially if the number of entities on the one side is much

smaller!

If a binary relationship between two entity sets is m-to-n,
- the primary key is composite, consisting
of the primary key of the entities from each side of the relationship

I Bipin C

34

N-ary Relationships
ilﬁib¢!ﬂﬂb DOB

Person

Father

Multiplicity of this ternary relationship: 1to1ton

Offspring(fid (fatherID — Person(ID)), motherID (fk — Person(ID)},

ChildID (fk — Person(ID)))

Who here is the father and mother?
What is the key?

I Bipin C

35

create table person(
ID number primary key,
gender char(1),
DOB date);
insert into person values(1, 'M', '11-Jan-1900");
insert into person values(2,'F', '11-Jan-1902");
insert into person values(121,'M', '11-Jan-1925");
insert into person values(122,'F', '11-Jan-1927");
insert into person values(3,'M', '11-Jan-1901");
insert into person values(4,'F', '11-Jan-1903'");
insert into person values(341,'M', '11-Jan-1926'");
insert into person values(342,'F', '11-Jan-1928");
insert into person

values(1213421,'M', '11-Jan-1948");
insert into person

values(1213422,'F', '11-Jan-1950");

Could two tuples exist in offspring with
the same cid???

create table offspring(
fid number, mid number,
cid number primary key,
foreign key (fid)

references person(id),
foreign key (mid)

references person(id),
foreign key (cid)

references person(id));

insert into offspring values(1,2,121);

insert into offspring
values(1,2,122);
insert into offspring
values(3,4,341);
insert into offspring
values(3,4,342);
insert into offspring
values(121,342, 1213421);
insert into offspring
values(121, 342, 1213422);

I Bipin C

36

Replacing a ternary relation by a binary relation

Person

n child

What is the schema for Offspring here?

What is a possible inconsistency problem?

Who is the father, mother?? Father(IDC, IDF, DOB)
Offspring (IDC, IDF, IDM, DOB) Mother(IDC, IDM, DOB)

= not the same ER
= duplication of DOB
- Composite key

Replacing a ternary relation by a binary relation
--- an alternate non-normal form

Person DOB

n child

Multivalued attribute
What is the schema for Offspring? 121 | 1 | Father
Is there a duplication problem? 2 | Mother
What is the primary key? 122 | 1 | Father
2 | Mother

Roles in Relationships

It is possible that the same entity set
appearstwo or moretimesin a
relationship

Suppose,we want to capture the
relationship between two courses,
one of which isthe
pre-requisite/follow-on of the other

- Bipin C Desai

39

Each lineto the entity set represents a
different role that the entity set plays in the
relationship c

ollow-on

4@ Course
| Person

= Bipin C Desai

40

create table prereq

(COURSE_ Number CHAR(8),
PREREQ CHAR(S),

primary key (course number, prereq))
tablespace TUTOR pctfree 2

/

I Bipin C

41

insert into prereq values('COMP353",'COMP352");
insert into prereq values('COMP353",'COMP346');
insert into prereq values('COMP352"'COMP248");

I Bipin C

42

Suppose, each star is under contract with a single studio

The studio of the star may enter into a contract with another
studio to allow that star to act in a particular movie

Studio

Producing

N\
Qength> JimTyped

- Bipin C Desai

43

Converting n-ary relationship

Any n-ary relationship may be converted into a
collection of binary relationships without loosing
any information???

Introduce a new entity set — connecting existing entity set —

whose entities might be thought of as tuples of the
relationship for the n-ary relationship

Introduce many-to-one relationships from the connecting
entity set to each of the entity sets participating in the
original n-ary relationship

If an entity set plays more than one role, then it is the target
of one relationship for each role

Usually doesn't convey the same semantics — limitation
of modeling

= Bipin C Desai

44

’Toducing
tudio

Studio

ovie-Q

Movie

w
.

Contract

Star-of

Star

< Bipin C Desai

45

Inheritance in E/R is expressed by isa relationship

<G

GradStudent

Student

/

7;

address

(Amaior:

JgradStudent

\/

< Bipin C Desai

46

* There is a subtle difference between the concept of
inheritance in ODL and in the E/R model

In ODL, an object must be a member of exactly one class

* In the E/R model

¢ We shall view an entity as having “components” belonging to
several entity sets that are “part of ” a single isa-hierarchy

¢ The “components” are connected into a single entity by the isa
relationships
® The entity has whatever attributes any of its components has,

and it participates in whatever relationships its components
participate in

L)

0

4

>

)

L)

We need to represent an entity (e.g., CartoonMurderMystery) in
the diagram only if it has attributes and/or relationships of its own

< Bipin C Desai

47

Constraints

** There are some important aspects of the real world
that cannot be represented using the ODL or E/R
model introduced so far

** The additional information about these aspects often
takes the form of constraints on the data

** Sometimes modeling this additional information
goes beyond the structural and type constraints
imposed by classes, entity sets, attributes, and
relationships

< Bipin C Desai

48

Keys are (sets of) attributes that uniquely identify an object within
its class or an entity within its entity set;

K S R. no two entities may agree in all their key values

Single-value constraints are requirements that the value of an
attribute be unique. In addition to key constraints, other attributes
must a have a single-value constraints.

Also in an “one” relationship

Referential integrity constraints are requirements that a value
referred to by some object must actually exist in the database;
This means, no dangling pointers.

Domain constrains require that the value of an attribute must be
drawn from a specific set of values (called attribute domain), or
lies within a specific range

General constraints — arbitrary assertions that must hold on the DB

- Bipin C Desai 49

Keys
* A super key is a set of attributes whose values uniquely

identify an entity in the entity set; this set may not be
minimal.

A minimal super key is called a (candidate) key.

An entity may have more than one key. One of them is
picked as the primary key; others may be called alternate
keys

“* In E/R, we underline the key attribute(s) of an entity set (i.e.,
those attributes that form the primary key of the set)

** No notation in E/R for alternate keys

stNam
Student

ID isthe key for the entity set

Student @

L)

0

>

L)

0

4

;

/

= Bipin C Desai 30

Example

** What should we select as a key for Movie ?
“* title?
¢ there could be different movies with the same name
** {title, year}?
¢ there still could be two movies made in the same year,
with the same title, but that’s very unlikely

Movie | {title,year}isakey for Movie

https://en.wikipedia.org/wiki/Lists_of film remakes

< Bipin C Desai 51

Selecting A Primary Key
Suppose candidate keys for Eare :
A ’0 > o e
2. {D, E}

G5 D T

** Which of the three should “we” pick as the primary key?

Criteria to choose a primary key when there are more than one
candidate:

Total size

Number of attributes

Convenience

A combination of the above

< Bipin C Desai 52

Single Value Constraint

“* In E/R:
¢ attributes are atomic
¢ an arrow (=) can be used to express the multiplicity
¢ What about multi-valued or relationships?

With the E/R model introduced so far, we cannot express the

following options regarding the value of a single-valued attribute:

* Require that the value of that attribute to be present(not null)
* Or the presence of the value be optional
If the choice is not explicit, then we may conclude:
* The value must exist if an attribute is part of the key
* The value 1s optional, otherwise

- Bipin C Desai

53

Referential Integrity Constraints

7/ . .
** For relationships:

¢ Single-value + Existence = Referential Integrity
Constraint

“* We extend the arrow notation to indicate a reference
1s mandatory (to support referential integrity)

The department that gives a course must always
exist in the Department entity set

Course - ffere epartm en|t

|

!/

= Bipin C Desai

54

Referential Integrity Constraints

N\

A"

open arrow to denote ref. intg.

“* The studio owning a movie must always be present in the Studios (extent
of the Studio entity set)

* If a president runs a studio, then that studio exists in the Studios
* There could be studios without a president (temporarily)

- Bipin C Desai

55

Domain constraints

“*Domain constraints restrict the values of an
attribute to be drawn from a set

4 In ODL, we give a type to the attributes and hence limit
their set of values

4 ODL does not support other restrictions, such as that the
value should be within a certain range

¢ ER, in general, does not support imposing domain
constraints

= Bipin C Desai

56

Relationship degree constraints

** Relationship degree constraints restrict the number that an
entity/object can participate in a relationship

¢ For example, we can impose a constraint saying that a student cannot
be enrolled in more that 5 courses

¢ n ODL, we could use, instead of a set of references, an array of size
5

¢ N ER, we may attach a bounding number to the corresponding link

T i G e
Student Course

<
m

- Bipin C Desai 57

Weak Entity / Relationship Sets

“* A strong entity set has a primary key

“* A weak entity set does not have sufficient attributes
to form a primary key. It should be part of a one-
many relationship (with no descriptive attributes)
with a strong entity set

** Discriminator of a weak entity set is a set of
attributes that distinguishes among the entities
corresponding to a strong entity

* Primary key of a weak entity set = primary key of
the strong entity + discriminator of the weak entity

** Represented in E/R model by

= Bipin C Desai 58

Example

/ o

** Log records transactions done by an ATM

/ .

** Each transaction has a number, date, and an amount

** Different accounts might have transactions by the same
number, on the same date, and for the same amount

Geeoun®D Gatancs>

Transactio Account

¢

< Bipin C Desai

59

Movie\
=

< Bipin C Desai

60

Design Principles

** Design should
¢ Reflect reality
4 Avoid redundancy

URedundant information takes space
U Could cause inconsistency

¢ Be as simple as possible

“* Be careful when choosing between using attributes
and using classes or entity sets. Remember that

¢ An attribute is simpler to implement than either a
class/entity set or a relationship

¢ If something has more information associated with it
than just its name, it probably needs to be an entity set
or a class

< Bipin C Desai

61

Consider the entity set course in a typical university :

It could be involved in many relationships:
one to many relationships with

the offering department,

the offerings faculty

the professor coordinating the course

A many to one relationship with
sections for the course

many to many relationships with
the major program in which it is required
the pre-requisites (follow up) courses

e Bipin C

62

CrsSec

41@&%%@»

Course

Major

Dept.

Faculty

Professor

How to implement the entity Course and its relationship

I Bipin C

63

Person

Doctor

MNurse

Mother|

N

BIRTH

Baby

I Bipin C

64

Baby is a week entity set

DOCTOR Nurse

Birth is an identifying relationship
1

MOTHER

Many doctors, nurses, twins-triplets-..., one mother

Birth(Doctor, Nurse, Baby, Mother, Time, Date, Weight)

I Bipin C

Many doctors, nurses, twins-triplets-..., one mother

Birth(Mother, Baby, Time, Date, Weight, Doctor, Nurse)

D1 N1

M1 Bl T1 D1 wi D2 N2
N3

D1 N1

M1 B2 T2 D1 w2 D2 N2
N3

D1 N1

M1 B3 T3 D1 W3 D2 N2
D3 N3

E AlClB

Create table R_AB(A char(2) primary key, B char(2) unique, C integer (5));
insert into R_AB values ('A1','B1',11);

Query OK, 1 row affected (0.010 sec)

insert into R_AB values (‘A2','B1',11);

ERROR 1062 (23000): Duplicate entry 'B1' for key 'B'

insert into R_AB values ('Al','B2',11);

ERROR 1062 (23000): Duplicate entry '‘Al’ for key 'PRIMARY"

insert into R_AB values ('‘A2','B2',22);

Query OK, 1 row affected (0.003 sec)

select * from R_AB;

I Bipin C

67

1 i: 1
A B

Create table S_AB(A char(2), B char(2), primary key(A,B),, C integer (5));
insert into S_AB values (‘Al1','B1',11),('A1','B2',12), ('‘A2','B2',22);

Query OK, 3 rows affected (0.009 sec)

Records: 3 Duplicates: 0 Warnings: 0

select * from S_AB;

T Rttt TSP +
A | B | C |
e i St +
A1	Bl	11
A1	B2	12
A2	B2	22
pomm e +

3 rows in set (0.000 sec)

I Bipin C

68

Design decision
Merge the one-to-many relationships
CrsDept, CrsFac, CrsProf
in the schema for Course; all attributes of . .
these relationships are also included in the ~ relationships
schema for Course

Create a separate
relation for each
one-to-many

In this case the relation for Course would have a higher arity;
but requires one less join to get details for the department, faculty
or professor for a given course

Similarly, merge the one-to-many relationship
CrsSec
in the schema for CrsSec

Create a relation for the many to many relationships
Program and PreReq

I Bipin C

69

Relational Database

Relational Algebra — SQL

Notes

i Bipin C. Desai

PL. see: https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

dr ' Bipin C Desai

Attributes and Domains

An object or entity is characterized by its properties (attributes or
data elements). The set of allowable values for an attribute is the
domain of the attribute.

Domain. We define a domain, Dj, as a set of values of the same
data type.

Each Attribute is defined on some underlying domain; more than
one attribute may share a domain.

Tuples, Relations and Their Schemes
A relation consists of a homogeneous set of tuples.

Since each tuple in a relation represents an identifiable instance
of an entity (object type), duplicate tuples are not allowed.

> Bipin C Desai

The number of attributes in the relation gives the degree
or arity of the relation.

The cardinality of an instance of a relation, at a point in

time, 1s derived from the count of the tuples in the instance.

The cardinality could change over time
Relation Representation

APPLICANT:

Name Age Profession
John Doe 55 Analyst
Mirian Taylor 31 Programmer
Abe Malcolm 28 Receptionist
Adrian Cook 33 Programmer
Liz Smith 33 Manager

' Bipin C Desai

Key. A subset of attributes X of a relation R(R), X € R, with the
following time independent properties is called the key of the
relation:

Unique Identification: The values of X uniquely identify a tuple.
s[X]=t[X] = s=t.

Non-redundancy: No proper subset of X has the unique identifica-
tion property.

There may be more than one key in a relation; all such keys are
known as candidate keys.

One of the candidate keys is chosen as the primary key; the others
are known as alternate keys.

An attribute that forms part of a candidate key of a relation is called
a prime attribute.

> Bipin C Desai

EMPLOYEE (Emp#, Emp_Name, Profession)
PRODUCT (Prod#, Prod Name Prod_D etails)
JOB_FUNCTION (Job#, Title)
ASSIGNMENT (Emp#, Prodi#, Job#)

EMPLOYEE PRODUCT
Emp# Name Profession Prod# _ Prod_Name Prod_Details
101 Jones Analyst HEAP1 HEAP_SORT ISS module
103 Smith Programmer BINS9 BINARY_SEARCH ISS/R module
104 Lalonde Receptionist FM6 FILE_MANAGER ISS/ R-PC subsys
106 Letitia VP Marketing B++1 B++_TREE ISS/ R turbo sys
107 Evan VP R&D B++2 B++_TREE ISS/ R-PC turbo
110 Drew VP Operation
112 Smith Manager
cr* Bipin C Desai
OB FUNCTION
ASSIGNMENT

1000 CEO

700 Chief Programmer 107 HEAP1 800

800 Manager 101 HEAP1 600

600 Analyst

110 BINSO 800
103 HEAP1 700
101 BINS9 700
110 FM6 800

107 B++1 800

The attributes Emp#, Prod#, and Job# in the
relation ASSIGNMENT are known as
foreign keys.

> Bipin C Desai

A null value for an attribute:

- a value that is either not known at the time, or

P:
- the value is known but not recorded, or 1d____Name |
101 Jones
- no value is applicable for some tuples @ Smith
104 Lalonde
P: 105 Letitia
10 Name 107 Evan
101 Jones 110 Drgw
103 Smith @ Smith
104 Lalonde
105 Letitia
107 Evan Emp# Name M anager
110 Drew 101 Jones @
112 Smith 103 Smith 110
104 Lalonde 107
107 Evan 110
110 Drew 112

112 Smith 112

' Bipin C Desai

Integrity rule 1 (Entity Integrity). If attribute A
of relation R(R) is a component of the primary
key of R(R), then A cannot accept null values.

Integrity Rule 2 (Referential Integrity). Given two
relations R and S. Suppose R refers the relation S
via a set of attribute which forms the primary key of
S and, hence, this set of attributes forms a foreign
key in R. Then, the value of the foreign key in a
tuple in R must either be equal to the primary key
of atuple of S or be entirely null.

- All tuples which contain references to the deleted tuple should also be deleted.
cascading deletion
- A tuple which is referred by other tuples in the database cannot be deleted.

- In the third option, the tuple is deleted, however, the foreign key attributes of all
referencing tuples are set to null(otherwise “dangling” pointers!)

> Bipin C Desai

- All tuples which contain references to the deleted tuple should also be
deleted. This is cascading deletion

- A tuple which is referred by other tuples in the database cannot be
deleted.

- In the third option, the tuple is deleted, however, the foreign key
attributes of all referencing tuples are set to null (otherwise “dangling”
pointers!)

' Bipin C Desai

Query Languages

** The Relational model supports simple, powerful query
languages which:

¢ Have formal foundation based on logic.
¢ Allows for implementation which can be optimized.
** Allow data access and modification.

** These languages are not general purpose programming
languages, however, most DBMS vendors have added their

own enhancements to improve its functionality.

"’ Bipin C Desai

10

Relational Algebra, Calculus

Relational Algebra(RA) and Relational Calculus(RC) are the
foundation for implemented languages (e.g. SQL)

“* RAis operational, and is useful for representing the plan of
execution of a query.

* RC is declarative allowing users to describe what they want.
(i.e. it is non-operational)

[Understanding RA & RC is vital to the understanding
of SQL and query processing!

Your textbook may not cover RC!

"’ Bipin C Desai

11

Relational algebra is a collection of operations to manipulate
relations.

Basic Operations: Three of these four basic operations

- union, intersection and difference - require that operand relations

be union-compatible. (Same number (and order)of attributes on
identical (at least compatible) domains

: P

101 Jones 101 Jones
105 Letitia 103 Smith
107 Evan 104 Lalonde
110 Drew 105 Letitia
107 Evan
110 Drew
112 Smith

> Bipin C Desai

12

UNION (v) If we assume that P(P) and Q(Q) are two
union-compatible relations, then:

‘The union of P(P) and Q(Q) is the set-theoretic unioh
of P(P) and Q(Q).

The resultant relation, R = P U Q, has tuples drawh
from P and Q, such that

R= {t|te Pvte Q} and
max(P, Q)< R <P + Q

Union operation is associative and commutative

PuQuS=Pu@QuS)=PuQ)uS=PuS)uQ

' Bipin C Desai

5; P

101 Jones 101 Jones
105 Letitia 103 Smith
1?3 Eya” 104 Lalonde
rew 105 Letitia
107 Evan
PuUQ: :
2 110 Drew QUP:
Id _ Name | - Id Name |
101 Jonei] 112 Smlth 101 JoneS
103 Smit 103 Smith
104 Lalppde 104 Lalonde
105 Letitia 105 Letitia
107 Evan 107 Evan
110 Drew 110 Drew
112 Smith 112 Smith

> Bipin C Desai

DIFFERENCE (-)

The difference operation removes common tuples from
the first relation.

R =P - Q such that

R={t| teP&te¢ Q} and 0< R <P
Difference operation is non-associative and non-
commutative.

IsP-Q =Q-P?
IsP-(Q-%)= (P-Q)-S?

' Bipin C Desai 15
. P
101 Jones 101) ONES
105 Letitia 103 Smith
107 Evan 104 Lalonde
110 Drew 105 Letitia
107 Evan
110 Drew
_ 112 Smith
sk Q-P:
m103 qeeeron Id Name
104 Lalonde
112 Smith

> Bipin C Desai 16

INTERSECTION (N)

from the two relations.
R=PnNQ where

be very simply expressed as:
PNnQ=P-(P-Q)
QNP=Q-(Q-P)

IsP-(P-Q)=Q-(Q-P?

The intersection operation selects the common tuples

R={tI teP&teQ}and 0<R <min(P,Q)

lhe intersection operation is really unnecessary as it can

dr* Bipin C Desai v

P: Q:

103 Smith 101 Jones 105 Letitia

104 La|onde 105 Letitia 107 Evan

105 Letitia 107 Evan 110 Drew

107 Evan 110 Drew .

110 Drew Qb

112 Smith o
105 Letitia
107 Evan
110 Drew

> Bipin C Desai

18

P: P-(P- Q)
103 Smith 103 Smith 105 Letitia
104 Lalonde 104 Lalonde 107 Evan
105 Letitia 112 Smith 110 Drew
107 Evan
110 Drew
112 Smith Q-P: Q-(Q-P)
CEr |0 e |10 Lete
107 Evan
101 Jones
105 Letitia 110 Drew
107 Evan
110 Drew
' Bipin C Desai

RENAMING (p)

The renaming operation p is used to rename relations or
its attributes. The operation:

p(R(modattributes), rel exp)

takes a relation expression and the result is named R with
some of the attributes, specified in the modattributes, are
renamed

The format of modattributes is:
modattributes ::= <oldname — newname>|

<position — newname> <,modattributes>

*p rho is the 17" letter of the Greek alphabet

> Bipin C Desai

Employee(Emp#, Ename, Address, Phone, DOB)

p(Q Emp# — ID, Ename —Name H Emp#,Ename EM PLOYEE)

1 Name

101 Jones
105 Letitia
107 Evan
110 Drew
' Bipin C Desai 21
CARTESIAN PRODUCT (x)

The extended cartesian or simply the cartesian product
of two relations is the concatenation of tuples
belonging to the two relations. R=P xQ

The scheme of the result relation is given by: R = P||Q.

The degree of the result relation is given by:
R| = [P|+]Q].

> Bipin C Desai 22

101 Jones
105 Letitia
107 Evan

110 Drew
P

1d__ Name |
101 Jones
103 Smith
104 Lalonde
105 Letitia
107 Evan
110 Drew
112 Smith

Id Name Id Name
101 Jones 101 Jones
101 Jones 103 Smith
101 Jones 104 Lalonde
110 Drew 112 Smith

' Bipin C Desai

23

removed.

P:

Id Name
101 Jones
103 Smith

104 Lalonde
105 Letitia

107 Evan
110 Drew
112 Smith

PROJECTION ([])

It should be noted that the projection operation reduces
the arity if the number of attributes in X is less than the
arity of the relation. It may also reduce the cardinality
of the result relation

T[N ameP:

Jones
Smith
Lalonde
Letitia
Evan
Drew

[IxR

since duplicate tuples

are

> Bipin C Desai

24

SELECTION (o)

The selection operation,yields a "horizontal subset" of
a given relation. Any finite number of predicates
connected by boolean operators may be specified in
the selection operation.

P:

FET ...
101 Jones

103 Smith 101 Jones
104 Lalonde 183 Eggﬁde
105 Letitia 105 Letitia
107 Evan

110 Drew

112 Smith

' Bipin C Desai

JOIN (0D)

The join operator, as the name suggests, allows
the combining of two relations to form a single new
relation.

- first compute the cartesian product

- followed by selecting those tuples
where the common attribute(s) has(have)
the same value(s).

> Bipin C Desai

Project (Proj#, Pname, Pleader) Assign(P#, E#)
Employee(Emp#, Ename, Address, Phone, DOB)

s Get Emp# of employees working on Proj# comp353.
** Get complete details of employee working on comp353.

/7

* Get complete detatils of employes working on the
Database project.

s Get complete details of employees working on both
comp353 and comp354

/

v Get Emp# (complete details) of employees working on
two projects.

J/

¢ Get names of employees working in projects where Ma
is the project leader.

' Bipin C Desai 27

Project (Proj#, Pname, Pleader) Assign(P#, E#)
Employee(Emp#, Ename, Address, Phone, DOB,)
“+Get Emp# of employees working on Proj# comp353.

Ilg4 (Opg=compsss(Assign))

“*Get complete details of employee working on comp353.

Employee ><p oy py gy (Oppcompass(Assign))

> Bipin C Desai 28

Project (Proj#, Pname, Pleader) Assign(P#, E#)
Employee(Emp#, Ename, Address, Phone, DOB,)

“*Get complete details of employees working on the

Database project(s) - a project name.

X = HE# ((ASSign) > Proj#=P# (GPname=”Database"(ProjeCt)))

Employee >< g, oy, X

Combining in one RA expression:

Employee >< Emp#=E# HE# ((ASSign) >< Proj#=P# (GPname=”Database”(Proi eCt)})

cr* Bipin C Desai

29

Project (Proj#, Pname, Pleader) Assign(P#, E#)
Employee(Emp#, Ename, Address, Phone, DOB,)

*»Get complete details of employees working on

both comp353 and comp354

Employee >< .y gy gy (Opg—compass(Assign)) N

Employee >< g oy py gy (Opycompasa(Assign))

or Employee >< . py (g (Opyecompasz(Assign)) N
Iy (Opy=comp3sa(Assign))

cr+ Bipin C Desai

30

Project (Proj#, Pname, Pleader) Assign(P#, E#)
Employee(Emp#, Ename, Address, Phone, DOB,)

» Get complete details of employees working on (any)two projects

p(A1(P1#, E1#), Assign)
X = AlxAssign Y =gy (Oppspis » paepiz (X))
Employee >< Emp#=E# Y

Combining in one RA expression:

Employee >< ¢ upy (g (Opspis o pv=p14 (P(A1(P1#, E1#), Assign)xAssign)))

cr* Bipin C Desai

31

Project (Proj#, Pname, Pleader) Assign(P#, E#)
Employee(Emp#, Ename, Address, Phone, DOB,)
“*Get complete details of employees working in projects

where Ma(an employee name) is the project leader.
X= (GEname=“Ma”(Employee)))
Y=Hpmi# (Project >« Emp#=Pleader X)

Z=I1g, (Assign >« Proj#=p# Y)
Employee >« Emp#=F# Z

Emp.loyee > < pmpt=g# ([gg (Assign ><p oy py gy
(PI'O] ect >< Emp#=Pleader (GEname=”Ma”(Employee)))))))

cr+ Bipin C Desai

32

Complete set of RA operations

{ G, Hf v, - X }
The above is a complete set of RA operations.
The others could be expressed as a sequence

of operations from this set.

RNS=(RuUS)-((R-95) v (S-R))
R ™S =% (R XS) etc

cr* Bipin C Desai

33

Definition: Theta-join. The theta-join of two relations P(P)
and Q(Q) is defined as

R=P7 s Q

such that R={t [t1||[t2 At1 e PAt2 € Q A B}

where B is a selection predicate consisting of terms of
the form: (t1[Ai] O t2[Bi]) fori=1,2, .., n,

where 60 is some comparison operator (0 ¢
{=#,<<,>,2}), and Aj and Bj are some domain compati-
ble attributes of the relation schemes P and Q respec-

tively.
o< IRl < [P |*]Q]
R |=|P| + |Q]

Two common and very useful variants of the join are the equi-
join and the natural-join.

cr+ Bipin C Desai

34

If two relations that are to be joined have no domain
compatible attributes, then the natural join operation is
equivalent to a simple cartesian product.

-The equi-join and the theta joins are "horizontal
subsets" of the cartesian product.

-The natural join is equivalent to an equi-join with a
subsequent projection to eliminate the duplicate
attributes.

' Bipin C Desai

35

SQL is both the data definition and data manipulation
language of the relational database systems

Create table <relation> (<attribute list>, <integrity
constraint list>)

Where the <attribute list> is specified as:

<Attribute list> := <attribute name> (<data type>)[not
null][,<attribute list>]

and <integrity constraints list> is specified as:

<Integrity constraint list> := <integrity1>|<integrity
constraint list>

and <integrity> could be a primary key(a1l, a2, ... am) , not
null or a named constraint.

> Bipin C Desai

36

create table EMPLOYEE
(Empl_No integer not null,
Name char(25),
Skill char(20),
Pay_Rate decimal(10,2)
Primary key Empl_No)

select [distinct] <target list>
from <relation list>
[where <predicate>]

dr* Bipin C Desai

37

Database Schema

o Employee(Name, Sin, Dept#, MGRSIN)
o Dept(Dname, Dept#, MgrSin, Bcode)

* Project(Pname, Proj#, Dept#, Lab)
*** Assign(Proj#, EmpSin, Hours)

“* EmpDet(Sin, Address, Salary, DOB)

** EmplDepd(Sin, DepName, HowR)

" Bipin C Desai

38

Queries

Employee(Name, Sin, Dept#, MGRSIN)
Dept(Dname, Dept#, MgrSin, Bcode)
Project(Pname, Proj#, Dept#, Lab)

*Names of Employees in Dept 101?
select Name
from Employee
where Dept#= 101

* Details of Employee in Dept. 1017
select *
from Employee
where Dept#= 101

"’ Bipin C Desai

39

Employee(Name, Sin, Dept#, MGRSIN)
Dept(Dname, Dept#, MgrSin, Bcode)
Project(Pname, Proj#, Dept#, Lab)

*For all projects in the Software Engg. Lab,
find the DName, Manager’s name?
select Dname, Name
from Employee e, Dept d, Project p
where Lab = ‘Software Engg.’
and p.Dept#=d.Dept#
and d.MgrSin=e.Sin

* For all projects in the Software Engg. Lab,
find the DName, Manager’s address etc.

> Bipin C Desai

40

Employee(Name, Sin, Dept#, MGRSIN)
Dept(Dname, Dept#, MgrSin, Bcode)
Project(Pname, Proj#, Dept#, Lab)
EmpDet(Sin, Address, Salary, DOB)

* For all projects in the Software Engg. Lab,
find the DName, Manager’s name, address etc.

select Dname, Name,Address, Salary,DOB
from Employee e, Dept d, Project p, EmpDet t
where Lab = ‘Software Engg.’

and p.Dept#=d.Dept#

and d.MgrSin=e.Sin

and e.Sin=t.Sin

' Bipin C Desai

41

Query Tree

Consider the relation:
Employee(Emp#, Ename, City, Phone, YOB,)

Suppose we want to find Emp# and names of employees who live
in NDG(an address) and who were born in 1971(YOB).

We can express this query in one of the following ways:

I_I Emp#, Ename (0 City=‘NDG’AYOB=1971(EMPLOYEE))
or

[ot ename (O cigeroe (EMPLOYEE)NO ,_,,,,(EMPLOYEE))
or

I-I Emp#, Ename 0 City="NDG’ (EMPLOYEE) n
M 0 vop(EMPLOYEE)

Emp#, Ename

> Bipin C Desai

42

1 (S ciy=npc* vo =191 (EMPLOYEE))

Emp#, Ename

M

Emp#, Ename

\
PN

o Citys=‘NDG’ O YOB=1971

EMPLOYEE EMPLOYEE

' Bipin C Desai 43
I_I Emp#, Ename
I grpt, Ename (O ciy=npe (EMPLOYEE)NG y 5, (EMPLOYEE)) |
0 City=‘NDT}’ AYOB =1971
EMPLOYEE
H Emp#, Ename o City="NDG’ (EMPLOYEE) N I_I n I_I
Empf, Ename I} VOB =1971(EMPLOYEE) Emp#, Ename Emp#, Ename
0 City="NDG’ 0 YOB=1971
EMPLOYEE EMPLOYEE
' Bipin C Desai 44

Project (Proj#, Pname, Pleader) 100 projects
Empl (Emp#, Ename, City, Ph, DOB,) 500 employees
Assign (P#, E#) 1500 assignments

Get complete details of employees working on the DB project(s).
Suppose there are 10 DB projects, distribution is uniform.

Av. of 3 projects for each employee; Av. of 15 employees per project
Number of assignments to DB project is 150 (10% of assignments).
If no employee works on more than one DB project,

then maximum number of tuples in output would be 150.

Two possible ways of expressing this query

HEmp#. Ename, City, Ph, DOB(GE#:Emp#(GP#:ij#(GPname=“DB"(EmPIXAS si anPI'Oj eCt))))

Empl >< Emp#=E# (HE# ((ASQIgn) >< Proj#=P# (GPuamc:“DB“(ProjeCt))))

cr* Bipin C Desai

45

Pr Pn P E Em En
P1 DB P1 E1 E1 N1
P2 X P2 E2 E2 N2

Pr Pn P E Em En

P1 DB P1 E1 E1 N1
E2 N2

55 ES] N

E2 N2

P2 X P1 E1 E1 N1
E2 N2

P2 E2 E1 NI
E2 N2

cr+ Bipin C Desai

46

I1s, chame, cit, oh, p05(Opipatabase (EMPL X Assign X Project))

1 50 HE#, Ename, City, Ph, DOB
Only one per 500 ‘ Only one per 100 would

would have have the 50 OE#—EV have have the Proj#=P#
EmptEf —— g | +775,000

GProj #=P#

7, 500,000, |

Pname=Database

|
75,000,000 X \
/ \

Empl Only 10% would have
X 150,000 P have Pname=Database

/ \ 500

Project;gg ASSIgN 1500

cr Bipin C Desai

47

Empl >< o (Tl ((Assign) < b (Cpypugbase(PrOjEC))))

Result 150

Emp#=E#

>
150 /.
M, Empl 500

150 |
<

10 N
0Pnané=DaIabase ASSig]‘l(1 500)

Proj#=P#

Pro‘ject(100)

cr Bipin C Desai

48

P(P):
A B

N

—_—

N

—_—

Q
W
O O OO0 U0 O 0O

Division (=)

Q(Q): R(R)(result):

B A
b, d,
b, ds

The result of dividing P by Q is the relation R
which has two tuples. For each tuple in R, its
product with the tuples of Q must be in P. In
our example (a;,b;) and (a;,b,) must both be
tuples in P; the same is true for (a5 b;) and
(as,by).

The Cartesian product of Q and R is a subset
of P.

cr Bipin C Desai

49

P (P) Q(Q) R(R) is: 0Q(Q) R (R)
A B B A B \
al bl
a, b, b,
a, b, b, a b,
a, b, a2 b,
a, b, % 0(Q)
a. b, as R(R) 1s:
B A
a5 b2
The division operation is useful where a &
query involves the phrase "for all objects =
having all of the specified o
properties" . a4
a

[€)]

cr Bipin C Desai

50

Project (Proj#, Pname, Pleader) Assign(P#, E#)
Employee(Emp#, Ename, Address, Phone, DOB,)

Get complete details of employees working on all Database
projects.

Find the Proj# of all Database project as DBPROJNO
Pips (DBPROIJNO, anj#(O-PnamczDalabascProjeCt))

Find the specified details for the required employees by dividing
Assign by DBPROJNO and join the result with Employee.

ASSIGN =+ DBPROJNO p< . . Employee

' Bipin C Desai 51

Project (Proj#, Pname, Pleader) Assign(P#, E#)
Employee(Emp#, Ename, Address, Phone, DOB,)
Get complete details of employees working exactly on all DB projects.

Find the Proj# of all Database project as DBPROJNO
P » (DBPROJNO, IT,, (O Project))

Pname=Database

Find those employees who work on all DB projects by dividing
Assign by DBPROJNO (some of them work on other projects as welll)).

ALLDB =ASSIGN - DBPROJNO

Find those tuples not involving assignments to DB projects
NOTDBONLY =ASSIGN — DBPROJNO X ALLDB

Required employees: ONLYDB = ALLDB - I1,, NOTDBONLY
Result is: ONLYDB >< . p. Employee

> Bipin C Desai 52

Division is not a basic operation ILLP XxQ-P
We can re-write P(AB)=-Q(B) by : A B
ILP-II,(II,P XQ-P
A A(A Q) HAP X Q a2 b2
A B B |[mp| A B |a b,
a, b, b, a, a, by |a, b,
a, b, b, a; b, [I(ILP XQ-P)
a, b, d, ay El A
d
a, b, ds 2 b2 d;
a a3 b | a,
5 2 |a,
a: b ds S | a—
> dy D1 \TLP-TL(IIL,P X Q-P)
a; b, a; b, |A
as by a,
a5 b, | 5
cr* Bipin C Desai 33
Person
Doctor Nurse
Maother
Baby

BIRTH

< Bipin C Desai 54

Baby is a week entity set

DOCTOR Nurse

Birth is an identifying relationship
1

MOTHER

Many doctors, nurses, twins-triplets-..., one mother

Birth(Doctor, Nurse, Baby, Mother, Time, Date, Weight)

< Bipin C Desai 55
Many doctors, nurses, twins-triplets-..., one mother
Birth(Mother, Baby, Time, Date, Weight, Doctor, Nurse)
D1 N1
Ml Bl Tl D1 Wi D2 N2
N3
D1 N1
Ml B2 T2 D1 W2 D2 N2
N3
D1 N1
Ml B3 T3 D1 W3 D2 N2
D3 N3
56

< Bipin C Desai

1 C 1
A B

Create table R_AB(A char(2), B char(2), primary key(A,B),, C
integer (5));

insert into R_AB values ('A1','B1',11),('A1','B2',12), ('A2','B2',22);
Query OK, 3 rows affected (0.009 sec)

Records: 3 Duplicates: 0 Warnings: 0

select * from R_AB;

Fom +
A | B | C |
tomm - + NOT 1:1
A1	Bl	11
A1	B2	12
A2	B2	22
e S +

< Bipin C Desai

57

1 C 1
A B

Create table R_AB(A char(2) primary key, B char(2) unique, C integer (5));
insert into R_AB values ("A1',)B1',11);

Query OK, 1 row affected (0.010 sec)

insert into R_AB values ("A2',)/B1',11);

ERROR 1062 (23000): Duplicate entry 'B1' for key 'B'

insert into R_AB values ('A1',)/B2',11);

ERROR 1062 (23000): Duplicate entry 'Al' for key 'PRIMARY"

insert into R_AB values ('A2','B2',22);

Query OK, 1 row affected (0.003 sec)

select * from R_AB;

____+ ______ + ______

| A | B | C \ .
to—— - t-————- + I:1
| A1 | Bl | 11 |

| A2 | B2 | 22 |
fomm = o +
2 rows in set (0.000 sec)

< Bipin C Desai

58

Some special characters used in DB & HTML codes

AVI-AVENIunceoof [l J=teesonp 0o Ix+< >| b

A ∧ v ∨ 3 ∃ =3 ¬ ∃ V ∀

Y ∑ [] ∏ U ∪ N ∩ ¢ ⊆ c ⊂
D ⊃ D ⊇ [&rcel; | ⌈ [⌋] ⌊

= ≡ # ≠ € ∈ ¢ ∉ — →

6 σ © π p ρ 0 θ ¢ φ
'Γ X × + ÷ < ≤ 2>≥

| ∣ >< ⋈

see confsys.encs.concordia.ca/CrsMgr/html-symbols.html

' Bipin C Desai 59

Relational Model
&

Relational Database Design

&t 2025 Bipin C. DESAI

C'F To be used in the spirit of copy-forward! https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

= Bipin C Desai

o0

D)

Relation Scheme and Relational D esign

/
0’0

Anomalies in D atabase:
A Consequence of Bad D esign

4

4

D)

o0

0

Functional D ependency

o

* Normal Forms

= Bipin C Desai

* A relation scheme R is a plan which gives the
attributes involved in one or more relations defined
on this relation scheme.

{A 1, AZI oo IA n},
Ajis defined on domain Dj

Relation R on the relation scheme R
is a finite set of mappings or tuples

{t1, ©2, ..., tp}

" Bipin C Desai

BILL TO ONLY

Wit FURCHASE ORDER UNDER $300.00

PURE UNIVERSITY
“HASE ORDEFA NGO, PURCHASING SERVICES
1330 EAST 100 NORTH

LOGAN UTRH 843225300

/w 6 ? 9 9 O U MVOICING MUST BE IN DUPLICATE

WENDOR i}

WITH 1___ Hih 2

COMPLETE (s

ADDRESS P
| &3 DERT If above is not filled out please ship 1o

Recelving Dept. 1285 E. 700 N. Logan, UT 84522-9200
— T —

TANE 5 3 B0 A TELEFHGIE
ACGOAT 1 WEEDURT = ==
__________ i, %|$ - u|s
ALSOUNT U DN 4

_%|s It 5|

PLEASE SEND INVINGE T0 PURGHASRG SERVICES AT ABDVE ADDRESS FOR MVEDMTE PRMVENT M_

VENDOR INSTRUCTIONS:

1. INSTRUCT ALL SHIPPERS TO LIST PURCHASE ORDER NUMBER ON ALL BILLS AND PACKAGES,

2. YOUR INVOICE SHOULD ONLY INCLUDE ITEMS NOTED OM THIS OADER. PLEASE LIST FURCHASE ORDER NUMBER ON |KVOICE,
3. FRAEFAY ALL TRANSPORATATION CHARGES AND INCLUDE THEM ON YOUR INVGICE IF THEY ARE CHARGEABLE. NO C.O.0VS

VEMNDOR COFY

&7 Bipin C Desai

Vendor-V, Address-A, Date-D, Account-C, ShipAddress-S ,

Partno-P, Qty-Q, Unit price -U, Description-T, linetotal -L,

Tax- X
Total - $
Signature G
Date E

PURCHASE ORDER (Pid, V,A,D,C,S,P,Q, U, T,L, X, $, G, E)

= Bipin C Desai

Anomalies in Database: A Consequence of Bad Design

Redundancies: the same information is stored more than once.

Update Anomalies: The multiple copies may lead to updates
which become inconsistent.

Insertion Anomalies: Cannot insert some fact unless some other
fact 1s inserted.

Deletion Anomalies: Deleting one fact may delete another.

PURCHASE ORDER (PID, V,A,D,C,S,P,Q,U, T, L, X, $, G, E)

What are the redundancies and/or anomalies in PURCHASE ORDER?

= Bipin C Desai

Functional Dependencies (FDs)

Given attributes X and Y

Y is said to be functionally dependent on X
if a given value for each attribute in X, uniquely
determines the value of the attributes in Y.

X is called the determinant of the functional
dependency (FD) and the FD is denoted as X — Y.

< Bipin C Desai

STDINF (Name, Course, Phone No, Major, Prof, Grade)

Name Course Phone No Major Prof Grade
Jones 353 237-4539 Comp Sci Smith A
Ng 329 427-7390 Chemistry Turner B
Jones 328 237-4539 Comp Sci Clark B
Martin 456 388-5183 Physics James A
Dulles 293 371-6259 Decision Sci Cook C
Duke 491 823-7293 Mathematics Lamb B
Duke 356 823-7293 Mathematics Bond in prog
Jones 492 237-4539 Comp Sci Cross 1in prog
Baxter 379 839-0827 English Broes C

The key of STDINF is (Name, Course)

{Name — Phone_No; Name —Major;
Name, Course — Grade; Course — Prof}

< Bipin C Desai

Vendor-V, Address-A, Date-D, Account-C, ShipAddress-S ,
For each line

Partno-P, Qty-Q, Unit price -U, Description-T, linetotal -L,
Total Tax- X Total for the PO - $
PO approval signature G Date of PO approval signature E

PURCHASE ORDER (Pid, V,A,D,C,S,P,Q, U, T,L, X, $, G, E)
FDs in Purchase Order from common business rules

Pid = ADCSXSGE,

PidP — QU,

QU—L,

P -T

= Bipin C Desai

Problems due to Redundancy

* Redundancy creates problems associated with relational
schemas:

¢ redundant storage, insert/delete/update anomalies

** Integrity constraints, e.g., functional dependencies, can be
used to identify relational schemas with potential
anomalies.

** Main refinement technique: decomposition
¢ Decompose R(ABCD) with RI(ABC) and R2(BCD) .

** Decomposition should be used with care.

4 Decompose or not to that is the question!

ctr Bipin C

10

Definition: The decomposition of a relation scheme
R=(A] A2, ..., An)

is its replacement by a set of relation schemes

{R1, R2,, Rm}, such that

RicRforl £i1<mand

R1UR2U..URm=R.

= Bipin C Desai

11

Inference Axioms: Assume that we have a relation
scheme R(A1, A2, A3,, An); R is a relation on the
scheme R and W, X, Y, Z are subsets of R.

F1: Reflexivity: X — X.

F2: Augmentation: X > Y = XZ —> Y, and XZ —> YZ.

F3: Transitivity: X > YandY - Z - X = Z.

F4: Additivity: X > Yand X - Z = X — YZ.

F5: Projectivity: X 5 YZ - X > Yand X = Z.

F6: Pseudo-trans: X > Y and YZ > W = XZ — W.

~ symbol meaning “implies”

= Bipin C Desai

12

R A B C D E

a1 b1 o) d1 e1
a2 b2 c1 d2 €2
a3 b1 2 d1 e3
a3 b3 c3 d3 e4
a1 b2 (o d2 es5
a4 b4 c4 d4 €6
a3 b2 c1 d2 e7
a5 b4 c4 d4 esg

Relation R on the scheme R(A, B, C, D, E)

Illustrates the inference axioms.
FDs: B—» CD,B—C,C— D, B— D may hold

= Bipin C Desai

13

If F 1s a set of FD's on a relation scheme R then F*, the closure of
F, is the smallest set of FD's such that F* 2 F and no FD can be
derived from F by using the inference axioms, that are not
contained in F*.

If R is not specified, then it is assumed to contain all the attributes
that appear in F.

Suppose R(A, B, C, D):
the FDs that hold on R are:
F={A—-B,B—-C,C—D}

Then F* also contain:
A—-C,A—-D,B—D

= Bipin C Desai

14

Closure of a set of FDs

Example: Let F = {W - X, X - Y, W — XY} then
F* includes theset W—->W, X > X, Y>Y W
X, X—>Y, W XY, W Y}. The first three FD's
follow from axiom F1; the next three FD's are in F,
and hence in F+. Since W — XY then by axiom F5
W — Xand W — Y. However, Ft does not contain
aFD, e.g. W — Z, since Z is not contained in the set
of attributes that appear in F.

= Bipin C Desai

15

Functional Dependencies (FDs)

“* An FD is a statement about a// allowable relations on a
relational schema.
¢ Must be identified based on semantics of application (not
from an instance 7 of a relation on the schema R)
¢ Given some allowable instance r of R, we can check if it
violates some FD f, but we cannot tell if f holds over R!
** K is a candidate key for R means that K — R
* We require the candidate keys to be minimal
*IfK’cKthenK’~—>R
¢ However, X — R does not require X to be minimal(superkey)!

ke Bipin C

16

FDs again!

** Consider relation
HrEmps (Sin, Name, Grade, Rate, HrWrk):
let us denote it by listing the attributes simply using: SNGRH
¢ The schema is a plan for the co-occurrence of the set of attributes
{S,N,G,R, H}.
¢ We may alternately refer to this set of attributes by using just the
relation scheme name. (e.g., HrEmps for {SNGRH})

¢ In implementation, we usually have only in relation on each
relation scheme

** Some FDs on Hourly Emps:
¢ Sin is the candidate key: S — SNGRH
¢ Grade determines Rate (hourly wages): G — R (transitive FD)

E 1 S N G R |H
Xamplie EMpPS(123-223-666 Evan |48 |10 |40
** Problems dueto G— R: 231-315-368 |Lalonde 22 (8 (30
Update anomaly: Can we change 131-243-650 |Letitia |35 |9 |30
R in just the 1st tuple of SNGRH? [434-263-751 \Drew |35 |9 32
| 612-674-134 |Ma 48 (10 |40

(e.g., change value of R to 11!)

: : S N G [H
Insertion anomaly: What if we want
123-223-666 |[Evan |48 |40
. 2
to insert an employee and don’t M 231-315-368 | Lalonde |22 |30
know the hourly wage for her 131-243-650 |Letitia |35 |30
grade? Also, we can’t insert a rate for ~ [#34-263-751 |Drew |35 32
612-674-134 |Ma |48 40
a grade unless we have an

employee with that grade! Wages |G R
Deletion anomaly: 1f we delete all 48 10 |
employees with grade 35, we lose 3519

the information about the wage for
. 22 |8
this grade!

' Bipin C 18

Definition: The closure of X under a set of functional
dependencies F and written as X*, is the set of attributes
{A,A, ., A }suchthatthe FD X —A, for A, € X* follows

from F by the inference axioms for functional
dependencies.

Having found X+, we can testif F = X — Y by
checking if Y ¢ X*t. X — Y is logically
implied by F, if and only if Y c X*.

< Bipin C Desai

19

Lemma: F = X->Y if and only if Y c X*.

Proof: Suppose that Y < X*. Then by the definition of X*,
X — A can be derived from F using the inference rules,
foreach A €Y.

Now, by the soundness of these rules,
F=X—>AforeachAecY

and by the additivity rule,

F=X-Y.

Now, suppose that F = X — Y. Then by completeness of
the inference rules, X — Y can be derived from F using
them. By projectivity, X — A can be derived for each A €
Y.

This clearly implies that Y ¢ X* by the definition of X*.

< Bipin C Desai

20

Algorithm to compute X+

X+:=X; /*initialize X+ to X */

J

(* X+ now contains the closure of X under F *)

Change = true; F={A—- B,C—D,E — AD,D — BE}
while change { Then F = AC — BDE
change := false; “AC+=AC o, . ,ABC
for each FD W —Z in F{ > .., ABCD
ifWc Xt and Z ¢ Xt then{ 2, ABCDE
X+ =X+ UZ Also AC— B,
change := true;} AC =D,
} AC - E

" Bipin C Desai

21

Membership Algorithm

Input: A set of Fds F, and the
FD X - Y.
Output: Is X - Y € F+ or not?
Body:
Compute X+
ifY ¢ Xt.then X - Y € Ft := true;
else X - Y € F+ := false;

" Bipin C Desai

22

Definition: Given two sets of FD's F and G over

a relation scheme R. F and G are equivalent

(i.e., F=G)if theclosure of F isidentically equal
tothe closureof G (i.e.,, F*=G*).If F and G are
equivalent then F covers G and G covers F.

Definition: Given a set of FD's F, we say thatitis
non-redundant if no proper subset F' of F is
equivalentto F,i.e., no F' exists such that F'*= F*

= Bipin C Desai

23

Title: Algorithm: Non-redundant cover
Input: Aset of FD's F
Output: A non-redundant cover of F

Body
G :=F; // initialize Gto F
foreach FD X - Y in G do
fX->Ye{F-X->Y)}

Ilie{F-(X—->Y)} X->Y
thenF := {F-(X—-=Y)}
G :=F; // G is the non-redundant cover of F
end,

= Bipin C Desai

24

fF={A—-BC,CD—- E,E— C,D— AEH,
ABH — BD, DH — BC}

then a non-redundant cover for F is:

{A— BC, E— C, D— AEH, ABH — BD).

CD+ under (F- CD — E) is CDAEHB and it includes E the
RHS.
Hence CD — E is redundant.

= Bipin C Desai 25

Definition: A set of functional dependencies F_ is a canonical
cover if every FD in F_ satisfies the following :

- each FD in F_ is simple, (recall that in a simple FD the right

hand side has a single attribute i.e., each FD is of the form X
— A);
-fornoFD X - AwithZ c Xis {(F,-(X—-A))U (Z— A)} > F..

In other words the left hand side of each FD does not have any
extraneous attributes or the FD's in F_ are left reduced,

-no FD X — Ais redundanti.e., { F. - (X — A)} does not
logically imply F._.

A canonical cover is sometimes called minimal.

Given a set F of functional dependencies we can find a
canonical set F_; Obviously F_ covers F.

= Bipin C Desai 26

Example: IfF={A— BC,CD—- E, E— C, D— AEH,
ABH — BD, DH — BC}

then a non-redundant cover for
Fis {A—-BC, E—~C,D— AEH, ABH— BD}.

and the canonical cover is
{A-BA-C, E-C,D-AD—-E D—-H,
AH — D}.

= Bipin C Desai

27

Definition: Given a relation scheme R {A/A,A, ... A },and

a set of functional dependencies F, a key Kof Ris a
subset of R such that the following are satisfied:
-K—-AAA,. A, isinF*
“Forany Y c K| Y - AAA,. A, isnotinF*

= Bipin C Desai

28

Given R(A, B, C, D) with F{C-D,C—-A,B—-C}

Find C* the closure of Cunder F.

Crisinitialized to C

Using C— D we augment C* to CD

UsingC— A, we augment C* to CDA

No other change is possible; hence closure of Cunder F is:
CDA

Find the candidate key for R.
The closure of B under F is BCDA

Hence B is a candidate key.

= Bipin C Desai

29

Given R(A, B, C, D) with F{D - A, B— C}

Find C* the closure of Cunder F.

Crisinitialized to C

Since C doesn’t appear on the RHS of any FDs in F,

no change is possible; hence closure of Cunder Fis: C
Find the candidate key for R.

The closure of D under F is DA

The closure of B under F is BC

Since neither of the determinants are possible candidate
keys, However, BD - ABCD

Hence BD is a candidate key.

= Bipin C Desai

30

Example: If R (ABCDEH)and F={A > BC, CD—E,E—C, D
— AEH, ABH — BD, DH — BC},

Attributes in

D is a candidate key of R since D - ABCDEH isin F+

No other single attribute candidate key.

Also, AH is candidate key since AH+=under F isABCDEH.
Since D isonly in one RHS, the key mustinclude D or AH
No other keys:

Superkeys are DX or AHX whereX < R

Left only: Left & Right Right only

none A,B,C,D,E, H none
Closure of one attribute ~ Closure of two attributes not involving key already found
A*=ABC AB"=ABC BH"=BH
B*=B AC"=ABC CE+=CE
C=C AE*=ABEC CH'=CH
D*=DAEHBC AH*=ABCHDE EH*=ECH
E"=EC BC*=BC
H*=H BE*=BEC

= Bipin C Desai

31

Full Functional Dependency

Y is fully functionally dependent on X if there is no Z, where
Z. is a proper subset of X such that Z — Y.

Thus, the dependency X — Y is left reduced, if there are no
extraneous attributes in the left hand side of the dependency.

Example: Given R (ABCDEH)and F ={A - BC, (D — E,
E—-C,D—-AEH, ABH - BD,DH — BC}

The FD ABH — BD is not left reduced since A — B allows
us to eliminate B from the LHS. Also, in AH — B is not
left reduced since we have A —» B and we can thus
eliminate it. So the FD ABH — BD can be replaced by
simply AH - D

Definition: Given a relational scheme R and a FD X — Y, then

= Bipin C Desai

32

Example: In the relation scheme R (ABCDEH) with the
FD's,

F={A—-BC,CD-E,E— C, CD— AH, ABH — BD,
DH — BC}, the dependency A — BC is left reduced and
BC is fully functionally dependent on A. However, the
functional dependency ABH — D, is not left reduced, the

attribute B being extraneous in this dependency.

Definition: An attribute A in a relation scheme R is a prime
attribute or simply prime, if A is part of any candidate key
of the relation. If A is not a part of any candidate key of R,

A is called a nonprime attribute or simply nonprime.

" Bipin C Desai

33

Example: If R (ABCDEH) and F = {A — BC, CD — E,

E — C, AH — D}; then AH is the only candidate key of R.
The attributes A and H are prime, and the attributes B, C, D,
and E are nonprime.

Definition: Given a relation scheme R with the functional
dependencies F defined on the attributes of R. Let K be a
candidate key. If X is a proper subset of K, and

if F = X — A, then, Ais said to be partially dependent

on K.

" Bipin C Desai

34

In the relation scheme

STUDENT COURSE INFO(Name, Course, Grade,
Phone No, Major, Course_Dept) with the FD's,

F = {Name — Phone_NoMajor, Course — Course_Dept,
NameCourse — Grade}.

Here NameCourse is a candidate key,

Name and Course are prime attributes.

Phone No, Course_ Dept, and Major are partially
dependent on the candidate key.

Grade is fully functionally dependent on the candidate key.

= Bipin C Desai

35

Transitive Dependency
Definition: Given a relation scheme R with the functional
dependencies F defined on the attributes of R.
Let X and Y be subsets of R and let A be an attribute of R
suchthat X ¢ Y, A « XY.
If the set of functional dependencies {X - Y, Y —A} is
implied by F (i.e., F = X 5Y 5Aand F ==Y X)),
then A is transitively dependent on X.

= Bipin C Desai

36

In the relation scheme
Employee(Emp _Name, Department, Manager)
with the function dependencies
F = {Emp_Name — Department, Department — Managery},
Emp Name is the key and Manager is transitively
Dependent on the key since
Emp_Name — Department — Manager .

= Bipin C Desai 37

Content Preserving: the original relation can be derived from

the decomposed relations (lossless join decomposition)

Dependency Preserving: the original set of constraints can be

derived from the dependencies in the decomposed relations.

Free of interrelation join constraints: if there are no
dependencies that can only be derived from the join of two or
more decomposed relations

= Bipin C Desai 38

Definition: An unnormalized relation contains
nonatomic values.

Definition: A relation scheme is said to be in the first
normal form (1NF) if the values in the domain of each
attribute of the relation are atomic.

TNF has NO NON-ATOMIC ATTRIBUTES.

Definition: A relation scheme R<S, F>isin the second
normal form (2NF) if all non-prime attributes are fully
functionally dependent on the relation key(s).

2NF has NO PARTIAL DEPENDENCY

= Bipin C Desai

39

Assignment(Emp#, Name, Dept, Proj#, Hours, Lab)
Emp# — NameDept, Proj#— Lab,
Emp#Proj#— Hours

123 Smith D1 P1 5 L1

P2 30 L1
234 Ma D2 P1 20 L1
P3 10 L2
P4 5 L3

345 Russo D1 P1 35 L1

Example of an unnormalized (non-normal form) relation

= Bipin C Desai

40

123 Smith D1 P1 5 L1
123 Smith D1 P2 30 L1

234 Ma D2 P1 20 L1
234 Ma D2 P3 10 L2
234 Ma D2 P4 5 L3
345 Russo D1 P1 35 L1

= Bipin C Desai

41

Assignment(Emp#, Name, Dept, Proj#, Hours, Lab)

Emp# — NameDept, Proj# — Lab,

Emp#Proj# — Hours
P1 L1

123 Smith D1 gi II:;

123 Smith D1 P4 L3

234 Ma D2

234 Ma D2 123 P1 5

W5 RussoD1 123 P2 %0
234 P1 20
234 P3 10
234 P4 5
345 P1 35

= Bipin C Desai

42

Assignment(Emp#, Name, Dept, Proj#, Hours, Lab)
Emp# — NameDept, Proj# — Lab, Dept — Lab
Emp#Proj# — Hours

123 Smith D1 P1 35 L1
234 Ma D2 P2 35 L2

345 Russo D1 P3 35 L1

One can't say that there is no anomaly from the
contents in the database at a given point in time!

= Bipin C Desai 43

&)efinition: A relation scheme R<S,F>isin the third normal
orm(3NF)if for all nontrivial FD in F+ of theform X — A,
either X contains a key (i.e., X is a superkey) or A is a
prime attribute.

A database schemeisin the third normal form if every
relation scheme included in the database scheme isin the
third normal form.

BNF HAS NO TRANSITIVE DEPENDENCY

= Bipin C Desai 44

Lossless Join Decomposition

Definition: A decomposition of a relation scheme R <S,F>
into the relation schemes R; (1 <i<n) is said to be lossless
join decomposition or simply lossless if for every relation
r(R) that satisfies the FD's in F, the natural join of the

projections of r gives the original relation R: i.e.,

r = Ilgy(r) P IL gp(r) P ... P IT g, (1)

If r cIT gy(r) P go(r) B ... BPIT (1) then the
decomposition is called lossy.

r C IT ge(r) BPUII gy(r) P L. PLIT g (r) is always true.

< Bipin C Desai

45

Assignment(Emp#, Name, Dept, Proj#, Hours, Lab)

Emp# — NameDept, Proj# — Lab,

Emp#Proj# — Hours
P1 L1

123 Smith D1 gi II:;

123 Smith D1 P4 L3

234 Ma D2

234 Ma D2 123 P1 5

W5 RussoD1 123 P2 %0
234 P1 20
234 P3 10
234 P4 5
345 P1 35

< Bipin C Desai

46

Join the first two
relations: When we join the third relation,
Creates extraneous tuples the extraneous tuples are eliminated!

Hence, the decomposition is lossless
123 Smith D1 P1 L1

123 Smith D1 P2 L1 Bg E; go
123 Smith D1 P3 L2 123 0e 2
124 Smith D1 P4 L3 S e o
234Ma D2 P1L1 SORSE
234Ma D2 P2L1 e o1 3

234 Ma D2 P3L2
234 Ma D2 P4L3
345 Russo D1 P1L1
345 Russo D1 P2 L1
345 Russo D1 P3L2
345 Russo D1 P4L3

" Bipin C Desai

Assignment(Emp#, Name, Dept, Proj#, Hours, Lab)

Emp# — NameDept, Proj# — Lab, Emp#Proj# — Hours
123 Smith D1 P1 5 L1 123 sSmith DI Pl 5 L1
t23 Smith DL P2 30 Ll 953 gmith pl P1I 20 Ll

234 Ma D2 Pl 20 L1 .
234 Ma D2 P4 5 1.3 123 Smith D1 P2 30 L1
234 Ma D2 Pl 20 L1
123 smith DI 11 |PT 5 11]234 Ma D2 Pl 35 11
234 Ma D2 L1 P2 30 L1|234 Ma D2 P2 30 L1
234 Ma p2 12 |FPL 20 L1234 Mg D2 P3 10 12
P3 10 L2

234 M D2 13
a y 5 13 234 Ma D2 P4 5 L3

345 Russo D1 L1
Pl 35 L1|345 Russo D1 Pl 5 L1

345 Russo D1 Pl 20 L1
345 Russo D1 Pl 35 11
345 Russo D1 P2 30 L1

A lossy join decomposition

" Bipin C Desai

Definition: Given a relation scheme R<S,F>where F is the
associated set of functional dependencies on the attributes
in S. Consider that R is decomposed into the relation
schemes R,, R,, ..., R, with the functional dependencies

F.. Fy..., F,.

the closure of F' (whereF'=F, UF, U .. UF_)isidentical to

F*(i.e, F'" = F").

Then this decomposition of R is dependencies preserving, i

:‘n

= Bipin C Desai

49

Theorem : A decomposition of relation scheme R <(X, Y, 2Z),
F>into say R,<(X,Y), F,>and R,<(X,Z), F,> is:

can logically derived from the functional dependencies of
;andR,i.e, (F, U F))*=F* and
(ii) is lossless if the common attributes X of R, and R, form

@ superkey of at least one of thesei.e, X -Y or X - Z.

i) dependency preserving if every functional dependency in

= Bipin C Desai

50

for each decomposed relation R, do

if an attribute A is included in R,

then TABLE_LOSSY(i,j) := o,

else TABLE_LOSSY(i,j) := 3,
change :=true
while (change) do

for each FD X =Y in F do

if rows i and j exist such that the o, symbol appearsin

each column correspondingto the attributes of X
then if one of the symbol in the Y column is a., the other 3}

then make replace 3, with o,
else if the symbolsare 3, and 3,

then make both of them, say,
else change := false
i =1
[f thereisarow will all a then the decomposition is lossless

= Bipin C Desai 51

Example: R(A4,B,C D) with the functional
dependencies F{A— B, A— ¢, C— D}.
Consider the dependence preserving
decomposition of R into R,(4,8,C) and R,((D).

A B C D A B C D
R, Oy O O¢ Bip Oy O O 0Op
R, B By Oc Op Bon By Oc Op

Example: R(A, B, C, D, E) with the functional
dependencies F {AB— CD, A— E, C— D}. Then the
decomposition of R into R,(4,5) and R,(B,(D) and

R;(G D,E) is lossy.

= Bipin C Desai 52

F{AB— CD, A— E, C— D

A B C D E
R,(4,8,0 p B
R(B,GD) B a B
Ry(GD,E) p § a a
C- D

A B C D E
R(4B80 a a a po §
Ry(8,GD) P o 5
Ry(GD,E) § p a a a

No further changes - no row with all a
Hence, lossy decomposition!

= Bipin C Desai

Algorithm to check if a decomposition is dependency
preserving

Input: A relation scheme and a set F of FDs: a projection
(Ry, R, .., R,) of R with the FDs (F,, F,, ..., F,).

Output: Whether the decomposition is dependency
preserving or not.

Body:
F+_=_F*:= true
F :=g;
fori:=1ton do
F:=FUF;

foreachFD X - Y € F and while (F+_=_F*) do
// compute X", the closure of X under F'
ifY ¢ X" then F+_=_F+ := false

= Bipin C Desai

;

;

— N
IS

-
y i ¥

tDsF ={A - B,A — C, C - D}. Here, the decomposition of R

decomposition into S_Pr<(N, A), {N - A}> and D_A <(D, A),

:xample : Consider the relation scheme R(A,B,C,D) with the

nto R,<(A,B,C),{A - B,A — (} and R,<(C,D), {C - D}>
s dependence preserving, since in this case each FD in F is
ncluded in F' (where F'=F, UF,).

5

txample: Consider the relation Student_Advisor(Name, Dept,,
\dvisor) with the FDsF={N - D, N - A, A — D}. Here, its

A — D}>is dependence preserving, since N — D is implied by
(N - A) U (A — D); in addition the decomposition is lossless.

= Bipin C Desai 55

Example: Consider R(4,B,C,D) with the FDs

F {4— B,A— C, C— D} and its decomposition into
R,(4,B,C) with the FDs F, = {4 — B, A — C} and
R,(C,D) with the FDs F, = {C — D}.

This decomposition is dependence preserving since all the

original FD's can be logically derived from F, and F,.

Example: R(4,B,C,D) with the FDs F {4 - B,4— C, A — D}
1s decomposed into R,(4,B,D) with the FDsF, = {4 — B, 4 — D}
and R,(B,C) with the FDs F, = { }

i1s not dependence preserving since the FD
A — Cis not implied by any FD's in R, or R,

= Bipin C Desai 56

Example The decomposition of the relation Concentration
(Student, Major_or_Minor, Dept, Advisor), with the FDs
{SM_F.— A, A — F_}intotherelations SM_A and FA is not

FD preservingsinceF'=A - F. andtheFD SM_F.— A is
not implied by F'.

= Bipin C Desai 57

Third Normal Form Decomposition Algorithm
Input: A relation Scheme R, a set of Canonical FDs F_, and

K a candidate key of R.(K must have any attributes ¢ F)

Output: A collection of third normal form relation schemes
(R4, R, ... R)) which are dependency preserving and lossless.
i:=0
if thereis a dependency X - Y in F_such that all the
attributes that remain in R are included in it{
i:=i+1;, outputRasR{ X, Y};}
else{ for eachFDX - A in F_{
i:=i+1;, form R<{X,A }, F{X = A }>}
Replace (<(X,A), {X = A}>and <(X,B), {X — B}> with
<(X,AB), {X — AB}>)
if F;for 1 <j <i notsatisfies K = X {
i:=i+1, formR, { K}

Va)
4

= Bipin C Desai 58

SHIPPING(Ship, Capacity, Date, Cargo, Value)

Ship — Capacity,
ShipDate — Carqo,
CargoCapacity — Value

The given set of FD's isin canonical form.
A candidate key of the relation is ShipDate.
Decompose into:

R.(Ship, Capacity) with the FD: Ship — Capacity,
R,(Ship, Date, Cargo) with the FD: ShipDate — Cargo,
R.(Cargo, Capacity, Value) with the FD: CargoCapacity —Valu

[AnY
o

= Bipin C Desai 59

onsider the relation scheme Student_info(Student(S),
ajor(M), Student_Department(S,), Advisor(A), Course(C),
ourse_Department(C,), Grade(G), Professor(P),
rof_Department(P,), Room(R), Day(D), Time(T)) with

S-M,S—-A M-S5,,5-5,,A-S5,C->C,, C—P,
—P,,RTD—-C,RTD—-P, TPD—-R,TSD—>R,

DC—-R, TPD—-C,TSD - C ,SC—- G}

edundant FDs {S — Sd, RTD - P, TDC— R, TPD — C, TSD — R},
he primary key is TSD.

NF decomposition is: <R,(SMA), {S — MA}>; <R,(MSd),
— Sd}>, <R4ASd);, {A - S5d }>; <R,(CCdP), {C— CdP }>, <Ry(PPd),

— Pd }>; <R4(RTDC),{RTD — C}>; <R,(TPDR) {TPD — R }>, <Ry (TSDR),
TSD — R }>; <Ry(5CG) {SC— G }>.

= Bipin C Desai 60

Name Student# Course Grade

Jones 23714539 353 A

Ng 42717390 329 A

Jones 23714539 328 in prog

Martin 38815183 456 C

Dulles 37116259 293 B

Duke 82317293 491 C

Duke 82317293 353 in prog

Jones 23714539 491 C

Evan 11011978 353 A+

Baxter 83910827 379 in prog
The Grade Relation

Suppose the FDs are Student#— Name and Name — Student#>

Is it in 3NF? Any redundancies?

= Bipin C Desai

61

Definition: A normalized relation scheme R<S,F>
isin the Boyce Codd normal form if for every
nontrivial FD in F+ of the form X -A where X c S
and A €S, Xis a superkey of R.

A database scheme isin the BCNF if every relation
scheme in the database scheme is in the BCNF.

The relation GRADE is not in the BCNF because of the
dependencies Student#— Name and Name — Student#

are nontrivial and their determinants are not superkeys
of GRADE.

= Bipin C Desai

62

Algorithm: Lossless BCNF Decomposition

i := 0y
S := { R(U) };
all BCNF := false;

Find a non-redundant cover F' from F
while (—all BCNF) {

if A((X = Y)EF''YeX) (XY S R))'X R, {

i o= i+1;
<R,{X, Y}, X > Y> U S
R, := Ry - ¥;
}
else all BCNF := true;
}
= Bipin C Desai 63

ixample: Let us find a BCNF decomposition of the relation:
SHIPPING(Ship, Capacity, Date, Cargo, Value)
S — Cap, SD — Cargo, CargoCap — V

I B N

[here are no redundant FD'S in the set

0

fince S — Cap and since Ship -~— SHIPPING replace
SHIPPING with: R,(S, Cap) and RS, D, Cargo, V).

0

The decomposition is lossless but not FD preserving: the FD

£

TargoCap — V is not implied by {Ship — Cap, SD — Cargo}.

e

A BCNF decomposition which is lossless and FD preserving:

—
>

N

R.(Cargo, Capacity, Value) with the FD CargoCapacity — Value
,(Ship, Capacity) with the FD Ship — Capacity
R.(Ship, Date, Cargo) with the FD ShipDate — Cargo

_— _—
> . > w i

= Bipin C Desai 64

Given F,={PersonName — City, Street;

PersonName,CompName — Salary;
CompName — CompCity;

PersonName — MgrName}

and

Given F,={CompName — CompCity;
PersonName, CompName, CompCity — Salary;
PersonName — City;

PersonName — Street;

PersonName, City — MgrName}

Does F, coverF,?

= Bipin C Desai

65

Given F,={PersonName — City, Street;

PersonName,CompName — Salary;
CompName — CompCity;
PersonName — MgrName}

Candidate key: PersonNameCompanyName
No redundant attributes on the LHS.
No redundant FDs

R(P, C.,M,CS,C,$) can be decomposed, using the 3NF
algorithm (FD preserving and losslessly) into:

R,(P.CS), R(P,C.$), Ry(C,C), R(P.M,)

= Bipin C Desai

66

Given F,={PersonName — City, Street;

PersonName,CompName — Salary;

CompName — CompCity;

PersonName — MgrName}

Candidate key: PersonNameCompanyName P C,

No redundant attributes on the LHS.
No redundant FDs
R(P, C.,M,CS,C,$) can be decomposed, using the BCNF

algorithm as follows:

P.C.M_CSC.$ Do not use the FD P.C, — $

R,(P,CS) PnCW WHY???
R,(P,C.$) 7 P.C.M,C,

R3(PnMn) PnCnCc
n=—c PnCn
P C, 1s already in LHS of R,, we can combine it with it(drop it).

< Bipin C Desai

67

Given F,={PersonName — City, Street;

PersonName,CompName — Salary;

CompName — CompCity;

PersonName — MgrName}

Candidate key: PersonNameCompanyName

No redundant attributes on the LHS.

No redundant FDs

Since P, C, isthe key we need not use itin decompoingitin
the second step(as shown on the previous slide!!)

Hence, R(P,, C, M,, C, S, C, $) can be decomposed,
alternatively, using the BCNF algorithm as follows:

P.C.M.CSC.$
R(P.CS) P.C.MC$
R(P.M) P.CCS$

Ry (C,C.) R,P.C.$)

< Bipin C Desai

68

Given R = <{ABCDEGIK},
{AB - CDE,E - G,B—-G,BG - AlJ,I] - K}

F={AB - C BG - A
AB —- D BG —1
AB — E BG —]
E-G I - K
B- G}

F.={B-A, B-(CB—- DB — E,
B-IB—-),I] -K E -G}

B is a candidate key.

= Bipin C Desai

69

(ABCDEGIJK)

F.={B—->A, B—->CB—- D,B - E,
B—-IB—-J]E—->GI —-K}

B is a candidate key.

3NF: Since there is no single FD which includes all attributes in
R, we create a relation for each FD:

R1(AB), R2(BC), R3(BD), R4(BE), R5(BI), R6(BJ), R7(EG),
R8(JK)

Combine the relations with the same LHS:
R1’(ABCDEN), R7£EG), R8(1JK)
Why did we not include G in R1’ ?

= Bipin C Desai

70

(ABCDEGIJK)

F.={B -A,B—-C,B—- D,B —=E,
B—->ILB—->J]E—>GI1I] 5K}

B is a candidate key.

BCNF decomposition

(AB‘SDEGU K) since (1] — K)e F*AKZI)A(LIK < R)AL] =—R
_\

RIWK),IJ] - K (ABCDEGI]) since (E - G)e F*AGZE)AEG € R)AE =—R
/ \

R2(EG),E -G R3(ABCDEI),B - A, B — C,

B - D,B — E,

B —>1,B -1,
< Bipin C Desai 71
Decompose :
Projects<{Employee, Project, Dept,Part, QtyUsed,

HrsWorked},
{Employee,Project —» HrsWorked; Project —» Dept;
Project,Part —» QtyUsed }>

< Bipin C Desai

72

Refining an ER Dim
(sinco

Ist diagram translated:
Emp(S,N,D,P,S)

Dept(D,Dn,B)

Ca " s

. : : N /
Pay is associated with Emp. Employess @ Departments

Before:

Suppose all workers in a dept are . ‘

assigned the same pay: .
D—- P . ‘/

Redundancy; fixed by:
Emp2(S,N,D,S) Employees _ >Departments
Dept2(D,Dn,B,P)

After:

(& Bipin C

73

Normal Forms: Conclusions

-Returning to the issue of schema refinement, the first question to
ask 1s whether any refinement is needed!

-If a relation is in a certain normal form (BCNF, 3NF etc.), it is

can be used to help us decide whether decomposing the relation
will help.

- Role of FDs in detecting redundancy:

* Consider a relation R with 3 attributes, ABC.
* No FDs hold There is no redundancy here.

* However if A— B: Then, several tuples could have the
same A value, and if so, they’ll all have the same B value!
We need refinement!

known that certain kinds of problems are avoided/minimized. This

ot Bipin C

74

Boyce-Codd Normal Form (BCNF)

* Reln R with FDs F'is in BCNF if, forall X = A in
* A€ X (called a trivial FD), or
* X contains a key for R.

* In other words, R is in BCNF if the only non-trivial FDs that hold
over R are key constraints.

* No dependency in R that can be predicted using FDs alone.

If we are shown two tuples that agree upon the X value,
* we cannot infer the A value in one tuple from the A

value 1n the other.

o X 1Y |A
* If example relation is in BCNF, the 2 tuples
must be identical (since X is a key). x |yl
X |y2 |?

cte Bipin C

75

Third Normal Form (3NF)

* Relation R with FDs F'is in 3NF if, forall X = A in
* A€ X (called a trivial FD), or
* X contains a key for R, or
* Ais part of some key for R.
* Minimality of a key is crucial in third condition above!
* If R s in BCNF, obviously it is also in 3NF.
* IfR s in 3NF, some redundancy is possible. It is a compromise,
used when BCNF not achievable (e.g., no ""good™ decomposition,
or performance considerations).

* Lossless-join, dependency-preserving decomposition of R into a
collection of 3NF relations always possible.

ot Bipin C

76

When is R not in 3NF?

* If 3NF violated by X — A, one of the following holds:
* X s a subset of some key K(Partial Dep)
* We store (X, A) pairs redundantly.
* X s not a proper subset of any key.(Trans. Dep)
* There is a chain of FDs K — X — A, which means that
we cannot associate an X value with a K value unless we
also associate an A value with an X value.

° But: even if relation is in 3NF, these problems could arise.
* (Member,Chalet, Date, Card), M — C, C— M isin 3NF,

* Thus, 3NF is indeed a compromise relative to BCNF.

but for each reservation of member, same (M, C) pair is stored.

ctr Bipin C

71

Decomposition of a Relation Scheme

* Suppose that relation R contains attributes A7 ... An. A
decomposition of R consists of replacing R by two or more

relations such that:
* Each new relation scheme contains a subset of the attributes of
R (and no attributes that do not appear in R), and

* Every attribute of R appears as an attribute of one of the new
relations.

* Intuitively, decomposing R means we will store instances of the
relation schemes produced by the decomposition, instead of

instances of R.

ctr Bipin C

78

Example Decomposition

* Decompositions should be used only when needed.
* SNPGRH has FDs S — SNPGRH and G— R

* Second FD causes violation of 3NF; R values repeatedly
associated with G values. Easiest way to fix this is to create a

main schema:
* i.e., we decompose SNPGRH into SNPGH and GR
* The information to be stored consists of SNPGRH tuples. If we jus
store the projections of these tuples onto SNPGH and GR, are there
any potential problems that we should be aware of?

relation GR to store these associations, and to remove R from the

t

ctr Bipin C

79

Given R(A, B, C, D) with F{C— D, C— A, B— C}

If Ris notin BCNF, decompose it into a set of BCNF
relations that preserve the FDs.

B is the candidate key.
Both C— D and C— A cause BCNF violations.

One way to obtain a (lossless) join preserving
decomposition is to decompose R into

AC, BC, and CD.

= Bipin C Desai

80

Given R(A, B, C, D) withF{D—-A,B—- C}

Here BD is a candidate key. Risin 1NF but not 2NF due to
the partial dependencies.

B-CandD— A ABCD
BC,B— C A/BD\

ADD— A BD
The decomposition: AD, BC, BD
- obtained by first decomposing R into AD, BCD;
- followed by decomposing BCD into BC and BD

is BCNF and lossless and join-preserving.

< Bipin C Desai

Review of Relational Design

©Bipin C. DESAI

< Bipin C Desai

Example relation:

EMPLOYEE
(EID, Project, Component,EName,,Building, Room, TelNo)

Note: Keys are underlined.
What are the FDs?
What is the normal form of the relation?

-Only one phone in each room.
R(I, P,C,N,B,R, T)

FD: {I - NTBR,BR - T, T - BR}
Key: IPC

All partial dependencies.
R1(BRT), R2(INT), R3(IPC)

= Bipin C Desai 8

Example relation:

EMPLOYEE
(EID,Project#,Component,Qty,EName,Building,Room,TelNo,Hours)

Note: Keys are underlined.
What are the FDs? What is the normal form of the relation?

-Only one phone in each room.

-There is a m-to-n relationship between projects and components
-Each employee works a number of hours on a project

R(, P,C,Q,N,B,R, T, H)

Key: IPC
FD: {I- NTBR,BR - T, T— BR, I[P — H, PC — Q}

= Bipin C Desai 84

R(,P,C,Q,N,B,R, T, H)

Key: IPC

FD: F{I - NTBR,BR—=T,T—-BR,IP—-H, PC— Q}
The corresponding F_is
FA{I-NI->T,BR-T,T->BR,IP—->H,PC—Q}

A 3NF decomposition is:
R(INT), R(BRT), R(IPH), R(PCQ), R(IPC),

Itis alsoin BCNF!

= Bipin C Desai

85

R, P,C,N, B,R, T)

Key: IPC
FD: {I->N,I-T,I-B,I-R,BR—>T,T— BR}

3NF decomposition: R1(IN), R2(IT), R3(IB), R4(IR), R5(BRT),
R6(IPC)
Can we combine R1 R4?

BCNF decomposition:
[PCNBRT

\
BRT —

IPCNBR (not [IPCNT ¥ LHS is dropped)
— ~
BR—T IN IPCBR

/ —
IB PCR
IR / IPC

= Bipin C Desai

86

R, P,C,N, B, R, T)

Key: IPC
FD: {I->N,I-T,I-B,I—-R,BR—>T, T— BR}

Another BCNF Decomposition which is lossless but NOT FD
preserving:

IPCNBRT
O\
IB IPCNRT
B IN < YPCR
15N IT < IPCR
-t IR « IPC
I-R

< Bipin C Desai

87

Example: 1NF but not 2NF

ORDER(SuplNo, Address, Distance, PartNo, Price)
Assume each supplier is located in only one Address.
What are the FDs?

What are the anomalies?

< Bipin C Desai

88

PO (SuplNo,, PartNo, Price)
Supplier (SuplNo, Address, Distance)
What are the FDs in each and the normal form of each?

Any anomalies?

< Bipin C Desai

89

Decomposition (into 3NF):
SUPPLIER Address (SuplNo, Address)

Address DISTANCE (Address, Distance)

< Bipin C Desai

90

Example (3NF but not BCNF):
Can_Supply (SuplNo, SupIName, Address, PartNo, Price)

Functional Dependencies:

We assume that SuplNo, Address, PartNo are always unique
Thus we have two candidate keys:

(SuplNo, PartNo) and (SuplName, Address, PartNo)

and we have the following dependencies:

(SuplNo, PartNo) — Price

(SupINo, PartNo) — SupIName, Address
(SuplName, Address, PartNo) — Price
(SuplName, Address, PartNo) — SuplNo
SuplName, Address — SuplNo

SuplNo — SupIName, Address

= Bipin C Desai

91

Decomposition (into BCNF)
SUPPLIER (SuplNo, SuplName)
SUPPLIER PARTS (SupINo, PartNo, Quantity)

= Bipin C Desai

92

A relation is in BCNF iff every determinant is a candidate key

BCNF addresses the situations which 3NF does not handle.
In many real DB design the relations in 3NF are also in BCNF.

When is a relation in 3NF not in BCNF:
it has multiple composite candidate keys, and
these candidate keys are non-disjoint
(at least one common attribute)
Example:

Can_Supply (SuplNo, SuplName, Address, PartNo, Price)

Can_Supply is an example of a relation in 3NF but not in BCNF

Can_Supply exhibits the above properties).

= Bipin C Desai

93

The following relation is in 3NF, and also in BCNF:

SUPPLIERS (SuplINo, Suplname, Address, PostalCode)

We assume that each supplier has a unique Suplname, so that
SupINo and Suplname are both candidate keys.

These candidate keys are not composite keys and hence the 3NF
is also BCNF(all FDs the LHS is a candidate key)

Functional Dependencies:
SuplNo — Address
SupINo — PostalCode
SuplNo — SuplName
SuplName — SuplNo
SuplName — Address
SuplName — PostalCode

= Bipin C Desai

94

Anomalies even in a BCNF relations:

SUPPLIERS (SuplNo, SuplName, Address, PostalCode)

INSERT: We cannot record the Address for a SuplNo without
also knowing the SuplName

DELETE: If we delete the row for a given SuplName, we
lose the information that the SuplNo is associated
with a given Address.

UPDATE: Since SuplName is a candidate key (unique),
there are none.

Decomposition:
SUPPLIER INFO (SuplNo, Address, PostalCode)
SUPPLIER NAME (SuplNo, SuplName)

= Bipin C Desai

95

R(ABC) F={ AB — C, C — B)
This 1s in 3NF but not in BCNF.

There is no need (no way) to decompose this relation!

R(X,Y, Z) with F={XY -Z,YZ - X, XZ > Y}

The candidate keys are: XY, YZ and XZ.

This relation is in BCNF since the determinant of each FD is a
candidate key!

There is no need (no way) to decompose this relation!

= Bipin C Desai

96

Relational Calculus

W, o o .
e Bipin C. Desai

“= Bipin C Desali

Propositional Logic ...

A proposition is a statement that is either true or false (but not both).

In propositional logic, we assume a collection of atomic propositions
are given, e.g. p,q,1,S, ¢,

p = “COMPS5531 is about databases™

q = “COMP5531 is an important course”

r = “databases is an important course”

—p ="“COMP5531 is not about databases”
p A q=“COMP5531 is about databases and COMP5531 is an
important course”
pAq—r="COMP5531 is about databases and COMP5531 is
an important course then databases is an important
course”

= Bipin C Desai

Propositional Logic.

We form compound propositions by using logical operators:
and, or, not, exclusive or, implication(if-then), biconditional(iff)).

A tautology is a compound proposition that always
evaluatestotrue. eqg.:. pvVv -p

A contradiction is a compound proposition that always
evaluates to false.

A predicate is a property or description of subjects in the
universe of discourse.

In the previous slide, predicates are italicized :

is about databases,

is an important course

= Bipin C Desai

Propositional & Predicate Logic - Relational Calculus

Knowing the two propositions
p = “COMP5531 is about databases”
r = “databases is an important course”

Can we say that COMP5531 is an important course?

Example of a relation as predicates: Assignment (E#, P#, H)
expresses the fact that Employee E# is assigned to project P# for H
hours

Its value is true if an Employee E#is assigned H hours to
project P# else it is false

In the database this i1s expressed by having a tuple in the table for
Assignment

= Bipin C Desai

< indicates derivable or follows in both directions

Assertion of Universality
VX:P(x) < —3ax:~P(x)
If everything is (true), there exists nothing that is not (true).

Denial of Existence
vX:=P(X) & —3x:P(x)
If everything is not(true), there exists nothing that is(true).

Denial of Universality

avX.P(X) < 3Ix:-P(x)

If not everything is(true), there exists something that is
not(true).

Assertion of Existence
avXx:mP(x) ax:P(x)
If not everything is not(true), there exists something that

£ béllpqnuce Besai

De Morgan’s Laws

It can be shown that the following, called De Morgan’s laws
are equivalent:

P(x) " Q(x) = =(=P(x) " = Q(x))

P(x) " Q(x) = =(= P(x) * = Q(x))

A generalization of De Morgan's Law involvingthe V, 3
quantifiers is obtained as shown in the following.
Assertion of Universality & Assertion of Existence
UX(P(x)) = =(3x)(= P(x)) and 3x(P(x)) = ~(VX)(=~ P(x))

In formal systems, the acceptable sentences (or formulae) are
usually called well-formed formulae (wff).

In the wff (VXx)(P(x) & Q(y)), where V¥ isthe universal quantifier
(for all), x isbound and Yy is free.

= Bipin C Desai

uple calculus formulae are built from atoms of the form:

- x € R where R isarelation and x is a tuple variable.

5 X0y or x 0 cwhere e{=#,<,>>},xandy are

ariables and cis a constant: x, y, c are domain compatible

ormulae are built from atoms using the following rules:

.- An atom is a formula.

,. If fand gare formulae, then are: -f, (f),f'g,f" g, f— g

;. If f(x) is a formula, where x is free, then 3Ix(f(x)), and Vx(f(x))

are also formulae; however, x is now bound.

The formula f —» g, meaningif f then g, is equivalent to -f ' g.

= Bipin C Desai

Relational Calculus

Relational calculus is a query system wherein queries
are expressed as variables and formulae on these
variables. Such a formula describes the properties of
the required result relation without specifying the

method of evaluatingit.

Tuple and domain calculi are collectively referred to as

relational calculus.

= Bipin C Desai

A query in tuple relational calculus is expressed as a formula:

{t [P(0)}

Thisis the formula that finds all tuples t such that the
predicate P is true.

A formula may use a constant to specify a particular
value, while a variable is used as a place holder for the
valuesin an expression or procedure.

We can also specify logical connectors such as "not" (or
negation; denoted by -), "or" (V), "and" (A), and
"implication" (—), universal (or for all; denoted by V
and existential (or for some; denoted by 3)

= Bipin C Desai

PROJECT (Project#, Project Name, Chief Architect)
EMPLOYEE (Emp#, EmpName)
ASSIGNED TO (Project, Emp#)

@ Obtain the employee numbers of employees working on

project P1.

@ Obtain employee details for those employees assigned to project P1
® Get complete details of employees working on a Database
project.

@ Get complete details of employees working on all Database
projects.

@ ist the complete details of employees working on both P1
and P2.

@ ist the complete details of employees working on either P1
or P2 or both.

= Bipin C Desai

10

PROJECT (Project#, Project Name, Chief Architect)
EMPLOYEE (Emp#, EmpName)
ASSIGNED TO (Project#, Emp#)

@ Obtain the employee numbers of employees working on
project P1.
{t(Emp#) | Ju(u € ASSIGNED_TO A u[Project#]="P1'

A t[Emp#] = u[Emp#]) }

‘& Bipin C Desai 1

PROJECT (Project#, Project Name, Chief Architect)
EMPLOYEE (Emp#, EmpName)
ASSIGNED TO (Projectt, Emp#)

@ Obtain employee details for those employees assigned to the
project P1

{t | teemployee AT u(u € ASSIGNED TO A
u[Emp#|=t[Emp#] N\
u[Project#t] = P1)) }

‘& Bipin C Desai 12

% List the complete details of employees working on both P1
and P2,

{s | s € employee A Ju,,u, (u, € assigned_to
A u, € assigned _to A u,[Emp#] = u,[Emp#]
N s[Emp#] = u,[Emp#] N\ u,[Project#] =PI
A w,[Project#] = "P2')}

Find s such that s is from employee and there exists tuples u,,u,

both from assigned to such that a number of predicates
are being satisfied

-’ Bipin C Desai 13

List the complete details of employees working on either P1
or P2 or both.

{s | s € employee A Ju, u,(u, € assigned_to A
u, € assigned_to A ((sS[Emp#] = u,[Emp#] N\
u,[Project#] = "P1’)
V (s[Emp#] = w,[Emp#] N\ u,[Project#] = "P2')))}

{s | s € employee A Ju,(u, € assigned_to

N S[Emp#] = u,[Emp#] N\ (u,[Project#] =PI’
0 u,[Project#] = P2"))}

. ul

= Bipin C Desai 14

® Get complete details of employees working on a Database
project.
{s| s € employee

A 3u,t(t € project A t[Project_Name] = 'Database'’

A U € assigned_to A u[Project#] = t[Project#]

N S[TEmp#] = U[Emp#])}

" Bipin C Desai 15

The universe of discourse for a particular branch of mathematics is
a set that contains everything of interest for that subject.

If P and Q are formulas, then "if P then Q" or
"P implies Q" is written P=Q, using the conditional symbol, =.

Bi-conditional, written <, corresponds to the phrase
"if and only if" or "iff" for short.

The denial or negation of of P = Q can be expressed as:

~(P=Q)==("PVvQ) or

~(P=Q) = P)A(7Q)
“(P=Q)= PA—Q

" Bipin C Desai 16

De Morgan's laws for quantifier are expresses usually in the form:

—VxP(x) = dxP(x)
—3xP(x) < Vx—P(x) which could be re-written as:

Vx—P(x) < —3xP(x)

Get details of employees working on all Database projects.
{s | s € employee

A Vt(t € project A t[Project_Name] = 'Database'’

— Ju(u € assigned_to A u[Project#] = t[Project#]

A SLEmp#] = u[Emp#1))}

Writting the predicate as
s € employee AVt (=[(=(P(t) = JuQ(u,t))])

< Bipin C Desali

17

Now we use: vx-P(x) < - 3xP(x) and re-write the
above predicate as:

s € employee A = 3t(=(P(t) » FuQ(u,t)))
Substituting f — g by its equivalent form -f v g:
We get: s € employee A = 3t(=(=P(t) vV FuQ(u,t)))

Now move the negation in and stop it just after the v
s € employee A = 3t(=~(=P(t) vV FuQ(u,t)))

s € employee A = 3t(P(t) A =TuQ(u,t)))

{s | s € employee
A - 3t(t € project A t[Project_Name] = 'Database’
A = 3Ju(u € assigned_to A u[Project#] = t[Project#]
A S[Emp#] = U[Emp#1))}

< Bipin C Desali

18

® Get details of employees working on all Database projects.
{s | s € employee
A Vi(t € project A t[Project Name] = 'Database’
— Ju(u € assigned _to A u[Project#] = t[Projectt]
N s[Empi#] = u[Emp#])) }
replacingf — g by its equivalent form -f v g:
{s|s € employee
A Vi(t € project Vv t[Project_Name] # 'Database’
vV Ju(u € assigned_to A u[Project#] = t[Project#]
A SLEmp#] = u[Emp#]))}

u
PR
S
A
U[Project#] = t[Project#] SIEmp#] = u[Emp#]
< Bipin C Desali 19

mysgl> select * from Assign;
+-————- - + mysgl> select * from Project;
| Pno | Eno | - +o———————— t———————— +
- - + | ProjNo | Pname | Pleader |
| 353 | 10000 | Fm——— +-— Fom +
| 354 | 10000 | | 353 | Database | 10000 |
| 534 | 10001 | | 354 | Database | 10000 |
| 353 | 10002 | | 534 | OS | 10005 |
| 354 | 10003 | | 574 | VOIP | 10005 |
| 534 | 10003 | F————— e Fom +
| 354 | 10004 | 4 rows in set (0.00 sec)
| 534 | 10005 |
| 574 | 10005 |
+-—— - +mysgl> select * from Employee;
fo—m———— fomm fom - e fomm - +
| EmpNo | Ename | Address | Phone | DOB |
fo—m———— e Fomm e e fomm - +
| 10000 | James | Montreal | 5144445555 | 1965-10-21 |
| 10001 | Piere | Laval | 5144555445 | 1956-10-12 |
| 10002 | Nathalie | Brossard | 5147454555 | 1976-04-01 |
| 10003 | Mary | Dorval | 5145544455 | 1965-10-21 |
| 10004 | Sabrina | St. Laurent | 5144445555 | 1987-01-31 |
| 10005 | Ma | Montreal | 5144454555 | 1964-02-29 |

< Bipin C Desali

20

Get details of employees working on all Database projects.

{s|s € employee
AV t((t € project A t[Project_Name] = 'Database’)
— (Ju(u € assigned_to A u[Project#] = t[Project#]
A S[Emp#] = ulEmp#]))) }

Assign

Project

replacing (f)— (g) by its equivalentform (=f) " (g):

{s|s € employee
A Vt((t & project Vv t[Project_Name] # 'Database’)
V (Ju(u € assigned_to A u[Project#] = t[Project#]
A S[Emp#] = UulEmp#])))

" Bipin C Desai 21

{s | s € employee
A Yt(t & project " t[Project_Name] # 'Database'
V Ju(u € assigned_to A u[Project#] = t[Project#]
A SLEmp#] = u[Emp#]))}

Now use Assertion of Universality: VX(P(x)) = —=(3x)(—~ P(x))

{s|s € employee
A =(3t)(-(t & project v t[Project_Name] # 'Database’
vV Ju(u € assigned_to A u[Project#] = t[Project#]
A SLEmp#] = u[Emp#1)))}

{s|s € employee
A ~(3t)((t € project A t[Project_Name] = 'Database’
-3u(u € assigned_to A u[Project#] = t[Project#]
not
)A SLEmp#] = u[Emp#1)))}

exists

" Bipin C Desai 22

select *
from Employee e
where not exists
(select *
from Project t
where PName='Database’
and not exists
(select * from Assign u
where u.Pno = t.ProjNo and
e.EmpNo = u.Eno));

< Bipin C Desali

23

select *
from Employee e
where not exists
(select ProjNo
from Project t
where PName='Database' and
ProjNo NOT IN
(select a.Pno
from Assign a
where a.Eno = e.EmpNo));

< Bipin C Desali

24

insert Employee values(10006, 'John’, 'Ndg', 5144455555, '1988-04-01");
insert Assign values (353, 10006),(354, 10006),(534, 10006),(574,10006);
mysql> select * from Employee s
where not exists (select * from Project t
where not exists(select * from Assign u
where u.Pno = t.ProjNo and
s.EmpNo = u.Eno));
mysql> select * from Employee e
where not exists
(select *
from Project
where ProjNo NOT IN
(select distinct a.Pno
from Assign a
where a.Eno = e.EmpNOo));

tomm———- tom————— fom - Fomm Fomm - +

| EmpNo | Ename | Address | Phone | DOB |

fom e fom fom - fom +

| 10006 | John | Ndg | 5144455555 | 1988-04-01 |

fom fo— fom fom e fom e +
= Bipin C Desai 25

mysql> update Employee set DOB = "'1988-01-01" where
EmpNo=10006;

mysql> update Employee set DOB = DATE_ADD(DOB,
INTERVAL 365 DAY) where EmpNo=10006;

mysgl> select * from Employee where EmpNo=10006;

tom— - tom pom - fomm - fomm - +
| EmpNo | Ename | Address | Phone | DOB |
tomm - tomm - pom - fomm - fomm e +
| 10006 | John | Ndg | 5144455555 | 1988-12-31 |
pomm - tomm pomm - fomm - fomm e +

1 row in set (0.00 sec)

mysql>update Employee set DOB = DATE_SUB(DOB,
INTERVAL 365 DAY) where EmpNo=10006;

mysql> select * from Employee where EmpNo=10006;

fo————— Fomm———— Fomm—————— Fomm Fom - +
| EmpNo | Ename | Address | Phone | DOB |
fo———— Fomm———— e Fomm - Fom - +
| 10006 | John | Ndg | 5144455555 | 1988-01-01 |
fo—— Fo—————— Fomm—————— Fommm Fom e +

1 row in set (0.02 sec)

= Bipin C Desai

26

Example: Get the employee numbers of employees,
other than employee 107, who work on at least all
those projects that employee 107 works on"

K tILEmp#] | t € assigned_to A

Yu,(u, € assigned_to A u,[Emp#] = 107

— Fu,(u, € assigned_to A u,[Emp#] # 107

A U,[Project#] = u,[Project#IN\ tIEmp#] = u,[Emp#]))}

Iternately we can write this query without the logical
mplication by substitutingits equivalent form —f Y g:

t[Emp#] | t € assigned_to A
Vu,(u, € assigned_to v u,[Emp#] # 107
V 3u,(u, € assigned_to A u,[Emp#] # 107
A U,[Project#] = u,[Project#]N\ tIEmp#] = u,[Emp#]))}

= Bipin C Desai

27

To avoid procedural operation, such as projection, in a
calculus query, we could define t to be on the relation

scheme (Emp#) and rewrite this query expression as:

{ t(Emp#) |
Yu,(u, ¢ assigned_to v u,[Emp#] = 107

V 3u,(u, € assigned_to A u,[Emp#] # 107
A U,[Project#] = u,[Project# N tIEmp#] = u,[Emp#]))}

= Bipin C Desai

28

Example: Get employee numbers of employees who do not
work on project P2.

{ tfEmp#] | t € assigned_to A
—3u(u € assigned_to A u[Project#] = P2
N t[Emp#] = u[Emp#])}

Alternatively, we can express this query in the following
equivalent form:

{ t[Emp#] | t € assigned_to A
Yu(u ¢ assigned_to V tIEmp#] # u[Emp#]
V u[Project#] #= P2)}

= Bipin C Desai

29

Example: Compile a list of employee numbers
of employees who work on all projects.

{t[Emp#] | t € assigned_to A
Vp(p € PROJECT — Ju(u € assigned_to
N pLProject#] = u[Project#]
A tLEmp#] = ulEmp#]))}

The above can be rewritten as:

{ tIEmp#] | t € assigned_to A
V p(p ¢ PROJECT v Ju(u € assigned_to
A p[Project#] = u[Project#]
A t[Emp#] = U[Emp#]))}

= Bipin C Desai

30

Example: Get employee numbers of employees, not
including employee 107, who work on at least one
project that employee 107 works on.

{t[Emp#] | t € assigned_to A
ds,u (s € assigned_to A u € assigned_to
A S[Project#] = u[Project#]
A S[Emp#] =107
A tLEmp#] # 107
A t[Emp#] = U[Emp#])}

= Bipin C Desai

31

Consider the division operation on the two relations,
P(P) and Q(Q), where Q < P:

R=P+Q
R ={t I teP[P-Q] A Vs(s€QA (tiis € P)}
R = {titeP[P-Q] A Vs(seQ — Ju(ueP A u[Q]=s

AU[P-Q]=t[P-Q]))}
R=P+Q= HP-Q(P) - HP-Q((HP-Q(P) X Q) -P)

= Bipin C Desai

32

M, (P) 0 M,,(P) X O T, (P)XQ - P
A B A B A B
a, b, a, b, a, b,
a, b, a; b, a, b,
ds dj b, dj b,
d, a, b,
ds dsg b,
oo a, b,
P) X - P
rollliol?) X0 7B o
., a5 by I, (I, (P) XQ-P)
a, bz A
a, b
5 2 aq
djy a,
= Bipin C Desai 33

A domain calculus expression is of the form

{X] f(X) }
where f is a formula on X, and X represents a set of
domain variables.

A, XeR
A,. X0y or x0c

where 0 is one of the comparison operators x and y are domain
compatible variables, and c is a domain compatible constant.

B,. An atom is a formula.

B,. If f and gare formulae, then —f, (f),f Ag, fA Qg f—gare
also formulae.

B,. If f(X) is a formula where X is free, then 3X(f(X)), and
YX(f(X)) are also formulae

= Bipin C Desai

34

PROJECT (Projecti,Project Name,Chief Architect)
EMPLOYEE(Emp#, EmpName)
ASSIGNED_TO (Projectt, Emp#)

Get employee numbers for employees working on
project
number P1

{e | Ip (<e, p> assigned_to A p=P1)}

In this can, we can drop the quantifier and
simplify

the query as:
{e| <e, p> € assigned_to A p = P1}

= Bipin C Desai

35

Get employee details such that the employee is assigned
to the project P1

{<e,, m>| e, (<p, e,> € assigned_to
"<e,, m>e employee) Ap=P1 Ae, =e,)}

Compile the details of employees working on a Database
project.

{em| 3p,.e,p.n,(<p,e,> € assigned_to
A <e,m> € employee
A <p,,N,,C,> € project
Ae =eAp,=p,An,=Database)}

= Bipin C Desai

36

Compile the details of employees working on both P1
and P2,

{em| dp,.e,.p,e, (<e,m>ec employee
A <p,,e,> € assigned_to
A <p,,e,> € assigned_to
ne=e Ne=g,
Ap,="PT" Ap,="P2)}

-’ Bipin C Desai 37

Obtain the employee numbers of employees, other than the
employee 107, who work on at least all those projects that

employee 107 works on.

{e| <p,e> € assigned_to VY p,,e,(
<p,.e,> € assigned_to A e, =107
— (Ip,.e,(<p,e,> € assigned_to
Ne,# 107 A\ p,=p,Ae=¢e))}

An equivalent form of this query

{e | <p,e> € assigned to A
Vp,,e,(<p,,e,> & assigned to Ve, # 107
V (dp,.e,(<p,,e,> € assigned to
Ne,# 107 Ap,=p,\Ne=¢,)}

-’ Bipin C Desai 38

Get employee numbers of employees who do not work on
the P2 project.

{e| Jp (<p,e> € assigned_to
A Y p,.e (<p,e> ¢ assigned_to

Vp,#P2Vve #e)}
What are the employee numbers of employees who work
on all projects?”

{e| dp (<p,e> € assigned_to

/\ V p1(<p’|rn’llc’l> E projeCt
— <p,,e> € assigned_to))}

= Bipin C Desai

39

Acquire the employee numbers of employees, other than
employee 107, who work on at least one project that

employee 107 works on.

{e| I p,p.,e.p,e,(<p,e> < assigned_to
A <p,,e,> € assigned_to
A <p,,&,> € assigned_to
Ne, =107 Ap,=p,Ne, =107 ne=¢g,)}

= Bipin C Desai

40

The followingis covered in predicate logic discussions:
Here Q(x) is any predicate of variable x and = means
Logically equivalent

Negating a proposition such as ¥xQ(x) requires negating
the predicate and changing the quantifier from the
Universal to the existential

Thus we can replace a negated universal quantifier with a
predicate Q(x) as follows to its logically equivalent form

S[VXQ(x)] = Ix[-Q(x)] or Ix[-Q(X)] = -[VxQ(X)]

Similarly, we can negate a proposition with an existential
quantifier as follows:

-[3IXQ(x)] = YX[-Q(x)] or YX[-Q(x)] = -[3xQ(X)]

= Bipin C Desai

41

Using the last formula from the previous slide :

=[IxQ(X)] = YX[-Q(x)]

If we reverse the sides and move the negation inside:

x(=Q(x)) = ~(3Ix)(=Q(x))

Now if we substitute, in the above:
P(x) for =Q(x) and = P(x) for = =Q(x) i.e., = P(x) for Q(x)

We get:

Ux(P(x)) = =[(3x)(=Q(x))] or
VX(P(x)) = =[(3x) (==~ P(x))] or
VXx(P(x)) = -[(3x) (P(x))]

Itis the last form that we have used!!

= Bipin C Desai

42

Get details of employees working on all Database projects.

{s|s € employee A
-3t((t € project A
A t[Project_Name] = 'Database'
A —=3u(u € assigned_to A
u[Project#] = t[Project#] A SLTEmp#] = u[Emp#])))}

select distinct a.empno
from assigned_to a, project p
where not exists
(select *
from project p
where p.projname = 'database' and
not exists
(select *
from assigned_to a’
where al.projno = p.projno and
al.empno =a.empno));

= Bipin C Desai

43

Get details of employees working on all Database projects
and only on database projects.

{s|s € employee A
-3t((t € project A
A t[Project_Name] = 'Database'
A =3u(u € assigned_to A
U[Project#] = t[Project#] A sSlEmp#] = ulEmp#])))
A (-3t1(t1 € project A t1[Project_Name] # 'Database’
A Ju1(ul € assigned_to A
ul[Project#] = t1[Project#] A S[TEmp#] = U1[Emp#])))}

= Bipin C Desai

44

select distinct a.empno
from assigned_to a, project p
where not exists
(select *
from project p
where p.projname = 'database’ and
not exists
(select *
from assigned_to a’
where al.projno = p.projno and
al.empno = a.empno))
and not exists (select *
from project p1
where p1.projname <> 'database' and
exists (select *
from assigned_to a2
where a2.projno = p1.projno and
aZ2.empno = a.empno));

4’ Bipin C Desai 45
mysql> show engines;
fom - e o +
| Engine | Support | Comment
o ——— o e +
| MyISAM | DEFAULT | Default engine as of MySQL 3.23 |
| | | with great performance
| MEMORY | YES | Hash based, stored in memory, |
| | \ useful for temporary tables
| InnoDB | YES | Supports transactions, row-level |
| | | locking, and foreign keys |
| BerkeleyDB | NO | Supports transactions and
| | | page-level locking |
| BLACKHOLE | NO | /dev/null storage engine (anything |
| | \ you write to it disappears)
| EXAMPLE | NO | Example storage engine
| ARCHIVE | NO | Archive storage engine
| CSv | NO | CSV storage engine
| ndbcluster | NO | Clustered, fault-tolerant,
| ndbcluster | NO | memory-based tables
| FEDERATED | NO | Federated MySQL storage engine
| MRG MYISAM | YES | Collection of identical MyISAM tables |
| ISAM | NO | Obsolete storage engine
fom - fomm o +
12 rows in set (0.02 sec)

46

= Bipin C Desai

Evolving database systems
MariaDB [mysgl]> show engines;
f—— e o 4
Engine | Support | Comment
bom e fom R i it T T e e e 4
MRG MyISAM | YES | Collection of identical MyISAM tables
MyISAM | YES | MyISAM storage engine
MEMORY | YES | Hash based, stored in memory,
| | useful for temporary tables
CSVv | YES | CSV storage engine
Aria | YES | Crash-safe tables with MyISAM heritage
InnoDB | DEFAULT | Percona-XtraDB, Supports transactions, row-level
| | locking, foreign keys and encryption for tables
SEQUENCE | YES | Generated tables filled with sequential values
PERFORMANCE SCHEMA | YES | Performance Schema
fom e Fomm - o 4
< Bipin C Desai 47
MariaDB [(none)]> show engines;
| Engine | Support | Comment
| Aria | YES | Crash-safe tables with MyISAM heritage. Used for internal temporary tables and privilege tables
| MRG_MyISAM | YES | Collection of identical MyISAM tables
MEMORY	YES	Hash based, stored in memory, useful for temporary tables
BLACKHOLE	YES	/dev/null storage engine (anything you write to it disappears)
MyISAM	YES	Non-transactional engine with good performance and small data footprint
Csv	VES	Stores tables as CSV files
ARCHIVE	YES	gzip-compresses tables for a low storage footprint
FEDERATED	YES	Allows one to access tables on other MariaDB servers, supports transactions and more
PERFORMANCE_SCHEMA	YES	Performance Schema
InnoDB	DEFAULT	Supports transactions, row-level locking, foreign keys and encryption for tables
SEQUENCE	YES	Generated tables filled with sequential values
11 rows in set (0.015 sec)
48

< Bipin C Desai

SQL — 11

<% Bipin C. DESAI

W
g/

&
%

PL. see: https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

dr: Bipin C Desai

This set of slides is extensive with many examples

using Oracle and MariaDB/MySQL.
These example should be tried out for better understanding.
We will not go through them in details: this 1s left as exercises!

Here are the main SQL topics — their syntax etc.- DBMS dependent!

Data Types

SQL statements
Group/having

Functions

Views, Null and operations on null

Joins — cross. inner, natural, outer,
Implementation of joins

Representing relationships, key constraints

Complex relationships

Constraints,triggers(row/statement, before/after);
mutating triggers

Aggregation

= Bipin C Desai

DATA TYPES

Typical data types supported are:
integer, decimal, real or float, binary, blob
characters (fixed and variable length), bits, date,

int or integer; tinyint (1 byte), smallint (2 bytes),
mediumint (3 bytes), int (4 bytes) bigint (8 bytes)
real or float
decimal(n, d) -- numeric(n, d) e.g. decimal(6, 2)
char(n)/bit(B) fixed length character/bit string, padded
varchar(n) / bit varying(n) variable-length strings up to n characters
tinyblob (2% -1 bytes), blob (2!¢ -1 bytes),
mediumblob (224 -1 bytes), longblog (2% -1 bytes)

Note: In the following , we have used MariaDB/MySQL or Oracle
-The prompt for Oracle is: SQL>
-The prompt for MariaDB/MySQL is followed by database name

= Bipin C Desai

Oracle also uses varchar2(n); it’s truly varying length
varchar2 is not yet supported in MySQL/Mariadb!

Times:SQL2 form is TIME 'hh:mm:ss[.ss...]'

Dates: SQL2 format is DATE ’yyyy-mm-dd’ (m =0 or 1)
supported in MySQL/Mariadb
Oracle’s default dates format is ’dd-mon-yy’
Example: create table BDays(name char(25), d DATE);
insert into BDays values (“Martha Smith”, ‘18-nov-1962°);
Oracle function to_date converts a date value into default format, e.g.,
insert into BDays values(‘“Martha Smith”,
to_date('1962-nov-18', 'yyyy-mm-dd'));

= Bipin C Desai

SQL is case insensitive

However, the case is significant for strings and could be for
names of tables and columns

Two strings s, and s, are equal if
- they have the same sequence of characters and

- the same case Note: some DBMS are
The strings are compared alphabetically case sensitive for the
"fodder’ < ’folder’ names of tables and
’bat’ < ’batman’ columns: all DBMS are
string LIKE pattern case sensitive for strings
Ordinary characters in pattern match only ordinary characters in
string

The special character % in pattern, matches any sequence of
zero or more characters in string

The special character _ in pattern, matches any one character in
string

4= Bipin C

Find all students with “de’” in their name

select Name, Dept
from students
where Name like *%de” %’ ;

Note: an apostrophe in a string represented by two apostrophes *’
without any intervening spaces

Expressing special characters and % in a string by an using a
preceding escape character.

SQL allows any character to be used as an escape character with
the escape keyword

string LIKE "x %x%’ ESCAPE ’x’
Here x is the escape character
The sequence °'x and x% 1s taken to be a single and %

This pattern matches any string that begins with _and ends
with %

4= Bipin C

We can apply the 3 most common set operations union, intersection,
except(difference) to relations R and S, provided the relations are
compatible.

If two SQL queries produce compatible relations as their result, then
we may combine these queries using: union, intersection, except

The SQL implementation of union, intersection, and except
operation normally eliminate duplicates; the modifier ALL is used
to keep the duplicates:

R UNION ALL S, teER|=n, |t €S| =m, |t ERUS| < n+m
R INTERSECT ALL S, |teR|=n, |t €S| =m |t ERNS |= min(n,m)
R EXCEPTALL S, IteER | =n, |t €S| =m |t ER-S| = max(0,n-m)

NOTE: in many of the SQL examples, to save space on slides,
we are not including constraints such a primary key which are
usually evident

4= Bipin C

Relation schemas:
Faculty (Name, Dept, Position, salary, gender)
Student (Name, Dept, Major, sex)

Query:

Give the names and the departments of students and professors.

(SELECT Name, Dept
FROM Faculty)
UNION
(SELECT Name, Dept
FROM Student);

4= Bipin C

create table Faculty (Name varchar2(30), create table Student (
Dept varchar2(20), Position varchar2(20), Name varchar2(28),
Dept varchar2(20),
Major varchar2(20),
sex char(1));

salary dec(9,2), gender char(1));

insert into faculty values (‘Smith', 'CS', 'Prof', 81000.00, 'F');
insert into faculty values ('‘Brown', 'CS', 'Assoc Prof', 75000.00, 'M');
insert into student values ('Brown', 'CS', 'Info', 'F'");

(SELECT Name, Dept FROM Faculty) (SELECT Name, Dept FROM Faculty)

UNION UNION ALL
(SELECT Name, Dept FROM Student); (SELECT Name, Dept FROM Student);
NAME DEPT NAME DEPT
Brown CS Smith CS
Smith CS Brown CS
Brown CS
f Bipin C

Relation schemas:
TA (Name, stipend, course)
Student (Name, Dept, Major, sex)

Query: Find names of female TAs who are majoring in
the department of Computer Science

(SELECT name , o

FROM TA) Find names of TAs who are not majoring
INTERSECT in the department of Computer Science.

(SELECT name (SELECT name

FROM Student FROM TA)

WHERE Dept=“Computer Science”

and sex = “F”); EXCEPT

(SELECT Name
FROM Student
WHERE Dept = “Computer Science”);

4= Bipin C

10

A tuple in SQL is represented by a parenthesized list of scalar values;
(Smith, ’CompSci’) or (Smith, Student.Dept)

If a tuple ¢ has the same number of components as a table(relation) R,
then it makes sense to compare ¢ and R

tINR --thisistrueiff # €R

t <> ANY R -- true if t is neither greater nor less than any tuple in R

Relation schemas: Student (Name, Dept, Major, sex),

TA (Name, stipend, course), GRADE(Name, course, gr)

Find students who got an A in the course where they are TAs

select t.Name We are conveniently
from TA t ignoring time!

where (t.name, t.course) in

(select Name, course
from grade
where gr = ‘A’);

4= Bipin C

11

INSERT, DELETE, ALTER

The form of a insert statement:
insert into relation|[list of attributes] values(list of values);
insert into relation select statement;

The form of a delete statement:

delete from relation where <condition>;
Delete every tuple in the relation satisfying the condition

The form of an update statement:
update relation set <new-value assignments> where <condition>;

Adding Columns
alter table relation add <column declaration>;
Removing Columns

Add & Remove with care!
alter table relation DROP <column name>;

= Bipin C Desai

12

select * from EMPL;

| Eid | Name | title | salary | emailsuffix |
+———— F———— F———— - o +
33	John	SrProgr	120000	coldmail.org
34	Jenny	SrProgr	110000	coldmail.org
35	Anne	WebDev	90000	gonemail.com
36	Mary	WebDev	85000	comemail.com
37	Freddy	Progr	75000	netmail.com
38	Johnny	Progr	80000	netmail.com
39	Art	Progr	75000	netmail.com
40	Albert	Progr	70000	netmail.com
41	Susan	WebProgr	90000	gonemail.com
42	Paul	WebProgr	85000	gonemail.com
43	Edward	DBProgr	75000	coldmail.org
44	Kim	WebDev	110000	coldmail.org
45	Roger	DBA	150000	comemail.com
46	Danny	NetAdmin	100000	sizzlingmail.com
47	Mike	Mkt Mgr	120000	gonemail.com
48	MaryAnne	Mkt Mg	90000	speedymail.com
f———— g fmm fm e e e e 4
= Bipin C Desai 13
Group by and Having

title varchar(30),
salary int,

);

emailsuffix varchar(60)

ALTER TABLE EMPL AUTO INCREMENT = 100;

The Group by clause is to group the data by the value(s) of
one (or more) column(s)
The predicate for the GROUP BY clause is HAVING

CREATE TABLE EMPL (
Eid int unsigned not null auto_increment primary key,
Name varchar(20),

= Bipin C Desai

14

select title, count(*) AS HowMany
from EMPL

GROUP BY title

ORDER BY HowMany;

| DBA

| NetAdmin
| Mkt Mgr
| Mkt Mg

| DBProgr
| SrProgr
| WebProgr
| WebDev

|

= Bipin C Desai

15

select title, count(*) AS HowMany
from EMPL
GROUP BY title having count(title)>=2;

Fomm - Fomm———— +
| title | HowMany |
e e +
| Progr | 4 |
| SrProgr | 2 |
| WebDev | 3
| WebProgr | 2 |
e t—m - +

4 rows 1in set (0.00 sec)

= Bipin C Desai

16

select title, emailsuffix

from EMPL

GROUP BY title, emailsuffix;

Fomm - Fom e +
| title emailsuffix |
e e e +

comemail.com
coldmail.org

|

+
| I |
Mkt Mg	speedymail.com
Mkt Mgr	gonemail.com
NetAdmin	sizzlingmail.com
Progr	netmail.com
SrProgr	coldmail.org
WebDev	coldmail.org
WebDev	comemail.com
WebDev	gonemail.com
WebProgr	gonemail.com

e e +
11 rows in set (0.00 sec)

= Bipin C Desai

17

select title, emailsuffix
from EMPL

GROUP BY title, emailsuffix
having count(title)>2;

= Bipin C Desai

18

select title, emailsuffix
from EMPL

GROUP BY title, emailsuffix
having count(title)>=2
ORDER BY title;

tomm - fom e +
| title | emailsuffix |
f————————— o ——————— +
Progr	netmail.com
SrProgr	coldmail.org
WebProgr	gonemail.com

e —_——— e — +
3 rows 1in set (0.01 sec)

= Bipin C Desai

19

select title, salary

from EMPL

where emailsuffix like '%org'
GROUP BY title, emailsuffix
having count(title)>=2
ORDER BY salary;

f———————— - -
| title | salary |
fomm - e +
| Progr | 75000 |
| WebProgr | 90000 |
f———————— - +

2 rows 1in set (0.00 sec)

= Bipin C Desai

20

Merge rows
Using the select statement to merge multiple rows into 1 row:
MySQL.: the group_concat notation".
mysql> select C, group_concat(B) as Bs
-> from R
-> group by C;
o e n mysgl> select * from R;
c 5 fom——t—————— R +
| Bs A 1B lc
T T + s T R +
12	10,11		al	10	12
14	9		a2	11	12
a4	8	17			
L tomm o + e I +
3 rows 1in set (0.03 sec)
= Bipin C Desai 21

Merge rows

Using the select statement to merge multiple rows into 1 row:
MySQL.: the group_concat notation".

mysql> select C, group_concat(distinct B separator ;") as Bs
->from R

-> group by G mysgl> select * from R;

+-———- +-———- + Fm—— t————— +
| C | Bs | | A | B | C |
T I n ot +————— +

al	10	12		
12		a2	11	12
14		a3	9	14
17		a4	8	17
. o | a5 | 10 | 12 |
3 rows in set (0.03 sec) two 10Taré rot repedted —~ T

= Bipin C Desai 2

Merge rows: Oracle

SELECT C,
listagg(B, ', ') WITHIN GROUP (ORDER BY B) AS Bs
FROM R

GROUP BY C;
select * from R;
ot o +
C Bs | A | B | C |
12 10, 11 R it - +
14 9 | al | 10 | 12 |
17 8 | a2 | 11 | 12 |
3 rows returned in 0.07 seconds | a3 | 9 | 14 |
| ad | 8 | 17 |
- +————— +
= Bipin C Desai 23

Update part of text in a column
Handy to update part of an existing text column in a table!

select message from account email where message like '%confsys%';
11 rows in set (0.001 sec)

update account_email
set message =replace (message ,'confsys.encs', 'ideas.encs');
Query OK, 11 rows affected (0.010 sec)

select message from account email where message like '%confsys%';
Empty set (0.001 sec)

Revert:

update account_email

-> set message =replace (message ,'ideas.encs','confsys.encs');
Query OK, 11 rows affected (0.009 sec)

= Bipin C Desai 24

Functions
Most database systems have a multitude of functions:

- Comparison Functions and Operators
- Logical Operators

- Control Flow Functions

- String Functions

- Mathematical Functions

- Date and Time Functions

- Encryption and Compression Functions
- Bit Functions

- Full-Text Search Functions

- Cast functions and Operators

- Information Functions

- XML Functions

= Bipin C Desai

25

Regular expression

REGEXP is used to give a pattern scheme for a string
comparison of the pattern with a string using the syntax:

expr REGEXP pat

If there is a match the REGEXP function returns 1, else 0.

If either expression or pattern is NULL, the function returns
NULL.

Some meta-characters: AL, (), {myn}

A Match the beginning of a string.
$ Match the end of a string.
Match any character

Suggestion: Look up manual/tutorials and try examples.

= Bipin C Desai

26

Date format for MySQL is YYYY-MM-DD - the SQL2 default
To set Oracle’s default date format to YYYY-MM-DD
Internally Oracle stores both date and time as a single value
$conn = OCILogon($my Ora id,$My-Ora PW,$My Ora db)
//Set Oracle’s date format to YYYY-MM-DD
$stmt = OCIParse($conn," ALTER SESSION SET

NLS DATE FORMAT=YYYY-MM-DD'");
OCIExecute($stmt,0OCI_DEFAULT);

create table bdate(Name char(25), bday date);
insert into bdate values('Jane', '20-Jan-83");

select * from bdate;
NAME BDAY

Jane 20-JAN-83

MariaDB>insert into bdate values('Jane', '1983-01-20");

= Bipin C Desai

27

ALTER SESSION SET NLS DATE FORMAT=YYYY-MM-DD',
SQL> select * from bdate;
NAME BDAY

Jane 1983-01-20

SELECT Name, TO CHAR(bday, 'YYYY/MM/DD') AS Birthday

FROM bdate;

NAME BIRTHDAY

Jane 1983/01/20
In Oracle:

The functions TO CHAR or TO DATE return part of the
date/time.

TRUNC will return the first day of the period. ROUND will
round up at mid year/mid month (July 1 or 16th day)

= Bipin C Desai

28

CREATE TABLE supplies
(supname char(14),
part# number(4),
price number(7,2));

CREATE TABLE usedin
(proj# number(4),
part# number(4),
gty number(3));

CREATE TABLE project
(proj# number(4),
projname char(14),
projmgr number(4));

CREATE TABLE empls
(emp# number(4),
empname char(14),
address char(14));

= Bipin C Desai 29
SQL> select * from empIS; SQL> select * from assigned to;
EMP# EMPNAME ADDRESS PROJ# EMP# HOURS
120 Hardrock Outremont 353 135 20
. 753 135 20
123 Eliza NDG 353 123 6
124 John Laval 353 124 40
127 Jim Montreal 451 14l 40
753 127 40
129 Sun Brossard 353 129 4
131 Moon Beaconsfield 451 131 10
. 321 120 40
135 Dr. Dolittle Laval 326 142 40
141 Knowit Montreal 326 129 36
142 Softee NDG 451 135 1
143 Dr. Knowall Montreal
SQL> select * from project; EMP# EMPNAME ADDRESS
PROJ# PROJNAME PROJMGR 135 Dr. Dolittle Laval
353 database 135
451 database 141
321 software 120
326 hardware 142
753 database 135
30

= Bipin C Desai

USEDIN

COMP321 1 5 SUPPLIES
COMP321 5 5 SUPNAME PART# PRICE
COMP321 3 3 T e e
COMP326 4 1 PROVIBEC 1 710.2
COMP326 5 3 PROVIBEC 2 815.3
COMP326 c A PROVIBEC 3 325
COMP353 | 5 PROVIBEC 4 795.99
COMP353 g 1 SUPORIO 1 695.99
COMPA51 9 5 SUPBEC 2 799.98
COMPA51 . 5 NDG-SUPPLY 1 699.99
COMP753 1 A NDG-SUPPLY 2 799.99
COMP753 5 5 NDG-SUPPLY 3 324.99
COMPT53 3 ‘ NDG-SUPPLY 4 795.98
COMPT53 A A NDG-SUPPLY 7 754
SUPBEC 1 ©99.98
SUPPLIER MANIBEC 1 727.99
PROVIBEC Quebec MDG-SUPPLY 1 699.99
SUPORIO Toronto MDG-SUPPLY 2 799.99
MANIPART Winnipeg MDG-SUPPLY 3 324.99
SUPBEC Laval MDG-SUPPLY 4 795.98
NDG-SUPPLY NDG
= Bipin C Desai 31

PROJECT(Project#, Project Name,Chief Architect)

EMPLOYEE (Emp#, EmpName)

ASSIGNED_TO (Project#, Emp#)

® Get details of employees working on all Database projects.

{s|s € employee
A Vi(t € project A t[Project Name] = 'Database'
— Ju(u € assigned _to A u[Project#] = t[Projectt]
N S[Emp#] = u[Emp#])}

replacing f — g by its equivalent form —f ¥ g:

{s|s € employee
A Vi(t & project V t[Project Name] # 'Database'
V Ju(u € assigned to A u[Project#] = t[Projecti]
A S[Emp#] = u[Emp#])}

= Bipin C Desai

32

{s I s € employee
A =(3t)(~ (t € project V t[Project Name] # 'Database’
V Ju(u € assigned to A u[Project#] = t| Project#]
A S[Emp#] = u[Emp#]))}

{s I s € employee
A =(3t) (t € project A t[Project Name] = 'Database’
=(¥ Ju(u € assigned to A u[Projectt] = t[Projecti]
A S[Emp#] = u[Emp#])))}

{s I s € employee
A =(3t) (t € project A t[Project Name] = 'Database’
A = Ju(u € assigned to A u[Project#] = t| Project#]
A s[Emp#] = u[Emp#]))}

Using Vx(P(x)) = ~(3x)(—P(x)) Assertion of Universality

= Bipin C Desai

33

Get details of employees working on all Database projects.

{s I's € employee
A =(3t) (t € project A t[Project Name] = 'Database’
A = Ju(u € assigned to A u[Project#] = t[Project]
N S[Emp#] = u[Emp#]))}

select *
from employees s
where not exists (select *
from project t
where t.Project Name = 'Database' and
not exists(select *
from assigned tou
where u.Project# = t.Project# and
s.Emp# = u.Empt))

= Bipin C Desai

34

ALTERNATE SCHEME:
Using set operation for answering “ALL” type queries
select *

from empls s Set of all projects
where not exists((select Proj# with hame = ‘database’
from project t

where t.ProjName = 'database')
minus
(select u.Proj#
from assigned to u, project tl
where u.Proj# = t1.Proj#
and s. EMP# = u.Emp#
and t1.ProjName = 'database'));

Set of projects with
name="database’
assigned to
employee s

= Bipin C Desai

35

USE OF VIEW

A view is a materialized(virtual) table that can be used
in any SQL query

Create a view (project numbers) of the projects managed
by an employee with the name 'Dr. Dolittle'

Optional renaming of attributes used in view definitions

create view do_project[(projnumber)] as
select p.proj#
from project p
where p.projmgr = (select e.emp#
from empls e
where empname='Dr. Dolittle")

= Bipin C Desai

36

Using VIEW

Find suppliers who can supply all parts used in a
project managed by Dr. Dolittle, and
the corresponding project number(s)

{S 1's € supplies " d € do_project
*S[Supname] = s [Supname]
 S[Projectit] = d [Projectnumb]
» =(Ju) (u € used_in * u[Projecti] = d[Projectnumb]
A = 3t(t € supplies * u[Part#] = t[Part#]
*t[Supname] = s[Supname]))}

= Bipin C Desai

37

A view can appear where a relation name is allowed
Find suppliers who can supply all parts used in a
project managed by Dr. Dolittle

There exists a supplier s and
select unique s.supname, d.proj# projectd such that there are no

from supplies s, do project d parts used in d that is not
where exists s this predicate required?? supplied by this supplier s
(select * SUPNAME PROJ#
from supplies sl /= e e
where sl.supname=s.supname wMpG-SUPPLY 753
and not exists NDG-SUPPLY 753
(select = PROVIBEC 753

from usedin u
where u.proj# = d.proj#
and not exists
(select *
from supplies s2
where s2.supname = sl.supname
and s2.part#=u.part#)))

= Bipin C Desai

38

A view can appear where a relation name is allowed
Find suppliers who can supply all parts used in a
project managed by Dr. Dolittle

lect . d i3 There exists a supplier s and
Select unique s.supname, d.proj project d such that there are no

from supplies S do_project d parts used in d that is not
where not exists supplied by this supplier s
*

(SeleCt . SUPNAME PROJ#
from usedinu
where u.proj# = d.proj# MDG-SUPPLY 753
and not exists NDG-SUPPLY 753

from supplies s2
where s2.supname = s.supname
and s2.part#=u.part#))

= Bipin C Desai 39

An Alternative
Using the view do_project and set difference operations to write

the SQL query for:
Find suppliers who can supply all parts used in a

project managed by Dr. Dolittle
SUPNAME PROJ#

select unique s.supname, d.proj#

) : MDG-SUPPLY 753

from supplies s, do_project d NDG-SUPPLY 753

where not exists PROVIBEC 753

(select u.part#
from usedin u . Partsused in one of
where u.proj# = d.proj# Dolittle’s project
minus (select s2.part# ,
from supplies s2 / Parts supplied by s

where s2.supname = s.supname))

= Bipin C Desai 40

Find suppliers who can supply all parts used in a
project managed by Dr. Dolittle

select unique s.supname, d.proj#
from supplies s, do_project d
where not exists
(select s2.part#
from supplies s2 / Parts supplied by s
where s2.supname = s.supname
minus
(select u.part#
from usedin u .— Partsused in one of
where u.proj# = d.proj#))) Polittle’s project

If a supplier supplies all parts used in the
project but also other parts than this supplier

What is wrong with this query??

would not be included.

= Bipin C Desai

41

How to update a view?

Translate modification of the view to the corresponding
modification on the base tables used in the view definition
—be able to i1dentify the base relation(s) and attribute(s)

Should we allow updates on views?
Yes, however it depends - some problems can arise

Some simple views can be updated

Known as updatable views (easy if primary keys are part
of view)

Many views cannot be updated
This is due to the so called view-update anomaly

insert into do_project values(‘Proj1”); =(Proj1, null, null)
Note: null should be allowed for the base attributes

Would the insertion cause the insertion of (Projl, null, emp# of Dr. Do..)?

4= Bipin C

42

SQL provides a formal definition of when modifications to a view
are permitted
- it 1s permitted if the view is defined by selecting some
attributes from one relation R, which could be an “updatable”
view itself
- the view definition uses SELECT (but not SELECT
DISTINCT)
- the WHERE clause does not involve R in a sub query
- the list in the SELECT clause includes “enough” attributes
that for every tuple inserted into the view, the tuple inserted into
the base relation will “yield” the inserted tuple of the view

- the NOT NULL constraints on the base relation will
not be violated

4= Bipin C

SQL allows user defined data types - domains

We can define a domain as follows:

create domain <name> as <type description>default value;
To create a domain with default value:

create domain Projnumbers as number(4) default 9999;
To change the default for a domain:

alter domain Projnumbers set default 0;
To delete a domain definition:

drop domain Projnumbers;

= Bipin C Desai

Arithmetic operations on NULLs

Result of an arithmetic operator, when at least one of the operands
has a value of NULL, is NULL

if x have the value NULL, then x+3 1s also NULL

However, NULL is not a constant
NULL + 3 is illegal

Some basic arithmetic rules are not applicable.
Suppose X is a numeric value

x*0=0,butif x 1S NULL then x * 0 is NULL
x —x =0, but if x 1S NULL then x — x is NULL

4= Bipin C

45

In 3-Valued Logic we may assume that:
TRUE = 1, FALSE =0, UNKNOWN = 1/2
xANDy=min(x,y),xORy =max(x,y),NOTx =1-x

TRUE TRUE TRUE TRUE FALSE
| TRUE | UNKNOWN | UNKNOWN TRUE FALSE
| TRUE | FALSE | FALSE TRUE FALSE

| |
| |
| UNKNOWN | TRUE | UNKNOWN | TRUE | UNKNOWN
| UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
| |
| |
| |
| |

| UNKNOWN | FALSE | FALSE UNKNOWN | UNKNOWN
| FALSE | TRUE | FALSE TRUE TRUE
| FALSE | UNKNOWN | FALSE | UNKNOWN TRUE
| FALSE | FALSE | FALSE FALSE TRUE

X Y XAND Y XORY NOT X 7

4= Bipin C

46

Null value and logical operations
Two value logic: x OR (NOT x)= 0OR 1|1 OR 0=1=TRUE

For 3-valued logic:
x OR (NOT x) = max(1/2,(1-1/2)) = 1/2 = UNKNOWN # (TRUE)

Note: We can't treat NULL as a constant :
grade (Name, course, gr)
Consider query:
select *
from grade
WHERE gr <=“c” or gr > “c” ;
Here the result is expected to be the grade relation.

If null values are allowed for gr, then the above query returns only
tuples of grade where the value of gr is not NULL .

' Bipin C 47

In SQL2, there are other forms for expressing X and [X|
Cartesian Product of Employee and Position

Employee (Empl _No, Name, Skill, Pay rate) Position (Posting No, Skill)

select * from Employee, Position;

select * from Employee CROSS JOIN position;
Theta join of Employee, Position
select *
select * from Employee JOIN Position ON from Employees

Position. Skill = Employee. Skill; JOIN Position
USING (skill);
select distinct * from Employee JOIN Position ON

To renfove Position. Skill = Employee. Skill;

duplicates
Natural join of Employee, Position

select * from Employee NATURAL JOIN Position

' Bipin C 48

OUTER JOIN -- computes the join relations preserving dangling
tuples by padding them with NULLSs

A tuple in R is dangling if it doesn't join with any tuple in S; similarly a tuple in
S is dangling if it doesn’t join with any tuple in R

FULL OUTER JOIN: It pads dangling tuples of R and §' preserving them

LEFT OUTER JOIN: It pads dangling tuples of R only; tuples of R preserved

RIGHT OUTER JOIN: It pads dangling tuples of S only; tuples of § preserved

R FULL OUTER JOIN S: R LEFT OUTER JOIN S: R RIGHT OUTER JOIN S:
B C
2 |

ol R

@

In SQL
'R [NATURAL] [LEFT RIGHT FULL] OUTER JOIN S [ON ...

NN

]

4= Bipin C 49
SQL> select * from supplies;
SQL> select * from part;
SUPNAME PART# PRICE
PART# DESCR 7 TTTTTTTTTTTT TTTTTTTTTT TTTTTTTTTC
PROVIBEC 1 710.2
____________________ PROVIBEC 2 815.3
1 partl PROVIBEC 3 325
2 part?2 PROVIBEC 4 795.99
3 part3 SUPORIO 1 695.99
SUPBEC 2 799.98
4 part4 NDG-SUPPLY 1 699.99
5 parth NDG-SUPPLY 2 799.99
6 parté NDG-SUPPLY 3 324.99
NDG-SUPPLY 4 795.98
7 part7 NDG-SUPPLY 7 754
8 parts8 SUPBEC 1 699.98
9 part9 MANIBEC 1 727.99
MDG-SUPPLY 1 699.99
MDG-SUPPLY 2 799.99
MDG-SUPPLY 3 324.99
MDG-SUPPLY 4 795.98
50

= Bipin C Desai

select *
from part p left outer join supplies s
on (p.part# = s.part#);
PART# DESCR SUPNAME PART# PRICE
1 partl PROVIBEC 1 710.2
2 part?2 PROVIBEC 2 815.3
3 part3 PROVIBEC 3 325
4 partd PROVIBEC 4 795.99
1 partl SUPORIO 1 695.99
2 partz2 SUPBEC 2 799.98
1 partl NDG-SUPPLY 1 699.99
2 part?2 NDG-SUPPLY 2 799.99
3 part3 NDG-SUPPLY 3 324.99
4 partd NDG-SUPPLY 4 795.98
7 part? NDG-SUPPLY 7 754
1 partl SUPBEC 1 699.98
1 partl MANIBEC 1 727.99
1 partl MDG-SUPPLY 1 699.99
2 part?2 MDG-SUPPLY 2 799.99
3 part3 MDG-SUPPLY 3 324.99
4 part4d MDG-SUPPLY 4 795.98
5 partb
8 part8
6 partb
9 part9
21 rows selected.
< Bipin C Desai 51
select *
from part p right outer join supplies s
on (p.part# = s.part#);
PART# DESCR SUPNAME PART# PRICE
1 partl MDG-SUPPLY 1 699.99
1 partl MANIBEC 1 727.99
1 partl SUPBEC 1 699.98
1 partl NDG-SUPPLY 1 699.99
1 partl SUPORIO 1 695.99
1 partl PROVIBEC 1 710.2
2 part?2 MDG-SUPPLY 2 799.99
2 part?2 NDG-SUPPLY 2 799.99
2 part?2 SUPBEC 2 799.98
2 part?2 PROVIBEC 2 815.3
3 part3 MDG-SUPPLY 3 324.99
3 part3 NDG-SUPPLY 3 324.99
3 part3 PROVIBEC 3 325
4 partéd MDG-SUPPLY 4 795.98
4 part4 NDG-SUPPLY 4 795.98
4 partd PROVIBEC 4 795.99
7 part’ NDG-SUPPLY 7 754
17 rows selected

< Bipin C Desai

52

SQL> select * from part p full outer join supplies s on (p.part# =
s.part#) ;

PART# DESCR SUPNAME PART# PRICE
1 partl PROVIBEC 1 710.2
2 partz PROVIBEC 2 815.3
3 part3 PROVIBEC 3 325
4 part4 PROVIBEC 4 795.99
1 partl SUPORIO 1 695.99
2 part?2 SUPBEC 2 799.98
1 partl NDG-SUPPLY 1 699.99
2 part?2 NDG-SUPPLY 2 799.99
3 part3 NDG-SUPPLY 3 324.99
4 part4d NDG-SUPPLY 4 795.98
7 part? NDG-SUPPLY 7 754
1 partl SUPBEC 1 699.98
1 partl MANIBEC 1 727.99
1 partl MDG-SUPPLY 1 699.99
2 partz2 MDG-SUPPLY 2 799.99
3 part3 MDG-SUPPLY 3 324.99
4 part4 MDG-SUPPLY 4 795.98
5 parth
8 part8
6 part6
9 part9

< Bipin C Desai

Joins in SQL

mysgl> select * from R; mysqgl> select * from S;

fom— - to— - + to— - to——— - t————1
| A | B | C | | B | C | D |
fom - to— - + to— - o +-———1
al	10	12		10	12	dl
a2	11	12		11	12	d2
a3	9	14		6	14	d3
a4	8	17		9	12	d4
o - + to— - to—m— - t————

& Bipin C Desai

In MySQL(up to version 5.7 at least), JOIN, CROSS JOIN, and
INNER JOIN are syntactic equivalents: i.e., they can be used
interchangeably.

In standard SQL, they are not equivalent.
INNER JOIN is used with an ON clause,

select * from Employee JOIN Position ON
Position. Skill = Employee. Skill;
selectR.a, T .e MariaDB [test]> select *

. . . _ from R join S
from R inner join Son R.b=S.b on R.B=S.B:

innerjoin TonS.Cc=T.C +-———+-——4-——t-——4-——4-——+
| A | B| C|BJ|C/| D |
e e e S

CROSS JOIN 1s used as follows: | al| 10| 12| 10| 12| D1|
select * | a2| 11| 12| 11| 12| D2|

o | a3| 9] 15| 9| 12| D4|
from R cross join S; o

3 rows in set (0.028 sec)

<" Bipin C Desai 55
e —— +————- +————+
ALL THE FOLLOWING | A | B |C | B | € | D |
ARE EQUIVALENT IN +----+---—+-—-—+-———-- +-—-——- +----+
MySQL | al | 10 | 12 | 10 | 12 | d1 |
Note: result schema R || S| a2 | 11 | 12 | 10 | 12 | d1 |
select * | a3 | 9 | 14 | 10 | 12 | dl |
from R JOIN S; | a4 | 8 | 17 | 10 | 12 | dil |
| al | 10 | 12 | 11 | 12 | d2 |
select * | a2 | 11 | 12 | 11 | 12 | d2 |
from R, S; | a3 | 9 | 14 | 11 | 12 | dz |
| a4 | 8 | 17 | 11 | 12 | d2 |
select * | al | 10 | 12 | o | 14 | d3 |
from R CROSS JOIN S;| a2 | 11 | 12 | 6 | 14 | d3 |
| a3 | 9 | 14 | 6 | 14 | d3 |
| a4 | 8 | 17 | 6 | 14 | d3 |
select * | al | 10 | 12 | 9 | 12 | d4 |
from R INNER JOIN S;| a2 | 11 | 12 | 9 | 12 | d4 |
| a3 | 9 | 14 | 9 | 12 | db4 |
4*4 rows 1in result | a4 | 8 | 17 | 9 | 12 | d4 |
+—— et ————— +————= +-————+

= Bipin C Desai

56

Equijoin: join predicate containing an equality operator.
- combines rows that have same values for the specified columns.

If two tables in a join query have no join predicate the DBMS
returns a Cartesian product.

Outer Join

An outer join extends the result of a simple join.

An outer join returns all rows that satisfy the join condition and
those rows from one table for which no rows from the

other satisfy the join condition.

Such rows are not returned by a simple join.

= Bipin C Desai

57

Joins: Equi-Joins

select * from R JOIN S on R.B=S.B;

| A | B | C | B | C | D |
-t - - - +————+
al	10	12	10	12	dl
a2	11	12	11	12	d2
a3	9	14	9	12	d4

select * from R JOIN S on R.B=S.B and R.C=S.C;
| A | B | C | B | | D |
-t +————— +—————- - +————+
| al | 10 | 12 | 10 | 12 | dl |
| a2 | 11 | 12 | 11 | 12 | d2 |

4= Bipin C

58

select * from R left outer join S on R.B=S.B;

dl

12
12
12

NULL

10
11

12
12

10
11

al
a2
a3
ad

d2

d4

NULL

| NULL

17

select * from R left outer join S

on R.B=S.B and R.C=S.C;

dl

12
12

NULL

10
11

NULL

12
12
14
17

10
11

al
a2
a3
ad

dz2

NULL

NULL NULL

NULL

59

= Bipin C Desai

select *

from R right outer join S

S.B and R.C=S.C;

on R.B

dl

12
12
14
12

10
11

12
12

10
11
NULL NULL

al
az

d2

d3

NULL

d4

NULL NULL

NULL

60

= Bipin C Desai

FULL outer join does not exist in MySQL;

Simulated by:
from R right outer join S on R.B=S.B;

from R left outer join S on R.B=S.B

select *
UNION
select *

—
—
—A N < DM
T O O & O
N N N o<
T T e i
D
Z
O - O g WO
— —
D
Z
N N <~ 4
e e R e
D
P
O~ O 0 g
— —
)
P

61

= Bipin C Desai

not exist in MySQL,;

FULL outer join does
pa Simulated by:

from R left outer join S
on R.B=S.B and R.C=S.C
UNION

from R right outer join S
on R.B=S.B and R.C=S.C;

select *
select *

=
=
— N D D M <
T T & & T O
NN 4 H4d <
— — g 9
D D
=z =
O 4 4 W o
— — g 4
DR
=z 2
N N <~ g g
— - — g 4
D D
=z =2
O —H O 0 g g
— —
D D
=z =2

62

= Bipin C Desai

Full outer Join: Oracle

select *

fromRr

full outer join

Ss

on r.B=s.B and r.C=s.C

The Full outer join
simulation,

as in MySQL
causes problems
with column
headings: the
ones used

A B C B C D would be from
at 10 12 10 12 31 the system catalog!
a2 11 12 11 12 2
- - - 6 14 d3
- - - 9 12 d4
a3 9 14 - - -
a4 8 17 - - -
6 rows returned in 0.01 seconds
(ﬁ Bipin C 63
select * A B C B C D
from R crossjoinS al 10 12 10 12 di
al 10 12 11 12 d2
select * al 10 12 6 14 d3
fromR, S al 10 12 9 12 d4
a2 11 12 10 12 di
a2 11 12 11 12 d2 Oracle: Cross Join
a2 11 12 6 14 d3 - explicit and implicit
a2 11 12 9 12 d4
a3 9 14 10 12 d1 However, Oracle some
a3 9 14 11 12 d2 releases get
a3 9 14 6 14 d3 chocked up by:
a3 9 14 9 12 d4 select *
a4 8 17 10 12 d1
ad 8 17 11 12 d2 [TomRJOINS:
ad 8 17 6 14 d3 select *
ad 8 17 9 12 d4

from R inner join S

4= Bipin C

64

Natural Join

select *

R S
fomm— R + o o Fo———+
| B | C ! | B | C | D |
e o= + o e -t
10	12	\ 10	12	dl
11	12	\ 11	12	d2
9	14	\ 6	14	d3
8	17	\ 9	12	d4
R R + R R Fo———+

from R natural join S

B C A
10 12 al
11 12 a2

2 rows returned in

D

d1

d2

0.03 seconds

= Bipin C Desai 65
< R S
Self JOln Fom - e + e R +-———+
| A | B | C | | B | C | D |
F—m o + +———— F———— +————+
al	10	12		10	12	dl
a2	11	12		11	12	d2
a3	9	14		6	14	d3
ad	8	17		9	12	d4
Fomm - R + R Fo————= +-———+						
MariaDB [test]> select r1.A, r2.A, r1.B, r1.C To avoid duphcate						
->from Rr1 /						
->inner join Rr2 on r¥C=r2.C						
->wherer1. A<r2.A						
->order by r1.A, r2.A						
fomm e ———— fo———— +						
A	A	B	C			
t—— et ———— +—————— +						
al	a2	10	12			
Fom e ——— t—————- +
66

= Bipin C Desai

Join Operation Execution
Hash joins

- In a hash join, a DBMS does a full-scan of one of the tables in the
join operation to build a main-memory hash table. Then it searches
for a matching value in the (hash table) for the other table.

Hash joins need more main memory but it could execute faster for

certain types of join, the hash join will execute faster than a
nested loop join.

= Bipin C Desai

67

Join Operation Execution

Nested loops join

- The nested loops join is one of the original join pans and it is the
most common method. In a nested loops join, we have two tables:
one is the left operand table and the other the right hand table.
The an index for the attribute of left table is accessed to get the
row IDs of the rows with the attribute value.
The matching rows of the second table are then probed in a nested

loop and matching rows of the two tables are joined using an index
range scan.

= Bipin C Desai

68

Join Operation Execution

Some queries will perform faster with NESTED LOOPS joins,
some with HASH joins, while others favor sort-merge joins.

It 1s difficult to predict what join technique will be fastest a priori,
so many tuning a database is to test the often use joins and record
the statistics to guide the productions operations

= Bipin C Desai

69

Constraints
Primary keys declarations
Foreign key constraints is a referential integrity constraints

If a supplier supplies part# 4, then we must have part# 4 in the
table for part

Primary key constraint is declared within the DDL SQL command
CREATE TABLE using the keywords PRIMARY KEY or
UNIQUE

Many DBMSs treat them as synonyms: A table may have one
primary key but any number of "unique” declarations

unique CREATE TABLE assigned to
(proj# number (4),
emp# number (4),
hours number (3)
primary key (proj#,emp#));

CREATE TABLE project
(proj# number (4) primary key,
projname char(14),
projmgr number (4)) ;

4= Bipin C

70

SQL> create table x NOTE: References

(a number (4) primary key); must be a primary
Table created. key or an attribute
SQL> create table y with an unique

(s number (4), attribute

b number (4) references x(a)):;
Table created.

SQL> insert into y wvalues (1, 2);
insert into y values (1, 2)

*

ERROR at line 1:

SQL> insert into x wvalues (2);

1 row created.

SQL> insert into y wvalues (1, 2);
1 row created.

< Bipin C Desai

SQL> create table x(
2 anumber (4) primary key,
3 b number(4));
Table created.
SQL> create table y(
2 ¢ number (4) primary key,
3 d number (4) references x(a));

Table created. 2 e number (4) references x(a),

SQL> create table z(3 fnumber (4) references y(c));
2 e number (4) references x(b), T;ple created

3 fnumber (4) references y(c));
ERROR:no matching unique or primary key for this column-list
create table w(
e number (4) references x(a),
f number (4) references y(d));
ERROR no matching unique or primary key for this column-list

This is considered as a ‘foreign key’
Note: The table x must

be created before we can
create table y

SQL> create table z(

< Bipin C Desai

Possible situations violating foreign key constraints:
Insert:
SQL> insert into y values(1, 2);
insert into y values(1, 2)
ERROR at line 1: ORA-02292: integrity constraint (SCOTT.SYS_C002908)

violated - child record found No tuple in X Wlth primary key 2

Update: Some tuple in y is referencing the
SQL> update x set a=3; current key value of a tuple x
ERROR at line 1:
ORA-02292: integrity constraint (SCOTT.SYS_ C002908) violated - child record
found
SQL> update y set b=4;

ERROR at line 1: ORA-02291: integrity constraint (SCOTT.SYS_C002908)
violated - parent key not found

Delete: Some tuple in y is referencing the
SQL> delete from x where a=2; ~ current key value of a tuple x
delete from x where a=2

ERROR at line 1: ORA-02292: integrity constraint (SCOTT.SYS C002908)
violated - child record found

No tuple in x with primary key 2

< Bipin C

73

Insert with null values is OK!
SQL> insert into y values(1,null);
1 row created.
SQL> insert into y values(2,null);
1 row created.

SQL> select * from y;

e Bipin C

74

There are three policies choices for situations violating foreign key constraints
The reject policy (default)

The system will reject any such violating request and a run-time error will
be generated. The database state will not change.

In case of update or delete request:

The cascade policy: changes to the referenced attributes are
“mimicked” at the foreign key (e.g. y.b)

The set-NULL policy: set the referencing attribute to NULL (e.g., y.b)

Options/policies may be chosen for deletes and updates,
independently

| ON DELETE {CASCADE | SET NULL }|
| ON UPDATE| { CASCADE | SET NULL }|

The policy to be used is a design decision and must conform to
the business rules of the underlying application.

' Bipin C &

2> 1 o

A B

X, attribute is prime

and foreign key

|Attributes of R | X, attribute is foreign
Type of | From |From |attrib key
rel-ship |A |B Xy, attribute 1s foreign
m-m a. |b. |[r key and unique

b b For m-1 multiplicity either of the
m-1 a b, |r entities could be “A” — 2 cases
-1 b In the case of 1-1 multiplicity
Aot | On | T either of the entities could be “A”

- 2 choices

= Bipin C Desai 76

> Ce2 >

1 1 .
Entity1 w Entity2

Converting one to one relationship to a DB table:

create table RELSHP11 select * from relshp11;
(e1 number primary key, El B2 R
e2 number, 1' | "
r1 number); | "

SQL> insert into RELSHP11 values (1, 1, 11);

1 row created.

SQL>insert into RELSHP11 values (1, 2, 11);

ERROR at line 1: ORA-00001: unique constraint violated
SQL> insert into RELSHP11 values (2, 1, 11);

1 row created. Not a 1-to-1 relationship!

= Bipin C Desai

71

el > o> Ce2 o

Entityl ~—— Entity2

Converting one to one relationship to a DB table:
create table RELSHP11 Without unique, we could insert the same
(e1 number primary key e2 value for two different el values (not 1-
. ' to-1). Without null, we can leave out
e2 number uni not null
1 u b)U que not nul, some values for entity e2. (not a 1-to-1
rinumber) relationship!)
SQL> insert into RELSHP11 values (1, 1, 11);
1 row created.
SQL>insert into RELSHP11 values (1, 2, 11);
ERROR at line 1: ORA-00001: unique constraint violated
SQL> insert into RELSHP11 values (2, 1, 11);

ERROR at line 1: ORA-00001: unique constraint violated

= Bipin C Desai

78

Entity1

create table RELSHP11

(e1 number primary key, foreign key(e1) references entl1(e1),
e2 number unique not null, foreign key(e2) references ent2(e2),
r1 number);

SQL> insert into RELSHP11 values (1, 1, 11);

1 row created.

SQL>insert into RELSHP11 values (1, 2, 11);

ERROR at line 1: ORA-00001: unique constraint violated
SQL> insertinto RELSHP11 values (2, 1, 11);

ERROR at line 1: ORA-00001: unique constraint violated
SQL> insert into relshp1m values(3,null,10);

*ERROR at line 1:0RA-01400: cannot insert NULL

= Bipin C Desai

79

el o &2

Entity1 Entity2
Converting one to onevelationship to a DB table:
SQL> create table el(el number primary key);
Table created.
SQL> create table e2(el number primary key)
Table created.

create table r1(el number ,foreign key(el) references el(el),

e2 number, foreign key(e2) references e2(el),

rl number, primary key (el,e2)) . __

insert into el values(1); insert into el values(2);

insert into e2 values(1) insert into e2 values(2);

insert into rl values (1,1,10); insert into rl values (2,1,10) WRQNG
insert into rl values (2,2,10);insert into rl1 values (1,2,10) deS|gn

4= Bipin C

80

create table rlnew(el number unique ,foreign key(el) references el(el),
e2 number unique, foreign key(e2) references e2(el),

rl number, . Added the unique attribute
i key (el,e2)) : : : :
primary ’ With the unique attribute 1s

insert into rlnew values(1,1,10); .
1 row created the primary key redundant?

insert into rlnew values(2,1,10)
*

ERROR at line 1:
ORA-00001: unique constraint (SCOTT.SYS C004018) violated

insert into rlnew values(3,3,10)
E3

Trying to insert another relationship involving e2.e1=1

ERROR at line 1: Referential integrity enforced
ORA-02291: integrity constraint (SCOTT.SYS_C004020) violated - parent key
not found
drop table el
%k

Since the value(s) in el are being referenced

ERROR at line 1:
ORA-02449: unique/primary keys in table referenced by foreign keys

4= Bipin C

81

Mapping 1-to-1 relationship el W e2

create table el(el number primary key); agust create the referenced
create table e2(el number primary key); table (parent) before creating
create table r11(el number primary key, fhe referencing table (child)
foreign key(el) references el(el) on delete cascade,

€2 number unique,

foreign key(e2) references e2(el) on delete set null,

r]l number)

insert into el values(1); insert into el values(2);

insert into €2 values(1); insert into e2 values(2);

insert into r11 values (1,1,10); insert into r11 values (2,2,10);

insert into r11 values (2,1,10); UNIQUE CONSTRAINT
VIOLATION

insert into r11 values (1,2,10); UNIQUE CONSTRAINT
VIOLATION

4= Bipin C

82

Mapping many-to-1 relationship| A <RAB> B

SQL> create tab.le A(SQL> create table B(
al number(3) primary key, b1 number(4) primary key,

a2 number (3)); Table created 2 number (3)); Table created
SQL> create table RAB(

rl number(3),

r2 number(4) primary key,
constraint tk 1 foreign key (rl) references A(al),

constraint tk 2 foreign key (r2) references B(b1)); Table created.

SQL> insert into RAB values (null,null);
*ERROR ORA-01400: cannot insert NULL into ("SCOTT"."RAB"."R2")

SQL> insert into RAB values (null,1);
*ERROR ORA-02291: integrity constraint (SCOTT.FK_2) violated - parent key not found

SQL> insert into A values(1,1); 1 row created

SQL> insert into RAB values (null,1);
*ERROR ORA-02291: integrity constraint (SCOTT.FK_2) violated - parent key not found

SQL> insert into B values(11,11);1 row created.

Must create the referenced table (parent)
before creating the referencing table (child)

< Bipin C Desai

&3

SQL> insert into RAB values (1,12);
*ERROR ORA-02291: integrity constraint (SCOTT.FK 2) violated - parent key not found

SQL> insert into RAB values (2,11);
*ERROR ORA-02291: integrity constraint (SCOTT.FK 1) violated - parent key not found

SQL> insert into RAB values (1,11); 1 row created.

SQL> delete A where al=1;
*ERROR ORA-02292: integrity constraint (SCOTT.FK 1) violated - child record found

SQL> delete B where b1=11;
*ERROR ORA-02292: integrity constraint (SCOTT.FK 2) violated - child record found

SQL> insert into A values (2, 2); 1 row created.

SQL> insert into RAB values (2,11);
* ERROR ORA-00001: unique constraint (SCOTT.SYS C004197) violated

SQL> insert into B values (12, 12); 1 row created.
SQL> insert into RAB values (1, 12); 1 row created.

< Bipin C Desai

84

CREATE TABLE Supplier(

SID numeric(10) not null,

SName varchar2(50) not null,

Contact varchar2(50),

CONSTRAINT s_pk PRIMARY KEY (SID, SName));

The “ON CASCADE DELETE” in the
CREATE TABLE Parts(foreign key constrain in Parts causes all

PNo numeric(10) not null, tuples with the matching SID, SName
SNo numeric(10) not null, values %n Parts t.0 b.e deleted when a
SName varchar2(50) not null, record in Supplier is deleted
CONSTRAINT p_fk

FOREIGN KEY (SNo, SName)

REFERENCES Supplier(SID, SName) ON DELETE CASCADE);

= Bipin C Desai

&5

create table el(el number primary key); Added the on delete clauses

create table e2(el number primary key); Changed the composite primary key

create table r11(el number primary key, ’
foreign key(el) references el(el) on delete cascade, SQL~ select * from el;

€2 n}lmber unique, o SQL> select * from e2
foreign key(e2) references e2(el) on delete set null, -~ El

rl number) L

insert into el values(1); insert into el values(2); 2 |

insert into €2 values(1); insert into e2 values(2);)
insert into r11 values (1,1,10); insert into r11 values (2,2,10);

insert into r11 values (2,1,10); UNIQUE CONSTRAINT VIOLATION
insert into r11 values (1,2,10); UNIQUE CONSTRAINT VIOLATION ;

SQL> delete from e2; SQL> select * from rl1;
El E2 R1
2 rows deleted.

e2 columm 10

SQL> delete from el; 2 10

2 rows deleted. SQL> select * from rll;
no rows selected

Delete of rows in el cascades to rl1

=

4= Bipin C

86

create table e1(e1 number primary key);

create table e2(e1 number primary key);

create table r11(e1 number primary key,

foreign key(e1) references el1(e1) on delete cascade,
e2 number unique,

foreign key(e2) references e2(e1) on delete set null,
r1 number)

SQL> delete from e1; SQL> delete from e2;
X rows deleted y rows deleted

SQL> select * from rl1;

no rows selected

SQL> insert into r11 values (3,null,null);

ERROR at line 1:

ORA-02291: integrity constraint (SCOTT.SYS_C004071)
violated - parent key not found

Can'tinsert a null value in r11 of the foreign key constraint

= Bipin C Desai

el 1> Ce2 >

Entity1

Entity2

Converting one to many relationship to a DB table:
create table RELSHPTm

(e1 number primary key,

e2 number,

r1 number);

SQL> insert into relshp1m values (1, 1, 11);
1 row created.

SQL> insert into relshp1m values (1, 2, 11);
*ERROR at line 1:

ORA-00001: unique constraint violated
SQL> insert into relshp1m values (2, 1, 11); 1 1 11
1 row created. 2 1 11

select * from relshp1m;

El E2 R1

= Bipin C Desai

el >

Ceonverting one to many/ relationship to

Entity1

create table RELSHPTm

(e1 number primary key, foreign key(e1) references ent1(e1),

e2 number not null, foreign key(e2) references ent2(e2),

r1 number); select * from relshp1m;
SQL> insert into relshpTm values (1, 1, 10); El E2 R1

1 row created.]
SQL> insert into relshp1m values (1, 2, 10); 1 1 10
*ERROR 1: unique constraint violated 2 : 10
SQL> insert into relshp1m values (2, 1, 10);

1 row created.

SQL> insert into relshp1m values(2,3,10);

*ERROR integrity constraint violated - parent key not found

= Bipin C Desai 89

Cel > 1 _e2 >

Entity1 Entity2

Converting many to many relationship to a DB table:
create table RELSHPnm select * from relshpnm
(el number, e2 number, E1 E2 R1
rl number, primary key(el,e2));

SQL> insert into relshpnm values (1, 1, 11)

1 row created. 1 1 (N
SQL> insert into relshpnm values (1, 2, 11); 1 2 1
1 row created. 2 2 11
SQL> insert into relshpnm values (2, 2, 11); 2 1 11

1 row created.
SQL> insert into relshpnm values (2, 1, 11)
1 row created.

= Bipin C Desai 90

el > r1 ez >

Better re I E nal schema

Converting many to many r¢lationship to a DB table:
create table RELSHPnm

(el number, e2 number,
rl number, primary key(el,e2), |
foreign key(el) references entl(el),

Entity1 Entity2

E1 E2 R1

foreign key(e2) references ent2(e2)); :: ; ,1| ,1|
SQL> insert into relshpnm values (1, 1, 11) 5 5 11
SQL> insert into relshpnm values (1, 2, 11); 5 1 11

SQL> insert into relshpnm values (2, 2, 11);
SQL> insert into relshpnm values (2, 1, 11)
SQL> insert into relshpnm values (3, 4, 11);
*ERROR: integrity constraint violated - parent key not found

select * from relshpnm

= Bipin C Desai

91

Alternate Candidate keys — How to implement?

Candidate keys of our friends:
Phone number
or

(name, address)

create table friends(

name varchar2(30) unique,
address varchar(30) unique,
phone decimal(16) primary key);

create table friends1(

name varchar2(30),

address varchar(30),

phone decimal(16) primary key,

unique (name,address)); (reate table friends2(

name varchar2(30),
address varchar(30),
phone decimal(16) unique,

primary key (name, address));

4= Bipin C

92

Alternate Candidate keys

create table friends (

name varchar2(30) unique,
address varchar(30) unique,
phone decimal(16) primary key);

SQL> insert into friends values('smith','montreal’,1234);

1 row created.

SQL> insert into friends values('smith’,'laval',1235);
ERROR : unique constraint (SCOTT.SYS_C003729) violated
SQL> insert into friends values('smith','montreal’,1235);
ERROR : unique constraint (SCOTT.SYS_C003729) violated
SQL> insert into friends values('‘brown’,'laval’,1235);

1 row created. Only 1 Smith, 1 Montreal, etc.!

4= Bipin C

93

Alternate Candidate keys

create table friends1(

name varchar2(30),

address varchar(30),

phone decimal(16) primary key,
unique (name,address));

SQL> insert into friends1 values('smith','montreal’,1234);
1 row created.

SQL> insert into friends1 values('smith’','laval',1236);

1 row created.

SQL> insert into friends1 values('smith','laval',1237)

* ERROR at line 1:

ERROR : unique constraint (SCOTT.SYS_C003727) violated

4= Bipin C

94

Alternate Candidate keys

create table friends2(

name varchar2(30), address varchar(30),

phone decimal(16) unique, primary key(name,address));
SQL> insert into friends2 values('smith','laval’,1235);

1 row created.

SQL> insert into friends2 values('smith','montreal’,1235);
ERROR : unique constraint (SCOTT.SYS_C003724) violated
SQL> insert into friends2 values('brown','laval',1235);
ERROR : unique constraint (SCOTT.SYS_C003725) violated
SQL> insert into friends2 values('smith','laval’,1236);
ERROR : unique constraint (SCOTT.SYS_C003724) violated
SQL> insert into friends2 values('smith','montreal’,1234);

1 row created. SQL> select * from friends2 /
NAME ADDRESS PHONE
smith montreal 1234
smith laval 1235
4= Bipin C 95

Ternary Relationships and multiplicity

G

Suppliers

The above is an example of a three way relationship

The multiplicity could be m or 1 for any of the entity sets
involved in the relationship

Ignoring the permutation of the entities we need to consider
Four cases: m-m-m or m-m-1 or m-1-1 or 1-1-1

Considering permutations there are 8 cases 2*2*2 or 1+3+3+1

< Bipin C Desai

96

ool B |

(SName

Studio

A HCao u
r >
Ce > C X, attribute is prime
and foreign key
Type From | From |From |attrib X¢ attribute 1s foreign
A |B C key
m-m-m \a. |b, |c; |T X,, attribute is foreign
mem-1 a, bpf ¢, |r key and unique
In the case of 1-1-1
m-1-1 a b el T multiplicity any of
the entities could
I-I-1 da by |ey T be used for A
< Bipin C Desai o7
Actor (Name> T, Y Movie

< Bipin C Desai

98

X, attribute is prime

A FCa>D b O~ B and foreign key

0 X, attribute 1s foreign
key
r >

X, attribute 1s foreign

Ce >— C key and unique
Type A |B C D attrib
e b d In the case of 1-1-1
Aot | Opr | Cpr |1 multiplicity any of
m-m-m-1 a bp ¢ |Co d; r the entities could
be used for A
m-m-1-1 a bpf c, |d; |t
Total # permutations
-1-1-1
- B |be G (dp o r would be 2#2%2%2=
1+4+6+4+1=16
1-1-1-1 apf bﬁl Cfu dfu I
= Bipin C Desai

99

Given the following relations, find the CS courses that Brenda
can take.(Note: she cannot take a course already passed and
must have all pre-requisites)

Student(Sno Name)
Dept(Dno, Dname)
Course(Cno, Dno, Chame)
Enroll(Sno,Cno,Grade)
Prereq(Cno,Pcno)

CSCrs =11, 0 phame-cs DEPT X1 Course
BrendaPassed = I1, (O gagerENrOl) X (O yame-prendsotudent))

BrendaSatisfiedPre = CSCrs X BrendaPassed
BrendaCantTake =TI (Prereq - BrendaSatisfiedPre)

BrendaCanTake = (CSCrs - BrendaPassed) - BrendaCantTake

= Bipin C Desai

100

{c 1 c € Course "d eDept " d.Dname="COMP" *
s eStudent * s[Name]='Brenda’ * c[Dno]=d[Dno] *
"3 e(e € Enroll * e[Sno]=s[Sno] " e[Grade]<>'F *
e[Cno]=C[Cno]) Has not already taken and passed the course
» Vp(p € Prereq” p[Cno] = C[Cno] * p[Cno]=d[CnO]
— 3g(g € Enroll * s1 eStudent * g[Cno] = p[PCno]
* s1[Name]='Brenda’ * g[Sno] = s1[Sno]

" glGrade]<>'F'} Has all the pre-req.

= Bipin C Desai 101

select c.cno
from course ¢, dept d, student s
where d.dept="Computer Science' and s.sname='Brenda' and

c.dno = d.dno and not exists(
select e.cno Has not already taken and

from enroll e passed the course
where e.cno=c.cno
s.sno=e.sno and e.grade <>'F') and
not exists(select p1.cno
from preq p1
where p1.cno = c.cno and
not exists(select e1.cno Has all the pre-req.
from enroll e1, student s1
where e1.sno =s1.sno and s1.sname='Brenda' and
el.sno =s1.sno and el.grade <>'F' and
el.cno = p1.pcno)),

= Bipin C Desai 102

Alternate SQL
select c.cno

from course ¢, dept d, student s
where d.dept="Computer Science' and s.sname='Brenda' and

c.dno = d.dno and c.cno not in(The course c.cno has not
select e.cno already been taken and
from enroll e passed

where s.sno=e.sno and e.grade <>'F') and
not exists(select p1.cno
from preq p1
where p1.cno = c.cno and
not exists(select e1.cno Has all the pre-req.
from enroll e1
where e1.sno = s.sno and
el.sno =s.sno and e1l.grade <>'F' and
el.cno = p1.pcno));

= Bipin C Desai

103

We may associate the NOT NULL constraint with an attribute for a table

Two consequences:
1. We can’t insert a tuple into the table without giving value for the
attribute defined with the NOT NULL constraint.
2. We can’t use the “set-null” policy to fix foreign-key violations for such
attributes

4= Bipin C

104

SQL> create table z(d number (4)
check (d >999));

Table created.

SQL> insert into z values(1);

insert into z values(1)

ERROR at line 1: ORA-02290: check constraint
(SCOTT.SYS C002909) violated

Difference between a check and a foreign-key constraint.
The check is done only when a tuple is inserted or updated.
A foreign key constraint checks for any update, deletes

= Bipin C 105

“*Example:
CREATE TABLE Star(
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
gender CHAR(1),
birthdate DATE,
CHECK (gender = F’ OR name NOT LIKE "Ms.%’)
);

This constraints says that if a star is male (M), then his
name must not begin with ‘Ms.’ (—condition); Here we
used (gender=‘F’ OR —condition) for (M—not Ms).

= Bipin C 106

CREATE TABLE person(
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
gender CHAR(1),
dob DATE,
CHECK (gender = 'F' OR name NOT LIKE 'Ms.%"));

SQL> insert into person (name, gender)
values (‘Ms. John Smith', 'M');
ERROR at line 1:
ORA-02290: check constraint (SCOTT.SYS C002916)
violated
SQL> insert into person (name, gender)
values ('‘Ms. George Sands', 'F');
1 row created.
SQL> alter table person add constraint Person Adr unique (gender);
Table altered.
SQL> alter table person add income number (12,2);
Table altered.

= Bipin C Desai

107

Assertions, or general constraints, are boolean-valued SQL
expressions that must always be true

Sometimes we need a constraint that involves relation as a whole or
part of the database schema

Assertions are checked when a mentioned relation changes
Assertion in SQL not supported by most DBMS:

CREATE ASSERTION PoorPerson CHECK
(NOT EXIST (SELECT *
FROM person
WHERE income > 10000

4= Bipin C

108

Constraints and triggers

SQL provides a number of features to express integrity constraints
(primary, foreign key)as part of the database schema.

Constraints, in essence, provide database designers with more
control over the database content

An active element is an statement that we write once, store in the
database, and “program” to execute when an event occurs. This
event is considered as a trigger

An event may be an insertion of a tuple into a predefined table or a
specified change in the database that causes a specified (boolean-
valued) condition to become true

It is also possible to implement many of the constraints and triggers
in scripts such as PHP, JSP etc. However, this 1s left to the
application programmer and has to be included in each application!

= Bipin C 109

Triggers

Procedures that are implicitly executed when an INSERT, UPDATE,
or DELETE statement is issued against an associated table.

Simple procedure is explicitly executed by a user, application,
or a trigger.

Triggers (one or more) are implicitly executed by Oracle when a
triggering INSERT, UPDATE, or DELETE statement is issued,
regardless of how it is issued(user or application).

A trigger can restrict DML operations against a table
(time of day/week etc.)

A statement in a trigger body could causes another trigger to be fired!
Such the triggers are said to be cascading triggers.

= Bipin C Desai 110

Why Triggers?

® A required referential integrity rule cannot be enforced using:
the integrity constraints such as:

NOT NULL,

UNIQUE key,

PRIMARY KEY, A trigger has three parts:
FOREIGN KEY, ® atriggering event
CHECK, (some statement)
update CASCADE, ® a trigger condition

update and delete SET NULL,
update and delete SET DEFAULT
® Enforce referential integrity when child and parent tables are on
different nodes of a distributed database
¢ Enforce complex business rules not definable using integrity
constraints

® atrigger action

= Bipin C Desai

111

TRIGGERS

Triggers are often called event-condition-action rules

- An Event is any specified changes in the DB, due to
insertions, deletions or updates

- A Condition 1s a predicate or test to determine if the specified
trigger is applicable

- An Action 1s one or more SQL statements

Triggers are not supported in SQL2

Differ from checks or SQL2 assertions in that:

Event is programmable, rather than implied by the kind of
check

Condition is not available in checks
Action could be any sequence of database operations

Triggers are essential for Active Database Management Systems (ADBMYS)

4= Bipin C

112

Triggers are compiled by storing the procedure in a text file and
compiling it with:
@filename

If we update an entire table with an SQL statement
A row-level trigger will be executed once for each tuple
A statement-level trigger will be executed only once for the entire update
In a statement-level trigger:
We can not refer to old and new tuples
Instead, we can/should refer to
The set of old tuples — OLD TABLE
The set of new tuples —- NEW TABLE

4= Bipin C

113

Relation scheme: Employee(name, empld, salary, dept, supervisorld)
Constraint: No employee gets a salary more than his/her supervisor.
CREATE TRIGGER Inform_supervisor
BEFORE INSERT OR UPDATE OF salary, supervisorld ON Employee
NEW ROW AS new
FOR EACH ROW
WHEN (new.salary > (SELECT salary
FROM Employee
WHERE empld=new.supervisorld))
Begin
ROLLBACK;
Inform_Supervisor(new.supervisorld, new.empld);
End;

4= Bipin C

114

Row Triggers (before and after)

A row trigger 1s fired once for each row affected by, say, an
UPDATE statement.

Row triggers are used when the trigger action depends on data
provided by the triggering statement or rows that are affected.

Statement Triggers (before and after)
A statement trigger 1s fired once, regardless of the number of rows in
the table that the triggering statement affects (even if no rows are affected)

If a DELETE statement deletes several rows from a table, a
statement-level DELETE trigger is fired only once, regardless of the
number of rows are deleted from the table.

Useful when the trigger action does not depend on the data provided
by the triggering statement or the rows that are affected.

= Bipin C Desai 115

Relation Scheme: Movie(title, year, length, filmType, studioName,
producerC#)

CREATE VIEW ParamountMovie AS
SELECT title, year

FROM Movie

WHERE studioName = ’Paramount’;

The following trigger replaces an insertion on the view (ParamountMovie) with an
insertion on its underlying base table (Movie)

CREATE TRIGGER ParamountInsert This is WRONG for a view!
INSTEAD OF INSERT ON ParamountMovie 7
REFERENCING NEW ROW AS NewRow .

FOR EACH ROW

INSERT INTO Movie(title, year, studioName)
VALUES (NewRow.title, NewRow.year, ’Paramount’);

CREATE or REPLACE TRIGGER ParamountlInsert
INSTEAD OF INSERT ON ParamountMovie

FOR EACH ROW

BEGIN

INSERT INTO Movie(title, year, studioName)
VALUES (:new.title, :new.year, 'Paramount’);

end ParamountInsert; To-date Mysql/
/ Maraiadb doesn’t
Trigger created. have ‘instead of

SQL> show errors trigger ParamountInsergnsert’ option
No errors.

insert into ParamountMovie values (‘Movie2016', '2016");
1 row created.

SQL> select * from movie;

TITLE YEAR STUDIONAME
Movie2016 2016 Paramount
= Bipin C Desai 17

SQL> desc student;

Name Null? Type

SID NOT NULL NUMBER(7)
SNAME VARCHARZ2 (20)
MAJOR CHAR (4)

YEAR NUMBER (1)
BDATE DATE

create view c¢stdnt as

select sid as id, sname as name, bdate as dob
from student

where major='COMP';

View created.

SQL> select * from cstdnt;
ID NAME DOB

8 Brenda 13-AUG-89

= Bipin C Desai

118

REFERENCING NEW AS NewRow

FOR EACH ROW

INSERT INTO student(sid, sname, major, year, bdate) -
VALUES (NewRow.id, NewRow.name, 'COMP', 1, NewRow. dob)
Warning: Trigger created with compilation errors.

SQL> SHOW ERRORS TRIGGER CStudentInsert;
Errors for TRIGGER CSTUDENTINSERT:

LINE/COL ERROR

1/7 PL/SQL: SQL Statement ignored
2/51 PL/SQL: ORA-00984: column not allowed here =~~~

= Bipin C Desai

119

SQL> CREATE OR REPLACE TRIGGER CStudentInsert
instead of INSERT ON cstdnt

FOR EACH ROW

INSERT INTO student(sid, sname, major, year, bdate)
VALUES (:new.id, :new.name, 'COMP', 1, :new.dob)

/

Trigger created.

SQL> select * from student;

SID SNAME MAJO YEAR BDATE
8 Brenda COMP 2 13-AUG-89
10 Dupont ENGL 1 13-MAY-80
13 Kelly SENG 4 12-AUG-80
14 Jack CSAP 1 12-FEB-77

= Bipin C Desai

120

SQL> insert into cstdnt values(7,'Drew’, '13-Sep-81');
1 row created.

SQL> select * from student;

SID SNAME MAJO YEAR BDATE
8 Brenda COMP 2 13-AUG-89
10 Dupont ENGL 1 13-MAY-80
13 Kelly SENG 4 12-AUG-80
14 Jack CSAP 1 12-FEBR-77
7 Drew COMP 1 13-SEP-81
<" Bipin C Desai 121

MariaDB [tempDB]> CREATE TABLE users
(userid INT(11) NOT NULL AUTO_INCREMENT,

last_ name VARCHAR(30) NOT NULL,

first name VARCHAR(25),

email VARCHAR(50) NOT NULL,

insert_date DATE,

inserted_by VARCHAR(30),

CONSTRAINT users_pk PRIMARY KEY (userid));

MariaDB [mysgl]> desc users;

]
e ——— o — +————— +————= e o — +
| Field | Type | Null | Key | Default | Extra |
fom - fom - fom——— == fom - o +
userid	int (11)	NO	PRI	NULL	auto_increment
last name	varchar (30)	NO		NULL	
first name	varchar (25)	YES		NULL	
email	varchar (50)	NO		NULL	
insert date	date	YES		NULL	
inserted by	varchar(30)	YES		NULL	
o ———— e —— - +————= o o — +

(

6 rows in set (0.01 sec)

= Bipin C Desai 122

Other triggers:

DELIMITER | -before delete

CREATE TRIGGER users_before_insert -before update
BEFORE INSERT

-after insert

ON users FOR EACH ROW _after update
BEGIN _ -after delete

DECLARE whoinserted varchar(50);

-- Find username of person performing inserting a new user

SELECT USER() INTO whoinserted ;

-- Update create_date field to current system date

SET NEW.insert_date = SYSDATE();

-- Update created_by field to the username of the person

-- performing the INSERT

SET NEW.inserted_by = whoinserted;

END; |
DELIMITER ;
show triggers;
= Bipin C Desai 123
MariaDB [test]> insert into users(last name, first name, email)

—> wvalues ('Smith', 'John', 'j smith@okkefeenukee.edu');
Query OK, 1 row affected (0.024 sec)

Now create trigger

MariaDB [test]> DELIMITER |
MariaDB [test]> CREATE TRIGGER users before insert
-> BEFORE INSERT

-> ON users FOR EACH ROW

-> BEGIN

-> DECLARE whoinserted varchar (50);

-> -- Find username of person performing inserting a new user
-> SELECT USER() INTO whoinserted ;

-> -— Update create date field to current system date

-> SET NEW.insert date = SYSDATE ()

-> -— Update created by field to the username of the person
-> -- performing the INSERT

-> SET NEW.inserted by = whoinserted;

-> END; |

Query OK, 0 rows affected (0.011 sec)

MariaDB [test]> DELIMITER ;

= Bipin C Desai

124

Insert another user

MariaDB [tempDB]> insert into users(last name, first name,
email) values ('Smith', 'John', 'j smith@okkefeenukee.edu');
Query OK, 1 row affected (0.01 sec)

MariaDB [tempDB]> select * from users;
select * from users;

- Fom e o o Fomm e o iH
| userid |glast name | first name email | insert date | inserted by |

_smith@okkefeenukee.edu | NULL | NULL |
_smith@okkefeenukee.edu | 2024-03-24 | bcdesai@localhost |
—————————————————————————— B R e |

After the trigger was crated

= Bipin C Desai 125

HOW ARE TRIGGERS EXECUTED

- SQL statement is 1ssued
- Execute any BEFORE statement-level triggers
- For each row affected by the triggering SQL statement
- Execute any BEFORE row-level triggers
- Lock and change row, and perform integrity constraint checking
The lock is not released until the transaction is commited
- Execute any AFTER row-level triggers
- Execute any AFTER statement-level triggers

= Bipin C Desai 126

Example with triggers etc.

create table University(
Name CHAR(20) PRIMARY KEY,
City CHAR(20));

create table Engineer(!}Jame of the constraint

EID NUMBER(4), .
SIN NUMBER(9), S n,(,jldate key

Name char(20), .
AlmaMater CHAR(20), S Check constraint

HireAge number(2) CHECK’/(HireAge BETWEEN 25 AND 65),
CONSTRAINT Engineer_lsK PRIMARY KEY (eid),
CONSTRAINT Engineer CK UNIQUE(SIN),

FOREIGN KEY (AlmaMater) REFERENCES University(NAME)

);

= Bipin C Desai

127

create table Project(

ProjNo NUMBER(4) primary key,

EID NUMBER(4),

FOREIGN KEY (EID) REFERENCES Engineer(EID)

);

create table Assigned(
ID NUMBER(4),
pno NUMBER(4),
CONSTRAINT Assign FK1 FOREIGN KEY(ID)
REFERENCES Engineer(EID),
CONSTRAINT Assign FK2 FOREIGN KEY(pno)
REFERENCES Project(ProjNo)

);

= Bipin C Desai

128

INSERT Some Data

insert into University values('ConU', 'Montreal');
insert into University values('UdeM', 'Montreal');

insert into Engineer values(11, 123456789, 'Smith', 'ConU', 35);
insert into Engineer values(12, 234567891, 'Shah', 'UdeM', 73)

%
ERROR at line 1: /

ORA-02290: check constraint (SCOTT.SYS C003385) violated

insert into Engineer values(12, 234567891, 'Shah', 'UdeM', 33);
insert into project values(1, 11);

insert into project values(2, 11);

insert into project values(3, 11);

insert into Assigned values(11, 1);

insert into Assigned values(12, 1);

= Bipin C Desai 129

SQL> Create or Replace package ProjEngg

as
EnggEid number(4); Package is a collections of
end; procedures and functions

/

Package created. ,
Trigger of type Row level

SQL> Create or Replace Trigger WhichEngg

Before Insert on Project

for each row

begin

ProjEngg.EnggEid := :new.EID;

end;

/

Trigger created.

= Bipin C Desai 130

Statement level trigger

Create or Replace Trigger NumberOfProjs

After Insert on PROJECT

Declare Howmany Number(2);

Begin

Select count(ProjNo) into Howmany

from PROJECT

where EID = ProjEngg.EnggEid;

if (Howmany > 4) then

RAISE APPLICATION ERROR(-20001,
#ik* Too many projects for this engineer! ****');

end if;

end;

/

Trigger created.

= Bipin C Desai

131

1 row created.
SQL> select * from project;
PROJNO EID

____________________ PROJNO EID
1 11T TTTTTT o TTTTTTTT

1

: 5 2

4 11 4

SQL> insert into project ValueS(S 11);

ERROR at line 1:

ORA-20001: **** Too many projects for this engineer! ****

ORA-06512: at "SCOTT.NUMBEROFPROJS", line 7

ORA-04088: error during execution of trigger
'SCOTT.NUMBEROFPROJS'

SQL> select * from project;

= Bipin C Desai

132

Mutating trigger

A trigger that attempts to modify the same table that initiated the
trigger 1s called a mutating trigger.

CREATE OR REPLACE TRIGGER person st
AFTER INSERT ON PERSON

REFERENCING NEW AS newRow

FOR EACH ROW

DECLARE STATUS CHAR(4);

BEGIN

STATUS := 'Poor';

IF (:newRow.income > 20000) THEN
STATUS := 'Med'; END IF;

IF (:newRow.income > 60000) THEN
STATUS := 'Rich'; END IF;

INSERT INTO person VALUES (:newRow.name, :newRow.dob,
:newRow.income, STATUS);
END person st;

run Trigger created.

= Bipin C Desai

133

SQL> insert into person (name, dob,income)
values('Jones', '10-jun-68', 61000.00);
insert into person (name, dob, income)
values ('Jones', '1l0-jun-68', 61000.00)

*

ERROR at line 1:

ORA-04091: table SCOTT.PERSON i1s mutating,
trigger/function may not see it

ORA-06512: at "SCOTT.PERSON ST", line 11

ORA-04088: error during execution of trigger
'SCOTT.PERSON ST

Sql> drop trigger person st;

Trigger dropped.

= Bipin C Desai

134

Getting around mutation! | CREATE or REPLACE TRIGGER

create table personl (personl_st
name char(25) primary key. AFTER INSERT ON PERSONI1
> | REFERENCING NEW AS newRow
.dOb date, FOR EACH ROW
income number(12,2)) DECLARE STATUS CHAR(4).
/ BEGIN

STATUS := "Poor";

. IF (:-newRow.income > 20000) THEN
constraints STATUS := 'Med’; END IF;

/ IF (:newRow.income > 60000)THEN
STATUS :='Rich'; END IF;

INSERT INTO person VALUES
(:newRow.name, :newRow.dob,

drop table person cascade

create table person (
name char(25) primary key,

flOb date, :newRow.income, STATUS);

income number(12,2), END person_st;

status char (6)) a

/ run

= Bipin C Desai 135

SQL> insert into personl values('Smith', '31-may-70', 21000.00);
SQL> insert into personl values('John', '3-Apr-68', 11000.00);
SQL> insert into personl values('Wang', '31-may-70', 60001.00);
SQL> select * from personl;

NAME DOB INCOME

Smith 31-MAY-70 21000
John 03-APR-68 11000

Wang 31-MAY-"70 60001

SQL> select * from person;

NAME DOB INCOME STATUS
Smith 31-MAY-70 21000 Med
John 03-APR-68 11000 Poor
Wang 31-MAY-70 60001 Rich

Now input of dates needs the use of to_date function in Oracle!

insert into personl values (‘Jones', to_date('1976/02/29','yyyy/mm/dd'), 29000.00);

= Bipin C Desai

136

SQL> select * from person;

NAME DOB INCOME STATUS
Smith 31-MAY-70 21000 Med
John 03-APR-68 11000 Poor
Wang 31-MAY-70 60001 Rich
SQL> drop table person cascade constraints;
/
NOTE: Data in personl 1s still not deleted
SQL> select * from personl;
NAME DOB INCOME
Smith 31-MAY-70 21000
John 03-APR-68 11000
Wang 31-MAY-70 60001

<" Bipin C Desai 137

MariaDB [tempDB]> create table person (
name char(25) primary key,
income decimal(12,2),
status char (6));
Note: the MySQL trigger syntax is different
CREATE OR REPLACE TRIGGER person_st
AFTER INSERT ON person
FOR EACH ROW
BEGIN
DECLARE STATUS CHAR(4);
set STATUS = 'Poor’;
IF (new.income > 20000) THEN
set STATUS ='Med'; END IF;
IF (new.income > 60000)THEN
set STATUS = 'Rich'; END IF;
INSERT INTO person VALUES(new.name, new.income, STATUS);
END

= Bipin C Desai

138

MariaDB [tempDB]>insert into person (name, income)
values (‘Smith’, 10000.0);

ERROR 1442 (HYO000): Can't update table 'person' in stored

function/trigger because it is already used by statement
which invoked this stored function/trigger.

Mutating Trigger in mariadb/mysq|l

= Bipin C Desai 139

Another way to get around mutation

SQL> create view personv as select * from person;
CREATE OR REPLACE TRIGGER personv_ st
INSTEAD OF INSERT ON PERSONV

FOR EACH ROW SQL> select * from person;
DECLARE STATUS CHAR(4); NAME DOB INCOME STATUS
REGIN L L el _____
STATUS := 'Poor'; Smith 31-MAY-70 21000 Med
IF (:new.income > 20000) THEN John 03-APR-68 11000 Poor
STATUS := 'Med'; END IF; Wang 31-MAY-70 60001 Rich

IF (:new.income > 60000) THEN Black 13-MAY-45 120000 Rich

STATUS := 'Rich'; END IF;

INSERT INTO person VALUES (:new.name, :new.dob,
:new.income, STATUS) ;

END person st;

run
Trigger created.

insert into personv values('Black’, '13-may-45', 120000,'Poor");
1 row created.

= Bipin C Desai 140

TRIGGER_NAME
CSTUDENTINSERT
ECTRIG
NUMBEROFPROJS
PERSON1_ST
PERSONV_ST
WHICHENGG

6 rows selected.

SQL> select TRIGGER_NAME from user_triggers;

insert into personv

(name, dob,income)
values('Jones', '10-jun-68', 61000);
1 row created.

SQL> select * from person;

NAME DOB INCOME STATUS
Smith 31-MAY-70 21000 Med
John 03-APR-68 11000 Poor
Wang 31-MAY-70 60001 Rich
Black 13-MAY-45 120000 Rich
Jones 10-JUN-68 61000 Rich

= Bipin C Desai

141

Another Mutating Trigger

create table EmpName (
eidd number not null,
Name varchar2(30),
primary key(eid));
create table EmpCity (
eidd number,
City varchar2(15),

If an employee is deleted, his city

is also deleted!

foreign key (eid) references EmpName(eid) on

delete cascade);

insert into EmpName values(1,'Smith');
insert into EmpName values(2,'Lee");
insert into EmpCity values(1,'Montreal');
insert into EmpCity values(2,'Laval');

commit;

~

= Bipin C Desai

142

create or replace trigger ECTrig

after delete on EmpCity

for each row

declare

n integer;

begin
select count(*) into n from EmpName;
dbms_output.put line ("There are ' || n ||' rows in EmpName');
dbms_output.put line('after cascade delete of EmpCity');

dbms_output.new_line; et serveroutput on; To enable dbms_output

end; delete from EmpName where eid = 1;
%

un ERROR at line 1:

Trigger created. trigger/function may not see it

ORA-06512: at "SCOTT.ECTRIG", line 4
ORA-04088: error during execution of trigger
SCOTTECTRIG

ORA-04091: table SCOTT.EMPNAME Is mutating,

= Bipin C Desai

143

Solution: Use statement trigger instead of row trigger
create or replace trigger ECTrig
after delete on EmpCity
declare n integer;
begin
select count(*) into n from EmpName;
dbms_output.put ('There are '||n||' rows in EmpName');
dbms_output.put line (‘after cascade mpCity');
dbms_output.new_line;

ere are 1 rows in EmpName

end; after cascade delete of EmpCity
1 row deleted.
run SQL> select * from EmpName;

EID NAME

set serveroutput on; To enable dbms_outpyt 2 Lee

SQL> select * from EmpCity;
EID CITY

2 Laval

delete from EmpName where eid = 1;
1 row deleted.

= Bipin C Desai

144

The mutating trigger error occurs due to the protocol used in
Oracle to manage a read consistent view of data. (data read is of the
same generation)

The error is occurs when a row-level trigger, while executing,
accesses the table on which it is based.
The table 1s said to be mutating.

Mutation will not occur if a single record is inserted in the table
(using VALUES clause).

If bulk insertion is done or data is inserted from another table
mutation will occur.
The mutating error is not only encountered during queries,

but also for insert, updates and deletes present in the trigger.
It is reported that newer release of the Oracle DBs (9i+) reduces
the impact of the mutating triggers -but triggers still mutates.

= Bipin C Desai

145

Another example of Mutation
create table T (A number, B varchar2(10));

SQL> create or replace trigger Ttrg ~ PLS_INTEGER
2 before insert or update or delete ~ PLS_INTEGER instead of INTEGER or

3 onT NUMBER for an efficient numeric
4 for each row datatype .
5 declare magnitude range for this datatype is —
6 1 plS integer- 2147483647 through 2147483647.
— 9
7 begin require less storage than INTEGER or
8 select count(1) NUMBER values,
9 mto 1 operations use faster machine arithmetic,
10 from T;

11 dbms_output.put line("Trigger success');
12 exception

13 whenno_data found then *
14 dbms_output.put line('Error’); count(1) and count(*)
15 end; returns the number
16 / of rows

Trigger created.

= Bipin C Desai

146

SQL> insert into T values(1, 'ABD");
1 row created.
SQL> update T set A=2; Bulk Update
update T
*

FRROR at line 1:

ORA-04091: table SCOTT.T is mutating, trigger/function may not see it
ORA-06512: at "SCOTT.TTRG", line 4

ORA-04088: error during execution of trigger 'SCOTT.TTRG'

SQL> create table T1 (A number primary key, B varchar2(10));

SQL> insert into T1 values (1, ‘ABC');

SQL> insert into T1 values (1, ‘ABC');

SQL> insert into T select * from T1; Bulk Insert

insert into T select * from T1
*
ERROR at line 1: T and T1 have the same schema

ORA-04091: table SCOTT.T is mutating, trigger/function may not see it
ORA-06512: at "SCOTT.TTRG", line 4

ORA-04088: error during execution of trigger 'SCOTT.TTRG'

< Bipin C Desai 147

create or replace trigger Ttrg Sln: Statement level trigger

before insert or update or deleteon T
Declare ipls_integer;
begin
select count(1) into I from T;
dbms_output.put_line('Trigger success');
exception
when no_data_found then
dbms_output.put_line('Error’);
end;
SQL> insertinto T select * from T1;
2 rows created.
SQL> select * from T;

< Bipin C Desai 148

Final example of Mutation
create table T1 (A number primary key, B varchar2(10));

create table T2 (A number, B varchar2(10),
foreign key (A) references T1 on delete cascade);

create or replace trigger Tltrg

before insert or update or delete on T1
for each row

Declare 1pls_integer;

begin

select 1

into 1

from T2

where A = :new.A;
dbms_output.put_line(‘Trigger success');
exception

when no data found then
dbms_output.put line(‘Error: no data’);
end;

/

= Bipin C Desai

149

SQL> insert into T1 values (1, ‘ABC');

1 row created.

sQL> select * fromT1; * s
SQL> select * from t2;

no rows selected

SQL> delete from t1;
delete from t1
*
ERROR at line 1:
ORA-04091: table SCOTT.T2 is mutating, trigger/function
may not see it
ORA-06512: at "SCOTT.T1TRG", line 4
ORA-04088: error during execution of trigger 'SCOTT.T1TRG'

= Bipin C Desai

150

SQL> insertinto T1 values (2, ‘BCD");
1 row created.
SQL> insertinto T2 values(1, ‘XYZ");
1 row created.
SQL> insert into T2 values (2, ‘'WXY");
1 row created.

SQL> delete from T1 where A= 1;

delete from T1 where A= 1
*

ERROR at line 1:

ORA-04091: table SCOTT.T2 is mutating, trigger/function
may not see it

ORA-06512: at "SCOTT.T1TRG", line 4

ORA-04088: error during execution of trigger 'SCOTT.T1TRG'

= Bipin C Desai 151

Studios: stl, st2, st3
@ Movies: m1,1990
(Produced by stl
with Bob, Jane, Mary),
m2.1990

(Produced by st2
with John)

Studio =

A

Movie

Studio

Actors:John(stl),

(Name > Year O Mary(st2) , Name O
Bob(st3), XContract — exclusive contragt

Jane(st3) SContract - special contract

= Bipin C Desai 152

create table studio(create table actor(
name varchar2(12) primary key); ame varchar2(12) primary key);

insert into studio values('st1"); insert into actor values('John');
insert into studio values('st2'); insert into actor values('"Mary");
insert into studio values('st3'); insert into actor values('Bob');

create table movie(insert into actor values('Jane');

name varchar2(12), year dec(4), insert into xcontract

primary key(name,year)); . O,
insert into movie values('m1',1990); values('John', 'stI);

insert into movie values('m2',1990); Insert into xcontract

values('‘Mary', 'st2');
insert into xcontract
create table xcontract(values('Bob', 'st3");

aname varchar2(12) primary key, insert into xcontract
astudio varchar2(12) not null, . Vot
) values('Jane', 'st3')
foreign key (aname) references actor(name),
foreign key (astudio) references studio(name));

< Bipin C Desai 153

create table produce(

sname varchar2(12) not null unique,

mname varchar2(12), myear dec(4),

primary key (mname,myear),

-- must give the above together as foreign key

foreign key (mname, myear) references movie(name, year),
foreign key (sname) references studio(name));

insert into produce values('stl', 'm1',1990);

insert into produce values('st2', 'm2',1990);

& Bipin C Desai 154

create table scontract(-- special contract

mname varchar2(12), myear dec(4),

aname varchar2(12), pstudio varchar2(12),

astudio varchar2(12),

primary key(mname, myear, aname),

-- This is equivalent to a m-m-1-1 multiplicity

foreign key (mname,myear) references movie(name,year),
foreign key (aname) references actor(name),

foreign key (pstudio) references studio(name),

foreign key (astudio) references studio(name));

insert into scontract values('m1',1990,'Mary', 'stl', 'st2');
insert into scontract values('m1',1990,'Bob', 'stl', 'st3');
insert into scontract values('m1',1990,'Jane', 'stl', 'st3');

insert into scontract values('m1',1990,'Mary', 'st2', 'stl');

* ERROR at line 1:

ORA-00001: unique constraint (SCOTT.SYS (C004729) violated

= Bipin C Desai

155

insert into scontract values('m2',1990,'John', 'st2', 'stl');

-- There i1s no check in consistency John has exclusive contract

with stl

insert into scontract values('m2',1990,'Bob', 'st2', 'st3');

-- These is no check in consistency movie m2 in 1990 is made by
Bob 1s under contact to st3

insert into scontract values('m2',1990,'Jane', 'st2', 'st3");

-- These is no check in consistency movie m2 in 1990 is made by

Jane is under contact to st3

SQL> select * from scontract;

MNAME MYEAR ANAME PSTUDIO ASTUDIO
ml 1990 Mary stl st2
ml 1990 Bob stl st3
ml 1990 Jane stl st3
m2 1990 John st2 stl
m2 1990 Bob st2 st3
m2 1990 Jane st2 st3

st2

st2

= Bipin C Desai

156

SQL> select * from xcontract;

ANAME ASTUDIO

Jane st3 D ¢ ntain th ot
John st1 oes not maintain the consistency
Mary st2 John is under contract to st1 not st3
Bob st3 Jane is under contract to st3 not stl

SQL> delete from scontract;

6 rows deleted.
insert into scontract values('ml',1990,'Jane','stl','stl"');
insert into scontract values('m2',1990, 'John', 'st2','st3'");

SQL> select * from scontract;

MNAME MYEAR ANAME PSTUDIO ASTUDIO

ml 1990 Jane stl stl

m2 1990 John st2 st3

= Bipin C Desai 157

create table scontracti(

mname varchar2(12),

myear dec(4),

aname varchar2(12),

pstudio varchar2(12),

astudio varchar2(12),

primary key(mname, myear, aname, pstudio, astudio),
-- This is equivalent to a 1 to 1 to 1 to 1 multiplicity
foreign key (mname,myear) references movie(name,year),
foreign key (aname) references actor(name),

foreign key (pstudio) references studio(name),
foreign key (astudio) references studio(name));

= Bipin C Desai 158

insert into scontract1
insert into scontract1
insert into scontract1
insert into scontract1
insert into scontract1
insert into scontract1

insert into scontract1

-- Allows the same movie to be made by different studio
-- Allows the same actor to be under contract to >1 studio!

values('m1',1990,'Mary', 'st1', 'st2');
values('m1',1990,'Bob', 'st1', 'st3');
values('m1',1990,'Jane’, 'st1', 'st3");
values('m2',1990,'John’, 'st2', 'st1');
values('m2',1990,'Bob', 'st2', 'st3');
values('m2',1990,'Jane’, 'st2', 'st3");

values('m1',1990,'Mary', 'st3', 'st1’);

= Bipin C Desai

159

Aggregation

|

|

i

|

| To preserve the

| consistency of the
|
|
|

Studio

A
AName - ASName

Actor

————ee e —

= Bipin C Desai

drop table pxcontract;

create table pxcontract(

mname varchar2(12),

year dec(4),

pstudio varchar2(12),

aname varchar2(12),

astudio varchar2(12),

primary key(pstudio, mname, year),

foreign key (mname,year) references produce(mname,myear),
foreign key (aname) references xcontract(aname));

SQL> insert into pxcontract values('m1',1990, 'stl', 'Mary', 'st2');
1 row created.

SQL> insert into pxcontract values('m1',1990, 'stl', 'Bob', 'st3');
* ERROR at line 1:

ORA-00001: unique constraint (SCOTT.SYS C004747) violated

= Bipin C Desai

161

Use triggers to maintain consistency

drop table pxcontract;
create table pxcontract(
mname varchar2(12),
year dec(4),
aname varchar2(12),
primary key(mname, year, aname),
foreign key (mname,year)
references produce(mname, myear),
foreign key (aname) references xcontract(aname));

= Bipin C Desai

162

USE TRIGGER for consistency

create view vcontract as select * from scontract;
CREATE OR REPLACE TRIGGER SP_Trig
Instead of INSERT ON vcontract

FOR EACH ROW

Declare pstudio varchar2(12); astudio varchar2(12);
begin

select p.sname into pstudio from produce p

where :new.mname=p.mname

And :new.myear=p.myear;

select x.astudio into astudio from xcontract x

where :new.aname=x.aname;

INSERT INTO scontract values
(:new.mname,:new.myear, :new.aname, pstudio, astudio);
END SP Trig;

hadlhal
1 Uil

= Bipin C Desai

163

insert into vcontract values('m1',1990,'Mary', 'st3', 'stl');
1 row created.

SQL> select * from scontract;

MNAME MYEAR ANAME PSTUDIO ASTUDIO

ml 1990 Mary stl st2

insert into vcontract values('m1',1990,'Mary', 'stl', 'st2');

* ERROR at line 1:
ORA-00001: unique constraint (SCOTT.SYS C004729) violated
ORA-06512: at "SCOTT.SP_TRIG", line 8
ORA-04088: error during execution of trigger 'SCOTT.SP_TRIG'

= Bipin C Desai

164

insert into vcontract values('m1',1990,'Bob', 'stl', 'st3");
SQL> select * from scontract;

MNAME MYEAR ANAME PSTUDIO ASTUDIO
ml 1990 Mary stl st2
ml 1990 Bob stl st3

insert into vcontract values('m1',1990,'Jane', 'stl', 'st3');
1 row created.

SQL> select * from scontract;

MNAME MYEAR ANAME PSTUDIO ASTUDIO

ml 1990 Mary stl st2

ml 1990 Bob stl st3

ml 1990 Jane stl st3

= Bipin C Desai 165

insert into vcontract values('m2',1990,'John’, 'st2', 'stl');
SQL> select * from scontract;

MNAME MYEAR ANAME PSTUDIO ASTUDIO
ml 1990 Mary stl st2
ml 1990 Bob stl st3
ml 1990 Jane stl st3
m2 1990 John st?2 stl

insert into vcontract values('m2',1990,'Bob', 'st2', 'st3');
SQL> select * from scontract;

MNAME MYEAR ANAME PSTUDIO ASTUDIO
ml 1990 Mary stl st2
ml 1990 Bob stl st3
ml 1990 Jane stl st3
m2 1990 John st2 stl
m2 1990 Bob st2 st3

= Bipin C Desai 166

insert into vcontract values('m2',1990,'Jane', 'st2', 'st3");

SQL> select * from scontract;

MNAME MYEAR ANAME PSTUDIO ASTUDIO
ml 1990 Mary stl st2
ml 1990 Bob stl st3
ml 1990 Jane stl st3
m2 1990 John st2 stl
m2 1990 Bob st2 st3
m2 1990 Jane st2 st3

SQL> insert into vcontract values('m1',1990,'Mary', 'st3', 'stl')
*ERROR at line 1:

ORA-00001: unique constraint (SCOTT.SYS C004729) violated

ORA-06512: at "SCOTT.SP_TRIG", line 8

ORA-04088: error during execution of trigger 'SCOTT.SP_TRIG'

= Bipin C Desai 167

SQL> select * from scontract;

MNAME MYEAR ANAME PSTUDIO ASTUDIO
ml 1990 Mary stl st2
ml 1990 Bob stl st3
ml 1990 Jane stl st3
m2 1990 John st2 stl
m2 1990 Bob st2 st3
m2 1990 Jane st2 st3

6 rows selected.

SQL> select * from vcontract;

MNAME MYEAR ANAME PSTUDIO ASTUDIO
ml 1990 Mary stl st2
ml 1990 Bob stl st3
ml 1990 Jane stl st3
m2 1990 John st2 stl
m2 1990 Bob st2 st3
m2 1990 Jane st2 st3

6 rows selected.

= Bipin C Desai 168

Studio

Movie @ Actor

Free lance system where actors are not under contract

= Bipin C Desai

169

DATES:

How to specify the beginning weekday of the week

select to_char(trunc(sysdate,' DAY"),'fmDay"," Month DD"," YYYY")

AS First week day from dual;
FIRST WEEK DAY

Sunday, November 17, 2002

If we want Monday to be the beginning of the week:

SQL> alter session set nls_territory=FRANCE;

Session altered.

SQL> select to_char(trunc(sysdate,' DAY"),'fmDay"," Month DD",
"YYYY') AS First week day from dual;

FIRST WEEK DAY

Monday, November 18, 2002

= Bipin C Desai

170

The DUAL table in Oracle

SQL> describe dual;
Name Null? Type
DUMMY VARCHAR2 (1)

Contains one row and one column. Can be used to put results

SQL> select power(2,10) from dual;
POWER (2,10)

1024
SQL> select to_date(sysdate) from dual;

TO DATE (S

29-SEP-02

= Bipin C Desai 171

SQL> select add months(sysdate,2) from dual;
ADD MONTH

18-JAN-04 Lets make Brenda younger

SQL> select * from student where sid=8;
SID SNAME MAJOR YEAR BDATE

8 Brenda = COMP 2 13-AUG-77
SQL> update student
set bdate=(select add months(bdate,36)from dual)
where sid=8

SQL> select * from student where sid=8;

SID SNAME MAJOR YEAR BDATE

8 RBrenda COMP 2 13-AUG=80

T oGk =+ — -

= Bipin C Desai 172

TRUNCate function and dates
truncate to first day of week

select to_char(trunc(sysdate,'DAY")) as FirstDayofWeek from dual;

FIRSTDAYO select to char(trunc(sysdate)) from dual;
------- TO _CHAR(T
14-MAR-04 e
16-MAR-04 Date of query (a Tuesday)
select to_char(trunc(sysdate,' DAY"),'fmDay") as FirstDay from dual;

FIRSTDAY

Sunday Format fully after truncating to first day of week, month, year
select to char(trunc(sysdate, MONTH'),'fmMonth') as Month from dual;
MONTH select to_char(trunc(sysdate, MONTH'")) from dual;
--------- TO_CHAR(T
March 000

01-MAR-04
select to_char(trunc(sysdate), 'meear) as tyear from dual;
YEAR select to_char(frunc(sysdate,'YEAR")) from dual;

TO CHAR(T

Two Thousand Four 01-JAN-04
= Bipin C Desai 173

select to_char((select DOB from person where Name='Smith'),

'DAY"') As Weekday from dual;
WEEKDAY

To find the first business day of the week for a particular date:

SQL> select to_char(trunc((select DOB from person where
Name='Smith'),'DAY") , 'fmDay") from dual;

Monday

To find the first business day of the week two days from a

particular date:

SQL> select to_char(trunc((select DOB from person where
Name='Smith'),'DAY") + 2, 'fmDay") from dual;

Wednesday

= Bipin C Desai 174

To find the day of the week for a specified date:

SQL> select to_char(to date('18-Nov-02'), 'Day') As Weekday
from dual;

WEEKDAY

Find the first business day after the birthday of Smith:

select to_char(trunc((select DOB from person
where Name='Smith'),
'DAY') +2, 'fmDay’') As
Smith Bday2busWeek from dual;

Finding where a date is(half, quarter) A

2
select TO_ NUMBER(TO_CHAR((select DOB from pexson
where Name='Smith'), 'Q')) as SmithQ frofm dual;

= Bipin C Desai

175

DECODE function

DECODE(expression, ifl, thenl, if2, then2,, ifn,thenn, else)
Create table duedate(

Create tables assignment(
sid number(7),

assign# number(2),
submitdate date

primary key (sid, assign#))

duedate date);

Insert into duedate
values(1, ‘17-jan-2004");

insert into duedate
values(2, '14-feb-2004");

insert into assignment values (123, 1, '17-jan-2004");
insert into assignment values (124, 1, '18-jan-2004");
insert into assignment values (125, 1, '19-jan-2004");
insert into assignment values (123, 2, '17-feb-2004");
insert into assignment values (124, 2, '18-feb-2004");
insert into assignment values (1235, 2, '19-feb-2004");

assign# number (2) primary key,

= Bipin C Desai

176

select a.sid, a.assigno,
decode(trunc(a.submitdate - d.duedate), 0, null, 1, 'one day',
2, 'two days', 3, 'three days', 4, 'four days',"Too late') as Late days
from assignment a , duedate d
where a.assigno = d.assigno
order by sid, assigno;

SID ASSIGNO LATE DAYS
123 1
123 2 three days
124 1 one day
124 2 four days
125 1 two days
125 2 Too late

= Bipin C Desai

177

To calculate the number of business days between two days: store thg

following code in a file say: numbusdays.sql

define frdate = '&1'

define todate = '&2' FROM_DATE TO_DATE BUSINESS_DAY}
set verify off
select 20-Nov-02 24-Dec-02 25

'&frdate' From Date,'&todate' To Date,

q[?
1 + to_date('&todate") - to_date('&frdate") y)w many weeendsy

((TRUNC(to_date('&todate"),'D") — a Saturdady? ,
TRUNC(to_date('&frdate'),D"))/7)*2 sunday:
+ DECODE(to _char(to date('&todate'),'D"),7,-},0)

+ DECODE(to char(to date('&frdate'),'D'),1,-1,0) Business Days

from dual .
/ DECODE (exp, if, then, else, ..)

Then one can interactively call it:
SQL> (@numbusdays 20-Nov-02 24-Dec-02

L¥ 4

= Bipin C Desai

178

SQL> create table interval (startdate char(10), enddate char(10));
insert into interval values('1998.04.11','1998.09.30");
insert into interval values('1998.04.15','1998.10.01");
insert into interval values('1998.05.11','1998.06.17");
insert into interval values('1998.06.14','1998.10.12");

SQL> SELECT STARTDATE,ENDDATE

FROM INTERVAL

WHERE TO DATE('1998.04.17','YYYY.MM.DD') BETWEEN
TO _DATE(STARTDATE,'YYYY.MM.DD') AND
TO DATE(ENDDATE,'YYYY.MM.DD');

STARTDATE ENDDATE

1998.04.11 1998.09.30
1998.04.15 1998.10.01

= Bipin C Desai 179

If the interval is stored as dates:
SQL> create table intervaldate (startdate date, enddate date);
SQL> insert into intervaldate
select TO_DATE(startdate, YYYY.MM.DD"),
TO DATE(enddate,”YYYY.MM.DD")
from interval;

SQL> select * from intervaldate; SQL> select startdate, enddate+1

from intervaldate;

STARTDATE

ENDDATE

__________________ STARTDATE ENDDATE+1
11-APR-98 30-SEP-98 T TTT TTTTTT0-
15-APR-98 01-0OCT-98 11-APR-98 01-OCT-98
11-MAY-98 17-JUN-98 15-APR-98 02-0OCT-98
14-JUN-98 12-0CT-98 11-MAY-98 18-JUN-98

14-JUN-98 13-OCT-98

= Bipin C Desai

180

SQL> SELECT startdate , enddate FROM intervaldate
WHERE TO DATE('1998.07.03','YYYY.MM.DD")
BETWEEN startdate AND enddate ;
STARTDATE ENDDATE

11-APR-98 30-SEP-98
15-APR-98 01-0CT-98
14-JUN-98 12-0CT-98

SQL> select TO_CHAR(startdate, 'YYYY-MM-DD:HH:MI:SS')

as starttime

STARTTIME

from intervaldate;

1998-04-11:
1998-04-15:
1998-05-11:
1998-06-14:

= Bipin C Desai

181

SQL> select TO_CHAR(startdate+
8/24 + 13/1440 + 12/86400,
'YYYY-MM-DD:HH:MI:SS') as NewStartTime
from intervaldate;
NEWSTARTTIME
1998-04-11:08:13:12
1998-04-15:08:13:12
1998-05-11:08:13:12
1998-06-14:08:13:12 ENDOFMONTH
Last day of month: —-———————-
SQL>select LAST DAY (enddate) 30-SEP-98
as EndofMonth 31-0CT-98
from intervaldate; 30-JUN-98
31-0CT-98

= Bipin C Desai

182

SQL> select Name,
Trunc(MONTHS BETWEEN(Sysdate, DOB)/12) as Age
from person;

AGE

Smith
John
Wang

32
34
32

Age in five years?

select Name,
Trunc(MONTHS BETWEEN(ADD MONTHS(Sysdate,60),

DOB)/12) as Age from person;

NAME AGE

37
39

Wanao 37
-Gt} +
= Bipin C Desai 183
create or replace function time_between (start_tm in date, end_tm in date,
hours_only varchar2 default 'N') return varchar2 as
-- If "hours_only" is null or "N", the return will be a string formatted like:
-= 2 days, 3 hrs, 5 mins, 10 secs
-- If "hours_only" is not "N", then the return is a value in hours, like 102.325
ret_val varchar?2 (80) ;
start_sec number; if upper (hours_only) = 'N' then
end_sec number; if full sec > 3599 then
full_sec number; hours := floor (full sec / 3600);
bélance number; balance := mod(full sec,3600);
minutes number; -
hours number; full sec := balance;
days number; if hours > 1 then
. ret_val := ret val || to_char(hours) ||' hrs, ';
function get_sec (time_in in date) return number as else
begin ret_val := ret val || to_char(hours) [|' hr, ';
return to_number (to_char (time_in, 'SSSSS')); end if;
end; end if;
. if full sec > 59 then
begin minutes := floor(full sec / 60);
start sec := get sec(start tm); —
end sec := get sgc(end tm)7 balance := mod(full_sec,60);
-- Check if end time is in the same day as start time full_sec := balance;
if to char(start tm,'YYMMDD') = if minutes > 1 then
- tofchar(e;ditm,'YYMMDD') then ret _val := ret val||to_char(minutes) ||' mins, ';
full sec := end_sec - start_sec; else
days := 0; ret_val := ret _vall||to_char(minutes)||' min, ';
else end if;
@ays := trunc(end_tm - start_tm); end if;
if days > 0 then ret val := ret vall|l|to char(full sec)||' secs';
ret val := to char(days)||' days, '; — - - —
end lE; - else

-—- Calculate the time difference in hours,

if end_sec > start_sec then
-- to three decimal places

/
grant execute on time_between to public;
create public synonym time between for time between;

full sec := end sec - start_sec;
else ret val := to char((24 * days) + round((full sec / 3600),3));
full_sec := 86400 - start_sec + end_sec; end iE: B B
end if; return ret_val;
end if; end;

= Bipin C Desai

184

from person
where name='Smith';

select Name, time_between(dob, SysDate, 'N') AS Age

Smith 11866 days, 10 hrs, 38 mins, 14 secs

= Bipin C Desai

185

Oracle Editing SQL Buffer

Command abbrev.
append txt a text
change /old/new/ c /old/new/
change /txt c /txt
clear buffer cl buff
del

get file

input i

input txt il txt
list I

list n | n(n)
list * | *

list last | last
list m n Il mn
save file sav file

Oper. on crnt. line/all lines
adds text at the end of a line
change old to new in a line
delete text from a line

delete all lines in the buffer
delete a line

load file into buffer

add one or more lines

add text as a line

list all lines of buffer

list ine n and make it current
list crnt. Line

list last line

list inesm-n

save buffer to file

= Bipin C Desai

186

SQL> desc user_catalog;

Name - Null? Type
TABLE NAME NOT NULL VARCHARZ2 (30)
TABLE TYPE VARCHARZ (11)
SQL> select * from cat; Note: cat is a synonym for
TABLE NAME TABLE TYPE user_catalog
ASSIGNED TO TABLE
BONUS o TABLE
COURSE TABLE
CRS SECTION TABLE
DEPT TABLE
DEPTMAJOR TABLE
DISTANCE TABLE
DO PROJECT VIEW
DO PROJ SUP VIEW
DUMMY TABLE
EMAIL INFO TABLE
= Bipin C Desai 187

Name Null? Type
PROJ# NUMBER (4)
EMP# NUMBER (4)

SQL> select table name from user tables;
TABLE NAME

ASSIGNED TO
BONUS -
COURSE

SQL> select TABLESPACE NAME from user_tables;
TABLESPACE NAME

SYSTEM
SYSTEM
TUTOR
TUTOR e .

= Bipin C Desai

188

SQL> desc user _tables;

Name Null? Type

TABLE NAME NOT NULL VARCHARZ2 (30)
TABLESPACE NAME VARCHARZ (30)
CLUSTER NAME VARCHARZ (30)

IOT NAME VARCHARZ (30)
........ etc.
SQL> desc user _tab_columns;

Name Null? Type

TABLE NAME NOT NULL VARCHARZ2 (30)
COLUMN NAME NOT NULL VARCHARZ2 (30)
DATA TYPE VARCHARZ (106)
DATA TYPE MOD VARCHARZ (3)
DATA TYPE OWNER VARCHARZ2 (30)
........ etc.

= Bipin C Desai 189

SQL> desc user views;

Name Null? Type

VIEW NAME NOT NULL VARCHARZ (30)
TEXT LENGTH NUMBER

TEXT LONG

TYPE TEXT LENGTH NUMBER

TYPE TEXT VARCHARZ (4000
OID TEXT LENGTH NUMBER

OID TEXT VARCHARZ (4000
VIEW TYPE OWNER VARCHARZ (30)
VIEW TYPE VARCHARZ (30)

SUPERVIEW NAME

SQL> select view name from user views;
VIEW NAME

DO PROJECT
DO_PROJ SUP
TEMP 1

= Bipin C Desai

190

SQL> desc user_triggers;

Name Null? Type

TRIGGER NAME VARCHARZ (30)
TRIGGER TYPE VARCHARZ (16)
TRIGGERING EVENT VARCHARZ (227)
TABLE OWNER VARCHARZ (30)
BASE OBJECT TYPE VARCHARZ (16)
TABLE NAME VARCHARZ (30)
COLUMN NAME VARCHARZ (4000)
REFERENCING NAMES VARCHARZ2 (128)
WHEN CLAUSE VARCHARZ2 (4000)
STATUS VARCHARZ (8)
DESCRIPTION VARCHARZ (4000)
ACTION TYPE VARCHARZ (11)
TRIGGER BODY LONG

= Bipin C Desai 191

SQL> select TRIGGER NAME from user_triggers;
TRIGGER NAME

EMP_SAL RAISE

PERSON1 ST

select TRIGGER NAME, TRIGGER TYPE, TRIGGERING EVENT, TABLE OWNER
from user triggers
where TRIGGER NAME='PERSON1 ST';

TRIGGER NAME TRIGGER TYPE TRIGGERING EVENT TABLE OWNER

PERSON1 ST AFTER EACH ROW INSERT SCOTT

= Bipin C Desai

192

SQL> SET PAGESIZE 66
SQL> COLUMN object type FORMAT A20
SQL> COLUMN object name FORMAT A30
SQL> COLUMN status FORMAT A10
SQL> BREAK ON object type SKIP 1
SQL> SELECT object type, object name, status
FROM user objects
WHERE object type IN ('PACKAGE','PACKAGE BODY",
'FUNCTION',')PROCEDURE/,
'"TYPE', TYPE BODY",

'TRIGGER');
OBJECT TYPE OBJECT NAME STATUS
FUNCTION BUS INESS_DAYS VALID
TRIGGER PERSONl_ST VALID

= Bipin C Desai

193

select text
from user source
where name="WORKING DAYS';

TEXT

FUNCTION working_days(datel IN DATE, date2 IN DATE)
RETURN NUMBER IS workdays NUMBER;
BEGIN
workdays := TRUNC(date2) - TRUNC(datel) + 1
- ((TRUNC(to_date(date2,'D"))-TRUNC(to_date(datel),'D"))/7)*2;
IF TO_CHAR(date2,D")="7' THEN
workdays := workdays - 1;
END IF;
I[F TO CHAR(datel,'D") ="1' THEN
workdays := workdays - 1;
END IF;
RETURN(workdays);
end;

= Bipin C Desai

194

select text

from user_source
where name=PERSONV_ST';

TEXT

TRIGGER personv_st

INSTEAD OF INSERT ON PERSONV
FOR EACH ROW

DECLARE STATUS CHAR(4);
BEGIN

STATUS := "Poor’;

IF (:new.income > 20000) THEN
STATUS :='Med'"; END IF;

IF (:new.income > 60000)THEN
STATUS :='Rich'; END IF;

INSERT INTO person VALUES(:new.name, :new.dob, :new.income, STATUS);
END person_st;

= Bipin C Desai

195

select object_name
from user_procedures;

OBJECT_NAME select text
WORKING DAYS from user_source
TEXT - where name="WORKING_DAYS';

RETURN NUMBER IS workdays NUMBER;
BEGIN
workdays := TRUNC(date2) - TRUNC(date1) + 1

((TRUNC(to_date(date2,'D")-TRUNC(to_date(date1),'D"))/7)*2;
IF TO_CHAR(date2,'D") = '7' THEN
workdays := workdays - 1;
END IF;
IF TO_CHAR(date1,'D') ="1' THEN
workdays := workdays - 1;
END IF;
RETURN(workdays);

onole
CTchy

= Bipin C Desai

196

Relation Algebra, Bags and Constraints

Notes

Bipin C. Desai

To be used in the spirit of copy-forward! Pl. see: https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

< Bipin C Desai

BAGS
In a set, there are no duplicates.

A set (collection of similar objects) having multiple occurrences of
one or more members is called a “bag”.

Implementation of relational model allow a relation(table) to have
duplicates.

This is specially so for intermediate results(a convenience) and if no
primary keys are defined for a table.

Thus in a relation that is a bag, duplicate tuples are allowed(though
not required — so a bag may have no duplicates at a given point in
time.)

A stored table is not a bag; since constraints enforcements require that
duplicates are not stored (each row has an UNIQUE row identifier)

"’ Bipin C Desai)

A|lB|C B C

Instance al | bl | cl M,.R without bl | cl
Eo"‘;:"l’o';'sj al | b2 | 2 | eliminatingthe |[p2 | 2
9 a3 | b1 | et | duplicates tuplesf{ ;T

a4 | b2 | 2 | isa bag! e

a5 | b5 | ¢5 | 51 s

Faster projection operations: no need to check duplicates for each
tuple in the output relation

Correct computation compute the average of values under attribute
B in the projection of R.

Faster bag Unions: Computing (R U, _S) is cheaper than (R U, S)

Bag
Given R has n tuples and S has m tuples, then the costs of evaluating

these queries would be O(n + m) and O(n . m), respectively.

RUg S=RU,S RUGS=RUS=RUS

" Bipin C Desai 3

R Ug S (bag union of R and S): the bag of tuples that are in R, in S,
or in both. If a tuple ¢ appears n times in R, and m times in s, then ¢

appears n+m times in bag R Ug S

RUgS={tk|tn€R"t:meS *k=n+tm}

R N S(bag intersection of R and S): the bag of tuples that appear
in both R and S. If a tuple ¢ appears » times in R, and m times in S,

then the number of occurrences of ¢ in bag R Ngs is min(n,m)

RNgS={tk|tn€R t:meS"k=minnm)}

R -5 S (bag difference of R and S): is defined as follows:
R-,S={tk|t:n€Rt:m € Sk = max(0, n-m) }
S-sR={tk|t:n € R*t:m € S k = max(0, m-n) }

"’ Bipin C Desai 4

a2	b2		a2	b2
a1	b1		a2 b2	
a1	b1		a3	b3

R S
A | B A | B
al | bl al | bl

|a2 | b2 | | a2 | b2 |

| al | b1 | | a2 b2 |

| a1 | b1 | |a3 | b3 |
|al|b1| If there was

another (al,bl)

Let R be a relation scheme, and R be a bag over R.

min(1,3)

| a2 | b2 |

| a1 | b1 | | a2 | b2+—min(1,2)
al | bl | a1 | b1<}— min(2,3)
at | b BN BN
a2 | b2 RS al | bl S..R a2 | b2
a2 | b2 _— | a1 |b1| | a3 | b3 |
a3 | b3 max(0,3-1) * *

@ Bipin C Desai
BAG PROJECTION

The projection operator is used to produce, from R, a new bag

that has only some of R’s columns

If elimination of one or more attributes during the projection causes

the same tuple to be created from several tuples, these multiple

tuples are not eliminated from the result of a bag-projection

bl | cl
b2 | c2
bl | cl
b2 | c2
b5| c5

- Bipin C Desai

BAG SELECTION o_R

The tuples in the output relation are those that satisfy the
predicate C, which involves attributes of R

Duplicates are eliminated in a set selection but not so from
the result of a bag-selection

Note: The selection operation O in RA is not the same as the

SELECT clause in SQL which is the projection part of the
DML component of SQL

Al B|C ‘ A|] B | C) A| B C
al | bl | cl
al | bl | cl 11 b1 2 al | bl | cl
| a1 | b1 | c2 |al | b1 | 2 | i:liblizl al | bl | 2 |
| a3 | b1 | 1 | a3 | b1 | et | el e | 8] p1] e
|a4|b2|c2 f , |a| |c
| a5 | bS | c5 Op -, (R): |a5 | b5 | o5 Op_p; (S):
R - not a bag Nota bag S - abag A bag
@ Bipin C Desai

Cartesian Product of Bags

Given R and S, then R X, S is the bag of tuples formed by

concatenating pairs of tuples, the first of which comes from R and
the second from S.

RX,S ={t.t|t,eR"t,eS}
As in the set cartesion product, each tuple of R is paired with

each tuple of S: however, in bag product each tuple is used
regardless of whether it is a duplicate or not.

Hence, if a tuple ¢, appears m times in a relation R, and a tuple ¢,
appears n times in relation S, then tuple ¢,.7, appears m *n times
in the bag-product R X, S

Joins of Bags [X
The join of bags R [X|

the join of sets; however, duplicates are not eliminated!

B(predicate)

Bredicarsy S 18 computed in the same way as

- Bipin C Desai

B | C Al| B B|C

al | bl b2 | 2 al | bl bl | c2
| a1 | b1 b3 | e3 al | b1 | |b3 |3
’ b3 | ¢3 S

' R
R T

A | RB| S.B C

al | bl | b2 2
| at | b1 | B3 | 3 al | b1 | e2 |
| a1 | b1 | B3 | 3 ,
| al | b1 | b2 | 2
| al | bl | b3 | c3 R X B(R.B=S.B) T
| al | b1 | b3 | c3

R X, S
.“"‘ Bipin C Desai .

Constraints on Relations

Relational algebra offers a convenient way to express a wide
variety of constraints, such as referential integrity and FD’s.

There are two ways to express constraints in RA

If 7 is a relational algebraic expression, then » = @ is a constraint
that says “the value of r must be empty”

If » and s are relational algebraic expressions, then » S s is a
constraint that says “every tuple in the result of r is in the result of
5" (even when r and s are bags)

A RA constraint may be expressed in more than one way; 1.€.

r € s could be writtenas r-s = ®
Ifr €s, .. notuple in r that is not in s, and hence r -s = ®

The constraint r = @ could be rewritten as: r € ®

- Bipin C Desai

10

Referential integrity

If we have a value v in a tuple ¢ of a relation R, then v must
also appears as a component of some tuple s of relation S

Example: if we have a tuple (s,c,g) in relation
Enrol(sid,crsno,grade), then there must be a student with
sid = s and a course with crsno = ¢ such that s has
taken/taking c.
The values S and ¢ in Enrol are “referring” to some values
outside this relation, and these values must exist in the Student and
Course relations Course(crsno, name, credits)

7T Enrol € 7t Course

crsno crsno

or equivalently

L Enrol -x Course =@

crsno crsno

cfr

Bipin C Desai

11

Functional Dependency

Definition: If two tuples of a relation R agree on the attributes X,

then they must also agree on the attributes Y.

Student(sid,name,dob, gender), sid — name

To express the FD: sid — name in RA, construct pairs of Student
tuples, using Cartesian product, and see if there is a violation of

this FD, using selection with sids equal but names not.
To assert the constraint, we equate the result must be null.

P(S, P(S1, Student) XP(S2, Student))

0“Sl.sid=S2.sid *S1.name #S2.name S=®

cfr

Bipin C Desai

12

Domain Constraints
Empl (Empl#, name,dob, gender, salary)

* To express the domain constraint:
The only valid values for the attribute gender are ’F’ and *M’

0'gender #’F AND gender # ’M’(Empl) =®

* To express the following constraint?
Maximum salary of every employee is $30,000

O sutary> 30000 EMpL) = @

These are examples of domain constraints

- Bipin C Desai

13

Bags in DBMS

create table dept(
dcode number(3),
dname varchar2(30),
location varchar2(30))
/

insert into dept values (100, 'CS', 'EV300");
insert into dept values (100, 'CS', 'EV300");
insert into dept values (100, 'CS', 'EV300");
/

- Bipin C Desai

14

SQL> select * from dept;

DCODE DNAME LOCATION
100 CS EV300
100 CS EV300
100 CS EV300
100 CS EV300

Without a primary key ORACLE/MySQL/MariaDB
ALLOWS DUPLICATES!

SQL> desc dept;

Name Null? Type

DCODE NUMBER(3)

DNAME VARCHAR2(30)

LOCATION VARCHAR2(30)
4= Bipin C Desali

15

SQL> alter table dept add(constraint pk const primary key(dcode));

ERROR at line 1:

ORA-02437: cannot validate (SCOTT.PK_CONST) —
primary key violated

Remove duplicate records

delete from dept

SQL> select * from dept;
where rowid in (

select rowid DCODE DNAME LOCATION
from dept

. 100 CS EV300
minus

select max(rowid)

from dept d group by d.dcode);
3 rows deleted.

- Bipin C Desai

16

SQL> alter table dept add(constraint pk const primary key(dcode));

Table altered.
SQL> desc dept;
Name Null? Type
DCODE NOT NULL NUMBER(3)
DNAME VARCHAR2(30)
LOCATION VARCHAR2(30)
@ Bipin C Desai 17
How about MySql:

create table dept(

dcode numeric(3), No primary key
dname varchar(30),

location varchar(30));

insert into dept values (100, 'CS', 'EV300');
insert into dept values (100, 'CS', 'EV300');
insert into dept values (100, 'CS', 'EV300');

mysgl> select * from dept;

- e f————_———— +
| dcode | dname | location |
- - o +
| 100 | CS | EV300 |
| 100 | Cs | EV300 |
| 100 | CS | EV300 |
- - e +

MYSQL ALLOWS DUPLICATES

- Bipin C Desai

18

Eliminate Duplicates rows

CREATE TEMPORARY TABLE Temp

select distinct * from dept; --Temp table
delete from dept;
insert into dept

select * from Temp;

mysgl> desc dept;

fomm - Fom - R = fom— - tom——— = +
| Field | Type | Null | Key | Default | Extra |
o - +————— +———— f—m—————— +—————— +
dcode	decimal(3,0)	YES		NULL	
dname	varchar (30)	YES		NULL	
location	wvarchar (30)	YES		NULL	
tom - fom - to————- +————= tom - t—————— +
3 rows 1in set (0.00 sec)

4= Bipin C Desali 19

mysql> alter table dept modify column dcode numeric(3) primary
key;

mysqgl> desc dept;

e fomm e - t-———= pomm o= +
| Field | Type | Null | Key | Default | Extra |
fo—m - fomm e e t-———- fomm - fo—————— +
dcode	decimal (3,0)		PRI	O	
dname	varchar (30)	YES		NULL	
location	varchar (30)	YES		NULL	
e fomm e - t-———= pomm to—m———— +

mysql> insert into dept values (100, 'CS', 'EV300");
ERROR 1062: Duplicate entry '100' for key 1

MariaDB [test]>select * from dept;
e t——_—— Fm———_ +
| dcode | dname | location |
t——_—— e tm———_ +
| 100 | CS | EV300 |
e e e ——_—— +

1 row in set (0.000 sec)

- Bipin C Desai 20

o

Past & Future(the past re-dressed)!

Notes

&&'W’/ﬁ‘@ o o
«Bipin C. DESAI

;;:élf,? To be used in the spirit of copy-forward! https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

<<<<<

(ot

Bipin C Desai 1

Early methods of managing data: did not use SQL!

Definition of data was locked in application programs
Data in compact form on external media
punched cards (10x80), punched paper tape, magnetic tapes

Computer Museum

" Bipin C Desai 2

Hierarchical Data Model (HDM)
The HDM introduced in 1960s by IBM in IMS
-it is based on the parent-child model.
Parent record type, children record types

(hence, no cycles).

Many-to-many relationship requires duplication

Did not use SQL - but not a NoSQL DB!!

These record types are organized in the form of a rooted tree

Only one-to-many or one-to-one relationship can be represented

N ¢ N

" Bipin C Desai

Duplication of
records and
many-to-many
relationship in
HDM

" Bipin C Desai

SID |[Name | DOB [Misc info

CID Cno Desc | Credits

Virtual records and implementation of
many-to-many relationship in HDM

& Bipin C Desai

HDM databases has features for ‘fixed pattern” usage:
Pros:
Since the structure is fixed data access faster
HDM the relationships is fixed - easy for data integrity
HDM represent many data in normally used

- all bankingtransactions belongto a given account
Queries are predictable and uses the hierarchy

Cons:
Duplication for many-to-many relationships;
Difficult to change schema -

IMS currently isin version 15+ and is available for z/OS
offers SQL for IMS!

& Bipin C Desai

Network Data model (DBTG)

In the NDM i1s based on the set with an owner and a member record
types concept : the DBTG set

Each DBTG set can have any number of set occurrences
(anumber of instances of linked records).
many-to-many links are not allowed,

each set occurrence has precisely one owner,

and has zero or more member records.

A member record in a set can participate in only one occurrence of
a given set at any point.

However, any record can participate simultaneously in several set

occurrences of different DBTG sets.
Did not use SQL - but not a NoSQL DB!!

' Bipin C Desai 7

Representing a many-to-many relationship in NDM
by two sets and a dummy record to store the attribute
of the relationship

CourseLin StudentLink

GradeLink

Relationship_link

I Bipin C Desai 8

Object Oriented World & ODL

** In an object oriented design, the “part of the world” we want
to model is thought of as being composed of objects

** Everything is an object and “similar” objects are instances of
objects called class

¢ People, Employees, Bank accounts, Students, Course,
Airline flights
* A class simply represents a grouping of similar objects

* Every object is an instance of a class and has a unique object
identification (OID)

** All objects that are instances of the same class have the same
properties and behavior(inferaction of objects)

ODL (Object Definition Language) is a proposed standard language for
specifying structure of databases

“* ODL is an extension of IDL (Interface Description Language), a
component of CORBA (Common Object Request Broker Architecture)

>

D)

L)

L)

0

& Bipin C Desai

Class Declarations

“* A declaration of a class in ODL, consists of:
¢ The keyword class
¢ The name of the class
¢ Abracketed { ...} list of properties of the class

class<name> { class student {
<list of properties>

) }.;. .

& Bipin C Desai

10

Properties of ODL classes

“* ODL classes can have three kinds of properties:
¢ Attributes
O properties whose types are built from primitive/basic
types such as integers, strings,...
¢ Relationships

O properties whose type is either a reference to an
object

(x-one) or a collection of such references (x-many),

where x could be one or many.
¢ Methods

O functions that may be applied to objects of the class

& Bipin C Desai

11

Attributes in ODL

** Attributes are the simplest kinds of properties

“* An attribute describes some aspect of an object by
associating, with the object, a value of some simple type

** For example, attributes of a Student object
¢ Student ID
¢ Name
¢ Address
4 E-mail

& Bipin C Desai

12

Keys in ODL
** In ODL, we declare keys using the keyword key

¢ifa key has more than one attribute, we surround them by (...)
O Example: (two attributes forming a key)
class Movie
(extent Movies key (title, year)) {
attribute string title;
s
¢ If a class has more than one key, we may list them all, separated
by commas

OExample: (A class with two keys)
class Employee
(extent Employees key emplID, SIN) {...};

& Bipin C Desai

13

Single-Value Constraints in ODL

** Often, we should enforce properties in the database saying
that there is at most one value playing a particular role

¢ For example:

Hthat a movie object has a unique title, year, length,
and film type

Uthat a movie is owned by a unique studio

& Bipin C Desai

14

Single-Value Constraints

** In ODL:
¢ An attributes is not of collection type
(Set, Bag, Array, ... are example of collection types.)

¢ A relationship is either a class type or (a single use of) a

collection type constructor applied to a class type.
<* Recall that in E/R:
¢ attributes are atomic

¢ an arrow (=) or a value on the connecting line can be
used to express the type of relationship(multiplicity)

4 How about multi-valued? attributes (No) but
relationships (Yes)

& Bipin C Desai

15

Type system
A type system consists of
¢ Basic types
¢ Type constructors: recursive rules whereby

complex types are built from simpler ones
* Atomic types

Integer Float
Char Character String
Boolean Enumeration

Enumeration is a list of names declared to be synonyms for

integers
* Class types
¢ Movie

& Bipin C Desai

16

Type constructors in ODL

. Note:

“* Set _
¢ Set <integer> Set, Bag, Array, List and

o p Set <Movie> Dictionary are called

+* Bag .
¢ Bag <integer> collection types

o ArrE;g<M°V1€> Collection type cannot be
¢ Array <integer, 10> applied repeatedly
¢ Array <Movie, 3> (nested)

< Structure L
¢ Struct Address {string street, string city} E-g.-’ itisillegal to

% List write
¢ List <integer> Set<Array<integer>
¢ List <Student> S

* Dictionary <keyType, valueType>
¢ Dictionary<Student, string>

& Bipin C Desai 17
Example
class Movie { (“The Barbarian Invasions *, 2003, 112, Colour)
attribute string title; : is an object, i.e., an instance of the class Movie

ArIbULE INTEGET YEAT, oo
attribute integer length;
attribute enum Film {Colour, BlackAndWhite} filmType; };

class Star {
attribute string name; (structure with non-atomic type)

attribute Struct Address {
string street, “

Array <char, 10> city
} homeAddress;
attribute Struct Address officeAddress; };

('1I'

Bipin C Desai 18

More Examples
class Course {
attribute string courseNumber;
attribute string courseName;
attribute integer NoOfCredits;

_ , attribute string department;
attribute integer dob; 1
9

attribute string program;
attribute Struct Address {
string street,

class Student {
attribute string ID;
attribute string lastName;
attribute string firstName;

string city
} homeAddress;

55

& Bipin C Desai

19

Expressing Relationships in ODL

>

L)

* How are Movies and Stars related?
* Movies have actors/actresses(Stars), and Stars have roles in
Movies!

* Every movie has a star (or stars)

* In ODL the interaction of classes is expressed by a construct

called “relationship™!

** To take into account the fact that a relationship could involve
more than one instance of an object from the related class it is
expressed as a Set

** Note: In ODL relationship(s) is(are) stored in an object as

“OID pointer(s)”; such relationship(s) is(are) not attribute(s)!

L)

>

L)

L)

L)

0

L)

0

Bipin C Desai

20

Relationship in ODL: an Example

*** starOf is a relationship between Movie and Star
class Movie {
attribute string title;
attribute integer year;
attribute integer length;
attribute enum Film {Colour, B&W} filmType;
relationship Star starOf;

55

& Bipin C Desai

21

*

L)

* How are Movies and Stars related?

D)

4

** Not only every movie has a star
K/ . .
** But also every star has acted in some movie

relationship Movie starredIn;

class Star {
attribute string name;
attribute Struct Address {
string street,

<* To fix this in the Star class, we should add the line:

string city Is there a problem here?
} address; Hint: inverse relationship
relationship Movie starredlIn; };

& Bipin C Desai

22

Inverse Relationships

** We are omitting a very important aspect of the relationship

between movies and stars

* We need a way to ensure that if a star S is starOf movie M,
then movie M is starredIn for star S

** In ODL that is done by defining inverse of a relationship for

each class.

StarredIn

Movies

B R Y P PR P P PR

Stars

StarOf

I Bipin C Desai

23

class Movie {

55

attribute string title;
attribute integer year;
attribute integer length;

attribute enum Film {colour, B&W} filmType;

relationship Star starOf
inverse Star::starredIn;

What is the problem here!
- how many actors in a movie?
- how many movies credits for

an actor?

class Star {
attribute string name;

attribute Struct Address {
string street,
string city
} address;
relationship Movie starredIn
nverse Movie::starOf;

55

I Bipin C Desai

24

Relationships in ODL

** Our model is not quite complete: it is missing an important
point!
“* A movie typically has several actors and each actor is
featured in many movies.
“* To fix this, we need to express the relationship as a set:
relationship Set<Star> stars;

class Movie { class Star {
attribute string title;Why 1s this not a set? attribute string name;

attribute Struct Address {
string street,

&W} filmType; string city

attribute integer year;
attribute integer length;
attribute enum Film {colour,

relationship Set<Star® starOf { address;
inverse Staf::starredIn; relationship Set<Movie> starredIn
|5 inverse Movie::starOf;
The inverse relationship only specifies the name of the relationship in Star} ;
the set is in Star not in Movie What about attributes of a relationship?
&’ Bipin C Desai 25

*Suppose we introduce another class, Studio, representing companies that produce
movies
“*How are Movies and Studios related? Every Studio owns several Movies

class Studio {
attribute string name;
attribute string address;
relationship Set<Movie> owns inverse Movie::ownedBy;
3

“* What about inverse? Every

ovie is owned by some Studio

class Movie {
attribute string title;
attribute integer year;
attribute integer length;
attribute enum Film {color, blackAndWhite} filmType;

¥

& Bipin C Desai

26

Multiplicity of relationships
** In general, when we have a pair of inverse relationships,
there are four cases:
¢ The relationship is unique in both directions (one case)
¢ The relationship is unique in just one direction (two cases)
® The relationship is not unique in any direction (one case)

¢ The multiplicity thus refers to the one of these
relationships; also denoted as 1-1 (one-one), 1-M (one-
many), M-1 (many-one), and M-N (many-many).

& Bipin C Desai

27

Multiplicity of relationships: many-many

“* A many-many relationship from a class C to a class D is one
in which, for each C there 1s a set of Ds associated with C; in
the inverse relationship, a set of Cs 1is associated with each
D

Example: each student can take many courses and each course
can be taken by more than one student

class Student {

relationship Set<Course> takes inverse Course::takenBy;

}5

class Course {

relationship Set<Student> takenBy inverse Student:: takes;

}5

& Bipin C Desai

28

Multiplicity of relationships: many-one

* A many-one relationship from class C to a class D, is one
where for each C there is a at most one D, but no such a
constraint in the reverse direction (similarly for one-many

Example, many employees may work in the same department, but
each employee works only in one department

class Department {

relationship Set< Employee > workers inverse
Employee::workslIn;

}3 Note: There is one-to-many
relationship from Employee to
class Employee { Department

relationship Department worksIn inverse
Department::workers;

35

& Bipin C Desai

29

Multiplicity of relationships: one-one

“* A one-one relationship from class C to class D is one that for
each C there is a at most one D, and conversely, for each D
there 1s at most one C

Example: each department has at most one employee as its

manager and each employee can manage at most one
department

class Employee {

relationship Department ManagerOf
inverse Department::manager;

55
class Department {
relationship Employee manager

inverse Professor:: ManagerOf;

35

& Bipin C Desai

30

Inheritance in Object Oriented System and Subclasses

** Objects can be organized into a hierarchical inheritance
structure

* A child class (or subclass) will inherit properties form a
parent class (or all superclasses) higher in the hierarchy.

** Often, a class contains objects that have special properties
not associated with all members of the class

<* If so, we find it useful to organize the class into subclasses,
each subclass having its own special attributes and/or

relationships
Person
Student T Professor
I Bipin C Desai 31
Subclasses in ODL

* We define a class C to be a subclass of another class D by
following the name C in its declaration with a keyword
extends and the name D

class Cartoon extends Movie {
relationship Set<Star> voices;
55
A subclass inherits all the properties of its superclasses

So, each cartoon object has ftitle, year, length, filmType, and

inherits relationships stars and ownedBy from Movie, in
addition to its own relationship voices.

I Bipin C Desai 32

Person

class Person {
tribute string lastName;
attribute string firstName;
attribute integer age;
attribute Struct Address {
string street,
string city
} homeAddress;

Professor

class Professor extends Person {
attribute string EmplID;
attribute set<string> interest;

55

Student I

class Student extends Person {
attribute string ID;
attribute string program;

§s

& Bipin C Desai

33

Inheritance in ODL

/
** A class may have more than one subclass.

7/ . .
** A class may have more than one class from which it
inherits properties; those classes are its superclasses

** Subclasses may themselves have subclasses, yielding
a hierarchy of classes where each class inherits the
properties of its ancestors.

& Bipin C Desai

34

Multiple Inheritance in

ODL Person

Professo Employee tudent

Movie

Cartoon MurderMystery

class MurderMystery extends Movie {

attribute string weapon;
I
class CartoonMurderMystery extends Cartoon : MurderMystery;

CartoonMurderMystery TA Lab Instructo

= Bipin C Desai

35

Beers-Bars-Patrons <name> Caddr >

Bars

Beers Patrons

Chame> “brew >

& Bipin C Desai

36

C

b

attribute string name;
attribute string manf;
relationship Set<Bars> served At
inverse Bars::serves; attribute Enum SAQ {full, beer,
relationship Set<Patrons> fans

inverse Patrons::likes;

lass Beers { class Bars {
attribute string name;

attribute Struct Addr

OB,none} PermitType;
relationship Set<Patrons> customers
inverse Patrons::frequents;
relationship Set<Beers> serves

inverse Beers::servedAt;
Name is given to structure

& enumeration type for }

possible reuse

('tl'

Bipin C Desai 37

class Patrons {

attribute string name;

attribute Struct Bars::Addr
address;

relationship Set<Beers> likes
inverse Beers::fans;

relationship Set<Bars> frequents

inverse Bars::customers;

h

Reuse — qualify the name with the class
for disambiguation

('tl'

Bipin C Desai 38

Attributes of Relationships

<name> <addr >
@ Bars

Beers Patrons

<name> brew >

& Bipin C Desai

39

The attribute of a relationship converted into a
three-way relationship!

Cprice D

Charges

Bars Beers

If price depended only on the beer, then we could use
two binary relationships: charge-beer and beer-bar.

& Bipin C Desai

40

Bars Beers Charges

M M M

BarServe BeerPrice

BBC

(GobletOr, BrewXXX, $4.50)
(GobletOr, BrewX, $4.25)

(CanuckShack, BrewX, $4.10)

& Bipin C Desai

41

class Charges { The same price may be charged at many
attribute real price; ‘/bar s!

relationship Set<BBC> HowMuch inverse BBP::WhatPrice;
b

class BBC {

relationship Bars BarServe inverse ...

relationship Beers BeerPrice inverse BeerCharges ...
relationship Charges WhatPrice inverse Charges::HowMuch;

}

Inverses must be added to Bars, Beers.

& Bipin C Desai

42

class Beers {

attribute string name;

attribute string manf;

relationship Set<Bars> servedAt inverse Bars::serves;
relationship Set<Patrons> fans inverse Patrons::likes;

relationship Set <BBC> BeerCharges inverse BBC::BeerPrice }

& Bipin C Desai

43

From the internet to the Web

Early 80s: Archie, Veronica; internet file sharing finding systems
Late 80s early 90s
HTTP/HTML Tim Berners-Lee, Robert Caillau
Text based browser, Lynx, start of Netscape
HTTP request-response protocol between a client and a server
HTTP session is a sequence of requests-responses
HTML - very simple text markup language
included features for simple formatting and display
HTML based on ideas existing in the late 1980s including:
TeX/LaTex, Troff,
SGML and
the early word processing software
(WordStar, WordPerfect, Word)
May 1994 CERN — Geneva: The first World Wide Web
conference

<% Bipin C Desai

44

\
\:—.:‘“. &zj‘

Navigation Workshop for the Web
WWW94- May 1994

& Bipin C Desai

45

SGML and HTML are mark up languages for information(textual)

: : Hence XML
HTML 1 1 .
was too simple and not extensible EXtendible
SGML was extensible but too complex. Markup
Language

None of these languages do anything: none of these languages are
Turing complete

They provide a way to present information which is wrapped in tags.
Note the evolution of data/metadata: metadata in program;
metadata in schema; metadata with the data

The tags are commonly accepted by a community/group who want to
exchange information.

SGML and XML specify the content and structure of a document in a
way that allows particular presentations to be generated as needed

40

) Bipin C Desai

<!doctype linuxdoc system>

<!-- This a sample SGML file. Comments can appear anywhere It can
go over a number of lines. -->

<article>

<!-- Article type document -->

<title>Sample SGML Document

<l-- Always give a Title. Should be descriptive -->

<author>Bipin C. DESAI

<date>March 2000

<!-- Note the tag minimization the end tags are assumed by the
occurrence of a new tag -->

<abstract>

This document is a sample document using the simple Linuxdoc-
SGML DTD: used to write all documents for Linux. There are other
DTDs and you can create your very own DTD. However, you have to
create all the scripts for its translation to other formats.

</abstract

I Bipin C Desai 47

A sample DTD saved as notesl.dtd

<IELEMENT xsINotes - O (title,author,para+)>
<IELEMENT title - O CDATA> 0 optional end tag
<!IELEMENT author -O CDATA> 74 character data
<IELEMENT para - O CDATA>

Use of the sample DTD

<?xml version="1.0"?>

<IDOCTYPE xsINotes SYSTEM "notes1.dtd" >
<xs|Notes>

<title>XSL Notes</title>

<author>Bipin C. Desai</author>

<para> This is paragraph 1.

<para> This is paragraph 2.

</xsINotes>

a8

& Bipin C Desai

Why separate content and structure from presentation and behavior
Once coded, the information can be reused in many formats
Device/Media-independent publishing
One-on-one marketing
Intelligent downstream document processing

Large-scale information management.

XML (Extensible Markup Language): A subset of SGML (ISO
8879) designed for easy implementation

47

& Bipin C Desai

Information in XML form has to be rendered using appropriate
formatting mechanism

XML document contains the syntax,
tags are used to provide “keys”

content within the tags represent the “value”

Tags have no predefined meaning but 1s agreed to by parties involved
in the exchange of information

XML by itself conveys only content and structure, not presentation or
behavior

U

& Bipin C Desai

XML data is stored in plain text format
independent of software/hardware.
makes it easy to share data

XML Simplifies Data Interchange

XML applications are designed and adapted to read xml data.
XML Simplifies Platform Changes

New platforms are designed/built so that they can use existing and
new XML data

Since all new appliances implement XML features, XML data

can be used with diverse devices

------- is fresher because more people eat it,
more people eat it because ------- is fresher!

I Bipin C Desai 51

XQuery is to XML what SQL is to relational databases.

XQuery was designed to query XML data.

XQuery for XML is what SQL for databases
XQuery is built on XPath expressions
XQuery is supported by all major databases

Path Expressions (no joins!)

XQuery uses path expressions to navigate through

elements in an XML document.

XPath is used to address (select) parts of documents using

path expressions

A path expression is a sequence of document step/tags separated by ““/”

Each step operates on the set of instances produced by the previous step
Selection predicates may follow any step in a path, in []

I Bipin C Desai 52

XML Schema

The XML schema defines:

what are the components(elements) in a
corresponding document

Order of these elements

Number of occurrences

Element’s contents — could it be empty or it is required and
its contents

Data types, default values

clr

Bipin C Desai

53

<?xml version="1.0"7>

<nns:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<nns:element name="“memo">
<nns:complexType>
<nns:sequence>
<nns:element name="to" type="nns:string"/>
<nns:element name="from" type="nns:string"/>
<nns:element name="‘subject" type="nns:string"/>
<nns:element name="body" type="nns:string"/>
</nns:sequence>
</nns:complexType>

</nns:element>

</nns:schema>

clr

Bipin C Desai

54

Title Authors Publication (Name, | Meeting Subject
array Vol, Date, pages) set

Report of [Caillau, (Computer Networks WWW-I {Web, searching}

the Priorities Desai] and ISDN Systems;
Workshop Vol. 27-2,;November

1994; pp. 334-336)
Three [Richards, (Stanford, CA,;;Sept, Making {Big Data,
Paradoxes of King] 2013,;pp102-1050) End Meet security, privacy]
Big data

A not too correct XML schema to express this type of
information is given in the next slide.

Exercise: complete the xml schema and create the xml doc
for the above data!

Bipin C Desai

<" Bipin C Desai 55
<pns:schema xmlns:xs="http:/Mmww.w3.0rg/2001/XMLSchema">
<pns:.element name="papers” type="Publications” />
<pns:element name="tittle">

<pns:complexType>
<pns:sequence>
<pns:element name="usual_title” type="pns:string”/>
<pns:element name="alt_title" type="pns:string"/>
</pns:sequence>
</pns.complexType>
</pns:element>
<pns:complexType name="Publications”>
<pns:sequence>
<pns:element ref="title” minOccurs="0" maxOccurs=“unbounded’’/>
<pns:element ref="authors” minOccurs="0" maxOccurs="“unbounded”/>
<pns:element ref="publication” minOccurs="0" maxOccurs="1"/>
<pns:element ref="meeting” minOccurs="0" maxOccurs="“1"/>
<pns:element ref="subjects” minOccurs=*0" maxOccurs="“unbounded”/>
</pns:sequence>
</pns:complexType>
</pns:schema>
& 56

Predicates (where clause)
XQuery uses predicates to limit the extracted data from
XML documents

Storing XML data
BLOB
Decompose and save as tables

& Bipin C Desai

57

Storage Devices, Files, and Indexing

S, . .
«°F: Bipin C. Desai

& Bipin C Desai 1

Storage Device Selection Criteria

Capacity vs. cost (What will $100 buy?
How much for 1 Megabytes?)

Cost per megabytes of storage has taken a plunge
Alas, the need for it has bounded as well.

Permanence

Portability

Relative cost

Performance (Latency, transfer /access rate)

Record size - buffer size, file size.

Accessing method - random/direct or sequential

Data transfer rate

Seek time - time to move read/write head:

average, minimum, maximum
Latency - rotational delay (rpm)

- Bipin C Desai 2

Memory Hierarchy

Speed Technology Application

1-10's nsec I°L fast cache
nmos high speed MM
bipolar buffer

100's nsec nmMos main memory
core

100's usec CCD fast back up
bubbles

1-10's msec floppy disk main back up

fixed head disk
moving head disk

10's msec magnetic tape security/back up
100s of ms optical memory large mass
tape library memory,
system archives
- Bipin C Desai 3

Data on External Storage

Disks: Can retrieve random page at fixed cost

But reading several consecutive pages is much cheaper
than reading them in random order

Tapes: Can only read pages in sequence
Cheaper than disks; used for archival storage — extinct??

File organization: Method of arranging a file of records on
external storage.

Record id (RID) is sufficient to physically locate record

Indexes are data structures that allow us to find the
record ids of records with given values in index search
key fields

Architecture: Buffer manager stages pages from external
storage to main memory buffer pool. File and index layers
make calls to the buffer manager.

4= Bipin C 4

Store the database in Main Memory!

Costs too much. $100 will buy 32GB of DRAM or 1TB
SSD today.

Main memory is volatile. \We want data to be saved
between runs. (Obviously!)

Typical storage hierarchy:
Cache
Main memory (RAM) for currently used data.
Disk for the main database (secondary storage).

Tapes for archiving older versions of the data
(tertiary storage).

4= Bipin C

EXTERNAL STORAGE MEDIUMS

Read/Write Write once read many times(WORM)
(used for archives)

Magnetic Tape Disks/tapes

Disk Robotic storage media
RAID(Redundant CD-Rom.

array of

inexpensive

disks

READ: transfer data to main memory.
WRITE: transfer data to external device.
READ/WRITE are much slower than main-memory operations!

- Bipin C Desai

Disks

* Secondary storage device of choice:
HDD are being replaced by SSD.
* Main advantage over tapes: random access vs. sequential.

* Data is stored and retrieved in units called disk blocks or
pages.
* Unlike RAM, time to retrieve a disk page varies depending
upon location on disk.
— Therefore, relative placement of pages on disk has
major impact on DBMS performance!

4= Bipin C 7

Components of a Hard Disk

Spindle
Tracks

* The platters spin (7200rpm).
% The arm assembly is moved in
or out to position a head on a
desired track. Tracks under
heads make a cylinder
(imaginary!).

* Only one head reads/writes

at any one time.
* Block size is a multiple (

Arm movement Platters

—U=

SSDs do not have moving parts
but a finite number of cycles

. Arm assembl
of fixed sector size 4

4= Bipin C 8

Seek Time
Seek Time =c, + ¢, * (number of cylinders to be traversed).

Here c, and c, are constants for a given model of disk drive|

Average Seek Time = time to move over 1/3 cylinders.
Seek time can be reduced by:
- distributing a file over a number of disk units and
- limiting the range of cylinders on any disk unit.
Rotational Latency
The delay between the completion of the seek and the

actual transfer of data. RPM Latency
. _ 10000 3 msec

For a disk rotating at r (RPM) 4549 4.1 msec
t, = 60 * 1000 milliseconds 6000 5 msec
2% r 3000 10 msec

2400 12.5 msec

= Bipin C Desai 9
Accessing a Disk Page

* Time to a read or a write a disk block:

— seek time (moving arms to position disk head on track)

— rotational delay (waiting for block to rotate under head)

— transfer time (actually moving data to/from disk surface)
* Seek time and rotational delay dominate.

— Seek time varies from about 1 to 20msec

— Rotational delay varies from 0 to 10msec

— Transfer rate 1s about 1msec per 4KB page

* Key to lower I/O cost: reduce seek/rotation delays!
Hardware vs. software solutions?

SSD obsoletes these!

4= Bipin C 10

Response time = seek time + latency time + transfer time
(5-20 msec) (3-5 msecq).
Transfer time = size of transfer/rate of transfer.
Size of transfer corresponds to the data of interest
(excluding format information, etc.)
Sequential Read of a number of blocks.
Transfer time = avg. seek time + latency time +
(block transfer time) * number of blocks

+ (min. seek time + latency) * number of cylinders
Problems: Disk scheduling in multi-process environment
Approximation: Transfer time =t * # of blocks,

Here, t is the effective formatted block transfer time.
te ~ 1.10* t,, wheret, is the block transfer time

to account for the format information and the ignored seek
and latency time.
Block transfer time = block size/ rate of transfer

= Bipin C Desai "

Random Read of a # of blocks
Transfer time = number of blocks * (seek + latency +t,)

Sequential Read from a number of contiguous cylinders
Transfer time = seek time +latency time + t_, * # of block +

(min seek time + latency time) * (# of cylinders -1)

=’ Bipin C Desai 12

File Organisation the storage required for the file organization

sequential . thetime required to read a random record
|r?dexed sequentialhe time required to read the next record
direct access the time required to add a record

other method the time required to update a record

the time required to read all records
the time required to reorganize a file

Choice
- external storage device available simple
- use of the file - type of queries X =Y
- number of keys range
- mode of retrieval - seq. random Boolean x=y
- mode of update batch
- economy of storage on-line

- frequency of use of afile
- growth potential of a file
- methods available in the development environment

= Bipin C Desai 13

Updates:

- insert in sequence

at end, at first available location
- delete - compress first available location

flag as deleted
- modify selected record space for update

record size with respect to size of original record

- modify all records

Primary Key Retrieval
Four (three) possible choices -
- serial file- no order (pile)
- sequential - ordered wrt primary key
- indexed sequence
- direct access

- Bipin C Desai 14

Serial Files (PILE) Sequential File

Access a random record Access a random record
Access to Next Record Access to Next Record
Inserting Record Inserting Record
Deleting a Record Deleting a Record
Modifying a Record Modifying a Record
Reorganisation Reorganisation

Single Disk Drive Single Disk Drive

Two or more Disk Drives Two or more Disk Drives

Access to Next Record
Probability of record in same block =1 -1/b;

Probability of record not same block = 1/b;
Expected time to get next record.
=0*(1-1/b)+1*(1/b)*(t,+t +1t)
=1/B ()

- Bipin C Desai

15

Modify-in-place or Delete a Record
-Finditin T, (Time to find random record)
- Max. time to modify or mark it as deleted, and wait
2T, - block txf time
- Rewrite it in time = block txf time
Total time =T, + 2T,

- Bipin C Desai

16

Sector Addressable Disks

- fixed length arcs of a track - track is divided into an
integral number of sectors.
- amount of data is fixed by O.S. or by the hardware.
- simplifies allocation of storage space
- simplifies address calculations
- simplifies synchronisation of I/0 &
computation in sequential processing.
The division of a track into sectors:
-may be implemented completely by hardware or
- by software controlled formatting operation.

Block is a fixed number of bytes that is moved as a unit
between storage devices and the main memory. Made up a
number of disk sectors.

= Bipin C Desai 17

Arranging Pages on Disk

‘Next’ block concept:

— blocks on same track, followed by

— blocks on same cylinder, followed by
— blocks on adjacent cylinder

Blocks in a file should be arranged sequentially on disk (by
‘next’), to minimize seek and rotational delay.

For a sequential scan, pre-fetching several pages at a time

“De-fragmentation” to increase access

" Bipin C 18

RAID

* Disk Array: Arrangement of several “inexpensive” disks that
gives abstraction of a single, large disk.

Goals: Increase performance and reliability.
Two main techniques:

— Data striping: Data is partitioned; size of a partition is called
the striping unit. Partitions are distributed over several disks.

— Redundancy: More disks => more failures. Redundant
information allows reconstruction of data if a disk fails.

Level 0: No redundancy
Level 1: Mirrored (two identical copies)
— Each disk has a mirror image (check disk)
— Parallel reads, a write involves two disks.
— Maximum transfer rate = transfer rate of one disk

4= Bipin C 19

[®

Level 0+1: Striping and Mirroring
— Parallel reads, a write involves two disks.
— Maximum transfer rate = aggregate bandwidth

Level 3: Bit-Interleaved Parity
— Striping Unit: One bit. One check disk.

— Each read and write request involves all disks; disk array can
process one request at a time.

Level 4: Block-Interleaved Parity
— Striping Unit: One disk block. One check disk.

— Parallel reads possible for small requests, large requests can
utilize full bandwidth

— Writes involve modified block and check disk
Level 5: Block-Interleaved Distributed Parity

— Similar to RAID Level 4, but parity blocks are distributed over
all disks

,\
=i

Bipin C 20

Disk Space Management

Lowest layer of DBMS software manages space on disk.
* Higher levels call upon this layer to:
— allocate/de-allocate a page
— read/write a page

Request for a sequence of pages must be satisfied by
allocating the pages sequentially on disk! Higher levels don’t
need to know how this is done, or how free space is managed.

4= Bipin C 21

DBMS: Buffer Management

Reference| Dirty
/9°unt bt |BUFEER POOL
RC D%i/_/

sk page

Nt

free frame

MAIN MEMORY

DISK
DB \

* DBMS operates on data in main memory

* Buffer management maintains a table <frame#, pageid>

4= Bipin C 22

When a Page 1s Requested ...

If requested page is not in pool:

— Choose a frame for replacement (LIFO, FIFO, LRU(RC),
modified (DB), etc.)

— If frame is dirty (changed since read into buffer), write it to
disk(replacement frame scheme looks for non-dirty frame

— Read requested page into chosen frame

* Increment the reference count (RC) of the page and return its
address.

If requests can be predicted (e.q., sequential scans)
pages can be pre-fetched

" Bipin C 23

More on Buffer Management

* When a frame is released by an application, the RC is
decremented and if the frame is changed, the dirty bit for the
frame is set.

A frame in the buffer may be requested many times,
concurrently(reads — not update/write)

— a RC 1s used to indicate the number of concurrent use of a
frame. A frame is a candidate for replacement iff RC = 0.

— Priority if dirty bit is not set(not modified)

Concurrency control and recovery may entail additional I/O
when a frame 1s chosen for replacement.

4= Bipin C 24

Buffer Replacement Policy

* Frame is chosen for replacement by a replacement policy:
— Least-recently-used (LRU), Clock, MRU etc.

Policy can have big impact on # of I/O’s; depends on the
access pattern.

Sequential flooding: Nasty situation caused by LRU +
repeated sequential scans.

— # buffer frames < # pages in file means each page request
could cause an I/O.

4= Bipin C

25

DBMS vs. OS File System

Differences in different level of support in different OS:
portability issues

Some limitations, e.g., files can’t span disks.

Buffer management in DBMS requires ability to:

— Manage RC and DB of frames in buffer pool, force a page to

disk (important for implementing concurrency control and

recovery),

— adjust replacement policy, and pre-fetch pages based on
access patterns in typical DB operations.

4= Bipin C

26

Data Record Formats: Fixed Length

Fl F2 F3 F4
L1 L2 L3 L4
Base address (B) Address = B+L1+L2

* Information about field types same for all records in a
file; stored in system catalogs.

* Finding i th field does not require scan of record.

" Bipin C 27

Data Record Formats: Variable Length

Two alternative formats (# fields is fixed):

F1 F2 F3 F4
4 $ $ $ $
Field/ Fields Delimited by Special Symbols
Count
F1 F2 F3 F4

Array of Field Offsets

* Second offers direct access to i'th field, efficient storage
of nulls (special don’t know value); small directory overhead,|
4= Bipin C

28

Page Formats: Fixed Length Records

Slot 1 Slot 1
lot2 2 —
Free— ™~}
Spa e e o o
sloth PR
Slot M
N ™ 1...10] 1| 1M[<
number M.. 321 number
PACKED of records UNPACKED, BITMAP of slots

Record id = <page id, slot #>. In first alternative, moving
records for free space management changes rid; may not

be acceptable.

4= Bipin C

29

Page Formats: Variable Length Records

Rid =(i,N
E— Page

Rid = (i .2

20 16 124 [N

N e 2 1 #Slots

Record ID = <Page #, Slot#>
Slots contains address or offset of record TR

Can move records on the page without changing the record
ID (RID),
Can also be used for fixed-length records!

Pointer
to start
of free
space

4= Bipin C

30

Files of Records

Page or block is OK when doing I/O, but higher levels of
DBMS operate on records, and files of records.

FILE: A collection of pages, each containing a collection of
records. Must support:

— insert/delete/modify record
— read a particular record (specified using record id)

— scan all records (possibly with some conditions on the
records to be retrieved)

4= Bipin C 31

Unordered (Heap) Files

Simplest file structure contains records in no particular order.

As file grows and shrinks, disk pages are allocated and de-
allocated.

To support record level operations, we must:
— keep track of the pages in a file
— keep track of free space on pages
— keep track of the records on a page
There are many alternatives for keeping track of these details.

4= Bipin C 32

Heap File Implemented as a List

N 7N 7N Y

\ X

Header
Page N NN Y
Data Data Data ﬁégesvvhh
> Page Page Page Free Space

* The Heap file name and its header page address must
be stored in a catalog.

* Each page contains 2 “pointers’ (forward, reverse) plus
data.

& Bipin C 33

Heap File Using a Page Directory

Header
Page

i
H BE

DIRECTORY

The entry for a page can include the amount of free space
on the page.

The directory is a collection of pages; for example
implemented as a linked list

* Much smaller than linked list of all HF pages!

& Bipin C 34

System Catalogs

* Catalogs are stored as tables.
For each table:
— name, file name, file structure (e.g., Heap file)

— attribute name and type, for each attribute
— index name, for each index
— integrity constraints

For each view:
— view name and definition

For each index:
— structure (e.g., B+ tree) and search key fields

Plus statistics, authorization, buffer pool size, etc.

" Bipin C 35

Alternative File Organizations

Heap files: Suitable when typical access requires access to
all recordsin afile.

Sorted Files: Suitable in cases where the records must be
retrieved in some order wrt a “key”, or access to a records
in a ‘range’ of key values is needed.

Hashed Files: Suitable when random access to records with
a given key valueis required.

- Bipin C Desai 36

B: The number of blocks (pages) for data
b,: Blocking factor(# records per block)

t., : Effective time to read or write block

Heap File |Sorted File Hashed

File
Scan all |Bten Btewn 1.25 Btens
recs
Equal Ity 0.5 Bt tefb |ngB Tefb
Search
Range Bten te (l0g2B + # | 1.25 Bten
Search of blocks with

matches)

Insert 2t Search + Bten, | 2ten
Delete Search + ts, |Search + Bten, | 2ten

Hash 1.25: since pages are only 80% full for avoiding overflows

- Bipin C Desai

37

INDEX

4= Bipin C

38

An index is created to speed up access to the recordsin a
file with a given value for a search key fields.

Any subset of the fields of a record can be used as
search key for an index on the relation.

Search key may not be the same as primary key
An index contains a collection of data entries, and supports

efficient retrieval of all records with a given search key
value K.

- Bipin C Desai 39

B+ Tree Indexes

* Internal nodes (pages) have index entries, only used for navigation:
% Leaf pages contain data entries, and are chained (prev & next)

Non-leaf
Pages

Leaf

Pages
(Sorted by search key)

|°--| |<

o

index entry

1
Po | K1 |Pq| K2|P, o o o Km|Pm
| | | |
; } } ;

4= Bipin C 40

Example B+ Tree

Entries <= @

RooN
/-'é

17

5

13

S

Wes>@

30

P

Note how data entries
in leaf level are sorted

27

-

i SN N
{3l [[l Jepe] [][22

e oY ™
| ||27*|29*| | ||33*| 34*|38*|39*|

* Find 28%? 29*? All > 15* and < 30*

* Insert/delete: Find data entry in leaf, then change it. Need

to adjust parent sometimes.

— And change sometimes bubbles up the tree

4= Bipin C

41

Hash-Based Indexes

— Bucket = primary page plus zero or more overflow
pages.

Good for equality selections.
Index is a collection of buckets.

— Buckets contain data entries.

* Hashing function h: h(r) = bucket in which (data entry for)
record r belongs. h looks at the search key fields of r.

— No need for “index entries” in this scheme.

4= Bipin C

42

Alternatives for contents of an Index

In an index entry k* we can store:
Alternative 1: The actual data record with key value k, or
Alternative 2: <Kk, rid of data record with search key value k>, or
Alternative 3 <Kk, list of rids of data records with search key k>

Choice of alternative for data entries is orthogonal to the indexing
technique used to locate data entries with a given key value k.
— Examples of indexing techniques: B+ trees, hash-based
structures
— Typically, index contains auxiliary information that directs
searches to the desired data entries

4= Bipin C

43

Alternatives for Data Entries

* Alternative 1:

— If this is used, index structure is a file organization for
data records (instead of a Heap file or sorted file).

— At most one index on a given collection of data records
can use Alternative 1. (Otherwise, data records are
duplicated, leading to redundant storage and potential
inconsistency.)

— If data records are very large, # of pages containing data
entries 1s high. Implies size of auxiliary information in
the index is also large.

4= Bipin C

44

Alternatives for Data Entries

* Alternatives 2 and 3:

— Data entries typically much smaller than data records.
Better than Alternative 1 with large data records,
especially if search keys are small. (Portion of index
structure used to direct search, which depends on size of
data entries, is much smaller than Alternative 1.)

— Alternative 3 more compact than Alternative 2, but leads
to variable sized data entries even if search keys are of
fixed length.

4= Bipin C

45

Index Classification

Primary vs. secondary: If search key contains primary key,
then it is called primary index.

— Unique index: Search key contains a candidate key.
Clustered vs. un-clustered: 1f the order of the data records is

the same as, or “close to’, the order of the data entries, then the

index is called a clustered index: else un-clustered.

— Alternative 1 implies clustered; in practice, clustered also
implies Alternative 1 (since sorted files are rare).

— A file can be clustered on at most one search key.

— Cost of retrieving data records through index varies greatly

based on whether index is clustered or not!

4= Bipin C

46

Clustered vs. Unclustered Index
records are stored in a Heap file.
space on each page for future inserts).
recs is “close to’, but not identical to, the sort order.)

direct search for
data entries

CLUSTERED

/ \
Data entries Data entries

Suppose that Alternative (2) is used for data entries, and that the data
— To build clustered index, first sort the Heap file (with some free

— Overflow pages may be needed for inserts. (Thus, order of data

Index entries UNCLUSTERED

4= Bipin C

47

Cost Model for Our Analysis

We ignore CPU costs, for simplicity:

— B: The number of data pages

— R: Number of records per page

— D: (Average) time to read or write disk page

— Measuring number of page I/O’s ignores gains of pre-
fetching a sequence of pages; thus, even I/O cost is only
approximated.

~ Average-case analysis; based on several simplistic
assumptions.

These are only estimates to show the overall trends!

4= Bipin C

48

Comparing File Organizations

Heap files (random order; insert at eof)
Sorted files, sorted on <age, sal>
Clustered B+ tree file, Alternative (1), search key <age, sal>

Heap file with un-clustered B + tree index on search key
<age, sal>

Heap file with unclustered hash index on search key <age,
sal>

4= Bipin C

49

Operations to Compare

Scan: Fetch all records from disk
Equality search

Range selection

Insert a record

Delete a record

4= Bipin C

50

Assumptions

Heap Files: Equality selection on key; exactly one match.
* Sorted Files: Files compacted after deletions.
* Indexes: Alt (2), (3): data entry size = 10% size of record
— Hash: No overflow buckets.
* 80% page occupancy => File size = 1.25 data size
— Tree: 67% occupancy (this is typical).
* Implies file size = 1.5 data size
Scans: Leaf levels of a tree-index are chained.

— Index data-entries plus actual file scanned for unclustered
indexes.

Range searches:We use tree indexes to restrict the set of data
records fetched, but ignore hash indexes.

4= Bipin C 51

B: The number of data pages

. R: Number of records per page
COSt Of Operatlons D: (Average) time to read or write disk page
(a) Scan (b) Equality |(c) Range (d) Insert |(e) Delete
(1)Heap |BD 0.5BD BD 2D Search
+D
(2) Sorted |BD Dlog 2B D(log2B+ |Search |Search

pgswith |+ BD +BD
match recs)

(3) 1.5BD DlogF 1.5B |[D(logF 1.5B |Search |Search

Clustered + # pgs w. +D +D
match recs)

(4) Unclust. \BD(R+0.15) ID(1 + D(log F 0.15B |Search |Search

Tree index log F 0.15B) |+ # pgsw. |+ 2D + 2D
match recs)

(5) Unclust. BD(R+0.125) {2D BD Search |Search

H ash index + 2D + 2D

These are estimates using many simplifying assumption!

4= Bipin C 52

Understanding the Workload

1 For each query in the workload:

— Which relations does it access?

— Which attributes are retrieved?

— Which attributes are involved in selection/join conditions? How
selective are these conditions likely to be?

1 For each update in the workload:

— Which attributes are involved in selection/join conditions? How
selective are these conditions likely to be?

— The type of update (INSERT/DELETE/UPDATE), and the
attributes that are affected.

" Bipin C 53

Choice of Indexes

* What indexes should we create?

— Which relations should have indexes? What field(s) should be
the search key? Should we build several indexes?

* For each index, what kind of an index should it be?
— Clustered? Hash/tree?

* One approach: Consider the most important queries in turn.
Consider the best plan using the current indexes, and see if a better

plan is possible with an additional index. If so, create it.

— Obviously, this implies that we must understand how a DBMS
evaluates queries and creates query evaluation plans!

— For now, we discuss simple 1-table queries.

* Before creating an index, must also consider the impact on
updates in the workload!

4= Bipin C 54

Index Selection Guidelines

* Attributes in WHERE clause are candidates for index keys.
— Exact match condition suggests hash index.
— Range query suggests tree index.

* Clustering is especially useful for range queries; can also
help on equality queries if there are many duplicates.

* Multi-attribute search keys should be considered when a WHERE
clause contains several conditions.

— Order of attributes is important for range queries.

— Such indexes can sometimes enable index-only strategies for
important queries.
* For index-only strategies, clustering is not important!
* Try to choose indexes that benefit as many queries as possible.

Since only one index can be clustered per relation, choose it based
on important queries that would benefit the most from clustering.

4= Bipin C 55

Examples of Clustered Indexes SELECT E.dno

FROM Emp E
WHERE E.age>40

B+ tree index on E.age can be used to get
qualifying tuples.

SELECT E.dno, COUNT (%)

Is the index clustered? FROM Emp E
WHERE E.age>10

Consider the GROUP BY query. GROUP BY E.dno

If many tuples have E.age > 10, using
E.age index and sorting the retrieved
tuples may be costly.

How selective 1s the condition?

Clustered E.dno index may be better!

Equality queries and duplicates: SELECT E.dno
FROM Emp E

Clustering on E.hobby helps!
ustering on £.hobby helps WHERE E.hobby=Stamps

4= Bipin C 56

Indexes with Composite Search Keys

Composite Search Keys: Search on a
combination of fields.

Examples of composite key
Equality query: Every field value is indexes using lexicographic order.

equal to a constant value. E.g.

11,80

wrt <sal,age> index:

1210

12,20

11
12
12

age=20 and sal =75

13,75

Range query: Some field value is
not a constant. e.g.:age =20;

<age, sal>

13

<age>

10

or age=20 and sal > 10

[Data entries in index sorted by search |-

A
/

key to support range queries.

Lexicographic order, or

. Data entries in index
Spatial order. sorted by <sal,age>

20

75

\
80

<sal>

Data entries
sorted by <sal>

4= Bipin C

57

Composite Search Keys

* To retrieve Emp records with age=30 AND s5a/=4000, an index on
<age,sal> would be better than an index on age or an index on sal.

— Choice of index key orthogonal to clustering etc.
* If condition is: 20<age<30 AND 3000<sa/<5000:

— Clustered tree index on <age,sal> or <sal,age> is best.
* If condition is: age=30 AND 3000<sal<5000:
— Clustered <age,sal> index much better than <sal,age> index!

* Composite indexes are larger, updated more often.

9,

CIF

Bipin C

58

Index-Only Plans

A number of queries
can be answered
without retrieving
any tuples from one
or more of the tables
involved if a
suitable index 1s

<E.dno>

<E.dno,E.sal>
Tree index!

SELECT E.dno, COUNT(%)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

available.
<E. age,E.sal>SELECT AVG(E.sal)
or FROM Emp E
<E.sal, E.agexWHERE E.age=25 AND
Tree index! | E.sal BETWEEN 3000 AND 5000
< Bipin C 59

Index-Only Plans (Contd.

* Index-only plans are
possible if the key is
<dno,age> or we
have a tree index
with key <age,dno>

— Which is better?

— What if we
consider the
second query?

)

SELECT E.dno, COUNT (*)
FROM Emp E

WHERE E.age=30
GROUP BY E.dno

SELECT E.dno, COUNT (%)
FROM Emp E

WHERE E.age>30
GROUP BY E.dno

BiRIRINEsAl

60

Index-Only Plans (Contd.)

<E.dno>

Index-only plans
can also be found
for queries
involving more than

SELECT D.mar
FROM DeptD, Emp E
WHERE D.dno=E.dno

one table;
<E.dno,E.eid>
SELECT D.mgr, E.eid
FROM DeptD, Emp E
WHERE D.dno=E.dno
< Bipin C 61
Summary

Many alternative file organizations exist, each appropriate in some
situation.

If selection queries are frequent, sorting the file or building an
index is important.
— Hash-based indexes only good for equality search.

— Sorted files and tree-based indexes best for range search; also
good for equality search. (Files rarely kept sorted in practice;
B+ tree index is better.)

Index is a collection of data entries plus a way to quickly find
entries with given key values.

,«
=

Bipin C 62

Summary (Contd.)

* Data entries can be actual data records, <key, rid> pairs, or
<key, rid-list> pairs.
— Choice orthogonal to indexing technique used to locate
data entries with a given key value.

* Can have several indexes on a given file of data records,
each with a different search key.

* Indexes can be classified as clustered vs. unclustered,
primary vs. secondary, and dense vs. sparse. Differences
have important consequences for utility/performance.

" Bipin C 63

Summary (Contd.)

* Understanding the nature of the workload for the application, and
the performance goals, is essential to developing a good design.

— What are the important queries and updates? What
attributes/relations are involved?

* Indexes must be chosen to speed up important queries (and perhaps
some updates!).

— Index maintenance overhead on updates to key fields.
— Choose indexes that can help many queries, if possible.
— Build indexes to support index-only strategies.

— Clustering is an important decision; only one index on a given
relation can be clustered!

— Order of fields in composite index key can be important.

4= Bipin C 64

Database Index
&

Performance Optimization

Bipin C. DESAI

- Bipin C Desai 65
MariaDB [test]> desc member;

Fmm e o LT TP oeme-- Homme- L E L E T T PP Fommmm e +
| Field | Type | Null | Key | Default | Extra |
o Fommmm e e +onmmm- +----- L P R L +
| userid | int(10) unsigned | NO | PRI | NULL | auto increment |
| username | varchar(45) | NO | UNI | |

| password | varchar(45) | NO | | | |
| salutation | varchar(45) | NO | | | |
| lastname | varchar(64) | NO | | | |
| middle name | varchar(30) | NO | | | |
| firstname | varchar(64) | NO | | | |
| organization | varchar(120) | NO | | | |
| department | varchar(255) | NO | | | |
| address | varchar(255) | NO | | | |
| city | varchar(70) | NO | | | |
| province | varchar(70) | NO | | | |
| country | varchar(70) | NO | | | |
| postcode | varchar(10) | NO | | | |
| email | varchar(70) | NO | | | |
| fax | varchar(70) | NO | | | |
| phone | varchar(70) | NO | | | |
| status | varchar(45) | NO | | | |
| register date | datetime | NO | | 0000-00-00 00:00:00 | |
| last login date | datetime | NO | | 0000-00-00 00:00:00 | |
| last conference | int(10) | YES | | NULL | |
| receive email | varchar(20) | NO | | NULL | |
R T e LR E T TR Homme- R LT oo +
4=’ Bipin C Desai 66

Create INDEX

MariaDB [test]> create index cntr_indx on member(country);
Query OK, 0 rows affected (0.061 sec)
Records: 0 Duplicates: 0 Warnings: 0

Creating an index on multiple columns
MariaDB/MySQL allows composite(multi-column) index
(up to 16 columns)

Usually 2 or 3 columns are sufficient

CREATE INDEX index name ON TableName (Coll, COL2, COI3);

- Bipin C Desai 67

Drop INDEX

Drop index syntax
ALTER TABLE table name DROP INDEX index name;
Rename index syntax

ALTER TABLE table name RENAME INDEX index name
TO new_index name;

Show indexes syntax

SHOW INDEX FROM tableName;

- Bipin C Desai 68

EXPLAIN
One can use EXPLAIN to see how the DB executes a DML statement

DML statements are:
SELECT, DELETE, INSERT, REPLACE, and UPDATE statements.
EXPLAIN gives execution plan information from the built-in DB

optimizer

MariaDB [test]> explain select * from member limit 5;

e e e e e R e +o----- +------ e +
| id | select_type | table | type | possible keys | key | key len | ref | rows | Extra |
e e e e e R e +o----- +------ e +
| 1 | SIMPLE | member | ALL | NULL | NULL | NULL | NULL | 2625 | |
e e e e e R e +o----- +------ e +
MariaDB [test]> explain select * from member limit 1000;

e e e e e R e +o----- +------ e +
| id | select_type | table | type | possible keys | key | key len | ref | rows | Extra |
e e e e e R e +o----- +------ e +
| 1 | SIMPLE | member | ALL | NULL | NULL | NULL | NULL | 2625 | |
e e e e e R e +o----- +------ e +
The null for the “possible keys” and “key” above are both NULL

This indicates that the DB does not have an index it can use
The DB will access 2625 rows to generate the result

- Bipin C Desai 69

MariaDB [test]> explain select * from member where country ='Canada' limit 1000;

+------ B e +------ Ho-mmmm s e - oo +------ e +------ +------ +o-mm oo +
| id | select type | table | type | possible keys | key | key len | ref | rows | Extra |

+------ R L e R +------ L e +------ Fr-mme - +------ F------ e R +

| 1 | SIMPLE | member | ALL | NULL | NULL | NULL | NULL | 2625 | Using where |

+------ Fomm e e e oo +o--- - +------ B e +------ B +------ +-o----- Fommm o oo +

MariaDB [test]> create index cntr_indx on member(country); U f d t
MariaDB [test]> explain select * from member where country ='Canada' limit 1000;

+------ R L e R +------ L e e L +------- o= e R e L L +
| id | select_type | table | type | possible_keys | key | key len | ref | rows | Extra |
+------ Fomm e e e oo +o--- - +------ B e e +o-mm - - +o------ +o----- e +
| 1 | SIMPLE | member | ref | cntr_indx | entr_indx | 212 | const | 343 | Using index condition |
+------ R +------ - +------ Hommmmmse o e m - e e +------- +o----- e +
MariaDB [test]> show index from member;
,,
| Table | Non unique | Key name | Seq in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index type | Comment | Index comment |
#eeneee b #oe s #oe T o o oo P e +oemee e Hmmmens Ho T +
| member | © | PRIMARY | 1 | userid | A | 2625 | NULL | NULL | | BTREE | | |
| member | ©® | Uniquel | 1 | username | A | 2625 | NULL | NULL | | BTREE | | |
| member | 1 | entr_indx | 1 | country | A | 175 | NULL | NULL | | BTREE | | |
#oemm e SR T R EEEE s Heemmm s Heemmeeees #ommee o +oees Hom e Hoemmmene REEEEEEEE +
MariaDB [test]> explain select userid from member where country ='Canada’ limit 1000;
,,

| id | select type | table | type | possible keys | key | key len | ref | rows | Extra |

PR b PO P O b PR P P T +

| 1 | SIMPLE | member | ref | entr_indx | entr_indx | 212 | const | 343 | Using where; Using index |

rr

- Bipin C Desai 70

SQL III - Relational Object Features

Notes

- Bipin C. Desai

,,cIF To be used in the spirit of copy-forward! https://users.encs.concordia.ca/~bcdesai/CopyForward.pdf

& Bipin C Desai

o Handling complex data and OO Concept

o Using structured data types and inheritance in SQL
o Object Identity (OID) and reference types in SQL
o Implementing Object features in relational DBMS
o Persistent Programming Languages

o Include object orientation and constructs to deal with added
data types in RDBMS.

o Add complex types, including non-atomic values such as
nested relations.

o Extend modeling features while retaining the declarative
access to data

o Preserve compatibility with SQL

& Bipin C Desai

This 1s what we started with!
123 Smith D1 P1 5 L1

P2 30 L1
234 Ma D2 P1 20 L1
P3 10 L2
P4 5 L3

345 Russo D1 P1 35 L1

Example of a non-normal form (NNF)
relation

& Bipin C Desai 3

123 |Smith D1 P1 5 L1
P2 |30 |L1

234 |Ma D2 |P1 20 L1
P3 |10 |L2
P4 |5 L3
345 |Russo D1 |P1 35 |L1

A non-normal form relation —
Nested relation

* Abandon atomic attribute requirement by conceptually allowing
nested relations — relations within relations

* Maintain the mathematical foundation of relational model

* Allow NNF 1. e, non-normal form

& Bipin C Desai 4

Complex data

Example of a relation with complex data
including: array, composite data, sets

Title Authors Publication (Name, | Meeting Subject
array Vol, Date, pages) set

Report of [Caillau, (Computer Networks WWW-I

{Web, searching}

the Priorities Desai] and ISDN Systems;
Workshop Vol. 27-2,;November
1994; pp. 334-336)
Three [Richards, (Stanford, CA,;;Sept, Making {Big Data,
Paradoxes of King] 2013,;pp102-1050) End Meet security, privacy]
Big data
() Bipin C Desai

Decomposition of complex data into
4ANF decomposition!

A 4ANF relation does not have any multivalued dependency of the form

X—=>=Y
Report of the Priorities Workshop —— {Caillau, Desai}

Report of the Priorities Caillau,
Workshop

Report of the Priorities Desai
Workshop

Three Paradoxes of Richards
Big data

Three Paradoxes of King
Big data

3 ot

Bipin C Desai

Decomposition of complex data into
4NF decomposition (contd.)!

Report of the Priorities Computer Vol. Nov. pp. 334-336

Workshop Networks 27-2 1994
and ISDN
Systems
Three Paradoxes of Big Stanford, Sept, ppl102-1050
data CA 2013,
3 Bipin C Desai 7

Decomposition of complex data into
4ANF decomposition (contd.)!

Report of the Priorities Workshop WWW-I

Three Paradoxes of Big data Making End Meet

Report of the Priorities Workshop Web
Report of the Priorities Workshop searching

Three Paradoxes of Big data Big Data
Three Paradoxes of Big data security
Three Paradoxes of Big data privacy

@

Bipin C Desai 3

Postgresql

Ingres was one of first relational ‘open source” relational
Database that was developed in the early 1970s at UoC, Berkley
It gave rise to, among others, SysBase, Microsoft SQL server etc.
Ingres was followed by Postgres and Postgresql

It 1s available for various versions of Linuses and other OS.

To 1nstall in

fedora core: dnf -y install postgres*
* Debian, Ubuntu: apt install postgresql postgresql-contrib

& Bipin C Desai

PostgreSQL is sometimes called an "object-relational database"
because it supports table inheritance.

Most of the ORDBMS features were removed from the

Postgres and became PostgreSQL.

Once PostgresSQL is installed the database is initialized using:
initdb -D /path-to/postgres/data

One can now start the database server using:
pg_ctl -D /path-to/postgres/data -1 logfile start

Once the server is running, a database could be created using:
createdb testdb

& Bipin C Desai

10

Postgresql shell

The shell can be started using the command: psql

To exit from psql use: \q or CTRL-D
To get a list of commands use: \?
To use a particular database use: \c nameofDB;

To list all the databases use; \I;

To stop Postgresql server use the command

pg_ctl -D /path-to/postgres/data -1 logfile stop

& Bipin C Desai

11

Postgres objects

CREATE TABLE publication (
title text primary key;
authors text[],
meeting text,
publication text[][],
topics text []

1 dimensional array

2 dimensional array

& Bipin C Desai

12

postgres=# \d+ publication;

Table "public.publication"

Column | Type | Modifiers | Storage |Stats target|Description
————————————— e s e s s e it
title | text | not null | extended |
authors | text[] | | extended |
meeting | text | | extended | |
publication | text[] | | extended |
topics | text[] | | extended |
Indexes:

"publication pkey" PRIMARY KEY, btree (title)

Has OIDs: no

C '1F

Bipin C Desai 13

insert into publication values(

'Report of the Priorities Workshop',

ARRAY(['Caillau', 'Desai'],

"WWW-T,

ARRAY[['event', 'Computer Networks and ISDN Systems'],
['volume','27-2'], ['year', November 1994'], ['pages','pp. 334-336']],
ARRAY['Web', 'searching']);

postgres=# select * from publication;

Report of the Priorities Workshop | {Caillau,Desai} | WWW-I |
{{event, "Computer Networks and ISDN Systems"}, {volume,27-2},
{year, "November 1994"}, {pages, "pp. 334-336"}} | {Web,searching}
(1 row)

C '1F

Bipin C Desai 14

Use the unnest() function to convert array to set of rows:
SELECT *
FROM (
SELECT *, unnest(authors) allauthors
FROM publication) x
WHERE allauthors LIKE 'Cail%';

title | authors | meeting | publication | topics |allauthors
Report of the Priorities Workshop | {Caillau,Desai} | WWW-1 |
{{event,"Computer Networks and ISDN Systems"},{volume,27-2},
{year,"November 1994"}, {pages,"pp.334-336"}} |

{Web,searching} | Caillau

<% Bipin C Desai 15

SQL 1999 extended to support complex types:

Collection and large object types
Nested relations are an example of collection types

Structured types: arbitrary hierarchies and composite attributes
Inheritance
Object orientation: object identifiers and references

SQL 1999 is yet to be fully implemented in most DBMS (2014)
Examples of OODBMS are:
ObjectStore, Objectdatabase++, Objectivity/DB, etc.

Some RDBMS have introduced some object features

OODBMS feature including using object oriented language to
manipulate database objects along with the others of RDBMS

(ACID, Query language, Recovery)

& Bipin C Desai 16

Oracle: Creating type (class)and a nested table!

CREATE OR REPLACE TYPE person_typ AS OBJECT (
idno NUMBER,

name VARCHAR?2(30),

phone VARCHAR?2(20),

MAP MEMBER FUNCTION get idno RETURN NUMBER,
MEMBER PROCEDURE display details

(SELF IN OUT NOCOPY person_typ));

{pre created. The SELF parameter denotes the
object instance currently invoking
the method. NOCOPY allows passing
the argument by reference (i.e., not
! Based on old Oracle documents copying the areument to the method)
I Bipin C Desai 17

Member Methods for Comparing Objects

An object type, with multiple attributes of various data types,

has no predefined axis of comparison.

Methods should be specified to compare & order object type variables
The option is to define an map method or an order method for
comparing objects, but not both.

Map Methods

Map methods return values that can be used for comparing and

sorting.

Return values can be any built-in data types(except LOBs and BFILEs)
Order Methods

An order method directly compares values for two particular objects.

& Bipin C Desai 18

SQL> desc person_typ;

Name Null? Type
IDNO NUMBER
NAME VARCHAR2Z2 (30)
PHONE VARCHARZ (20)
METHOD

MAP MEMBER FUNCTION GET IDNO RETURNS NUMBER
MEMBER PROCEDURE DISPLAY DETAILS

& Bipin C Desai 19

CREATE OR REPLACE TYPE BODY person_typ AS
MAP MEMBER FUNCTION get idno RETURN NUMBER IS
BEGIN
RETURN idno;
END;
MEMBER PROCEDURE display_details
(SELF IN OUT NOCOPY person_typ) IS
BEGIN -- use the put_line procedure of the DBMS OUTPUT
-- package to display details

DBMS OUTPUT.put_line(TO _CHAR(idno)|| ' - '|| name|| ' - ' || phone);
END; CREATE OR REPLACE TYPE
END;

people typ AS TABLE OF

/ person_typ; -- nested table type
Type body created. /

& Bipin C Desai 20

Creating an Instance of a VARRAY or Nested Table

To create an instance of a collection type by calling the constructor
method of the type.

The constructor method is the name of the type.

The elements of the collection i1s a comma-delimited list of arguments
to the method, for example.

person_typ(1, 'John Smith', '1-650-555-0135")

& Bipin C Desai 21

- Create a table that contains an instance of the nested

table type people typ, named people column,

-use the constructor method in a SQL statement to insert values into

people typ.

Example: Using the Constructor Method to Insert Values into a
Nested Tab

CREATE TABLE people tab (

group_no NUMBER,

people column people typ) -- an instance of nested table
NESTED TABLE people column STORE AS people column_nt
/

Table created.

& Bipin C Desai 2

INSERT INTO people tab VALUES (100,

people typ(person_typ(1, 'John Smith', '1-650-555-0135'),
person_typ(2, 'Diane Smith', NULL))) ;

1 row created.

Create a department_persons Table Using the DEFAULT Clause

CREATE TABLE department_persons (

dept_no NUMBER PRIMARY KEY, instance of nested
dept name CHAR(20), table type

dept mgr person typ DEFAULT person_typ(lO/J ohn Doe',NULL),
dept_emps people typ DEFAULT people typ())

NESTED TABLE dept emps STORE AS dept emps_tab;

Table created.

Bipin C Desai 23

SQL> desc department persons;

Name Null? Type

DEPT_NO NOT NULL NUMBER
DEPT_NAME CHAR (20)
DEPT_MGR PERSON_TYP
DEPT_EMPS PEOPLE_TYP

INSERT INTO department_persons VALUES

(101, '"Physical Sciences', person_typ(65,Vrinda Mills', '1-650-555-0125"),
people_typ(person_typ(1, 'John Smith', '1-650-555-0135"),

person_typ(2, 'Diane Smith', NULL)));

INSERT INTO department_persons VALUES

(104, 'Life Sciences', person_typ(70,'James Hall', '1-415-555-0101"),
people typ()) -- an empty people typ table

-- Note that people typ() is a literal invocation of the constructor

-- method for an empty people typ nested table.

/

& Bipin C Desai 24

select * from department persons;
DEPT NO DEPT NAME

DEPT MGR (IDNO, NAME, PHONE)

DEPT EMPS (IDNO, NAME, PHONE)
101 Physical Sciences
PERSON TYP (65, 'Vrinda Mills', '1-650-555-0125")
PEOPLE TYP(PERSON TYP(1l, 'John Smith', '1-650-555-0135'),
PERSON TYP (2, 'Diane Smith', NULL))
104 Life Sciences
PERSON TYP (70, 'James Hall', '1-415-555-0101")
DEPT NO DEPT NAME

DEPT MGR (IDNO, NAME, PHONE)

DEPT EMPS (IDNO, NAME, PHONE)

PEOPLE TYP()

I Bipin C Desai 25

Nesting Results of Collection Queries

SELECT d.dept_emps Example shows the query retrieving the
FROM department_persons d; nested collection of employees from the
department persons table

The column dept_emps is a nested table collection of person_typ
type.

The dept_emps collection column appears in the SELECT list as an
Ordinary scalar column.

Querying a collection column in the SELECT list this way nests the
elements of the collection in the result row that the collection is

associated with. DEPT EMPS(IDNO, NAME, PHONE)

PEOPLE TYP(PERSON TYP(1, 'John Smith', '1-650-555-0135"),
PERSON_TYP(2, 'Diane Smith', NULL))
PEOPLE TYP()

I Bipin C Desai 2%

Unnesting Results of Collection Queries

To view collection data using tools that require a conventional
format, one must un-nest, the collection attribute of a row into

one or more relational rows using a TABLE expression

TABLE expressions enable you to query a collection in the FROM
clause as a table.

In effect, you join the nested table with the row that contains
the nested table.

Not all tools or applications can deal with results in a nested format.

Bipin C Desai

27

TABLE expressions can be used to query any collection value
expression, including transient values such as variables and
parameters.

Example Un-nesting Results of Collection Queries

SELECT e.*
FROM department_persons d, TABLE(d.dept emps) ¢;

IDNO NAME PHONE

1 John Smith 1-650-555-0135
2 Diane Smith

& Bipin C Desai

28

Creating and Populating Simple Nested Tables
CREATE TABLE students (
graduation DATE,
math majors people typ, -- nested tables (empty)
chem_majors people typ,
physics _majors people typ)
NESTED TABLE math _majors STORE AS math majors_nt
-- storage tables
NESTED TABLE chem majors STORE AS chem majors_nt
NESTED TABLE physics majors STORE AS physics majors_nt;

Table created.

& Bipin C Desai 29

SQL> desc students;

Name Null? Type
GRADUATION DATE
MATH MAJORS PEOPLE TYP
CHEM MAJORS PEOPLE TYP

PHYSICS MAJORS PEOPLE TYP
The NESTED TABLE..STORE AS clause specifies storage
names for nested tables.
Elements of a nested table are actually stored in a

separate storage table.

Storage names -used to create
CREATE INDEX math idno idx ON
CREATE INDEX chem idno idx ON
CREATE INDEX physics idno idx

an index on a nested table.
math majors nt(idno);
chem majors nt (idno) ;

ON physics majors nt (idno) ;

& Bipin C Desai

30

INSERT INTO students (graduation) VALUES

('01-JUN-03") ;

SQL> select * from students;
GRADUATION

MATH MAJORS (IDNO, NAME, PHONE)

CHEM MAJORS (IDNO, NAME, PHONE)

PHYSICS MAJORS (IDNO, NAME, PHONE)

01-JUN-03

<% Bipin C Desai

31

UPDATE students

SET math_majors =

people typ (person_typ(12, 'Bob Jones', '650-555-0130"),
person_typ(31, 'Sarah Chen', '415-555-0120"),
person_typ(45, 'Chris Woods', '415-555-0124")),

chem majors =

people typ (person_typ(51, 'Joe Lane', '650-555-0140"),
person_typ(31, 'Sarah Chen', '415-555-0120"),
person_typ(52, 'Kim Patel', '650-555-0135")),
physics_majors =

people typ (person_typ(12, 'Bob Jones', '650-555-0130"),
person_typ(45, 'Chris Woods', '415-555-0124"))

WHERE graduation ='01-JUN-03";

& Bipin C Desai

32

GRADUATION
SQL> select * from students;

MATH_MAJORS(IDNO, NAME, PHONE)

CHEM_MAJORS(IDNO, NAME, PHONE)

PHYSICS MAJORS(IDNO, NAME, PHONE)

01-JUN-03

PEOPLE_TYP(PERSON TYP(12, 'Bob Jones', '650-555-0130"),
PERSON_TYP(31, 'Sarah Chen', '415-555-0120"),
PERSON_TYP(45, 'Chris Woods', '415-555-0124"))

PEOPLE TYP(PERSON_TYP(51, 'Joe Lane', '650-555-0140),
PERSON_TYP(31, 'Sarah Chen', '415-555-0120),
PERSON_TYP(52, 'Kim Patel', '650-555-0135'"))

PEOPLE TYP(PERSON TYP(12, 'Bob Jones', '650-555-0130"),

PERSON-TYP(45, 'Chris Woods';'415-555-0124")

& Bipin C Desai 33

select owner, object name, object type
from ALL OBJECTS
where object_type = "TYPE'and owner="BCDESALI';

select owner, object name, object type
from ALL OBJECTS
where object type = '"TABLE' and owner="BCDESAT’;

& Bipin C Desai 34

* Following are some slides from

Database System Concepts, 6™ Ed.

©Silberschatz, Korth and Sudarshan
corrected for

Oracle by BCD

& Bipin C Desai

35

Structured Types and Inheritance in SQL

Structured types (a.k.a. user-defined types) can be declared &
used in SQL

create type Name as object
(firstname varchar(20),
lastname varchar(20))

final
create type Address as object

(street varchar(20),
city varchar(20),
zipcode varchar(20))

not final
— Note: final and not final indicate whether subtypes can
be created

& Bipin C Desai

36

SQL> desc Name;

Name Null? Type
FIRSTNAME VARCHAR2(20)
LASTNAME VARCHARZ2(20)
SQL> desc address;
address 1s NOT FINAL
Name Null? Type
STREET VARCHARZ2(20)
CITY VARCHAR2(20)
ZIPCODE VARCHARZ2(20)
& Bipin C Desai 37

Structured Types and Inheritance in SQL

Structured types can be used to create tables with composite

attributes
create table person (
name Name,

address Address,
dateOfBirth date)
* Dot notation used to reference components: name.firstname

SQL> desc person;
Name Null? Type
NAME NAME
ADDRESS ADDRESS
DATEOFBIRTH DATE

& Bipin C Desai 38

Structured Types (cont.)

User-defined row types
create type PersonType as object (

N Warning: Type created with compilation errors.
name ivame, SQL> show errors

address Address, Errors for TYPE PERSONTYPE:
, LINE/COL ERROR
dateOfBirth date)
not final 0/0 PL/SQL: Compilation unit analysis terminated

2/6 PLS-00320: the declaration of the type of this expression is
incomplete or malformed

* Once a type is created, we can create one or more tables using
our (user-defined) type
create table customer of CustomerPersonType

& Bipin C Desai 39

Structured Types (cont.)

* Alternative method which uses unnamed row types.

create table person r(
name row(firstname varchar(20),
lastname varchar(20)),
address row(street varchar(20),
city varchar(20),
zipcode varchar(20)),
dateOfBirth date)

row 1s not supported in oracle!!!

& Bipin C Desai 40

Methods

In ORDMS, we can add a method declaration with a structured type.
method ageOnDate (onDate date)
returns interval year
Method body is given separately.
create instance method ageOnDate (onDate date)
returns interval year
for CustomerType
begin
return onDate - self.dateOfBirth;
end
We can now find the age of each customer:
select name.lastname, ageOnDate (current_date)

from customer

& Bipin C Desai 41

Constructor Functions

Constructor functions are used to create values of structured types

create function Name(firstname varchar(20), lastname varchar(20))
returns Name
begin
set self.firstname = firstname;
set self.lastname = lastname;
end

To create a value of type Name, we use
new Name(‘John’, ‘Smith’)

Normally used in insert statements

insert into Person values
(new Name(‘John’, ‘Smith),
new Address(’20 Main St’, ‘New York’, ‘11001°),
date ‘1960-8-22");

& Bipin C Desai 4

Type Inheritance
Suppose that we have the following type definition for people:

create type Person
(name varchar(20),
address varchar(20))

Using inheritance to define the student and teacher types
create type Student
under Person
(degree varchar(20),
department varchar(20))
create type Teacher
under Person
(salary integer,
department varchar(20))
Subtypes can redefine methods by using overriding method in place
of method in the method declaration

& Bipin C Desai 43

Multiple Type Inheritance

SQL:1999 and SQL:2003 do not support multiple inheritance

If our type system supports multiple inheritance, we can define
a type for teaching assistant as follows:

create type Teaching Assistant

under Student, Teacher
To avoid a conflict between the two occurrences of department
we can rename them

create type Teaching Assistant
under
Student with (department as student dept),
Teacher with (department as teacher dept)

Each value must have a most-specific type

¢BRinic Hbesai 4

Table Inheritance

Tables created from subtypes can further be specified as subtables

E.g. create table people of Person,
create table students of Student under people;
create table teachers of Teacher under people;

Tuples added to a subtable are automatically visible to queries on the
super-table

E.g. query on people also sees students and teachers.

Similarly updates/deletes on people also result in updates/deletes

on subtables

To override this behaviour, use “only people” in query
Conceptually, multiple inheritance is possible with tables

e.g. teaching assistants under students and teachers

Not supported in SQL currently: So we cannot create a person
(tuple in people) who is both a student and a teacher

& Bipin C Desai 45

JSON Objects

SGML= XML= JSON
JSON Java Script Object Notation

MariaDB [test]> select JSON OBJECT
("mame', 'Don Duck',
'IQ', 'Calm Genius') as top duck;

o +
| top duck |
oo +
| {"name": "Don Duck", "IQ": "Calm Genius"} |
o - +

1 row in set (0.001 sec)

& Bipin C Desai 46

chr

Bipin C Desai

47

\oSQ*

chr

Bipin C Desai

48

Brewer’s (CAP) Theorem

There are three core systemic requirements that exist in a special
inter-relationship when it comes to designing and deploying
applications in a distributed environment

The three requirements are:

Consistency,

Availability and
Partition Tolerance
Compare these with the ACID property that is the traditional
requirement

Atomicity — all or nothing

Consistency - the data goes from one consistent state to another

Isolation — a transaction is guaranteed to run as if it was the only one

Durability — any changes made by a transaction are persistent

) Bipin C Desai

* Articulation

* points

* Bridge

A distributed system with articulation points (cut vertex)
removing which disconnects the graph and bridges(connects
subgraphs)

) Bipin C Desai

Brewer’s (CAP) Theorem

Consistency: A constraint of distributed systems that multiple values
for the same piece of data are not allowed. Atomicity guarantees
that all changes made by a transaction are made or there would
be no changes

Availability: Availability means that a service is available. Sites
must not to go down at busy periods just because they are busy.
Partition Tolerance: A partition happens when, say, a bridge fails
or an articulation node goes down

This causes the network to be partitioned.

Temporary partitions are a possible and critical systems should be
tolerant to such events

Bipin C Desai 51

Dealing with CAP — only two could be guaranteed!

Drop Partition Tolerance

Run on one system or have bullet proof distributed system
(not possible)

Drop Availability Tolerance
Economically and political downside.

Drop Consistency Tolerance :

This is the obvious choice in most cases.

Easy to deal with — the masses will not know!!!

& Bipin C Desai 52

NoSQL
New database applications and new databases — non-relational

Abandon the ACID property — substitute performance, scalability etc.
Group most often required data items together
— abandon normalization and the relational approach and hence
eliminate joins
Cluster friendly- allow use of multitude of cheap servers
— distributed and partitioned
- No fixed schema (not really!)

& Bipin C Desai 53

NoSQL
Category of “model” and some implementations
Column family: BigTable(Google),Cassandra, Druid, Hadoop/HBase
Unique keys point to multiple columns.
The columns are arranged by column family.
Document: Apache CouchDB, Couchbase, MongoDB
Lotus Notes and are similar to key-value stores for semi-structured data
The semi-structured documents are stored in JSON like formats.
Key-value: Dynamo(Amazon), FoundationDB, MemcacheDB, Redis
A unique key with pointers to items of data: to implement.
inefficient when accessing small portion of data
Graph: Allegro, Neo4J, InfiniteGraph, OrientDB
A graph theory based model is used

See: http://nosql-database.org/ for a list of NoSQL databases

& Bipin C Desai 54

Hadoop

Hadoop is a software approach to implements massively
parallel computing. http://hadoop.apache.org/

Hadoop modules:

Hadoop Common: The common utilities that support the other
Hadoop modules.

Hadoop Distributed File System (HDFS™):

A distributed file system that provides high-throughput access
to application data.

Hadoop YARN: A framework for job scheduling and cluster
resource management.

Hadoop MapReduce: A YARN-based system for parallel
processing of large data sets.

These modules provide feature that allow data to be spread across
thousands of servers with little reduction in performance

Bipin C Desai

55

* Semi join X X

* A technique used to support join when a relational database is

* distributed over a number of nodes.

* Suppose table R is on node r and S is on node s and the common
attribute of R and S is C.

In semi-join of R X S, we proceed as follows

we send []. R from node r to node s
. at node we do a join of (J][. R X [].S)

send the result to node r where we do
R ([[cR>T].S)

* MapReduce, apply semi join like concept and distribute

the computation over the nodes

* Answer to the processing needs of large amount of data

& Bipin C Desai

56

* Cassanda (1898) * Helen of Troy (1898)

* _Paintines hy valyn de Mnrgnn
k=]

) Bipin C Desai 57

Apache Cassandra

Cassandra is a NoSQL Column family implementation

Some of the strong points of Cassandra are:
Highly scalable and highly available with no single point of failure
NoSQL column family implementation
Very high write throughput and good read throughput

SQL-like query language (since 0.8) and support search through
secondary indexes

Tunable consistency and support for replication

Flexible schema

) Bipin C Desai 53

/usr/bin/cqlsh

Connected to Test Cluster at localhost:9160.

[cqlsh 4.1.1 | Cassandra 2.0.10 | CQL spec 3.1.1 | Thrift protocol 19.39.0]
Use HELP for help.

cqlsh> CREATE KEYSPACE testkeyspc WITH REPLICATION = { 'class' :
'SimpleStrategy', 'replication_factor': 1 };

cqlsh> use testkeyspc;

Keyspace is a “database”

I Bipin C Desai 59

cqlsh:testkeyspc> describe keyspace;
CREATE KEYSPACE testkeyspc WITH replication = {
'class': 'SimpleStrategy’,
'replication_factor': '1"
3
cqlsh:testkeyspc> >create table salon(
... sname text primary key,

... saddress text);

I Bipin C Desai 60

* Exercise: Install Cassandra on your desktop/laptop
and implement this model

@ Bipin C Desai

61

NOY R

Files and Databases

