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Abstract

Transformer-Based Models for Identifying Customer Needs in User-Generated Content:
Performance Gaps, Unintended Bias, and Broader Implications

Mehrshad Kashi

This thesis reviews and evaluates intelligent methods for identifying customer needs in user-
generated content (UGC). It first surveys prior work and shows that many studies share generic
goals yet overlook the complexity and taxonomy of needs in their evaluation setups. To clarify
scope, the thesis distinguishes between using Machine Learning (ML) as a tool to support market-
ing workflows and treating customer-needs identification itself as an Natural Language Processing
(NLP) task with clear definitions and constructs. Building on this perspective, a large experimental
study assesses Transformer-based models for generalizability, robustness, fairness, and sample ef-
ficiency across varied settings. Results indicate competitive accuracy, with gains in F1 up to 18%
over baselines, but also consistent limitations: shared error patterns, difficulty with rare or unseen
needs, reliance on lexical cues that weakens cross-domain performance, and no guaranteed gains
in sample efficiency from larger models. Cross-domain results benefit most from richer, diverse
domain training, while adding more in-domain data does not improve transfer. Beyond technical
metrics, the thesis highlights adoption barriers, costs, data constraints, task complexity, and ethi-
cal considerations and argues for evaluation frameworks that reflect taxonomy, transparency, and
fairness. It concludes with practical guidance that bridges marketing theory and NLP practice to
support responsible, reproducible deployment.
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Chapter 1

Thesis Introduction

1.1 Introduction

In today’s digital era, vast amounts of UGC are shared online every day, creating significant
opportunities to extract meaningful insights. Exploiting these opportunities requires developing ef-
ficient and scalable models capable of analyzing large volumes of data. Such analytical approaches
have diverse applications, ranging from monitoring consumer sentiment to improve customer sat-
isfaction (Gonzalez, 2019), and forecasting stock market trends (Bollen, Mao, & Zeng, 2011), to
early detection of depressive symptoms and assessment of online users’ suicidal risk (De Choud-
hury, Gamon, Counts, & Horvitz, 2021; O’Dea et al., 2015).

Customer reviews are a unique type of UGC (often in textual format) that reflect personal ex-
periences and expectations with a product. Unlike quantitative metrics, these narratives offer richer
and more nuanced insights, often uncovering subtle patterns in how consumers experience products
and perceive brands. Moreover, the public availability of customer reviews helps build trust and
transparency, influencing potential buyers and reinforcing a brand’s credibility. An emerging ap-
plication of such qualitative feedback is the extraction of customer needs (Kuehl, Scheurenbrand,
& Satzger, 2016; Timoshenko & Hauser, 2019), which enables organizations to pinpoint specific
areas for product improvement (Guo et al., 2016), refine their product ecosystems (Zhou, Ayoub,
Xu, & Jessie Yang, 2020), and adjust marketing strategies in response to emerging consumer trends
(D. T. S. Kumar, 2020).

However, extracting customer needs from the vast volume of online reviews presents several
challenges. Manual analysis is slow, inconsistent, and expensive, making it impractical for real-
time or large-scale applications. To address this, organizations can adopt intelligent systems to
process customer feedback in fully or semi-automated workflows. By leveraging ML-based tech-
niques, these systems create scalable and continuous feedback loops that convert qualitative in-
put into structured insights, enabling ongoing innovation and supporting strategic decision-making
while minimizing operational costs (Kuehl, Mühlthaler, & Goutier, 2020).

Despite recent advances in NLP, particularly the development of Transformer-based models
(Vaswani et al., 2017), that have substantially improved the process of customer needs identification
from UGC, several important limitations continue to hinder their broader effectiveness. Among
these, generalization is one of the main challenges, as in low-resource settings, insufficient data
can severely limit model robustness and predictive accuracy. In addition, Transformer models often
inherit and amplify existing societal biases embedded in training data, raising ethical and practical
concerns regarding fairness and representation in decision-making. While the presence of human
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oversight can partially compensate for some of these issues (e.g., poor generalization and biased
predictions), the field is rapidly advancing toward fully automated agentic systems capable of man-
aging the entire pipeline—from customer feedback analysis to product adaptation (C. Wang, Jiang,
Li, Hu, & Lin, 2024)—making it essential to examine these limitations and mitigate the risks they
pose (Dhamodharan, 2025).

Although recent research has shown increasing interest in developing intelligent methods for
customer needs detection, most efforts have focused narrowly on improving predictive accuracy,
with far less attention given to designing comprehensive evaluation frameworks that consider not
only technical performance but also crucial real-world concerns such as robustness in low-resource
settings and the amplification of societal biases, which directly impact deployment in practice.

Building on the limitations identified in recent work, the main objective of this thesis is three-
fold: (1) to identify and analyze the specific challenges that constrain the performance of state-
of-the-art (SOTA) models in the task of identifying customer needs from UGC; (2) to conduct a
comparative analysis of current SOTA methods (i.e., Transformer-based models) highlighting their
limitations in domain-specific contexts; and (3) to investigate whether unintended social biases,
emerging during model pretraining or development, affect model decisions in ways that may lead
to discriminatory or neglectful outcomes. By shedding light on underexplored challenges through
a critical review of the literature, and by comprehensively evaluating existing methods from mul-
tiple perspectives, this study aims to support the development of approaches that improve model
performance while mitigating algorithmic biases and minimizing the risk of social harm.

1.2 Problem Statement

In customer needs detection from UGC, existing methods typically follow one of two strategies:
predicting the exact category of the expressed need (e.g., through multi-class classification), effec-
tively framing the task as identifying “what” need is present in the context (Kuehl et al., 2016); or
predicting whether the context contains any customer need at all, framing the task as determining
“whether” a need is present (Timoshenko & Hauser, 2019). The former relies on a predefined tax-
onomy of customer need types and assumes these needs are fixed and well-defined, an assumption
that often fails to hold in real-world settings such as UGC, where needs are dynamic, nuanced, and
require human interpretation. In addition, narrowly fixing the label space can limit the detection of
rare or novel needs, which often reflect unmet demands and can offer companies valuable insights
for product innovation (Kärkkäinen, Piippo, Puumalainen, & Tuominen, 2001; von Hippel, 1986).

In contrast, a binary classification approach, which labels each context as either “informative”
(i.e., containing a customer need) or “non-informative,” is often more straightforward and offers a
more flexible and practical alternative. While this formulation does not specify the type of need,
it serves as an effective filtering stage to reduce the volume of UGC that must be reviewed by
professionals and tends to be more robust in dynamic settings where unseen or uncommon needs
may emerge. Such binary text classification formulation has also been shown to be cost-effective
from an operational standpoint. As reported by Timoshenko and Hauser (2019), this filtering ap-
proach can reduce the time required by marketing professionals to extract detailed customer needs
by approximately 45–55%.

Based on these considerations, this thesis focuses on identifying customer needs as expressed
in sentence-level contexts within UGC, framing the task as determining whether a given sentence
contains a customer need. Throughout this thesis, we refer to this binary classification task as
Identifying Sentences containing Customer Needs (ISCN) and utilize online reviews as the data

2



source.

1.3 Research Gaps

As businesses increasingly rely on UGC to identify customer needs, the focus has shifted from
justifying the use of ML solutions to addressing the technical and societal barriers that hinder their
robust adoption. These barriers include high economic costs of ML research and deployment, tech-
nical challenges in data availability and model efficacy, and social considerations such as discrimi-
nation and environmental impact (Cubric, 2020; D. Kumar & Suthar, 2024).

No research has specifically addressed the challenges that constrain the performance of SOTA
models in customer needs identification tasks, particularly in the ISCN. Although prior studies un-
derscore the importance of scalable and reliable models, the performance limitations of Transformer-
based architectures remain underexamined. Moreover, no comprehensive evaluation framework has
been proposed to thoroughly assess the societal implications of intelligent methods in this domain,
an essential step toward ensuring responsible AI adoption.

1.4 Thesis Objectives

Considering the research gaps outlined in Section 1.3, the primary objective of this research is
not to develop a novel approach or to enhance the performance of state-of-the-art (SOTA) models in
the ISCN task. Rather, this study examines the key technical that must be considered when designing
a practical and effective needs identification system. To guide the comprehensive analysis presented
throughout this thesis, the following research questions are proposed:

• RQ1: What challenges and domain complexities characterize the ISCN task, how do
they affect model robustness, and why should they be incorporated into evaluation
frameworks?

Existing literature on the ISCN task predominantly focuses on developing new or improved
model architectures while often overlooking fundamental challenges that can distort perfor-
mance and hinder the deployment of robust real-world solutions. This research question
aims to deepen our understanding of these issues, thereby encouraging the adoption of more
nuanced evaluation strategies and enhanced data practices to sustain model performance in
evolving UGC scenarios.

• RQ2: What comprehensive evaluation framework can be developed to determine whether
an ML model for customer needs analysis is both sufficiently effective and superior to
alternative approaches?

This inquiry addresses the dual challenge of evaluating whether an ML model for customer
needs analysis meets baseline performance standards while also outperforming alternative
approaches under task-specific criteria. It seeks to establish an evaluation framework that
extends beyond traditional accuracy metrics by incorporating dimensions such as generaliza-
tion, robustness, fairness, and adaptability. In particular, the inquiry examines how models
handle complex, dynamic data and address challenges like limited annotated datasets, sample
selection bias, and evolving data trends. The anticipated outcome is to guide the selection and
adoption of models that offer both operational effectiveness and a competitive advantage in
the rapidly evolving landscape of customer needs analysis.
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1.5 Thesis Contributions

This thesis makes the following contributions:

• We provided a comprehensive discussion of the overlooked challenges that affect real-world
performance in the ISCN classification task, including annotation inconsistencies, selection
bias, temporal shifts, and linguistic complexities. By consolidating these issues through a
critical review of literature, we underscore the importance of moving beyond simple metrics
and integrating such considerations into subsequent evaluation frameworks for more robust
and adaptable model design (see Chapter 3). A structured review conducted in this section
further supports this argument.

• We Proposed an evaluation framework for the ISCN classification task, moving beyond con-
ventional metrics to assess model performance from both quality and quantitative perspectives
under conditions such as domain shifts and low-frequency needs with respect to discussed
challenges in Chapter 3. This framework highlights the importance of generalization, robust-
ness, fairness, and adaptability in real-world scenarios (see Chapter 4).

1.6 Structure of the Thesis

This chapter serves as an introduction to the identification of customer needs from UGC and
highlights the motivation for applying SOTA techniques to address challenges in analyzing UGC.
Chapter 2 presents an overview of relevant concepts in NLP, Deep Learning (DL), and the issues of
bias and fairness in NLP systems, and concludes with a review of key literature on customer needs
analysis. Chapter 3 discusses the various complexities and challenges associated with identifying
customer needs in UGC and reviews recent literature. Chapter 4 provides a comprehensive analysis
of Transformer-based models by investigating their technical limitations in the context of ISCN
and guiding future research aimed at overcoming these barriers for real-world adoption. Finally,
Chapter 5 concludes the thesis by summarizing the principal findings, discussing the limitations of
the current research, and proposing several directions for future work.
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Chapter 2

Background

This chapter reviews foundational and recent literature that supports the core contributions of
this thesis. It also includes a forward-looking discussion on how recent advancements in generative
language models can further enhance this field.

Section 2.1 introduces the fundamentals of NLP by discussing classical text representation
methods, foundational word embedding techniques, and the evaluation metrics employed through-
out this thesis. Section 2.2 shifts focus to DL for language modeling, with particular attention to
the emergence of the Transformer architecture and the subsequent development of Transformer-
based language models. Section 2.3 provides preliminaries for bias and fairness in NLP systems,
detailing relevant terminology and taxonomy, potential implications, and strategies for both evalu-
ation and mitigation, while also highlighting underlying sources and root causes. In Section 2.4, a
comprehensive review of existing literature on customer needs analysis is presented, encompassing
marketing perspectives, the role of UGC in needs elicitation, and intelligent methods for effectively
identifying customer requirements from these data sources. Finally, Section 2.5 explores how gen-
erative Large Language Models (LLMs) can be leveraged to fully automate the process of eliciting
customer needs, thereby offering insights into more effective and data-driven approaches.

2.1 Natural language Processing

NLP (also known as computational linguistics) is a multidisciplinary field at the intersection of
linguistics and computer science that aims to enable computers to understand, interpret, and gener-
ate human language (Manning & Schütze, 1999) by integrating computational methods with tech-
niques from various subfields of Artificial Intelligence (AI), including machine learning and deep
learning (H. Li, 2017). Over time, NLP has evolved from early rule-based and statistical approaches
to more advanced machine learning-driven techniques. Initial efforts focused on fundamental tasks
such as part-of-speech tagging, named entity recognition, and syntactic and semantic parsing, which
laid the foundation for early applications such as machine translation and document summarization.
The advent of large-scale neural architectures, along with advancements in hardware, has further
enhanced the field’s capacity for nuanced language understanding and generation. These develop-
ments have driven broader adoption in real-world applications and transformed human-computer
interaction through sophisticated conversational agents across diverse domains.

Closely related to NLP, text mining is the process of extracting meaningful information, pat-
terns, and insights from unstructured textual data (Feldman & Dagan, 1995) through data-driven
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techniques from statistical analysis and NLP. Developing such systematic pattern recognition sys-
tems is highly beneficial across various industries, facilitating informed decision-making and en-
hancing analytical capabilities (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). For example, in health-
care, analyzing clinical notes and medical records can reveal critical trends or aid in diagnosis of
fatal conditions such as cancer (Sheikhalishahi et al., 2019). In finance, automated systems use text
mining to assess market sentiment, flag risks, and predict stock price movements (Du, Xing, Mao,
& Cambria, 2024). In marketing research, firms can analyze the voice of the customer to align their
strategies with evolving market demands, preferences, and expectations (Griffin & Hauser, 1993).

As the volume of unstructured text data continues to grow exponentially—through social media,
news articles, customer feedback, and other digital content—the integration of advanced NLP and
text mining techniques has become increasingly crucial for businesses. These technologies not
only drive automation but also enhance the accuracy and depth of insights derived from large-scale
textual data.

2.1.1 Classical Approaches for Text Representation

Unlike humans, computers require structured representations to process text. Text representa-
tion techniques transform unstructured text into structured numerical formats, making them suitable
for algorithmic processing. A common approach involves representing text as numerical vectors
which facilitates computational analysis and building machine learning applications.

Traditional methods for text vectorization, such as the bag-of-words (BoW) model and term
frequency-inverse document frequency (TF-IDF), are widely employed. The BoW model treats
text as an unordered collection of words, disregarding grammatical structure, while TF-IDF assigns
weights based on word frequency across documents, thereby emphasizing the significance of terms
that are less common in the overall corpus. Despite their effectiveness in certain applications, these
models often struggle to capture semantic relationships and are susceptible to issues such as high
dimensionality and sparsity in word representations.

Regardless of their limitations, classical text vectorization methods remain foundational in cer-
tain NLP applications. While advancements in deep learning and contextual word embeddings have
largely superseded traditional approaches, BoW and TF-IDF continue to be relevant in specific con-
texts. Their efficiency, interpretability, and scalability make them valuable in resource-constrained
environments and applications where keyword presence is more critical than contextual meaning,
such as information retrieval and search engine ranking algorithms.

2.1.2 Foundations of Continuous Word Representations

The concept of representing words as continuous vectors dates back several decades (Hin-
ton, 1986). A significant breakthrough in this domain came with the development of Word2Vec
(Mikolov, Chen, Corrado, & Dean, 2013), which demonstrated the advantages of training word em-
beddings on large datasets using simple neural architectures. This approach introduced two shallow
neural networks, Continuous Bag-of-Words (CBOW) and Skip-Gram, designed to compute contin-
uous vector representations of words from extensive corpora. The CBOW model predicts a target
word based on its surrounding context, whereas Skip-Gram performs the inverse operation by pre-
dicting surrounding words given a target word. These models effectively capture semantic relation-
ships, enabling vector arithmetic for analogies (e.g., v(Beijing)−v(China)+v(France) ≈ v(Paris)).
However, despite its success, Word2Vec primarily relies on local co-occurrence patterns, which lim-
its its ability to represent out-of-vocabulary words and distinguish between different meanings of
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polysemous words (e.g., ”bank” as a financial institution vs. ”bank” of a river), as it assigns a single
static vector to each word regardless of context.

To overcome the limitations of Word2Vec, GloVe (Pennington, Socher, & Manning, 2014) in-
troduced a global matrix factorization approach that leverages word co-occurrence statistics across
an entire corpus. Unlike Word2Vec, which learns embeddings based on local context windows,
GloVe constructs word representations by factorizing a word co-occurrence matrix and optimizing a
weighted least squares objective. This approach enhances the encoding of global word associations,
leading to improved representations of rare words and domain-specific vocabulary by capturing sta-
tistical relationships that may not be evident in local context windows. Although GloVe addressed
some of Word2Vec’s shortcomings by incorporating global corpus information, it still considers
words as single units, preventing it from generalizing to unseen words and distinguishing multiple
meanings of polysemous words.

Expanding the principles of Word2Vec and GloVe, FastText (Bojanowski, Grave, Joulin, &
Mikolov, 2017) introduced subword embeddings, representing words as sequences of character n-
grams. This approach captures morphological variations, allowing for more effective representa-
tions of rare and out-of-vocabulary words. By encoding subword information, FastText mitigates a
key limitation of previous models, particularly in morphologically rich languages and low-resource
scenarios.

While these word embedding techniques have significantly advanced NLP through their dense,
interpretable representations, they remain inherently static—assigning a single vector to a word re-
gardless of its contextual meaning. Recent advancements, particularly Transformer-based architec-
tures (see Section 2.2), have addressed this challenge by generating context-dependent embeddings,
enabling more nuanced language understanding and further advancing the field.

2.1.3 Evaluation Metrics

The performance of NLP models is multifaceted, encompassing dimensions such as predictive
accuracy, robustness, fairness, and adaptability across diverse contexts. A comprehensive evalua-
tion not only assesses how well a model generalizes to unseen data but also examines its consistency
across varying conditions and its susceptibility to biases. The selection of appropriate evaluation
metrics is crucial to ensuring reliable, fair, and effective deployment in real-world applications.
While certain aspects of model performance, such as the identification of unintended biases, re-
quire specialized evaluation techniques (see Section 2.3.3), this section focuses on conventional
classification-based metrics relevant to evaluating the performance of the classifier that serves as
the core of a semi-automated system for customer needs identification within the ISCN framework.

Empirical evaluation measures to assess a classifier performance can be categorized into three
groups: (1) metrics that offer qualitative insights into errors (e.g., accuracy, F1-score, precision,
recall, and specificity), (2) metrics that capture a probabilistic view of errors (e.g., mean absolute
error (MAE) and mean squared error (MSE)), and (3) metrics that evaluate how well the model ranks
instances (e.g., AUC) (Ferri, Hernández-Orallo, & Modroiu, 2009). Each evaluation metric captures
a distinct aspect of classification performance. For instance, high accuracy does not necessarily
imply a high AUC. Accuracy reflects the overall proportion of correct classifications based on a
fixed decision threshold, making it highly sensitive to class imbalance and threshold selection, while
AUC evaluates the model’s ability to distinguish between positive and negative instances across all
possible thresholds, making it a more robust indicator of ranking performance. As a result, a model
can achieve high accuracy while failing to separate classes, particularly in imbalanced datasets.
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Therefore, relying on multiple measures provides a more comprehensive understanding of model
capabilities, making them essential for robust evaluation.

The mathematical definitions of the classification metrics used in this study are provided in
Section 4.4.2.

2.2 Deep Learning for Language Modeling

Language modeling has been a cornerstone of computational linguistics for several decades,
with early explorations of neural networks in this domain found in the work of (Miikkulainen &
Dyer, 1991). The pivotal breakthrough began with the introduction of neural probabilistic language
models capable of learning distributed word representations (Bengio, Ducharme, Vincent, & Janvin,
2003). This approach significantly improved over traditional n-gram models, which suffer from
data sparsity and lack generalization across syntactic and semantic contexts. Beyond improving
word sequence prediction, it also reshaped perspectives on language modeling, demonstrating that
neural networks, when trained on sufficiently large datasets, could capture linguistic structures more
effectively than purely statistical methods.

Since then, the role of scaling in DL has become increasingly central to advancements in lan-
guage modeling. Early studies established that hardware accelerators significantly enhance the effi-
ciency of neural network training (Raina, Madhavan, & Ng, 2009), while subsequent work identified
a strong correlation between model size and performance (Coates, Ng, & Lee, 2011). Later empir-
ical findings further demonstrated that increasing both model size and training data leads to pre-
dictable performance gains, following a log-log scaling relationship (Hestness et al., 2017). These
insights laid the foundation for a systematic recipe—leveraging large-scale and improved architec-
tures, utilizing extensive datasets, and scaling computational resources- which continues to expand
the frontiers of language modeling. An influential facilitator of this paradigm is the Transformer
architecture, which has played a pivotal role in enabling large-scale training by introducing key
innovations that enhance scaling efficiency and fundamentally reshape the field of NLP.

2.2.1 Emergence of the Transformer Architecture

Transformers (Vaswani et al., 2017) represented a breakthrough in sequence-to-sequence mod-
eling tasks, such as machine translation, by relying on self-attention mechanisms which removed the
need for recurrent operations. As shown in Figure 2.1, the Transformer is composed of an encoder,
which stacks multiple layers of self-attention and position-wise feed-forward networks to encode
contextual information for each token, and a decoder, which similarly employs self-attention but
also includes a cross-attention layer to attend to the encoder’s output. Notably, the self-attention
in the decoder is masked to ensure that each position can only attend to preceding positions in the
sequence, making auto-regressive generation feasible. This architectural design allows the model
to generate sequences step by step, making it suitable for text generation and machine translation
tasks. Moreover, the ability to process entire sequences in parallel addresses the bottleneck of recur-
rent architectures and facilitates large-scale training, a factor that underlies the remarkable success
of Transformer-based models beyond machine translation in the field of NLP.

Self-attention is the core innovation of the Transformer architecture. Given an input sequence
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Figure 2.1: The architecture of the Transformer proposed in (Vaswani et al., 2017)

X ∈ Rn×d, the self-attention mechanism begins by projecting each token into three distinct learn-
able spaces—query, key, and value. Formally, these projections can be written as:

Q = XWQ, (1)

K = XWK , (2)

V = XWV , (3)

where WQ, WK , and WV are trainable weight matrices, and Q, K, and V denote the resulting
query, key, and value matrices, respectively.

The intuition behind these projections is to determine how strongly each token in the sequence
should attend to every other token. Specifically, the alignment scores are computed by taking the dot
product between the query and key vectors, scaled by the factor

√
dk (the dimension of the query

and key vectors). These scores are then normalized via the softmax function and used to weight the
value vectors. Mathematically, this is expressed as:

Attention(Q,K,V) = softmax
(QKT

√
dk

)
V. (4)

Because each element in the sequence can directly attend to all others, this mechanism captures
global dependencies in a single pass. Consequently, Transformers achieve highly parallelizable
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computations and scalability, outperforming earlier sequence modeling methods. In the next section,
we delve into Transformer variants that further refine and extend this foundational architecture for
a wide range of applications.

2.2.2 Transformer-based Language Models

Following the success of transformers in machine translation, several studies have explored
their application to language modeling, giving rise to three primary branches of models, each lever-
aging different Transformer components to address distinct linguistic challenges. For example,
BERT (Devlin et al., 2018) leverages the Transformer encoder to generate contextualized represen-
tations of a sequence, enabling bidirectional understanding of context. In contrast, GPT (Radford
& Narasimhan, 2018) uses the Transformer decoder in an autoregressive way, predicting the next
token based on preceding tokens, making it particularly effective for text generation and comple-
tion. Additionally, models such as T5 (Raffel et al., 2020) utilize the encoder-decoder Transformer
architecture, framing all NLP tasks as text-to-text problems, thereby enabling applications such as
translation and summarization.

Transformer-based models have consistently demonstrated superior performance across vari-
ous NLP tasks, including short-text classification, while also reducing the extensive pre-processing
required by traditional approaches. Given the focus of the ISCN framework on binary text classi-
fication, we opted for models designed for contextual understanding (e.g., BERT) over those op-
timized for sequence-to-sequence modeling or text generation (e.g., GPT). Figure 2.2 illustrates
a straightforward adaptation of BERT for a single sentence classification task by adding a simple
feed-forward layer on top of the pre-trained Transformer’s output representation.

The models employed in the comprehensive performance analysis study are detailed in Sec-
tion 4.3.3.

2.3 Bias and Fairness in NLP Systems

ML systems are powerful tools for solving complex problems, yet they can also perpetuate
unintended biases. In NLP, these biases may manifest in ways that unfairly disadvantage certain
groups, thereby affecting the fairness of downstream models. Systematically studying these biases is
crucial for understanding their impact on the fairness of the downstream application and developing
effective solutions to mitigate or prevent their harm. However, such research must be rooted in
a well-defined conceptual framework with clear motivations and normative reasoning to ensure
rigorous analysis and meaningful findings of harmful patterns and devise strategies to address them
accordingly within a specified system.

2.3.1 Terminology and Taxonomy

Clear and consistent terminology is fundamental for academic and technical discussions of bias
and fairness in NLP systems. With the rapid expansion of NLP-driven applications, establishing a
shared vocabulary enables researchers and practitioners to communicate precisely and differentiate
nuanced concepts based on their definitions rather than on broad outcomes or evaluation methods
(Blodgett, Barocas, Daumé III, & Wallach, 2020). Such clarity further supports reproducibility and
helps align methodological approaches in this ever-evolving domain.
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Figure 2.2: Fine-tuning BERT for downstream tasks such as single-sentence classification is as
simple as adding a small number of trainable parameters as a classifier and modifying the training
objective to minimize cross-entropy loss while leveraging pre-trained representations (Devlin et al.,
2018).

In everyday language, “bias” denotes a simple tendency or inclination with negative connota-
tions. In contrast, academic discourse treats bias as a context-dependent concept that varies across
disciplines and theoretical frameworks (Hammersley & Gomm, 1997). Within scientific and statisti-
cal paradigms, bias is often defined as a systematic deviation from the truth—as seen in the selection
or sampling biases that compromise empirical validity of the research outcomes—while a particular
focus on social bias in sociocultural analyses extends this definition to encompass deep-seated prej-
udices and stereotypes rooted in historical and social processes, which in turn perpetuate harmful
forms of discrimination against particular social groups (Buolamwini & Gebru, 2018). Recognizing
such multiple facets of bias (e.g., technical and sociocultural) underscores the need for each study
to tailor its definition of the term to its specific aims and domain.

Within the realm of NLP, and ML in general, bias encompasses multiple meanings that can
sometimes appear contradictory. “Inductive bias”, for instance, refers to the assumptions that en-
able a model to generalize beyond its training data, serving as an intentional and necessary compo-
nent of any learning algorithms (Baxter, 2000). In contrast, “unintended bias” arises when models,
including LLMs, inadvertently encode, reinforce, or amplify harmful stereotypes, associations, or
disparities that were not part of the model’s design objectives (Dixon, Li, Sorensen, Thain, & Vasser-
man, 2018). Much contemporary work on bias in NLP focuses primarily on this form, particularly
with respect to sensitive and protected attributes such as age, gender, and race, and examines how
these unintended biases manifest in downstream tasks, including text classification.

In the domain of NLP and LLMs, no single, globally accepted taxonomy for unintended biases
exists, though several frameworks are widely used. One common approach distinguishes between
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upstream and downstream biases. Upstream biases occur during all processes prior to fine-tuning,
including data collection, curation, annotation, and pre-training, reflecting inherent issues in the
raw data. In contrast, downstream biases arise during fine-tuning and deployment, potentially in-
troducing new distortions or amplifying existing ones (Steed, Panda, Kobren, & Wick, 2022). An-
other framework differentiates between intrinsic and extrinsic biases. Intrinsic biases are embedded
within a model’s internal representations (i.e., word embeddings), while extrinsic biases become
apparent in its performance on downstream tasks (Caliskan, Bryson, & Narayanan, 2017). Addi-
tionally, explicit bias refers to cases where overt demographic indicators (e.g., “black” or “Muslim”)
directly influence model behavior, whereas implicit bias arises from subtle linguistic cues, such as
style or tone, that correlate with demographic attributes even in the absence of explicit markers
(H. Liu, Jin, Karimi, Liu, & Tang, 2021).

Discussing the granular manifestations of bias is a crucial step beyond merely defining it when
framing analytical studies. Identity-based bias—a well-known form of explicit bias—has been ex-
tensively examined in text classification models and serves as a preliminary lens for bias analysis
in emerging NLP applications. In the literature, this bias is also discussed within the framework
of spurious correlations, where models learn shortcuts between the training data and task labels
(T. Wang, Sridhar, Yang, & Wang, 2021). Its direct impact has been studied in various NLP con-
texts: in abusive language detection, models may learn discriminatory patterns that harm vulnerable
identity groups (Dixon et al., 2018; Nozza, Volpetti, & Fersini, 2019); in gender bias, models may
exhibit unequal or stereotypical behavior toward texts containing gender-specific terms (Bartl, Nis-
sim, & Gatt, 2020); and in ableist language, models may inadvertently perpetuate discrimination
against people with disabilities (Venkit, Srinath, & Wilson, 2022).

Although defining bias is crucial for analytical rigor, its meaning is inherently entangled with
the concept of fairness. As discussed before, bias refers to systematic distortions or prejudices that
a model may internalize during training, whereas fairness addresses whether these distortions lead
to inequitable outcomes for different users or social groups. In essence, bias concerns the presence
of skewed patterns in model behavior, while fairness examines whether these patterns result in in-
equitable outcomes. It is worth noting that not every instance of unintended bias results in unfair
consequences by the model, even though it may still be problematic in its own right—underscoring
the need for separate frameworks to assess bias and fairness in ML applications (Dixon et al., 2018).
Fairness in ML is often framed through “individual fairness,” where similar individuals should re-
ceive similar model predictions (Kusner, Loftus, Russell, & Silva, 2017), or “group fairness,” where
a model’s decisions should be statistically independent of sensitive attributes, such as race or gen-
der, that define group membership (Dwork, Hardt, Pitassi, Reingold, & Zemel, 2012). Also, a
related notion, ”subgroup fairness,” merges these ideas by enforcing group fairness constraints such
as equalizing false positive rates across all subgroups (Kearns, Neel, Roth, & Wu, 2018).

In summary, diverse frameworks have been proposed to characterize bias in NLP and LLMs.
These frameworks enable scholars to adopt working definitions that align with their study contexts
while distinguishing bias from fairness so that each can be examined independently. In addition,
clear articulation of what constitutes bias is crucial because it establishes a shared foundation for
exploring its implications, selecting appropriate evaluation methodologies for both bias and fairness,
and developing strategies to mitigate or prevent potentially harmful outcomes in NLP systems.

2.3.2 Implications of Bias

The discussion of the implications of unintended bias often involves the inadvertent reinforce-
ment of systemic inequalities, the distortion of decision-making processes, compromised fairness,
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and the erosion of user trust in institutions or technologies due to embedded biases that dispropor-
tionately disadvantage certain groups—ultimately undermining societal acceptance and legitimacy.
These concerns become particularly important in high-stakes applications, where biased outcomes
can significantly impact individuals’ lives. For instance, in sensitive domains such as automated hir-
ing, algorithmic bias may reinforce discrimination, leading to unfair hiring decisions and workplace
inequality (Mujtaba & Mahapatra, 2019; Raghavan, Barocas, Kleinberg, & Levy, 2020); in credit
scoring assessments, it can unfairly determine applicants’ eligibility for affordable loans (Hurley &
Adebayo, 2016); in healthcare, biased clinical decision-support systems and patient risk-prediction
models may contribute to disparities in medical treatment (Chen et al., 2023; Obermeyer, Powers,
Vogeli, & Mullainathan, 2019); and in legal applications, including automated risk assessments that
impact sentencing decisions (Angwin, Larson, Mattu, & Kirchner, 2022; Chouldechova, 2017) and
facial recognition systems used in law enforcement (Buolamwini & Gebru, 2018; Garvie, Bedoya,
& Frankle, 2016), unintended bias poses risks of unfairness toward different social groups and rein-
forces existing prejudices, further eroding public trust and fairness.

Given the growing reliance on AI in high-stakes applications, addressing the unintended biases
that the backbone models of these systems acquire during training becomes even more urgent, as
these automated systems may amplify, rather than mitigate, existing societal biases. Consequently,
the potential harm caused by AI-driven systems should serve as the central motivation for rigorous
examination of their underlying biases, which necessitates a clear definition of harmful behavior.
Establishing this foundation is important because it enables scholars to identify which groups are
disproportionately affected by the system, and to understand both the scale and nature of these
impacts (Blodgett et al., 2020).

A well-established taxonomy categorizes the harms caused by ML systems into two main forms,
namely, allocational and representational harms (Barocas, Crawford, Shapiro, & Wallach, 2017).
Allocational harms occur when automated systems allocate resources or opportunities in ways that
reinforce existing inequities between social groups. For example, when LLMs are integrated into
hiring or university admission tools, they may systematically filter out qualified candidates from
historically underrepresented groups due to inherent biases in the training data—biases that reflect
and reinforce existing societal prejudices (An, Acquaye, Wang, Li, & Rudinger, 2024; Echterhoff,
Liu, Alessa, McAuley, & He, 2024). On the other hand, representational harms occur when sys-
tems portray certain social groups in a less favorable light than others, demean them, or neglect
to acknowledge their existence. For instance, LLM-generated outputs can omit significant cul-
tural narratives or even reinforce harmful stereotypes; one illustrative example is translation tools
that consistently associate particular professions with one gender, perpetuating gender stereotypes
(Prates, Avelar, & Lamb, 2020).

It is worth noting that representational and allocational harms are conceptually distinct and can
be examined independently. Because allocational harms are often easier to measure and are per-
ceived as having a more immediate impact, researchers—particularly in the domain of LLMs—frequently
use them to rationalize the normative importance of addressing representational biases, even when
they do not directly measure allocational consequences in their studies (Blodgett et al., 2020). How-
ever, this emphasis risks overlooking the subtle yet profound effects of representational harms.
Therefore, it is crucial to acknowledge that representational biases, which shape how social groups
are portrayed and valued, are inherently problematic, regardless of whether they translate into mea-
surable allocational impacts.
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2.3.3 Evaluation and Mitigation Strategies

When selecting an appropriate method to evaluate or mitigate unintended biases in LLMs, it is
essential to consider the downstream task context, the type of bias (e.g., intrinsic or extrinsic) to
be measured, the structure of the input data available to models, and the nature of the output data
generated for measurement.

Several studies indicate that biases in the embedding space exhibit only weak or inconsis-
tent relationships with those observed in downstream tasks. For instance, while Goldfarb-Tarrant,
Marchant, Muñoz Sánchez, Pandya, and Lopez (2021) report no reliable correlation, Steed et al.
(2022) find that intrinsic and extrinsic biases are somewhat correlated for typical LLMs—though
this correlation is largely rooted in the fine-tuning dataset. These findings underscore that bias in
representations should not be conflated with bias in downstream applications, thereby recommend-
ing a focus on metrics that assess specific downstream tasks (Delobelle, Tokpo, Calders, & Berendt,
2022). Since our work is concerned with applying LLMs to the task of informative sentence clas-
sification for customer needs identification systems, we mainly focus on methods assessing and
mitigating extrinsic bias.

Identifying and Measuring Bias

In response to the growing awareness of unwanted biases, researchers have developed a range
of methodologies and metrics to evaluate unintended bias in text classification tasks, particularly
because traditional performance metrics (e.g., accuracy, precision, recall) provide limited insight
into how models treat different social groups (Olteanu, Talamadupula, & Varshney, 2017). Evalu-
ating extrinsic bias in downstream text classification often involves analyzing disparities in model
performance across demographic groups (Dwork et al., 2012). Following the notion of Equality
of Odds—which requires that false positive rates and false negative rates be equal across these
groups (Hardt, Price, & Srebro, 2016)—researchers have proposed metrics such as accuracy gaps
(the difference in model accuracy between two demographic groups) (De-Arteaga et al., 2019) and
the Error Rate Equality difference, which quantifies per-term variation by summing the differences
between the overall false positive (or negative) rate and the corresponding per-term rates (Dixon et
al., 2018). More specialized, threshold-agnostic metrics have also been introduced, including the
Average Equality Gap, which calculates the average difference in correctly identifying positives (or
negatives) for a specific subgroup compared to the overall population across all decision thresholds
(Borkan, Dixon, Sorensen, Thain, & Vasserman, 2019).

Counterfactual Token Fairness (Garg et al., 2019) is another widely used method proposed for
text classification tasks. It is a specific form of counterfactual fairness originally designed to mea-
sure individual fairness in causal inference (Kusner et al., 2017) and serves as a complement to the
group fairness notion of Equality of Odds. This metric evaluates whether a language model’s pre-
dictions remain consistent when sensitive tokens are replaced with their counterfactual alternatives.
Closely related to this approach, Perturbation Sensitivity Analysis (PSA) is a generic, application-
independent framework that detects unintended model biases for named entities in a similar manner,
while requiring no additional annotations. Furthermore, PSA-based metrics do not strictly align
with individual- or group-based fairness metrics; instead, they assess the perturbation sensitivity of
model predictions to score and label shifts across unannotated sentences when substituting names
of the same entity type (Prabhakaran, Hutchinson, & Mitchell, 2019).
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Mitigating Bias

Mitigation approaches fall into three main categories: pre-processing, in-processing, and post-
processing (Friedler et al., 2019). Pre-processing strategies mitigate biases in text classification by
modifying or augmenting data prior to training and inference of LLMs. A prominent technique is
data balancing and augmentation, where examples from underrepresented groups are synthetically
increased, reducing label skew and promoting equitable generalization in LLM classifiers (Dixon et
al., 2018). Counterfactual Data Augmentation balances datasets by generating alternative examples
that differ only in protected attributes (e.g., gendered pronouns), thereby mitigating bias and ensur-
ing more equitable representation across subgroups (Zmigrod, Mielke, Wallach, & Cotterell, 2019).
Removing or downweighting sensitive attributes is another widely used method that falls under the
category of pre-processing techniques (G. Zhang et al., 2020).

In-processing mitigation strategies aim to reduce bias by adjusting the learning algorithm or op-
timization process during LLM fine-tuning. A notable example follows adversarial training concept,
in which a secondary classifier attempts to predict protected attributes from intermediate represen-
tations, thereby encouraging attribute-invariant features (H. Liu et al., 2021). Another effective
method is contrastive learning, which learns representations that bring similar examples closer to-
gether while separating dissimilar ones. Chi et al. (2022) introduced conditional supervised con-
trastive objectives, aligning representations of examples that share sensitive attributes within each
task label. Regularization techniques also fall into this category, as they constrain changes in the
model’s parameters or outputs to minimize spurious correlations while preserving semantic infor-
mation encoded in the pre-trained model (Chew, Lin, Chang, & Huang, 2024; Nozza et al., 2019).

Post-processing strategies tackle biases after classifier training by directly adjusting predicted
labels or scores. Threshold adjustment, for example, modifies decision boundaries for protected
groups to achieve fairness criteria. Hardt et al. (2016) exemplify this approach by applying different
thresholds and randomization to predictions from logistic regressors. D. Wei, Ramamurthy, and
Calmon (2020) proposed transforming predicted probability scores through a function designed to
meet fairness constraints while minimizing cross-entropy.

2.3.4 Sources and Root Causes

While we previously discussed pre-training corpora (i.e., mainly from Web text) and down-
stream datasets, as well as system predictions, as the main potential sources of unintended bias and
explored corresponding mitigation methods, it is crucial to also consider systematic factors—such
as data collection methodology, task definitions, and annotation guidelines—throughout the model
development and deployment lifecycle (Blodgett et al., 2020). For example, Sap, Card, Gabriel,
Choi, and Smith (2019) observed that informing annotators about dialectal nuances beforehand
leads to a notable reduction in mislabeling tweets written in African-American English as offensive.

In the context of online platforms, participation inequality (commonly referred to as the 90-9-
1 rule) further contributes to biased data distributions. According to this rule, approximately 1%
of users generate the majority of content, 9% contribute occasionally, and the remaining 90% are
largely passive (Ochoa & Duval, 2008). This self-selection bias can result in skewed representations,
as the perspectives and behaviors of less active users are often underrepresented or entirely absent.

Having a better understanding of such factors enables practitioners to identify and correct bias
at the early stages of model development, effectively preventing its propagation in downstream
models.
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2.4 Literature Review on Customer Needs Analysis Using User-Generated
Content

2.4.1 Customer Needs in Marketing

In marketing, customer needs are defined as the desires, wants, and requirements that drive
consumer purchasing behaviors and preferences. To better understand these needs, modeling ap-
proaches such as the Kano Model is able to categorize them into three main types: basic, perfor-
mance, and excitement attributes (Kano, Seraku, Takahashi, & Tsuji, 1984). While satisfying basic
needs is essential to prevent customer dissatisfaction, exceeding expectations through performance
and excitement attributes plays a crucial role in building strong customer loyalty (Matzler & Hin-
terhuber, 1998). Moreover, this systematic identification and organization of customer needs, often
referred to as the ”Voice of the Customer,” is a key component of Quality Function Deployment,
as it translates customer requirements into tangible design and product specifications (Griffin &
Hauser, 1993).

A comprehensive understanding of customer needs is pivotal for numerous applications in prod-
uct development and marketing. In product development, companies that integrate customer re-
quirements and insights into the design process create offerings that align with market expectations
(Law, Majava, Nuottila, & Haapasalo, 2014). Identifying emerging needs also helps them develop
new products that increase market share and profitability (Timoshenko & Hauser, 2019). In mar-
keting, consumers can be segmented according to their shared needs which facilitate the use of
tailored marketing strategies (Denizci Guillet & Kucukusta, 2016). For instance, companies can
implement better-targeted advertising and promotional strategies based on a nuanced understanding
of customer preferences of each segment, which leads to increased customer engagement, higher
conversion rates, and ultimately revenue growth (Abbas, 2024; Wu, 2023). Furthermore, this under-
standing enables marketers to identify variations in customers’ willingness to pay that are closely
tied to perceived brand value and guide the development of effective pricing strategies (Hrinchenko,
Robul, & Zalubinska, 2018).

Traditional methodologies for identifying customer needs encompass both qualitative and quan-
titative techniques, including (but not limited to) surveys, focus groups, interviews, and observa-
tional studies. Surveys are a well-known example of quantitative methods used to gather direct
consumer feedback, allowing for large sample sizes and statistical analysis (Smets, Langerak, &
Rijsdijk, 2013). However, surveys often lack the depth required to capture nuanced customer in-
sights and tend to overlook complex emotional factors. In contrast, qualitative methods such as
focus groups and interviews facilitate richer discussions regarding customer motivations. These
techniques encompass a variety of tasks, ranging from asking open-ended questions to employing
projective methods, which help uncover the underlying and subconscious motivations behind cus-
tomer preferences—insights that standard surveys cannot capture (Barnham, 2015). Observational
techniques offer additional insights by capturing customers’ behaviors in real time within their nat-
ural environments, enabling the anticipation of evolving needs and the inspiration for breakthrough
product innovations (Leonard, Rayport, & Others, 1997). However, these methods can be affected
by observer bias and may not fully reveal the underlying reasons for the observed behaviors (Hanski
et al., 2014).

In summary, while traditional methods have inherent strengths, their reliance on subjective in-
terpretations, limited scalability, time-consuming nature, and potential biases underscore the need
to explore innovative, data-driven approaches to accurately and efficiently capture customer needs.
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2.4.2 User-generated Content for Customer Needs Elicitation

With the rapid growth of UGC being stored and shared online every day, there exist an increasing
demand for scalable and effective intelligent approaches to identify underlying patterns and extract
valuable insights from these extensive collections of data. O’Hern and Kahle (2013) defines UGC
as “original contributions that are created by users, are expressed in a number of different media
(such as physical objects, sound recordings, computer code, and graphic designs), and are widely
shared with other users and/or with firms” (O’Hern & Kahle, 2013). UGC can be found in various
forms, particularly in the form of textual data, including microblogs and online reviews.

UGC has fundamentally transformed traditional business models by shifting power from firms to
consumers, ushering in a new era of co-creation and customer-driven innovation (O’Hern & Kahle,
2013). The advantages of using UGC for customer needs analysis include access to extensive, rich
textual data that is often freely available and continuously updated; moreover, unlike traditional
methods such as interviews, professionals can revisit this data for further exploration (Kuehl et
al., 2016; Timoshenko & Hauser, 2019). Research has also demonstrated that UGC is a valuable
alternative source for uncovering customer needs, yielding insights comparable to those obtained
through traditional methods (Timoshenko & Hauser, 2019).

Although UGC offers unprecedented opportunities for firms, its vast and unstructured nature
makes manual analysis inefficient and challenging (Salminen, Jung, & Jansen, 2021). Furthermore,
the available content is often repetitive or generic (e.g., comments such as “I highly recommend
this product.”), and tends to focus on a narrow range of customer needs, potentially obscuring rarer
insights. These challenges underscore the need for intelligent, and scalable methods to efficiently
extract both common and nuanced customer needs from UGC.

2.4.3 Intelligent Methods for Identifying Customer Needs from UGC

Recent advancements in intelligent methods for eliciting customer needs from UGC encom-
pass both semi-automated and fully automated approaches. Semi-automated methods often involve
the use of NLP techniques combined with qualitative human analysis, allowing for the extraction
of nuanced insights from customer feedback found across platforms like social media and review
sites. For instance, Timoshenko and Hauser (2019) illustrate the effectiveness of machine learning
to identify relevant UGC content and remove redundancies, facilitating the formulation of customer
needs. Similarly, Kauffmann et al. (2019) utilized sentiment analysis to extract and categorize
buyer opinions from review data, indicating a trend of integrating human judgment with automated
data processing. Fully automated methods frequently leverage advanced machine learning algo-
rithms, including Convolutional Neural Networks and classification frameworks, to parse extensive
datasets, eliciting valuable customer insights (Yan, Li, & Fan, 2017). This synergy between extrac-
tion and analysis enhances the understanding of customer preferences, providing businesses with
valuable insights for strategic decisions and product development (Al Nefaie & Muthaly, 2022;
Zhan, Tan, Li, & Tse, 2018).

Despite the advantages presented by these methods, their challenges cannot be overlooked. Au-
tomated approaches may suffer from biases in sentiment analysis tools, leading to misinterpretations
of customer sentiment (Reshmi & Balakrishnan, 2018). Additionally, reliance on algorithms might
overlook contextual factors that significantly influence consumer behavior (Iswari & Putra, 2023;
Naeem & Ozuem, 2022a). For instance, while algorithms can effectively gauge overall sentiment,
they may fail to capture the subtle complexities of customer dissatisfaction expressed in reviews,
resulting in a skewed understanding of consumer needs (Islam, Kaium, Zahan, & Rahman, 2024;
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Naeem & Ozuem, 2022b). Comprehensive evaluation of these methods is essential to mitigate such
shortcomings, ensuring a balanced representation of customer sentiments and expectations. Bias
analysis becomes critical as it helps identify and correct distortions within data interpretation pro-
cesses, thereby enabling companies to refine their insights and enhance service quality (Y. Zhao &
Tang, 2021).

In conclusion, while intelligent methods for eliciting customer needs from UGC are rapidly
evolving, their effectiveness relies on a delicate balance between automated processes and human
oversight. Continuous evaluation and bias analysis enhance model performance and ensure the in-
sights derived from UGC genuinely reflect customer perceptions and preferences. As the digital
landscape becomes increasingly complex, integrating diverse analytical tools will be vital in evolv-
ing these techniques to meet customer-centric goals accurately. By addressing the shortcomings of
current methodologies and emphasizing the importance of comprehensive evaluations, businesses
can better navigate the nuances of consumer behavior in a competitive marketplace (Ana & Istudor,
2019; Chatterjee, Ghatak, Nikte, Gupta, & Kumar, 2023; J. Li & Cao, 2022).

2.5 Leveraging Large Language Models to Advance Customer Needs
Elicitation Process

Eliciting customer needs is not a single, isolated task that can be framed as one straightforward
ML problem (e.g, ISCN task). Instead, it involves multiple sessions and operations that together
form a complete system. For example, (Young, 2004) outlined a 28-step checklist for requirements
gathering, encompassing activities such as planning, managing, collecting, reviewing, and tracing.
Likewise, (Wiegers & Beatty, 2013) identified 21 best practices for elicitation, which include defin-
ing the project scope, identifying stakeholders, reusing existing requirements, modeling the appli-
cation environment, and assessing the feasibility of proposed requirements. While traditional ML
methods can manage certain aspects of customer needs elicitation (e.g., the iscn task for reducing
redundancy in UGC), their shortcomings are more pronounced when dealing with the complexities
of unstructured data, as discussed in Section 3. Consequently, there remains a need for a more adap-
tive and fully automated framework capable of capturing structured customer needs and ensuring
their feasibility.

Recent advances in LLMs present significant potential to orchestrate the entire customer needs
elicitation process, especially for tasks previously difficult to tackle with traditional methodolo-
gies. Arora, Grundy, and Abdelrazek (2024) emphasized how LLMs can streamline and automate
various stages of requirements engineering, including elicitation, analysis, specification, and valida-
tion. Hasso, Fischer-Starcke, and Geppert (2024) introduced a GPT-4-driven approach to generate
context-specific questions, thereby improving communication among stakeholders and refining the
precision and completeness of requirement specifications. As discussed in Section 3.2.4, eliciting
implicit and latent customer needs is a complex task. LLMs can help by creating simulated lead
user agents that uncover a wider range of overlooked needs and potential use cases. Notably, empir-
ical findings by Ataei et al. (2024) indicate that mimicking empathic lead user interviews through
LLM-based frameworks yields more latent needs than conventional human interviews, underscor-
ing the promise of LLMs in advancing early-stage product development, fostering innovation, and
substantially reinforcing the requirements engineering pipeline.

While most existing research focuses on directly extracting customer needs from UGC, the im-
portance of designing an end-to-end system that supports the entire needs elicitation process should
not be overlooked. In this regard, an agentic approach offers a powerful framework for leveraging
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LLMs to address complex tasks and unify the entire elicitation process. A notable example is the
work of C. Wang et al. (2024), who proposed a multi-stage, end-to-end methodology that deploys
multiple LLM agents to identify structured customer needs from UGC with minimal human su-
pervision and subsequently convert these findings into actionable product-improvement plans via a
feasibility analyzer LLM agent. Yet the approach necessitated human oversight during the feasi-
bility analysis phase to ensure both efficiency and validation, results significantly surpassed earlier
techniques in the automated needs elicitation process that relied on traditional unsupervised learning
and therefore lacked interpretative and reasoning capabilities (Kuehl et al., 2020).

With generative LLMs demonstrating significant potential in refining and accelerating customer
needs elicitation, it is crucial to acknowledge that their integration into production environments en-
tails critical considerations that must be carefully addressed. Proprietary models like GPT variants
often come with limited control, uncertain reliability, variable uptime, and higher costs. Host-
ing large open-weight models locally also demands significant computational resources, making a
strategic approach to model usage imperative. In a cost-benefit study, Irugalbandara et al. (2024)
observed that smaller LLMs can yield performance on par with larger models on a particular task,
offering more consistent results and achieving cost reductions in the range of 5×–29× compared
to GPT-4. These findings suggest that for domain-specific tasks, reliance on larger, costlier mod-
els may be unnecessary. Furthermore, when multiple small-scale LLMs are incorporated, efficient
prompt selection strategies (Y. Liu, Zhang, Li, & Miao, 2024) can serve as a multi-objective op-
timization approach to balance performance and cost by dynamically selecting the most suitable
prompts. By integrating schedule optimization with in-context learning, such a method reduces in-
vocation expenses while maintaining high accuracy, ultimately improving the overall efficiency of
LLM-driven systems.

Lastly, it is worth mentioning that conventional supervised learning methods still remain valu-
able for customer needs identification from UGC due to their cost-effectiveness in large-scale anal-
ysis, rapid setup, and simplicity, while the integration of LLMs also opens new possibilities for
empowering and enhancing compact-size models such as BERT. One key advantage of LLMs in
this context is their ability to streamline data annotation processes by reducing the time and cost
required, as discussed in Section 3.2.1. This directly addresses one of the primary challenges of
data-hungry supervised learning methods, which often require extensive labeled datasets. Beyond
annotation, LLMs can also facilitate targeted data generation, improving model performance on un-
derrepresented or complex subgroups within a dataset. By strategically augmenting training data,
LLMs contribute to better model generalization while maintaining overall accuracy (Z. He, Ribeiro,
& Khani, 2023). Consequently, a hybrid approach integrating traditional supervised learning with
LLM-driven enhancements can create a more efficient and adaptive pipeline for needs identification
by retaining the reliability of conventional methods while leveraging language models to overcome
data limitations and improve task outcomes.
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Chapter 3

A Structured Review of Intelligent
Methods Processing Methods for
Identifying Customer Needs from
User-Generated Content: Challenges,
Research Gaps, and Future Directions

In this chapter, we aim to address the research question outlined in Section 1.4: What challenges
and domain complexities characterize the customer needs (CN) task, how do they affect model
robustness, and why should they be incorporated into evaluation frameworks?.

Abstract

We survey 35 papers proposing intelligent methods for identifying CN from UGC. Our analysis
shows that most share generic motivations and objectives, while neglecting the inherent complexity
of customer needs and their taxonomies in their evaluation frameworks, despite indications in the
literature that such considerations are essential. To highlight this gap, we categorize the surveyed
works by their motivations and introduce a critical distinction between using ML as a tool to sup-
port CN analysis process in marketing versus treating CN identification itself as a task in ML and
NLP. Based on this perspective, we propose three directions for future research: (1) clarifying and
consistently defining the task-specific construct (e.g., “needs”) to improve transparency and repro-
ducibility, particularly when manual annotation is involved, (2) incorporating the complexity and
taxonomy of customer needs into evaluation frameworks, and (3) addressing unintended bias and
fairness by situating CN identification within broader social and organizational contexts, thereby
ensuring that evaluation frameworks account not only for technical performance but also for equi-
table and responsible use of NLP systems. These recommendations aim to realign research efforts
toward a deeper integration of marketing theory with NLP practice, extending beyond performance
metrics to include fairness, transparency, and attention to social context.

Keywords: Customer needs identification, User-generated content, Natural language processing,
Customer needs taxonomy, Algorithmic fairness
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3.1 Introduction

In marketing, CN represent the underlying desires, wants, and requirements that shape consumer
preferences and purchasing behaviors (Griffin & Hauser, 1993). Modeling frameworks such as the
Kano model offer a structured view of these needs by classifying them into five categories: basic,
performance, excitement, indifferent, and reverse attributes (Kano et al., 1984). While satisfying
basic needs is essential to prevent dissatisfaction, and performance as well as excitement attributes
are crucial for building strong loyalty, indifferent attributes have little to no impact on satisfac-
tion, and reverse attributes may please some customers but alienate others (Matzler & Hinterhuber,
1998). The systematic capture of these needs, often referred to as the “Voice of the Customer,”
plays a central role in approaches like Quality Function Deployment, where customer expectations
are translated into concrete product and service specifications (Griffin, Price, Maloney, Vojak, &
Sim, 2009).

Traditional methods for eliciting CN include surveys, interviews, focus groups, and observa-
tional studies (Leonard et al., 1997). Despite their utility, these approaches are time-consuming,
difficult to scale, and vulnerable to moderator and observer biases, which can limit depth and re-
liability (Barnham, 2015; Hanski et al., 2014). At the same time, the growth of UGC—such as
online reviews, forums, and social media—has produced a continuous, high-volume stream of cus-
tomer voice that often matches or surpasses the capacity of manual analysis (Timoshenko & Hauser,
2019) for CN identification. However, the scale, redundancy, and complexity of tone and language
of UGC make manual coding impractical, motivating ML/NLP pipelines to filter and structure its
insights (Salminen et al., 2021).

Intelligent approaches to eliciting CN from UGC can be grouped into semi-automated and fully
automated pipelines. In semi-automated settings, NLP classification methods are applied to remove
irrelevant content (Kuehl et al., 2016), clustering and topic modeling organize the filtered data into
coherent structures (Zhou et al., 2020), and ranking techniques highlight the most informative items
to facilitate human synthesis (Almagrabi, Malibari, & McNaught, 2018). In contrast, fully auto-
mated systems often draw on aspect-based sentiment analysis, where product attributes are treated
as proxies for CN and negative sentiment toward those attributes is interpreted as an indicator of
unmet needs, thereby uncovering customers’ wants and demands (Han et al., 2023).

3.1.1 Motivation

CN identification and extraction from UGC is a cross-disciplinary activity, drawing major con-
tributions from computer science, requirements engineering (RE), and marketing. This diversity has
led to varying terminology, where concepts such as requirements analysis and customer needs anal-
ysis represent overlapping but distinct perspectives. Within this context, several recent works have
offered valuable contributions. Salminen et al. (2021) compared manual and automated methods,
emphasizing the key challenges each faces alongside their strengths and limitations in requirements
engineering. Cheligeer et al. (2022) provided a structured review from seven technical perspectives,
ranging from data collection to evaluation and tools. More recently, Cai, Yang, Du, Tan, and Lu
(2025) highlighted the unique characteristics of UGC data and product-specific contexts that had
been overlooked in earlier reviews, while also proposing a comprehensive V-shaped taxonomy of
UGC-based requirements engineering research that serves as a reference point for distinguishing
different stages of the process.

Acknowledging that conducting a new systematic literature review in a field of study requires
careful assessment of whether existing reviews have already addressed the research questions and
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whether a new synthesis can provide added value, we summarized the research questions and con-
tributions of recent literature reviews in the domain of CN analysis in Table 3.1, alongside our work,
to provide a comparative view of this study in relation to prior contributions.

While relevant studies have recorded and reviewed the use of ML across different stages of
customer needs analysis, we argue that a new perspective is still needed—particularly from the
computer science viewpoint, where the literature lacks a structured and critical review. This per-
spective centers on how existing works in customer needs identification have treated it as a task in
ML, a framing that introduces broader methodological and conceptual considerations. Accordingly,
this study focuses on that question, and our research questions are formulated on the premise that
CN identification should be regarded as a distinct task in the era of ML.

3.1.2 Scope of the Survey

This study focuses on the intersection of three research dimensions: (1) the methodological ap-
proach, emphasizing intelligent techniques such as NLP and machine learning; (2) customer needs
identification and its subcategories as the primary task of study; and (3) the data source, specifically
UGC. Table 3.2 outlines the scope of study according to the taxonomy for literature reviews pro-
posed by Cooper (1988), further clarifying the focus of study and placing its contributions within
the broader research landscape.

3.1.3 Organization of the Paper

The remainder of this article is organized as follows. Section 3.2 outlines the key challenges in
customer needs identification and the complexities involved in this task. Section 3.3 describes the
methodology employed in this study, including the use of ML models in the selection process. Sec-
tion 3.4 presents the results, and discusses the research questions, broader implications, and social
context. Finally, Section 3.5 addresses the study’s limitations and provides concluding remarks.

3.2 Review of Challenges and Complexities

Research on intelligent methods for CN identification from UGC is shaped by several challenges
that complicate both methodological design and practical deployment. Outlining these factors pro-
vides the conceptual foundation for our review and clarifies how challenges in CN analysis intersect
with established research problems in ML/NLP constituting a contribution in its own right. An
overview of these factors is essential before discussing how our review was conducted and what it
reveals.

3.2.1 Data: Terminology, Labeling, and Cost

Terminology

Lack of consistent terminology is one of the main challenges in analyzing UGC for customer
needs identification Terms such as “needs,” “requirements,” “preferences,” and even “sentiments”
are often used interchangeably across studies, which complicates literature searches, creates in-
consistencies in annotation guidelines, and undermines reproducibility. For supervised learning
methods that depend on large, well-labeled datasets, this ambiguity introduces significant obstacles,
since the meaning of a “need” can shift depending on the study or application domain.
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Different authors also adopt different levels of granularity when defining customer needs. For
example, in a document-level study, Zhou et al. (2020) labeled reviews as containing needs only
if they avoided discussing product attributes or describing how the product fulfilled a need, while
excluding reviews of competing brands. Such narrow task-specific definitions may filter out valu-
able signals, limiting the usefulness of the resulting data for building models that aim to generalize
across contexts. To support clarity and comparability, several foundational definitions are drawn
from the literature:

• Harrel (1978) divided customer needs into three subcategories: needs, wants, and demands in
their pioneering study. In summary, needs refer to the essential requirements for survival, such
as water, food, and shelter. Wants, on the other hand, refer to desires that are not necessary for
survival, such as a want for a luxury car. Demands are human wants that are supported by the
ability and willingness to purchase. For simplicity, the authors considered the term customer
needs as a definition that encompasses all three types of needs, wants, and demands.

• Drawing on the definition of customer needs proposed by Brown and Eisenhardt (1995) and
Griffin et al. (2009), Timoshenko and Hauser (2019, p. 2) defined customer needs as “an
abstract context-dependent statement describing the benefits, in the customer’s own words,
the customer seeks from the product or service.”

Even with such definitions, samples containing implicit needs remain difficult for non-expert
annotators. For example, sentences like the second in Table 3.3 include implicit or figurative ex-
pressions of needs, which are easy to miss. Excluding such sentences risks overlooking latent needs
and biases models toward more explicit, well-represented examples. Consequently, peers are en-
couraged to provide additional definitions that can simplify the labeling process for non-professional
annotators and facilitate the annotation of these intricate samples.

Annotation

Another challenge is the lack of transparency in annotation processes, particularly when datasets
are manually labeled by researchers or outsourced annotators. Studies on the ISCN task often fail
to clearly define their interpretation of customer needs, a crucial step in reducing ambiguity in the
annotation process. Without such clarification, dataset reliability and the feasibility of developing
effective ML systems are significantly compromised.

Beyond transparency issues, human labeling is inherently subjective, even when detailed guide-
lines and precise definitions are provided. For example, Timoshenko and Hauser (2019) and Stahlmann,
Ettrich, Kurka, and Schoder (2023) adopted similar definitions of customer needs, yet their labeling
diverged in some instances: the sentence The sound system is great was labeled as informative in
one study, while It is a great product, I have been using these products for years was not in the other.
These discrepancies pose additional challenges, particularly when models are applied to domains
different from their original training context. Furthermore, inconsistent labeling introduces noise
into the training data, potentially impairing model learning and degrading performance.

To reduce the influence of subjectivity, one effective approach is to provide detailed and accurate
guidelines about nuances of the task (e.g., latent needs). For instance, in the offensive language clas-
sification task, informing annotators about dialectal variations significantly reduced the mislabeling
of African-American English tweets as offensive (Sap et al., 2019). Also, increasing the number of
annotators up to a certain threshold can enhance the agreement score among the annotators (Gamzu,
Gonen, Kutiel, Levy, & Agichtein, 2021) alleviating the subjectivity problem.
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In addition to refining annotation strategies, implementing post-annotation validation is essen-
tial for maintaining data integrity, particularly for datasets manually labeled by researchers. Con-
ducting validation procedures and reporting results can help assess annotation quality and identify
inconsistencies. For example, Gamzu et al. (2021) conducted a validation by calculating the internal
consistency of the annotated dataset, assuming that similar sentences would have similar helpfulness
rates.

In line with the validation process, implementing traditional pre-processing methods such as
removing duplicate reviews, excluding short phrases that form incomplete thoughts, and eliminat-
ing overly long sentences—often as a result of missing punctuation and containing various other
information besides customer needs—can significantly improve data quality.

Cost

CN tasks often require expert knowledge for creating high-quality datasets, especially when
using supervised learning methods is involved in the framework. This reliance on expertise comes
with substantial costs.

However, alternative approaches such as crowdsourcing can provide reliable labels at scale and
at a lower cost than professional annotators (Timoshenko & Hauser, 2019). More recently, the
emergence of LLM-based tools has opened new possibilities. For instance, Gilardi, Alizadeh, and
Kubli (2023) reported that ChatGPT outperformed crowd workers in tasks like relevance, stance,
and topic detection while being substantially cheaper, highlighting its potential as a cost-effective
annotation method.

While using LLMs as annotators for creating CN datasets is an innovative idea, naı̈ve reliance
on LLM-based labeling does not always improve model generalization (particularly in low-data
regimes) and may even degrade performance while introducing hidden computational costs. To ad-
dress these concerns, recent studies recommend combining LLM-assisted annotation with sampling
strategies such as active learning, which prioritizes the most informative examples for the task. This
approach helps balance cost efficiency with the need for datasets that meaningfully enhance model
performance (Bansal & Sharma, 2023).

3.2.2 Selection Bias in UGC

Customers voluntarily contribute on digital platforms, potentially imposing self-selection bias
in UGC when these contributions fail to reflect the broader population’s opinions. In the context of
online reviews, such bias may manifest in skewed ratings and reviews (Luca, 2015), influencing pur-
chasing decisions both positively and negatively (Xie, Yeoh, & Wang, 2024), and disproportionately
representing the needs of certain demographic groups over others.

From a ML perspective, such biases are particularly problematic. Most ML methods assume
that training data is an accurate reflection of the target population, an assumption that rarely holds
in practice (Fan & Davidson, 2007). When training data lacks representativeness, systematic flaws
emerge due to the non-uniform inclusion of instances (Heckman, 1979; Moreno-Torres, Raeder,
Alaiz-Rodrı́guez, Chawla, & Herrera, 2012; Zadrozny, 2004). Self-selection bias is one of the root
causes of this problem in UGC, as voluntary contributions may disproportionately capture specific
viewpoints while neglecting others.

As an example, (Kuehl et al., 2016) hold an industry workshop to compile keywords for ex-
tracting e-mobility customer needs. While practical, this approach imposed coverage limitations
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and induced selection bias by overemphasizing workshop-generated terms, thereby excluding alter-
native expressions found in natural user feedback. Ultimately, insufficient diversity in training data
reduces model robustness and leads to poor generalization on underrepresented inputs (J. Wang et
al., 2023).

Yet, even with careful data collection and curation, some degree of overrepresentation is in-
evitable. Frequently mentioned or easy-to-learn topics tend to dominate training data, causing mod-
els to inherit both explicit and implicit biases (Kashi, Lahmiri, & Mohamed, 2025). This often skews
model behavior toward majority viewpoints while overlooking the needs of minority groups or those
expressed only infrequently or figuratively. For instance, if the term price frequently appears in the
informative class of a dataset, an ML model may form a spurious correlation between price and
informativeness, misclassifying non-informative sentences containing the same term. Such biases
not only hinder generalization but also raise broader societal concerns, underscoring the importance
of actively identifying and mitigating them. Therefore, addressing selection bias requires not only
better sampling strategies but also continuous evaluation of model behavior to ensure fair represen-
tation of diverse customer needs.

3.2.3 The Influence of Time-Variant Environments on Model Performance

Beyond self-selection bias, another important factor that challenges the assumption of repre-
sentative training data in ML methods is the temporal evolution of user needs and language. As
customer preferences shift, different product aspects gain or lose prominence over time, a phe-
nomenon referred to in ML as covariate shift. Formally, covariate shift occurs when the input
distribution changes while the underlying relationship between inputs and outputs remains constant
(Moreno-Torres et al., 2012).

In time-variant data streams such as e-commerce platforms, the evolution of input patterns,
short-term fluctuations in user interests, and the emergence of new customer needs are prevalent.
These dynamics pose additional challenges, particularly for traditional ML techniques that are typi-
cally not exposed to such changes during training. Incorporating temporal analyses can help address
this issue by capturing how needs emerge, shift, or intensify over time, thereby supporting more ro-
bust and context-aware model development.

Despite the relevance of temporal dynamics, only limited work has examined their impact on
text classification performance. For example, Agarwal and Nenkova (2022) introduced a method to
quantify temporal deterioration and to assess when adaptation is necessary. Their findings show that
pre-trained models degrade in the presence of concept shift, where the relationship between inputs
and labels changes, but remain relatively stable for tasks like sentiment classification, where label
semantics are less time-sensitive. In the context of customer needs, M. Zhang, Sun, Li, Wang, and
He (2023) proposed a framework that combines topic modeling with sentiment analysis to assess
both initial and supplementary reviews ( i.e., those posted long after the original review) to assess
temporal shifts in customer sentiments and requirements.

3.2.4 Extracting Implicit Customer Needs from Complex UGC

Finding CN from UGC appears to be more challenging than typical NLP classification tasks
due to the abstract, context-dependent nature of consumer demands (Timoshenko & Hauser, 2019).
Customer reviews can vary greatly in terms of their content, style, and tone, making generalization
difficult for ML models. Unlike observable or explicitly mentioned customer needs, identifying
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implicitly mentioned from UGC is not straightforward, as these needs are non-obvious and diffi-
cult to articulate since users themselves may not be consciously aware of them (Narver, Slater, &
MacLachlan, 2004; Otto & Wood, 2001).

For instance, although all sentences in Table 3.3 convey positive sentiment and demonstrate
customers’ willingness to utilize the products, only the second expresses a customer need, despite
sharing common entities such as love, kid, and use. By finding such needs (which are mainly
latent customer needs), companies unlock hidden opportunities to gain a competitive advantage in
the market by delivering unexpected value and offering relevant support and services to customers
(Bao, Wei, & Di Benedetto, 2020; Timoshenko & Hauser, 2019).

To identify implicit customer needs, Zhou, Jiao, and Linsey (2015) proposed a pioneering NLP
approach that combines sentiment analysis with case-based reasoning to extract implicit require-
ments from online product reviews. Similarly, Han et al. (2023) developed a framework to identify
latent needs within the context of figurative language through the extraction of implicit opinions of
users by designing a quintuple extraction problem and training a generative LLM in a supervised
learning fashion using a manually labeled data set to predict aspect, category, opinion, sentiment,
and implicit indicator of a context. Yet the approach and its subsequent enhancement is innovative
(Han & Moghaddam, 2024), the manual labeling is pruned to subjective interpretations by annota-
tors leading to unreliable labels, and unstable output of generative LLMs can influence the reliability
and consistency of predictions which further add to the level of human intervention in the process.

Identifying implicitly mentioned customer needs is further complicated by factors such as domain-
specific jargon, noise, and extraneous information, all of which can negatively affect model perfor-
mance. Even recently developed state-of-the-art (SOTA) models struggle to handle these complex
linguistic features (Potamias, Siolas, & Stafylopatis, 2020), particularly in specialized domains (Lee
et al., 2020). To mitigate these challenges, data filtering is commonly employed to reduce the com-
plexity of training datasets. For example, citekuehl2016needmining employed a descriptive coding
approach (inspired by (Saldaña, 2021)) to assign categories to segments of 200 randomly selected
tweets before labeling the entire database. Subsequently, tweets associated with codes exhibiting
low confidence in label correlation were excluded. In one instance, tweets containing URLs were
removed because only 11.5% of the sampled tweets contained customer needs. Although this ap-
proach effectively reduces data complexity, it risks discarding tweets that may contain previously
unrecognized customer needs which are extremely valuable for innovative product design.

Taken together, these challenges highlight that CN identification from UGC cannot be ap-
proached as a straightforward classification exercise. Instead, the issues of terminology, annotation,
selection bias, temporal variation, and implicit needs must be recognized as defining elements of
the task itself. Treating them in this way shifts the focus from developing one-off technical fixes
to building evaluation frameworks and methods that reflect the true complexity of the problem. By
framing the challenges as integral to the task, future work can develop models and assessments that
are not only technically stronger but also more transparent, fair, and aligned with the realities of
customer needs analysis.

3.3 Methodology

The review was designed as a structured review rather than a comprehensive systematic map-
ping, reflecting the targeted scope of the investigation. The primary aim was to capture literature
that is both thematically relevant and methodologically aligned with the study’s objectives, without
extending into unrelated works. The research questions are presented in the Table 3.1.
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3.3.1 Planing

The literature review was conducted using a snowballing approach, following the methodologi-
cal guidelines of Wohlin (2014) and Kitchenham and Charters (2007). We began by selecting a set
of seed papers based on the authors’ subject knowledge, topic alignment, methodological fit, and the
influence of the studies within the field. This strategy increased precision and ensured the inclusion
of key contributions that might be overlooked in database searches due to incomplete terminology
or indexing gaps. In total, five seed papers were chosen for their direct relevance to ML-based
customer needs detection from UGC. These papers, along with the rationale for their selection, are
summarized in Table 3.4.

3.3.2 Search Strategy

The utilized search process involved both backward snowballing, in which the reference lists
of included papers were examined, and forward snowballing, in which works citing the included
papers were screened. These two techniques were applied iteratively, with each newly identified
study subjected to the same process, until the last iteration was reached. The snowballing workflow
is presented in Figure 3.1.

3.3.3 Inclusion and Exclusion

Following each snowballing iteration, duplicate records were removed using the tools and meth-
ods described in section 3.3.4. The remaining records were then subjected to a structured, three-
stage screening process applied consistently in both forward and backward snowballing. Screening
decisions were guided by predefined inclusion and exclusion criteria (See Table 3.5), accompanied
by the authors’ judgment where necessary. At the eligibility stage, papers were also excluded if
they employed substantially similar methods, particularly when originating from the same research
group or authors.

A four-component keyword screening strategy was also applied to filter the obtained papers
based on their titles in stage one and abstracts in stage two of the screening process.

• The first component focused on stakeholders, including terms such as “requirement,” “need,”
“preference,” “demand,” “opportunity,” “customer need,” “customer preference,” “customer
requirement,” “customer demand,” “customer opportunity,” “consumer need,” “consumer
preference,” “consumer requirement,” “consumer demand,” “consumer opportunity,” “user
need,” “user preference,” “user requirement,” “customer requirement,” “user demand,” and
“user opportunity.”

• The second component focused on process or actions related to customer need elicitation,
including terms such as “elicit,” “eliciting,” “elicitation,” “identify,” “identifying,” “identifi-
cation,” “classify,” “classifying,” “extract,” “extracting,” “extraction,” “discover,” “discover-
ing,” “mining,” “deriving,” “gather,” “gathering,” “capture,” “capturing,” “inferring,” “detect,”
“detecting,” “detection,” “acquire,” and “acquiring” along with other relevant verb forms.

• The third component addressed UGC sources and analytics, with terms such as “user-generated
content,” “user generated content,” “UGC,” “voice of customer,” “voice of the customer,”
“voice-of-customer,” “online review,” “customer review,” “online review,” “product review,”
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Figure 3.1: A Schematic of the snowballing workflow

“user review,” “app review,” “application review,” “forum,” “forums,” “social media,” “mi-
croblog,” “microblogs,” and “tweet,” “tweets,” “reddit,” “stack overflow,” “stackoverflow,”
“trip advisor,” “tripadvisor,” “stack-overflow,” and “feedback,” in addition to descriptors such
as “big data,” “automated,” “data analysis,” “text mining,” “data mining,” “data processing,”
“data science,” “data-driven,” “data-oriented,” “user-driven,” and “decision support.”

• The fourth component targeted analytic methods, including terms such as “natural language
processing,” “nlp,” “machine learning,” “ml,” “deep learning,” “transformer,” “language model,”
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“llm,” “bert,” “roberta,” “gpt,” “topic model,” “lda,” “clustering,” “classification,” “super-
vised,” “unsupervised,” “semi-supervised,” “zero-shot,” “zero shot,” and “artificial intelli-
gence.”

In constructing the four-component query, keywords within each component, as well as across
components, were combined using the OR operator. In the first stage of screening, a single thematic
match was sufficient for an article’s inclusion. During the second screening stage, a majority con-
dition was applied: records were retained only if they matched terms from at least two of the four
thematic components.

Stage one

The first stage functioned as an initial filter to eliminate clearly irrelevant studies prior to detailed
assessment. Eligible works were limited to those published between 2015 and 2025 and written
in English. Particular Non–peer-reviewed materials such as keynote talks, tutorials, editorials, and
conference abstracts were excluded, although theses and dissertations were retained. Then, keyword
filtering was applied using a four-component Boolean query. Subsequently, title screening was
conducted by the author to exclude review papers, literature reviews, surveys, and essays.

Stage Two

The second stage applied a more selective filter through abstract-level analysis, combining au-
tomated keyword filtering with manual abstract screening by the author. The same four-component
keyword query from the stage one was applied.

After automated filtering, remained abstracts were manually reviewed by the author to confirm
thematic relevance and exclude borderline cases that did not meet the study’s scope. Conversely,
studies that showed potential relevance despite incomplete keyword alignment were retained based
on the author’s judgment.

Stage Three

The third stage combined quality checks with full-text screening. Only papers with retrievable
full texts were included, while theses were excluded if corresponding articles by the same authors
were already part of the collection.

To assess the quality of the reviewed studies, we applied five criteria: (1) whether customer-
needs identification was a primary or clearly defined aim of the study; (2) clarity in task formulation,
including definition, granularity, and scope; (3) implementation and evaluation of an empirical ML
method rather than purely conceptual discussion; (4) use of UGC as the primary data source with
basic source details; and (5) the extent to which contributions, findings, limitations, or implications
were clearly articulated. Each criterion was scored as Yes (1), Partial (0.5), or No (0), with equal
weights of 0.20, and papers with a total score of at least 0.6 were considered for inclusion.

The final stage was eligibility checking. When multiple papers from the same authors met the
criteria, only those with substantially distinct methodological contributions were included.

A detailed summary of the inclusion and exclusion framework, along with examples of excluded
papers and the corresponding rationale for each decision, is presented in Table 3.5.
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3.3.4 Tools and Software

The processes of reference extraction, citation tracking, and reference management are often
tedious and time-consuming, particularly in literature review studies. To address this, a set of spe-
cialized tools was employed to support all stages of the snowballing process.

Zotero (Zotero, 2007) was used as the primary reference management system to organize re-
trieved records, store bibliographic metadata, and manage citations throughout the review. Its in-
tegration with web browsers and metadata retrieval features facilitated consistent formatting and
accurate reference tracking. To enhance data integrity, Zotero was complemented with custom
Python scripts for duplicate detection through exact matching. In addition, the Sentence-BERT li-
brary (Reimers & Gurevych, 2019) was applied to identify near-duplicate records, and language
detection libraries were used to verify the language of paper titles, overcoming Zotero’s limitations
in this regard.

For forward snowballing searching, Publish or Perish (Harzing, 2016) was employed to retrieve
citing papers from multiple databases. For backward snowballing searching, Scholarcy (Scholarcy,
2021) was used, leveraging its AI-based reference extraction capabilities to rapidly parse and struc-
ture reference lists from full-text PDFs.

To minimize the risk of missing relevant studies due to incomplete metadata, we additionally
used Citation Chaser (Haddaway, Grainger, & Gray, 2021), an automation tool that supports collect-
ing both a list of all referenced records, and all citing records based on the Digital Object Identifier
of the papers. This significantly accelerated the process and helped capture papers that would oth-
erwise have been missed.

Together, this tool-chain enabled efficient execution of forward and backward snowballing, re-
ducing manual effort and minimizing the likelihood of omitting relevant studies.

3.3.5 Data Extraction

A total of 35 papers that passed the final screening stage were included for data extraction. The
quality assessment results for these studies are summarized in Table 3.6.

To improve the transparency and comparability of our study with the corresponding body of
work in this domain, we provide a PRISMA-compliant flow diagram (Page et al., 2021) in Fig-
ure 3.2.

3.4 Results and Discussions

To start the discussion, we begin with an overview of the corpus as illustrated in Fig. 3.3. The
word cloud highlights the most common themes across paper titles, such as “needs,” “reviews,”
“user,” “mining,” and “language-model,” while the yearly distribution of publications shows steady
growth in this field of study since 2015. Also, general ideas of all the review papers are summarized
and presented in Appendix B.

3.4.1 RQ1: Alignment of Motivations and Contributions with CN Challenges

We categorized the motivations and contributions reported across the 35 reviewed papers into
distinct themes. Motivations fell into five categories: (1) limitations of traditional customer CN anal-
ysis methods, (2) impracticality of traditional or manual approaches for analyzing UGC, (3) recog-
nition of UGC as a novel source for CN identification, (4) difficulty of detecting implicit, unseen,
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Figure 3.2: A PRISMA flow diagram of article selection

evolving, and future needs in natural language, and (5) opportunities enabled by advanced language
technologies such as large language models (LLMs). Reported contributions were grouped into
six categories: (1) frameworks or novel CN identification pipelines, (2) comparative and method-
ological extension studies, (3) introduction of datasets, resources, or benchmark studies (4) novel
problem formulations in CN analysis, (5) methods for identifying complex needs (e.g., implicit,
infrequent, unseen, or future needs), and (6) LLM-based automation to reduce human involvement.

Across the 35 papers, the most frequent motivations concerned the impracticality of manual
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Figure 3.3: Word cloud of paper titles (left) and yearly distribution of included publications (right).

analysis for large-scale UGC (69%), the limitations of traditional approaches (51%), and the chal-
lenge of detecting complex customer needs (usually express as implicit, evolving, unseen or future
needs) (46%). Other motivations highlighted UGC as a novel source for needs analysis (40%) or
opportunities offered by advanced language technologies such as large language models (40%).

The distribution of contributions shows a clear imbalance. Most studies concentrated on de-
veloping pipelines or frameworks for customer-needs identification (74%) and on comparative or
methodological extensions (68%), reflecting a strong emphasis on incremental technical work. By
contrast, fewer papers introduced datasets or benchmarks (14%), proposed novel formulations of
the task (25%), or addressed complex needs such as implicit, infrequent, or evolving requirements
(20%). Work on automation through large language models was even more limited (11%).

The results point to a clear misalignment. Although complex and evolving needs are often cited
as central motivations, only a minority of studies propose methods that directly address them. This
imbalance reflects two distinct perspectives on the role of ML in customer-needs analysis. One
perspective frames ML as a supporting tool, motivated by challenges such as the impracticality of
manual coding, the scale of UGC, and the potential of LLMs. The other treats customer-needs
identification itself as an ML/NLP task, as reflected in contributions such as novel task formulations
or methods targeting complex needs. Together, these patterns suggest that while the challenges of
customer-needs identification are widely acknowledged, they have not yet been consistently trans-
lated into methodological works.

3.4.2 RQ2: Incorporation of Complexity and Challenges into Evaluation

Evaluation frameworks in the surveyed studies showed limited engagement with the specific
complexities of CN identification. Although nearly all papers relied on manual labeling, only about
35% explicitly defined what constitutes a “need” or referred to an established source, leaving most
datasets vulnerable to ambiguity and inconsistency. Temporal dynamics were almost entirely over-
looked: just 14% incorporated any form of temporal analysis, and none explicitly operationalized
generalization (with a clear definition) as part of their evaluation. Despite frequent claims about
the difficulty of implicit, evolving, or infrequent needs, these aspects were rarely reflected in the
evaluation design.

Overall, evaluation practices tended to emphasize standard performance metrics on static datasets
rather than frameworks that capture the methodological challenges identified in the literature. This
narrow focus reinforces the view of ML as a generic tool for text classification, rather than treating
CN identification as a distinct ML/NLP task that demands tailored evaluation protocols. Stronger
integration of construct clarity, temporal robustness, and generalization checks is required to bring
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evaluation in line with the complexities acknowledged by the field. In this respect, positioning CN
identification as a task in ML—rather than merely an application of it—remains an opportunity yet
to be fully discovered and advanced.

3.4.3 RQ3: Fairness and Social Context in Customer-Needs Identification

None of the surveyed studies explicitly investigated bias or fairness in customer-needs identifica-
tion. This absence is striking given that overlooking certain groups can have tangible consequences
for product design and service delivery. As illustrated by the critique of gender bias in product de-
velopment (Reuther, 2022), systematic neglect of minority or underrepresented needs can reinforce
inequities and limit inclusivity in innovation. In the context of UGC, biases may arise from who
contributes feedback, how language varies across demographics, or which needs are most visible
in online platforms. Without attention to these dynamics, models risk amplifying dominant voices
while marginalizing others.

Integrating fairness and social context therefore requires moving beyond technical accuracy
toward evaluation protocols that examine representativeness across groups, track whose needs are
being captured or overlooked, and make explicit the social implications of model outputs. Framing
customer-needs identification as an ML/NLP task should include fairness diagnostics and mitigation
strategies from the outset, ensuring that methods not only perform well but also equitably support
diverse customer populations.

3.5 Conclusion

This review synthesized 35 studies on CN identification from UGC and examined how stated
motivations translate into methods and evidence. We found a recurring mismatch: papers frequently
motivate work by the scale of UGC, the difficulty of implicit and evolving needs, and recent ad-
vances in NLP/LLMs, yet evaluations rarely define the “need” construct with precision, seldom test
domain or temporal shift, and almost never consider fairness. A central contribution of this review is
to reframe CN as an ML/NLP task in its own right—one that demands clear operational definitions,
taxonomy-aware evaluation, and socially responsible assessment, not just better pipelines.

This study has limitations. Coverage is representative rather than exhaustive: snowballing
search strategy can inherit seed bias. We emphasized qualitative synthesis over meta-analysis, and
all three screening stages involved researcher judgment. Some gray literature and non-retrievable
texts were excluded.

We see three priorities for future work. First, make task-related constructs explicit: include an-
notation guidelines, report inter-annotator evidence, and build taxonomy-aware evaluation frame-
works that stress both implicit and rare needs. Second, test what matters for practice: standardized
protocols for generalization under domain/temporal shift, with explicit out-of-distribution checks.
Third, make CN systems equitable and bias-aware by integrating fairness metrics and mitigation
across demographics, dialects, and additional relevant subgroups.

In conclusion, by grounding CN in clear constructs, robust and transparent protocols, and atten-
tion to social impact, the community can deliver models that surface diverse, evolving, and conse-
quential customer needs—reliably, reproducibly, and equitably.
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Table 3.1: Comparative analysis of prior literature reviews and the present study

Paper Approach Analysis
and Evalu-
ation

Time
Span

Research Questions

Salminen
et al.
(2021)

Integrative Qualitative N/A – How do manual and automated meth-
ods differ in detecting customer needs?
– How do manual and automated meth-
ods differ in detecting customer needs?
– What key challenges limit current ap-
proaches to customer needs discovery?

Cheligeer
et al.
(2022)

Systematic Qualitative 2007-
2022

– What elicitation activities are sup-
ported by ML?
– What data sources build ML-based
requirement solutions?
– What technologies/algorithms build
ML-based elicitation?
– What tools support ML-based elicita-
tion methodology?
– How to construct an ML-based elici-
tation method?

Cai et al.
(2025)

Semi-
Systematic

Qualitative/
Quantita-
tive

N/A – What UGC data categories are used
for automated RE?
– What are the methodologies for auto-
mated RE?
– What requirement representations are
derived from UGC?

This
Study

Integrative Qualitative 2015-
2025

– How are motivations and contribu-
tions of surveyed studies aligned with
the identified challenges requirements
of customer needs identification?
– To what extent do current methods
incorporate the complexity and chal-
lenges of needs identification into their
evaluation frameworks?
– Why and how should fairness and so-
cial context be integrated into customer
needs identification?

Note: “N/A” denotes that specific information was not available in the in the respective study.
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Table 3.2: Summary of the focus and characteristics of the study under the literature review taxon-
omy (Cooper, 1988).

Characteristic Categories This study

Focus

Research findings
√

Research methods
√

Practices of applications ×
Theories ×

Goal
Integration ×
Identification of the central issue

√

Criticism
√

Perspective
Neutral representation

√

Espousal of position ×

Coverage

Exhaustive with selective citation ×
Exhaustive ×
Representative

√

Central or pivotal ×

Organization
Methodological

√

Conceptual
√

Historical ×

Audience

Specialized scholars
√

General scholars
√

Practitioners or policymakers ×
General public ×

Table 3.3: Examples of sentences with and without customer needs.

Sentence Label

This is the only product my mother-in-law loves to use for her dentures. Non-informative
My kids love to use it also!! Informative
He loves it and feel it really works. Non-informative
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Table 3.4: Summary of Key References on Customer Needs Elicitation

No. Reference Title Strategy Rationale

1 Griffin and
Hauser (1993)

The Voice of the Customer Forward Established the terminology and
conceptual foundations for cus-
tomer needs analysis, including
their identification and extraction
through traditional methods.

2 Timoshenko
and Hauser
(2019)

Identifying customer needs from
user-generated content

Backward/
Forward

Pioneering study in the field of
customer needs analysis, presenting
a comprehensive end-to-end frame-
work with UGC.

3 Kühl,
Scheuren-
brand, and
Satzger (2020)

Needmining Identifying micro blog
data containing customer needs

Backward/
Forward

Widely recognized within the field
and frequently cited in the litera-
ture.

4 Cheligeer et al.
(2022)

Machine learning in requirements
elicitation: a literature review

Backward Comprehensive survey summariz-
ing methods and tasks, primarily
from a requirements engineering
perspective.

5 Cai et al. (2025) Automatic requirements elicitation
from user-generated content A re-
view of data, methods, and repre-
sentations

Backward Recent survey in this field also dis-
cussing LLMs and advancements in
NLP within the context of customer
needs analysis.
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Table 3.5: Exclusion and Inclusion Criteria. Any record not meeting the exclusion conditions at a
given stage was retained for further screening or final inclusion.

Screening stage Exclusion reasons

Stage One – Published before 2015 or after 2025

– Written in a language other than English

– Presented in a non–peer-reviewed venue (e.g., notes, talks, etc.)

– Classified as a review paper, literature review, survey, or essay

– No match in any of the three keyword components in the title (customer
needs elicitation, UGC sources, analytic methods)
– Title screening by the author

Stage Two – Abstract does not match at least two of the four related keyword compo-
nents (customer needs elicitation, UGC sources, analytic methods, process
stakeholder data source method)
– Abstract screening by the author

Stage Three – Full text not retrievable

– Full text is thesis work

– Obtained 0.6 or less based on QAC after full text browsing

Stage Eligibility – Filtering out papers with substantially similar methods from the same
author or group
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Table 3.6: Quality Assessment Criteria (QAC)

Reference Q1 Q2 Q3 Q4 Q5

Kuehl et al. (2016), Timoshenko and
Hauser (2019), De Araújo and Marcacini
(2021), Han and Moghaddam (2021),
M. Zhang, Fan, Zhang, Wang, and Fan
(2021), Salminen, Mustak, Corporan,
Jung, and Jansen (2022), K. Zhang et
al. (2023), Barandoni, Chiarello, Cas-
cone, Marrale, and Puccio (2024), Et-
trich, Stahlmann, Leopold, and Barrot
(2024), Kilroy, Healy, and Caton (2024),
Timoshenko, Mao, and Hauser (2025),

✓ ✓ ✓ ✓ ✓

Jhamtani et al. (2015), Ayoub, Zhou,
Xu, and Yang (2019), Kovacs, Buryakov,
and Kryssanov (2021), Han et al. (2023),
C. Wang et al. (2024)

✓ ✓ ✓ ✓ ∼

M. Li, Shi, Yang, and Wang (2020),
Mahdi, Gupta, Choudhury, and Bansal
(2022), Yin, Jiang, Jain, Liu, and Chen
(2023), M. Zhang et al. (2023), Kaur
and Kaur (2023), Han and Moghaddam
(2024)

✓ ∼ ✓ ✓ ✓

Kocon et al. (2021), Q. Zhao, Zhao, Guo,
Zhang, and Yu (2022), Bian, Ye, Zhang,
and Yan (2022), Cong et al. (2023),
Q. Li, Yang, Li, and Zhao (2023), Lee,
Jeong, Yoon, and Song (2023), Z. Zhang,
Dou, Xu, and Tan (2024), Huang, Qin,
Chan, and Wang (2025)

✓ ∼ ✓ ✓ ∼

Guzman, Ibrahim, and Glinz (2017),
Xiao, Li, Thürer, Liu, and Qu (2022),
Stahlmann et al. (2023)

✓ ✓ ✓ ✓ ✗

W. Wei, Hao, and Wang (2025) ✓ ✗ ✓ ✓ ✓

C. Li, Huang, Ge, Luo, and Ng (2018), ∼ ∼ ∼ ✓ ∼

✓ = Meets, ✗ = Does not meet, ∼ = Partial.
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Chapter 4

Comprehensive Analysis of Transformer
Networks in Identifying Informative
Sentences Containing Customer Needs

In this chapter, we aim to address the research question outlined in Section 1.4: What compre-
hensive evaluation framework can be developed to determine whether an ML model for customer
needs analysis is both sufficiently effective and superior to alternative approaches?.

Please note that the content of this chapter is based on the work published as follows: Kashi,
M., Lahmiri, S., & Ait Mohamed, O. (2025). Comprehensive analysis of Transformer networks
in identifying informative sentences containing customer needs. Expert Systems with Applications,
273, 126785. https://doi.org/10.1016/j.eswa.2025.126785

Author(s): Mehrshad Kashi1, Salim Lahmiri2, Otmane Ait Mohamed1

1Department of Electrical and Computer Engineering, Concordia University
2Department of Supply Chain and Business Technology Management, Concordia University

Abstract

The unprecedented rise in user-generated content (UGC) provides businesses with new oppor-
tunities to extract customer insights from unstructured data, particularly for identifying customer
needs. Intelligent methods offer time- and cost-efficient solutions to extract such insights from
the plethora of repetitive and often redundant UGC. However, widespread adoption of these meth-
ods faces significant barriers, including high deployment and maintenance costs, data availability
challenges, task complexity, and concerns about model efficacy and ethical implications. To fa-
cilitate broader adoption of intelligent systems in customer needs analysis, this study evaluates
Transformer-based models in terms of generalizability, fairness, robustness, and sample efficiency
across various experimental settings to uncover their true performance and identify the root causes
of their errors. Our results show that although Transformer-based models improved the F1-score
by up to 18% compared to baselines, their limitations become evident when evaluating their per-
formance against task objectives. Key findings include: (i) Transformer-based networks share error
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patterns and struggle to identify infrequent or unseen informative samples, (ii) they heavily rely
on abundant information and lexical cues for accurate predictions, compromising inter- and intra-
domain generalizability, (iii) larger models do not necessarily improve sample efficiency within
their domain, and (iv) while optimal cross-domain results arise from complex domain training,
adding more in-domain samples does not enhance cross-domain performance. Overall, this re-
search provides crucial insights to help businesses overcome adoption barriers when implementing
Natural Language Processing advancements, such as Transformer-based models, in the customer
needs analysis process. Source codes are available at https://github.com/mehrshad-kashi/ISCN-
UsingTransformerNetworks.

Keywords: User-generated Content, Customer Needs Analysis, Natural Language Processing,
Marketing, Transformer Networks, Lexical Bias

4.1 Introduction

With the rise of social media and the vast amount of user-generated content (UGC) available
daily, Natural Language Processing (NLP) techniques have recently garnered significant attention
as powerful tools to explore and exploit this accessible and ever-expanding source of data. Market-
ing, inherently a complex field that often relies on human judgment for nuanced analysis (Proserpio
et al., 2020), can significantly benefit from Machine Learning (ML) solutions that, at the very least,
facilitate large-scale, systematic, cost-effective, and time-efficient exploration of UGC. The insights
gained from these explorations aid companies in making better marketing decisions (D. T. S. Ku-
mar, 2020), finding unique product development opportunities (M. Zhang et al., 2021), augmenting
and producing innovative ideas for product design and aesthetic processes (Burnap, Hauser, & Tim-
oshenko, 2023), improving products and services (Chang, Yang, & Chen, 2022), understanding
customer satisfaction (Aldunate, Maldonado, Vairetti, & Armelini, 2022), and retaining them (de
Lima Lemos, Silva, & Tabak, 2022).

In customer needs analysis, utilizing innovative ML solutions is gaining more popularity (Baran-
doni et al., 2024; Han et al., 2023; Kilroy, Healy, & Caton, 2022; Kuehl et al., 2016; Y. Wang,
Mo, & Tseng, 2018). One approach involves identifying Informative Sentences containing Cus-
tomer Needs (ISCN)1(Stahlmann et al., 2023; Stahlmann, Ettrich, & Schoder, 2022; Timoshenko
& Hauser, 2019), which focuses on distinguishing sentences that convey customer needs from non-
informative or redundant content within UGC. Once filtered, marketing experts analyze and exploit
user demands from potentially informative content. This elimination process enhances the effi-
ciency of customer needs analysis in terms of both time and cost, given that a substantial portion of
UGC is repetitive and redundant.

While the use of AI-based solutions in customer needs analysis is unquestioned due to their
scalability and potential to unravel new opportunities, their adoption by companies faces several
barriers. These include economic factors, such as the prohibitive costs of ML research, deployment,
and maintenance; technical factors, including data availability, task complexity, and model efficacy;
and social implications such as discrimination, bias, unintended repercussions, and environmental
impact (Cubric, 2020; D. Kumar & Suthar, 2024). Although investigating the societal implications
of AI adoption is crucial due to its potential impact on human lives and livelihoods (Hutchinson,
Rostamzadeh, Greer, Heller, & Prabhakaran, 2022), this study primarily focuses on the technical

1Throughout this study, the term ”informative” specifically refers to content that conveys customer needs. For exam-
ple, an ”informative sentence” is a sentence that describes one or more customer needs.
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barriers as the initial step towards facilitating AI adoption, leaving the analysis of societal impacts
for future research.

Despite the use of state-of-the-art NLP models in the ISCN task (Kilroy et al., 2022; Minaee et
al., 2021), existing research indicates that their performance lags behind that of well-established
binary text classification tasks, such as general sentiment analysis2 (Csanády, Muzsai, Vedres,
Nádasdy, & Lukács, 2024; Raffel et al., 2020). This disparity highlights the complexity of the
ISCN task (see Fig. 4.1). We identify four factors, both before and after model training, that con-
tribute to the complexity of this task and its suboptimal performance: (1) limited availability of
high-quality, large-scale annotated data due to domain variations, labeling costs, and the need for
expert knowledge; (2) the contextual and abstract nature of the task; (3) sample selection bias; and
(4) data shifts over time.
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Figure 4.1: T-SNE visualizations of the Oral-Care dataset and 8,000 randomly selected samples
from the SST-2 (Socher et al., 2013), IMDB (Maas et al., 2011), and Rotten Tomatoes (Pang &
Lee, 2005) datasets. A higher degree of class overlap illustrates the complexity of the ISCN task
compared to the selected datasets. Separability Index values are provided in Table 4.6.

There are several challenges associated with this task, including the varying costs of inaccu-
rate classifications due to differing class importance. For example, misclassifying an informative
sentence as non-informative (i.e., a false negative) may cause the company to overlook a hidden
customer need, whereas mislabeling a non-informative sentence is typically a minor error and often
disregarded during manual analysis. Moreover, the semantic distribution of informative sentences
is uneven; fundamental customer needs are frequently discussed, while hidden needs are rarely

2This does not apply uniformly in all cases, as the complexities of sentiment analysis can vary significantly depending
on the context and should not be understated.
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mentioned (see the population of needs clusters in Fig. 4.5). Since deep learning models excel at
predicting scenarios well-represented in their training data, traditional metrics like accuracy may
not sufficiently capture a model’s ability to generalize to rarer customer needs or unseen domains.
This technical barrier can restrict businesses from effectively leveraging ML solutions, as uncover-
ing and responding to nuanced customer demands is essential. Addressing these demands can aid
companies across various stages of innovative product development and design, ultimately securing
a competitive advantage for stakeholders in the market(Timoshenko & Hauser, 2019).

To effectively overcome the aforementioned hurdles in AI adoption by companies, it is therefore
crucial to deeply understand a model’s overall performance. This understanding involves addressing
two key questions: ’Is this ML model good enough?’ and ’Is this ML model better than alterna-
tives?’ To answer these questions, we explore additional evaluation criteria that assess models’
ability to handle complex data and accurately identify rare but significant customer needs or sam-
ples from new domains. These comprehensive evaluations are important for selecting the most
appropriate model, ensuring it excels not just in standard metrics but also in robustness, fairness,
and adaptability across various data scenarios.

Building on this foundation, our study evaluates the inter-domain generalizability, robustness to
unseen samples, fairness across different need clusters, sample efficiency, and intra-domain gener-
alizability of Transformer-based networks. Through these comprehensive assessments, we aim to
identify their strengths and weaknesses from multiple perspectives, particularly in handling chal-
lenging dataset subsets with respect to the task objectives, thereby shedding light on their practical
effectiveness and limitations. The key contributions of our research are summarized below:

(1) We benchmarked Transformer-based models on the fully-coded Oral-Care domain dataset
(Timoshenko & Hauser, 2019), achieving up to an 18% improvement over baseline models.

(2) Through systematic clustering, we analyzed misclassification patterns in the informative class
(positive class), grouping samples based on the frequency of their semantic appearances dur-
ing training. This analysis helped assess the inter-domain generalizability of the models.
Additionally, we conducted a dual-setting robustness analysis to gain more granular insights
into the models’ behavior with unseen informative samples. These findings offer valuable
guidance for various stages of model development, such as data selection for customer need
analysis.

(3) We evaluated the models’ fairness across customer need clusters, uncovering specific weak-
nesses in Transformer-based models and discussing their implications from a bias analysis
perspective.

(4) Using additional datasets curated for the ISCN task, we studied in-domain sample efficiency
and intra-domain generalizability. Our findings highlight the advantages of domain-specific
training, the effects of dataset imbalance on cross-domain evaluations, and the relationship
between domain complexity and predictive accuracy, guiding future model training strategies.

The following section summarizes related research in customer needs analysis and the NLP do-
main. In Section 4.3, we define the ISCN task, outline the evaluation objectives, and describe our
experimental models. Section 4.4 elaborates on the experimental settings, datasets, and evaluation
metrics. The subsequent section details our experiments and discusses the results. Finally, We out-
line the limitations of this study in Section 4.6 before concluding the paper and proposing avenues
for future research in Section 4.7.
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4.2 Related Work

This section reviews the scientific articles that form the foundation of this study. Section 4.2.1
provides an overview of the current demand for and ongoing efforts to distill helpful information
from UGC for eliciting customer needs. Section 4.2.2 presents a brief summary of recent advances
in NLP.

4.2.1 UGC analysis using Machine Learning

Unstructured data has significantly contributed to the recent exponential growth of data. Accord-
ing to the International Data Corporation, an estimated 80% of worldwide data will be unstructured
by 2025 (King, 2020). This elevates the need and significance of utilizing intelligent methods to ef-
fectively process and gain insights from large amounts of unstructured data such as UGC. Utilizing
UGC for gaining marketing insights has recently attracted more attention, as discussed in (Berger et
al., 2020), which covers commonly used methods, challenges, and potential future directions in this
area of research. This work can be considered as part of the ongoing efforts to extract helpful infor-
mation from UGC, but from a more practical perspective in terms of what needs to be considered to
build a practical system using Transformer-based models.

In an early attempt to develop a scalable and intelligent need elicitation process, (Kuehl et
al., 2016) analyzed microblog data to identify unmet user needs in the e-mobility domain using
three groups of machine learning classifiers to support the design of new products and services.
While the SVM model achieved an accuracy of 85%, drew attention to the fact that selecting the
best model depends on the project goals pursued by innovation managers, which influences the
choice of evaluation metrics. Their findings demonstrated that when the objective is to achieve the
highest possible precision (to filter out non-informative content), random forests can achieve high
precision (93%). However, this comes at the cost of low recall (4.3%), indicating that only a small
number of needs were identified. In a follow-up study, (Kuehl et al., 2020) argued for a scalable
ML system to assist companies in the automatic identification and categorization of tweets into
predefined customer need groups. However, this approach falls short in identifying samples with
rare or unseen needs.

In another pioneering study, (Timoshenko & Hauser, 2019) employed a Convolutional Neural
Network (CNN) with domain-adapted embeddings to identify informative sentences from customer
reviews, achieving an F1-score of 74%. They demonstrated that professionals could save 45% of
their time by sifting only through the informative content filtered by the model. Furthermore, in
a comparative analysis, UGC was shown to be a promising alternative data source to traditional
methods, such as interviews with potential customers, for identifying customer needs. While the
study highlighted the importance of models capable of identifying a broad spectrum of customer
needs, it lacked a focus on rare instances, with additional limitations as noted in (Stahlmann et al.,
2022).

In a recent study, (Stahlmann et al., 2022) addressed data annotation challenges by using a pre-
trained Transformer-based model on a manually labeled multi-domain dataset spanning 32 review
categories. They observed a notable improvement in in-domain classification (∼ 6%) compared
to traditional deep learning and ML models. While the pre-trained model showed potential perfor-
mance in cross-domain classification, achieving an F1 score above 70% in 13 of 24 categories, the
reliability of these findings is difficult to assess due to the small test dataset sizes in each category
and the lack of an analysis to evaluate test sample similarities across all categories. In a subsequent
study, (Stahlmann et al., 2023) introduced a multi-domain golden set for benchmarking purposes.
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However, our preliminary analysis raises concerns about the dataset’s quality, as no rigorous evalu-
ation was performed during the annotation process.

In a comprehensive end-to-end analysis, (Barandoni et al., 2024) investigated the capabilities
of both open-source and proprietary large language models in fully automating the identification
of customer needs. By employing a few-shot learning approach, the authors addressed common
annotation challenges in this domain and demonstrated the potential of large language models when
limited or no annotated data is available. However, the transition from a classification task to a
text generation task introduced complexities in selecting appropriate evaluation metrics, making it
challenging to determine the most suitable model for this purpose. Furthermore, the study did not
evaluate the models’ abilities to identify latent needs that are not explicitly stated in the text.

4.2.2 Deep learning for text mining

Text mining involves extracting information from unstructured data, and utilizing NLP tech-
niques and ML algorithms to analyze and interpret the content effectively. A critical step in this
process is converting text data into numerical vectors. The primary aim of this transformation,
which significantly influences classifier performance (Bengio, Courville, & Vincent, 2013), is to
retain the semantic and syntactic relationships between words after the transformation. Over time,
various vectorization methods have been proposed, including frequency-based representations and
neural network models (Bojanowski et al., 2017; Mikolov et al., 2013; Pennington et al., 2014),
which primarily excel at word-level representations, along with deep learning-based language rep-
resentation models (Devlin et al., 2018; Peters et al., 2018).

Neural language models, building upon foundational work in neural probabilistic language mod-
els by (Bengio et al., 2003) and later advanced by Transformer architecture (Vaswani et al., 2017),
have become a cornerstone of NLP. The Transformer model, originally designed as an encoder-
decoder framework for sequence transduction tasks, leverages self-attention to weigh relationships
between all tokens in a sequence. By dynamically adjusting word embeddings based on the sur-
rounding context, these models excel in representing polysemous words, syntactic dependencies,
and semantic relationships within and across sentences.

A major breakthrough in NLP was achieved with the introduction of the BERT language model
(Devlin et al., 2018), which utilized the encoder component of the Transformer architecture to bidi-
rectionally capture information from text. BERT set new benchmarks, surpassing traditional statisti-
cal language models and earlier neural network-based approaches by a substantial margin. Notable
for its ability to capture contextual relationships, BERT and its derivatives can be pre-trained on
self-supervised learning objectives—a resource-intensive process—and subsequently fine-tuned for
specific tasks. Fine-tuning (Sun, Qiu, Xu, & Huang, 2019) adapts a pre-trained language model to a
target task by optimizing its parameters on task-specific data while retaining the broad, generalized
knowledge acquired during pre-training (Rogers, Kovaleva, & Rumshisky, 2021). This strategy un-
derscores the versatility of such models, enabling efficient adaptation to diverse downstream tasks
with significantly lower computational costs than training a model from scratch.

4.3 Methodology

4.3.1 Problem statement

ISCN is the task of detecting sentences containing customer needs that appear in the context
as explicitly mentioned aspect terms or figurative language (e.g., implicitly mentioned needs). For
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example, ”I received this Tablet as my Christmas gift” is deemed a non-informative sentence, while
”I like the green because it separates mine from my wife’s” implies a need for distinguishable
personal items and is therefore labeled as an informative sentence. One of the key challenges in
this task arises from customers using implied language, which often does not clearly articulate
their needs. This ambiguity makes it difficult for the classification model to identify and accurately
classify these demands, which are commonly referred to as latent customer needs.

In this task, each sentence is designated by Si = {t1, t2, . . . , tl} and class category Yi ∈ {0, 1},
where l is the number of tokens in Si and Yi is whether or not the sentence belongs to the informative
class. For each informative sentence (i.e., Yi = 1), an associated set of customer needs Ni =
{n1, n2, . . . , nr} is defined, where r is the number of identified customer needs within a sentence
Si and nr denotes a specific customer need from N which contain all the customer needs categories.
The primary objective is to develop a rule to predict class labels Y given sentences S in a supervised
learning framework using labeled data. This rule is defined by training a Transformer-based model,
denoted as F : S → Y , called a classifier mapping each sentence to its respective class category.
Although the existence of need clusters N3 for sentences is not essential for the training process,
their presence facilitates a more comprehensive evaluation of the models.

4.3.2 Evaluation Methods

While prior research underscores the importance of developing scalable and reliable models, the
limitations of deep learning models have been less explored. This study aims to bridge this gap by
outlining evaluation objectives that consider the task’s challenges for comprehensive evaluations of
selected models.

Customer needs and requirements constantly evolve, with new needs frequently emerging over
time, especially in dynamic environments such as commercial platforms. One of the major chal-
lenges in this task is to identify samples with infrequent or unseen needs. Addressing this challenge
requires a generic and robust classification model capable of adapting to evolving needs and gener-
alizing effectively to unseen needs.
Objective 1. Let Sim = {Sim0, Sim1, . . . , Simx} be a collection of disjoint subsets of sentences
from the test set. Each subset, Simx, is a similarity-based cluster that only consists informative sen-
tences whose similar versions have appeared x times during the training process. Two informative
sentences are semantically similar if they share at least one customer need. A model is considered
robust concerning this objective if it exhibits satisfactory performance across all evaluation metrics
during inference over the various subsets of Sim. This objective primarily assesses the inter-domain
generalizability of models, examining their capabilities in identifying informative samples with di-
verse frequency levels from less-seen to highly seen samples. The Simx subgroup is formulated
as:

Simx =

 i ∈ Stest

∣∣∣∣∣∣
∑

j∈Strain

δ(i, j) = x

 , (5)

where Strain and Stest are training and test sets, respectively, x is the similarity value that denotes the
exact number of samples in Strain that are similar to each sample in Simx, and δ(i, j) represents the

3Customer needs clusters can be identified through both manual annotation and automated methods, such as clustering
algorithms.
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similarity function between two sentences of training and test sets and is defined as:

δ(i, j) =

{
1, if |Ni ∩Nj | ̸= 0

0, otherwise
(6)

Given the formula, the performance of models on the subset Sim0 (samples with similarity value of
0) reveals their robustness against unseen informative samples.

Additionally, some customer need categories are more prevalent and frequently discussed, while
others are less common, resulting in an inherent imbalance in the dataset. This distribution natu-
rally occurs and is preserved during data collection and preparation unless explicitly adjusted, as
it reflects real-world distributions. Therefore, ensuring consistent and high performance across all
customer need clusters, regardless of the frequency of a specific cluster, is an essential objective.
Objective 2. Let C = {Cn1 , Cn2 , . . . , Cnm} be a collection of subsets from the test set, where
each subset Cnm consists of informative samples mentioning the customer need nm and m is the
total number of need clusters in the dataset. C may not necessarily comprise disjoint subsets since
informative samples can encapsulate multiple customer needs, allowing them to be members of
several customer need clusters. Each cluster can be viewed as a collection of samples representing
a specific customer need. A fair model is expected to demonstrate consistent and high performance
across all customer need clusters in C during the inference stage, as evaluated by relevant metrics.
This objective implies that the model needs to detect all types of customer needs with equal and
high efficacy.

Given the difficulties and costs of obtaining labeled data for new domains, developing a sample-
efficient system for the ISCN task is of great importance. The model also needs to adapt to new
domains with fewer cross-domain labels rather than starting from scratch. This approach is known
as supervised transfer learning in literature.
Objective 3. Let Ds represent the source domain, and Dt = {D1, D2, . . . , DT } signify the target
domains for the same task, where T denotes the number of target domains. Assuming a network is
initially trained on Ds, The objective is to derive a model that can harness the knowledge from Ds

and adapt to a target domain Di (intra-domain generalizability), either label-free or with minimal
labels from Ds.

Fig. 4.2 presents a flow diagram that illustrates the primary steps in developing a customer needs
identification system, with an emphasis on the main focus of this study: a comprehensive evaluation
of Transformer-based models. It is also important to note that the social implications of any AI-
based system are crucial to consider before real-world implementation, an analysis that we reserve
for future study.

4.3.3 Models

In this study, we employed various Transformer-based models (Vaswani et al., 2017), which
vary in size, architecture, and training strategy, and have demonstrated outstanding performance
in complex NLP tasks. Unlike traditional neural network models such as LSTM and CNN, which
lack an integrated embedding layer, Transformer-based models utilize a network of fully connected
tokens enhanced by the self-attention mechanism. This allows a direct exchange of information
across all positions, making them a suitable choice for the ISCN task, considering the quality and
quantity of the available data for training. Table 4.1 provides a detailed summary of the models
utilized in this study.
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Figure 4.2: Overall flow diagram of the ICSN task. The Objective-based In-depth Evaluation block
is the primary focus of this study, while the Societal Implications Analysis and Production Level
blocks are beyond its scope.
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Table 4.1: An overview of the Transformer-based models utilized in this study, highlighting their
core concepts, parameter counts for selected variants, training objectives, pre-training datasets, and
macro-average GLUE benchmark scores.

Name Main Ideas Size Training
Objectives

Pre-training
Corpus

GLUE
Score

Reference

BERT Revolutionized NLP by pre-
training deep bidirectional repre-
sentations using the Transformer
encoder, leveraging two novel
self-supervised objectives along
with massive training data.

Base:
110M
Large:
340M

Mask Language
Modeling (MLM),
Next Sentence
Prediction

BooksCorpus, English
Wikipedia

84.05 (Devlin et al.,
2018)

XLNet Built on the Transformer-XL de-
coder, which used segment recur-
rence and relative positional en-
coding to handle long-range depen-
dencies, it employed permutation-
based language modeling to capture
bidirectional context within an au-
toregressive framework.

Base:
110M
Large:
340M

Permutation Lan-
guage Modeling

BooksCorpus, English
Wikipedia, Giga5,
ClueWeb, Common
Crawl

89.15 (Yang et al.,
2019)

RoBERTa Enhanced BERT through better
hyperparameter tuning, removal
of NSP from training process, and
training on considerably larger
datasets with longer sequences.

Base:
125M
Large:
355M

Dynamic MLM BooksCorpus, English
Wikipedia, CCNews,
Open WebText, STO-
RIES

89.42 (Y. Liu et al.,
2019)

Distil-BERT Compressed BERT into a smaller,
faster model via knowledge distilla-
tion while retaining 97% of its per-
formance.

66M MLM with Distil-
lation

BooksCorpus, English
Wikipedia

79.60 (Sanh, Debut,
Chaumond, &
Wolf, 2019)

Distil-
RoBERTa

Compressed RoBERTa, using
knowledge distillation with the
same strategy as DistilBERT, and
trained on a reduced corpus com-
pared to the original RoBERTa.

82M Dynamic MLM
with Distillation

Open WebText 82.35 (Sanh et al.,
2019)

ALBERT Optimized BERT architecture by
reducing memory usage and accel-
erating training by significantly de-
creasing the number of parameters
through parameter sharing and fac-
torized embeddings.

Base:
11M
Large:
18M

MLM, Sentence
Ordering Predic-
tion

BooksCorpus, English
Wikipedia

84.75 (Lan et al.,
2019)

DeBERTa Enhanced BERT by separating con-
tent and positional information, uti-
lizing disentangled attention mech-
anisms, and improving the masked
token decoder by integrating po-
sition embeddings prior to predic-
tions.

Base:
100M
Large:
350M

MLM with en-
hanced mask
decoder

BooksCorpus, English
Wikipedia, Open Web-
Text, STORIES

89.87 (P. He, Liu,
Gao, & Chen,
2020)

XLM-
RoBERTa

Multilingual RoBERTa trained on
2.5 TB of data across 100 lan-
guages.

Base:
270M
Large:
550M

Multilingual Dy-
namic MLM

Multilingual subset of
Common Crawl

86.21 (Conneau et
al., 2019)
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Table 4.2: Summary statistics of the sentence-level product review datasets used in this study.

Statistic
Oral-Care Electronics Baby Sports-Outdoors Pet Supplies

non-inf. inf. non-inf. inf. non-inf. inf. non-inf. inf. non-inf. inf.

Number of samples 3819 4181 1214 786 1144 856 1262 738 1361 639
Number of tokens 73640 107020 17771 16109 13946 14277 12097 10823 16686 11551
Number of unique tokens 6462 7199 2812 2650 2226 2048 1985 1823 2565 1863
Number of stop-words 4020 4871 1104 767 890 702 922 642 1081 571
Number of unique stop-words 211 204 129 109 119 108 110 90 133 92
Average length 19.28 25.59 14.63 20.49 12.19 16.67 9.58 14.66 12.26 18.07

Despite the versatility of pre-trained language models, domain-specific language can reduce
their performance (Ma, Xu, Wang, Nallapati, & Xiang, 2019; Peng, Chersoni, Hsu, & Huang, 2021).
Domain adaptation enhances model performance by tailoring pre-trained models to specific task
domains, thereby improving their ability to interpret domain-specific language. To demonstrate the
effectiveness of domain adaptation, we utilized checkpoints from a study in which RoBERTabase
was pre-trained on Amazon reviews (Gururangan et al., 2020). This approach not only showcased
domain adaptation’s efficacy in improving performance but also contributed to reducing our carbon
footprint by reusing existing models rather than training new ones from scratch. We refer to this
model as RoBERTabase+DA throughout this paper.

4.4 Experiments

4.4.1 ISCN Datasets

We conducted primary experiments on the dataset employed in (Timoshenko & Hauser, 2019).
This dataset4, comprising eight thousand fully coded sentences, originates from Amazon Oral-Care
product reviews (R. He & McAuley, 2016) published between 1994 and 2014. Three professional
analysts from a marketing company carefully annotated the dataset by identifying the specific cus-
tomer need(s) addressed in each sentence, yielding 82 distinct customer need groups ( i.e., N=82).
The availability of need clusters and professional annotations makes this dataset an excellent re-
source for our comparative studies.

We also incorporated four additional datasets introduced by (Stahlmann et al., 2023) for the
cross-domain and sample-efficiency experiments. Each dataset contains sentences from product re-
views of three top-selling Amazon products in the categories of Electronics, Baby, Sports-Outdoors,
and Pet Supplies and is annotated by three annotators.

Table 4.2 presents the numerical characteristics of all datasets, categorized by their domains.
The table indicates that the Oral-Care dataset exhibits a nearly balanced distribution of class labels,
in contrast to the unbalanced distributions observed in the other categories. Variations in these
distributions may stem from label discrepancies and having different levels of sensitivity to the
definition of customer needs in the annotation process. It is important to note that the same definition
of customer needs was applied across all five datasets.

4The dataset is not publicly available. Interested readers may contact its authors to request access.
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4.4.2 Evaluation Metrics

To obtain a quantitative understanding of errors across our models during the primary evalua-
tion, as discussed in Section 4.5.1, we employed standard performance metrics for classification,
including accuracy, precision, recall, and F1-score. The formulas for these metrics, calculated for
the informative class, are presented below:

Accuracy =
TP + TN

TP + FN + TN + FP
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

Specificity =
TN

TN + FP
(10)

F1-score = 2× Precision×Recall

Precision+Recall
(11)

where TP represents the number of true positive results, TN stands for true negatives, FP refers to
false positives, and FN refers to false negatives. We further computed the Area Under the Curve
of the receiver operating characteristic, which shows the performance of the classifier across all T
values for the informative class (AUC =

∫ 1
0 ROC dT where T is the decision threshold). This

metric provides a qualitative evaluation of a model’s ability to accurately rank examples of both
classes.

To evaluate the impact of lexical bias on model predictions in Section 4.5.2, we used a score-
based metric from (Borkan et al., 2019). This metric offers several advantages over traditional
metrics such as accuracy. It is scale-invariant, robust against imbalanced groups, and provides de-
tailed insights into model performance across specific subgroups. Essentially, it helps to understand
how models process sentences containing specific linguistic cues compared to sentences within the
same class that lack those cues, thereby assessing an additional aspect of model performance from
a fairness perspective.

Positive Average Equality Gap (posAEG) evaluates model fairness in predicting informative
samples by comparing the separability of prediction score distributions across various informative
subgroups. Positive data points are selected randomly from two distributions, the subgroup, and the
background, expecting an equal probability for either prediction score to be higher. Mathematically,
it is defined as:

posAEG =
1

2
− P{Yi > Yj |Yi ∈ D+

BG, Yj ∈ D+
SG}. (12)

This metric ranges between −0.5 and +0.5, with zero representing optimal performance. In
other words, this metric seeks to find low separability between subgroup and background samples,
both of which belong to the informative class. A negative posAEG indicates a leftward shift in
positive sample predictions, potentially increasing false negatives. The reversed definition applies
to the negAEG metric.
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In the experiments on sample efficiency and cross-domain adaptation, as detailed in Sections
4.5.3 and 4.5.3, we employed the Matthews Correlation Coefficient (MCC). This metric is particu-
larly well-suited for binary classification tasks because it assigns high scores only when the model
performs well across both informative and non-informative classes (Chicco & Jurman, 2020). Its
sensitivity to class balance makes it an ideal choice for out-of-domain evaluations, where the metric
must accurately reflect the performance disparities caused by class imbalances.

MCCi =
TPi × TNi − FPi × FNi√

(TPi + FPi)(TPi + FNi)(TNi + FPi)(TNi + FNi)
(13)

4.4.3 Training Details

We implemented and fine-tuned our models using Hugging Face library (Wolf et al., 2020),
largely following the hyperparameter settings reported by (Devlin et al., 2018). The [CLS] token
was utilized for classification, processed through a linear layer with a Tanh activation function and
a 10% dropout rate. We fine-tuned the models using learning rates of 1 × 10−5 and 2 × 10−5 for
large models, and 3× 10−5 for others. The AdamW optimizer was employed, with a weight decay
of 0.01 and a linear scheduler set to a warm-up ratio of 10%. All models were trained with a batch
size of 16 for up to 10 epochs, usually stopping around the fifth epoch due to an early stopping
strategy. In the sample efficiency experiment, we reduced the batch size as the number of training
samples decreased, reaching a final size of four. Due to potential mispunctuation, the length of
input sentences can vary; therefore, we limited the maximum number of tokens per sentence to 40,
accommodating more than 95% of training samples and minimizing excessive padding.

4.4.4 Evaluation

In the benchmarking experiment in Section 4.5.1, we used 10 × 5 cross-validation approach,
meaning ten different repetitions of 5-fold Cross-Validation. Random seeds for repetitions were:
{94, 791, 5, 6932, 1759, 323, 1694, 9741, 200, 999}. Each time, 80% of data (about 6.4 thou-
sand sentences) was selected for training and 20% (around 1.6 thousand sentences) for testing. We
avoided preprocessing to preserve language structure and enable fair comparisons across methods,
highlighting the capability of Transformer models to handle diverse inputs. Experiments were con-
ducted on a 40GB A100 GPU. Details for other experiments are in their relevant sections.

4.5 Results and Discussion

4.5.1 Informative Sentence Classification Results

Table 4.3 presents the results of Transformer-based models as well as baselines from (Timo-
shenko & Hauser, 2019) on the Oral-Care domain of the ISCN task. All Transformer-based models
consistently outperform baselines.

Generally, the larger versions of the models perform better than their base versions, except
for XLNetlarge and ALBERTlarge, which do not perform as well as their base versions5. RoBERTa

5We found fine-tuning of ALBERTlarge and XLNetlarge very challenging with a unified setting for all training repeti-
tions, which may affect the reliability of their results. These results are included to ensure a comprehensive evaluation
and should be interpreted cautiously.
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Table 4.3: Accuracy, F1-score, Precision, Recall, and AUC of Transformer-based models for the
Oral-Care domain of ISCN task. Values are presented as mean ± standard deviation. The highest
and second-highest scores across all models are highlighted in bold and denoted by ∗ and ∗∗, re-
spectively.

Model Accuracy F1-Score Precision Recall AUC

Baselines

SVM 64.60 65.70 63.70 67.90
LSTM 73.20 73.40 72.80 74.00
CNN 74.20 74.00 74.40 73.60
CNN (asymmetric cost) 70.00 74.00 65.20 85.30

This Study

DistilBERT 80.47±0.76 81.75±0.81 79.91±1.19 83.70±1.44 88.64±0.68
DistilRoBERTa 81.73±0.76 82.92±0.75 81.10±1.47 84.87±1.64 89.84±0.61

ALBERTbase 81.15±0.86 82.11±0.94 81.60±1.43∗ 82.84±1.59 88.52±1.04
BERTbase 81.44±0.81 82.44±0.80 81.56±1.35∗∗ 83.36±1.37 89.08±0.57
XLNetbase 80.80±0.90 82.26±0.84 79.52±1.43 85.22±1.43 88.87±0.76
RoBERTabase 82.48±0.88 83.69±0.86 81.50±1.38 86.03±1.39 90.11±0.75
RoBERTabase+DA 82.87±0.96∗∗ 84.18±0.83∗∗ 81.37±1.54 87.24±1.49 90.54±0.78∗∗
DEBERTabase 81.92±0.98 83.28±0.94 80.58±1.49 86.20±1.29 89.48±0.70
XLM-RoBERTabase 81.49±0.98 82.90±0.96 80.14±1.52 85.88±1.39 89.51±0.83

ALBERTlarge 79.54±0.82 80.55±0.89 80.03±1.47 81.11±1.48 86.59±0.83
BERTlarge 81.59±0.76 82.75±0.85 81.06±1.34 84.56±1.75 88.94±0.83
XLNetlarge 79.53±1.26 81.19±1.19 78.11±1.74 84.57±1.83 87.10±1.05
RoBERTalarge 82.92±0.90∗ 84.25±0.84∗ 81.30±1.40 87.46±1.35∗ 90.90±0.68∗
DEBERTalarge 82.62±0.87 84.00±0.90 80.96±1.53 87.32±1.56∗∗ 89.88±1.00
XLM-RoBERTalarge 82.24±1.00 83.62±0.93 80.71±1.54 86.79±1.69 90.07±0.78

variants outperform their corresponding versions in all other model families. Notably, RoBERTalarge
tops the list among all models with an F1-score of 84.25%, representing a 10% improvement over
the best baseline result. In addition, RoBERTa models are also superior choices for identifying
informative sentences considering the recall metric.

In terms of parameter efficiency, ALBERTbase is six times smaller than DistilBERT, yet it sur-
passes it in F1-score and nearly matches the F1-scores of XLNetbase and BERTbase with almost
ten times fewer parameters. This performance makes ALBERTbase an ideal candidate for scenarios
with limited computational resources, and given its superior precision among all models, it is a top
choice for scenarios demanding high precision for this task.

Regarding domain adaptation efficacy, the RoBERTabase+DA model, with at least three times
fewer parameters than the best-performing model, RoBERTalarge, and other large models, ranks a
close second in our study, achieving an F1-score of 84.18%. This represents a 0.5% improvement
over its non-adapted variant, underscoring the value of domain adaptation for the ISCN task, con-
sistent with the findings reported in the literature(Gururangan et al., 2020).

Statistical Analysis

We statistically compared the performance of all models using multiple paired t-tests to ascertain
the significance of minor differences. We hypothesized that the mean difference between the two
method results is zero in each pairwise comparison. However, metric results are correlated across
folds in repeated k-fold cross-validation for two deep learning models. Consequently, a pairwise
comparison without adjusting for this correlation underestimates the variance, increasing the risk of
Type I errors (false-positives) in the test (Dietterich, 1998). Denoting n1 and n2 as the number of
training and test samples, respectively, to ensure the validity of the independence assumption of the
paired t-test, we computed the corrected t-statistic for multiple tests using the formula proposed by
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(Nadeau & Bengio, 1999):

tstat =
µN√

1
N + n2

n1
σ2
N

(14)

where µN , σ2
N , and N represent the mean, the variance of the pairwise differences, and the

number of experiment runs (50 in our case), respectively.
The adjusted p-values are presented in Fig. 4.3. Considering the F1-score as the primary met-

ric, the differences between the large versions of RoBERTa, DeBERTa, and XLM-RoBERTa are
statistically insignificant. In contrast, for the AUC metric, RoBERTalarge shows significantly better
performance compared to all other models, except RoBERTabase+DA, highlighting the benefits of do-
main adaptation. Statistical tests also confirm that RoBERTa variants generally surpass ALBERT,
BERT, and XLNet-based models in most metrics, except for precision, where the differences are
not significant.

4.5.2 Assessing Models Generalizability and Robustness over Informative Samples
with Varying Frequency Levels

Unseen or infrequent customer needs are crucial in gaining a competitive advantage in the mar-
ket (Timoshenko & Hauser, 2019). Therefore, solely relying on the overall performance of a model
may mask error patterns existing among informative samples with infrequent customer needs.

To assess models’ generalizability across different groups of informative samples, we explore
the relationship between the classification errors and the semantical appearance levels of informa-
tive samples during training. To achieve this, all the informative samples were sorted according to
their similarity value, as defined in the section 4.3.2, and grouped into 12 clusters, each containing
the same number of samples. Subsequently, the classification accuracy of the models was measured
for each cluster. This experiment evaluates whether models can identify samples with infrequent
customer needs as effectively as those with frequent customer needs, from a semantic perspective,
thereby demonstrating their inter-domain generalizability. The results of this experiment are pre-
sented in Table 4.4.

Furthermore, evaluating the robustness of Transformer-based models when handling unseen
informative samples presents another interesting avenue for exploring model performance. A dual-
setting experiment was conducted in which either infrequent or highly frequent parts of informative
samples were gradually excluded from the training phase and subsequently incorporated into the
test set (i.e., unseen samples), which was later used to assess the robustness of the selected models
(top-performing model within each family or variant). Since Transformer-based models have a
known drawback of developing a bias towards frequently occurring vocabularies during training,
this experiment further pinpoints the consequences of this tendency. The results of this experimental
setup are depicted in Fig. 4.4.

Inter-domain Generalizability Assessment

Table 4.4 displays the classification accuracy for twelve clusters of informative samples grouped
according to their similarity values. We consider informative samples with similarity values of less
than 40 as semantically ”less-seen” samples (clusters one and two) during training. Generally,
all models failed to classify less-seen samples with the same level of accuracy as they exhibit for
clusters with frequently seen samples, as confirmed by the performance gap in the table. This
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Figure 4.3: Statistical significance tests among different network architectures for Accuracy, F1-
score, Precision, Recall, and AUC metrics. Adjusted P-values are shown in the cells. Light yellow
indicates statistical significance with p < 0.05.
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Table 4.4: Classification accuracy of Transformer-based models across twelve clusters of infor-
mative samples, grouped according to their similarity values from less-seen to highly seen samples.
The table highlights significant performance discrepancies between the models on groups of seman-
tically less-seen samples and more frequently observed samples during training, as demonstrated by
the MAX−MIN column. The top performance across all models in each similarity-based cluster is
in bold.

Similarity-Based Clusters

Distilled Models 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th MAX−MIN

DistilBERT 66.73 75.66 84.30 87.48 85.73 81.93 74.83 91.15 84.30 86.09 93.63 92.48 26.90
DistilRoBERTa 67.08 78.13 86.39 85.76 87.49 84.70 79.45 91.67 83.58 86.09 94.06 94.01 26.98

Base Models

ALBERT 63.32 74.89 83.70 84.53 84.44 78.70 77.01 89.08 86.25 84.97 94.23 93.03 30.91
BERT 65.47 75.09 83.81 87.13 84.73 81.76 75.03 90.69 82.92 86.41 93.91 93.34 28.44
XLNet 68.97 77.93 87.28 87.34 86.89 85.61 77.15 90.92 84.44 87.50 94.66 93.89 25.69
RoBERTa 69.48 79.48 88.40 87.71 88.82 85.10 81.40 91.52 85.01 86.70 94.63 94.03 25.15
RoBERTa + DA 70.83 81.35 88.25 90.00 90.23 86.35 80.49 93.02 88.00 89.25 94.63 94.29 23.80
DEBERTa 69.51 81.26 88.88 86.65 87.78 85.78 81.08 90.95 85.13 88.71 94.60 94.01 25.09
XLM-RoBERTa 68.60 80.83 85.07 89.00 87.78 83.06 81.37 92.87 85.85 87.70 94.77 93.63 26.17

Large Models

ALBERT 66.05 71.87 79.40 82.15 81.27 81.73 69.91 88.59 79.77 85.63 94.40 92.45 28.35
BERT 67.88 75.83 85.96 87.25 84.96 84.31 79.10 90.57 83.84 87.13 94.74 93.11 26.86
XLNet 70.14 78.53 81.35 87.11 85.16 87.28 76.31 91.44 84.04 88.19 93.91 91.27 23.77
RoBERTa 71.15 82.61 89.26 89.60 90.06 88.67 79.74 93.25 86.13 89.80 95.17 94.03 24.02
DEBERTa 71.60 85.03 89.34 89.20 89.08 88.24 81.22 91.75 84.15 88.53 94.80 94.76 23.20
XLM-RoBERTa 70.97 82.01 89.08 89.57 89.71 87.39 79.01 91.38 84.90 88.30 95.14 93.80 24.17

Average Similarity Value of Samples in Each Cluster

14.42 37.71 54.23 75.28 126.52 150.71 161.21 201.97 243.46 283.32 428.67 509.38

observation demonstrates that when these advanced models are not exposed to a sufficient number
of similar versions of less-seen samples during training, they cannot fully learn generic patterns from
the frequently seen parts to apply to less-seen samples. This deficiency leads to the misclassification
of rare yet crucial samples.

The performance of models within the seventh cluster, which contains informative samples
with an average similarity value of 161.21 during training, suggests that Transformer-based models
can also have high classification errors over frequently observed samples. However, this trend
does not necessarily stem from the models’ inability to generalize. Rather, it underscores that even
frequently mentioned sections of samples contain complex and contrastive patterns or even incorrect
annotations, which complicate inter-domain generalization for models. Such samples necessitate
cherry-pick analysis to identify common error patterns among them, an interesting pursuit that we
reserve for future study.

Robustness Assessment on Unseen Informative Samples

This experiment bifurcates the original, informative data into remaining and excluded samples
as dictated by a specified Ratio criterion. In setting A, training is performed predominantly on
highly frequent informative samples by gradually excluding informative samples from customer
needs clusters with populations smaller than the Ratio threshold, incorporating them into the Ex-
cluded test set. Conversely, setting B emphasizes training on infrequent informative samples by
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gradually excluding the samples from the top-Ratio most populated need clusters. Since informa-
tive samples might pertain to multiple need clusters, this introduces a semantic overlap between the
training and testing sets. To eliminate semantic correlations between training and test datasets, we
divided the Excluded test set into two strata: the UnSeen subset, containing unique samples not rep-
resented semantically in the training data, and the Seen subset, which includes samples that express
customer needs already present in the training phase.

For both settings, we allocate 80% of the remaining data for training and 20% for the Main test
set. Besides uninformative samples, in setting A, the Main test set gradually includes informative
samples from less populated need clusters, while in setting B, it includes informative samples from
highly populated need clusters. As the Ratio value increases, the training sample size diminishes
from 80% to around 10% of the total samples which would negatively affect the overall performance
of models. Correspondingly, the amplification in the Ratio expands the test set size, growing from
20% to 90% of the total samples. To preserve the data balance between both classes amid increasing
Ratio values, equal numbers of non-informative samples are randomly withdrawn for training in
each experiment, facilitating a fair comparison.

Fig. 4.4 outlines the sensitivity analysis applied to the UnSeen and Seen subsets within the ex-
cluded, main, and aggregation of all test sets, along with the specificity analysis conducted on the
main and aggregated test sets. Generally, all models exhibit significantly lower sensitivity perfor-
mance on the UnSeen subset of the excluded test set compared to the Seen part of it. An interesting
observation is that RoBERTabase+DA consistently outperformed both RoBERTalarge and BERTlarge
in classifying unseen informative samples across various settings. This finding emphasizes the po-
tential of domain adaptation to enhance the robustness of Transformer-based models. Additionally,
XLNetbase also performed better than the mentioned large models, which shows the capability of
this architecture in handling unseen samples.

From a bias analysis perspective, increasing the Ratio in Setting A helps reduce the potential for
lexical bias in models by excluding highly populated clusters (which often contain lexical cues). As
shown in Fig. 4.4a, there is a sharp performance improvement up to the Ratio of five. This implies
that avoiding lexical bias enables models to learn more generic features that are advantageous when
applied to unseen samples. Nonetheless, both the specificity and sensitivity of the main test set start
to decline beyond the threshold of 11 in Setting A. This is anticipated since the complexity of the
training data rises in this setting, and without lexical cues, models find it challenging to discern
between informative and non-informative samples of the main test set.

On the other hand, increasing the Ratio in Setting B intensifies the lexical bias, as the models
are trained solely on data from the highly populated need clusters. Nonetheless, this does not sig-
nificantly impair performance on unseen data up to the threshold of 190. This outcome indicates
that, despite the heightened risk of lexical bias, Transformer networks maintained the task knowl-
edge acquired during training to distinguish unseen informative samples from non-informative ones.
Beyond this threshold, the models’ sensitivity performance sharply declines, dropping below 20%
on unseen data when training only included samples from the most populated need clusters. This
performance drop is initially due to the overall decrease in the power of the model, given the fewer
training samples used at each Ratio. More importantly, it arises from the very limited semantic di-
versity in the training samples, causing the models to overfit to the training data and rely heavily on
lexical cues. This overfitting results in biased outputs that fail to reflect the true underlying patterns
of the task and impairs their capacity to generalize to unseen data.

The above-mentioned worst-case scenario confirms the importance of utilizing an appropriate
sampling method during the data collection, especially when data annotation resources are limited.
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Figure 4.4: Robustness analysis of Transformer networks: In each figure, Setting A illustrates the
results of models gradually trained on infrequent samples, whereas Setting B depicts a converse
trend. (a) Shows sensitivity across unseen and seen parts of excluded test sets. An excluded sample
is categorized as Unseen if it has no similar version in the training set (i.e., similarity value is zero);
otherwise, it belongs to the Seen subset. (b) Highlights sensitivity and specificity on the main test
set, while (c) displays sensitivity and specificity performance across an aggregation of all test sets.
Vertical lines with matching patterns indicate comparison points between the two settings, showing
roughly equal numbers of training samples.
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Figure 4.5: Average accuracy achieved by RoBERTalarge on various need clusters within the in-
formative class. Error bars represent the performance difference between the single-need and
multi-need subgroups within each need cluster. Color-coded bars indicate the higher- and lower-
performing subgroups and the presence or absence of subgroups in each cluster. The population of
each subgroup is displayed at the top of each bar.

For instance, fundamental consumer needs, such as concerns about pricing, might be discussed
more in reviews. After annotation, such samples could disproportionately represent most of the
”informative” labels, thereby reducing the semantic diversity of the training data and introducing a
lexical bias into the model.

Analyzing Model Performance on Need Clusters

In this experiment, each need cluster is divided into single- and multi-need subgroups, which
helps to better understand the models’ performance with less or more information in a sentence.
Fig. 4.5 illustrates the average accuracy achieved by the best-performing model, RoBERTalarge, on
all need clusters.

A close analysis of the results reveals significant differences in the accuracy scores between the
two subgroups: the multi-need subgroup generally surpasses the single-need subgroup. This pattern
suggests that Transformer-based network models also require a wealth of explicit information to
make accurate decisions, supporting the lexical clue dependency finding discussed in the previous
section. In particular, this trend generally holds regardless of the population size of the need clusters;
even the large ”611” cluster exhibits underperformance in single-topic samples. Despite that, the
performance gap between single-topic and multi-topic samples is relatively minimal in some highly
populated need clusters such as ”621”. A possible explanation for this nearly on-par performance is
that these clusters contain lexical clues that have a stronger influence on the model’s predictions.

To demonstrate the influence of lexical cues, we employed an error analysis method to generate
two sets of tokens, each representing the top 20 tokens for each class that could affect the model’s
predictions. The tokens in each set were selected by sorting all unique tokens from the Oral-Care
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Figure 4.6: AEG values for the top 20 tokens in the informative (right) and non-informative (left)
classes, ranked by their cumulative absolute AEG values. Selected tokens for the informative class
appear in an average of 109.8 sentences (median 78.0) while sentences in the non-informative class
have an average of 17.55 (median 11.0). Empty positions indicate that a token does not appear in
any sample of that class.

dataset according to the sum of the absolute values of their AEGs. Utilizing fairness metrics in this
context enables the estimation of the influence of specific tokens by comparing the prediction scores
of samples containing a given token with those of all other samples within the same class. Fig. 4.6
illustrates RoBERTalarge performance on both sets of tokens.

Fig. 4.6 shows that the model assigns significantly higher scores to sentences containing tokens
from the right-set, thereby favoring the informative class. This can lead to an increased rate of false
positives if they appear in non-informative samples, as indicated by their strong positive negAEG
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value. The opposite trend is also true for the left-set tokens. A detailed analysis of the influence of
both token sets on causing false predictions is given in Appendix C.

An additional observation is that the model is more sensitive to picking up lexical bias within the
informative class than in the non-informative class. We presume this unintended intensification of
bias toward the informative class can create complications. Specifically, if the model overrelies on
lexical cues associated with the informative class, it may struggle to correctly identify informative
samples that lack these cues, especially if those samples are infrequent which poses a significant
challenge for this task. In future studies, we plan to delve deeper into the indirect influence of
lexical cue bias on predicting rare, informative samples.

4.5.3 Sample Efficiency and Cross-Domain Adaptation

Sample Efficiency

In this section, we assess the sample efficiency of the selected models (top-performing model
within each family or variant) using the Oral-Care dataset as the in-domain dataset and Electronics,
Baby, Sports-Outdoors, and Pet Supplies datasets for out-of-domain evaluations, which are primar-
ily imbalanced. Analyzing out-of-domain samples helps to understand to what extent models have
learned features that are independent of any specific domain, and how the volume of training data
affects their performance on data outside their training domain. The results of this analysis are
presented in Fig. 4.7.

Considering the sizes of the models, larger models, with the exception of DeBERTalarge, under-
performed in the in-domain setting when only a few examples were available for training, compared
to the variants with smaller sizes. This result first shows that increasing the size of the models does
not increase sample efficiency in the in-domain setting of this task, which is contrary to the finding
in (N. F. Liu, Kumar, Liang, & Jia, 2022). Secondly, it illustrates the heightened risk of under-
fitting with larger models in the ICSN context for supervised learning when only limited samples
are available. Moreover, while the in-domain performance generally improves with more training
samples, the out-of-domain performance appears to plateau or decrease beyond the 10% ratio for
all the models examined. This behavior indicates that out-of-domain performance does not linearly
correlate with the number of in-domain training samples in this task. Nonetheless, maintaining a
sufficient number of samples is necessary to achieve consistent out-of-domain results. Furthermore,
this finding hints at the tendency of Transformer-based models to overly adapt to the training do-
main distribution beyond a particular data volume, losing the general knowledge acquired during
pre-training. We presume this over-adaptation is the root cause limiting their generalization across
the other four evaluated domains.

To further highlight the advantages of domain adaptation, we observed a positive impact on both
the sample efficiency and out-of-domain performance of the RoBERTabase model. RoBERTabase+DA
outperformed all other models in the limited-data training setting (using up to 10% of the training
data) across the in-domain dataset and all out-of-domain datasets, except for the Electronics dataset.

Cross-domain Adaptation

To evaluate the domain adaptability of Transformer-based models, we conducted an experi-
ment in which RoBERTalarge, was trained on each of the domains separately (source domain) and
then assessed on all the remaining domains (target domains) without retraining on unseen domains.
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Figure 4.7: MCC results of in-domain (a) and out-of-domain evaluations in (b), (c), (d), and (e)
for the sample efficiency experiment. While the in-domain performance shows improved outcomes
with increased sample sizes, the out-of-domain performance exhibits a plateau or decreasing trend
when utilizing more than 10% of the training samples.
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Table 4.5: In-domain and cross-domain classification results of RoBERTalarge. Column averages in-
dicate the model’s generalization across target domains for each source domain, while row averages
represent the prediction difficulty for each target domain across all source domains.

Target Domain Metric
Source Domain

Mean ± STD
Oral-Care Electronics Sports-Outdoors Baby Pet-supplies

Oral-Care
MCC 55.1 39.2 37.5 32.2 37.6 36.6 ± 3.2
TPR 83.2 61.7 62.2 56.0 50.5 57.5 ± 6.5
TNR 71.3 77.1 75.1 75.5 85.0 78.2 ± 5.0

Electronics
MCC 51.8 60.6 46.2 50.5 34.0 45.6 ± 8.0
TPR 73.7 81.4 57.6 61.8 25.4 54.5 ± 19.2
TNR 78.5 80.2 86.1 86.5 97.2 87.0 ± 7.2

Sports-Outdoors
MCC 51.9 52.2 59.8 51.0 52.6 51.9 ± 1.8
TPR 76.3 65.9 79.9 74.0 61.0 69.3 ± 7.1
TNR 76.8 85.2 81.1 78.0 88.7 82.1 ± 5.4

Baby
MCC 50.9 58.8 57.7 63.6 53.4 55.1 ± 3.7
TPR 84.8 75.6 80.0 84.5 66.3 76.6 ± 7.5
TNR 66.2 83.0 78.1 79.6 85.6 78.2 ± 8.1

Pet-supplies
MCC 58.2 60.3 59.5 49.8 69.3 56.9 ± 4.9
TPR 89.9 75.4 81.9 69.7 85.1 79.2 ± 9.3
TNR 72.4 85.7 80.3 81.2 86.4 79.8 ± 5.6

MCC Mean ± STD 53.2 ± 3.7 52.6 ± 8.5 50.2 ± 9.2 45.9 ± 8.4 44.4 ± 9.2 –
TPR Mean ± STD 81.1 ± 7.6 69.6 ± 7.5 70.4 ± 11.8 65.4 ± 9.2 50.8 ± 16.5 –
TNR Mean ± STD 73.5 ± 6.1 82.7 ± 4.4 79.8 ± 4.8 80.3 ± 5.0 89.1 ± 5.1 –

Experiments were conducted solely on this model as it was identified in Section 4.5.1 as the best-
performing model. The training was done with a consistent sample size of 1.6 thousand across all
domains, achieved through 5-fold cross-validation. Since the Oral-Care dataset is four times larger
than others, we used a reversed cross-validation strategy (four-fold for testing and one-fold for train-
ing) when using this dataset as the training source. This method maintained a uniform sample size
across domains during training. Besides reporting MCC, sensitivity (i.e., TPR) and specificity (i.e.,
TNR) were also included in the evaluation. Results are reported in Table 4.5.

Training on Oral-Care datasets yielded the best performance in identifying informative sen-
tences, achieving roughly 12% higher sensitivity than the second-best setting, which involves train-
ing on Electronics. Although the training data was nearly balanced, in-domain results from Oral-
Care indicated a considerable skew towards the informative class, which resulted in the lowest speci-
ficity among of all settings. The high average sensitivity of Oral-Care across target domains may be
attributed to the broad range of topics included in its informative class, given that the population of
its informative samples is five times larger than that in the most balanced domain, Electronics, even
though each model was trained using the same number of samples.

In contrast, when the training data is sourced from the other four domains, the model exhibits
superior cross-domain specificity compared to sensitivity. This observation could be supported by
the fact that these training sets contain more non-informative samples, as demonstrated in Table 4.2.
Additionally, the best MCC result among these four datasets was obtained when using Electronics
as the training data, which could be ascribed to the greater variety of unique tokens across both
classes, presumably enhancing the model’s ability to generalize and outperform in other domains.
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Table 4.6: Separability Index values across various k-nearest neighbors (K).

Dataset K1 K3 K5 K10

SST-2 84.1 80.7 79.2 77.4
IMDB 81.0 78.5 76.8 74.4
Rotten Tomatoes 75.7 74.8 74.4 73.9
Oral-Care 67.2 65.9 64.9 63.5
Electronics 72.5 70.7 69.9 67.9
Baby 72.6 72.2 72.0 70.8
Sports-Outdoors 74.6 72.8 72.3 71.0
Pet-supplies 79.6 78.9 78.1 76.5

Regarding the ease of predictability, models found the Oral-Care and Electronics domains chal-
lenging to predict, with average MCC scores of 36.6% and 45.6%, respectively, in contrast to the
Sports-Outdoors, Baby, and Pet-Supplies categories, which were easier to predict.

To better understand what makes a dataset challenging to predict or an ideal choice as source
domain data for the ISCN task, we examined the complexities of all datasets using the Separability
Index value (Thornton, 2002) (see Appendix D). We hypothesize that training on more intricate
domains can lead to a more transferable model that excels in simpler domains. We provide the SI
values of each dataset in Table 4.6.

The table shows that Oral-Care and Electronics, which rank first and second in cross-domain
performance, are the most complex domains regarding separability. Conversely, Pet-supplies is the
most separable domain among ISCN datasets but fares the worst in cross-domain evaluation. This
underscores the importance of the source domain’s complexity when aiming for superior cross-
domain performance beyond considering the evenness of the dataset and vocabulary diversity.

4.6 Limitations

This study presents certain limitations that need to be acknowledged. Access to well-defined
clusters of informative samples in the Oral-Care dataset facilitated a thorough exploration of error
patterns across these samples, considering their relative importance and frequency. While this was
an ideal case, we believe an unsupervised topic modeling approach could be employed to cluster
informative sentences, especially with the recent advancements in large language models. Although
such clustering might not always be exact or easily interpretable, the literature suggests it remains
effective for grouping similar samples, unveiling certain error patterns related to each group.

While the analysis of the Oral-Care dataset was exhaustive for informative samples, the over-
sight of non-informative samples might limit the comprehensive applicability of our conclusions.
As previously mentioned, one can apply a topic modeling approach to reveal specific error patterns
among non-informative samples, thereby gaining more comprehensive insights into the shortcom-
ings of Transformer-based models in this task.

Moreover, this work is built on the assumption that test set labels are reliable across all domains
of the ISCN task. The significance of this assumption cannot be understated, as it might not be
valid in every scenario since annotation in the ISCN task can be very subjective. During the out-
of-domain evaluation, consistent labeling was presumed for semantically identical samples across
domains. However, given potential label variations for identical samples between domains, this can
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complicate out-of-domain evaluations and skew reported performances.
Lastly, while the primary focus of this study was on the technical barriers to adopting ML

solutions in customer needs analysis, the importance of analyzing the potential social implications
of utilizing these models in real-world scenarios should not be overlooked. In future works, the
authors plan to investigate the social impacts of deploying Transformer-based models in the context
of the ISCN task.

4.7 Conclusion

Given the growing reliance of businesses on UGC to identify customer needs, the emphasis
has been shifted from questioning the use of ML solutions to overcoming technical barriers to
their adoption by ensuring robust application and efficacy through reliable evaluations. This study
explored the efficacy of Transformer-based networks in the ISCN classification task by employing
additional evaluation objectives tailored to the task, highlighting the overall performance of the
models across different experimental settings and domains.

Our grouping analysis revealed that Transformer-based models exhibit similar performances
on similarity-based clusters of informative samples irrespective of their size. Their predominant
reliance on lexical indicators resulted in subpar performance on clusters containing infrequent sam-
ples, thereby exhibiting questionable robustness against unseen informative samples. A noteworthy
observation was that when trained using just 5% of the total samples from a single customer needs
cluster, the performance of the top-performing model, RoBERTalarge, declined drastically to below
10% for unseen informative samples. This underscores the importance of semantic diversity in
training these models and highlights the need for effective sampling methods during data collection,
especially when annotation resources are limited.

The models’ reliance on lexical cues was further substantiated when analyzing highly populated
need clusters. Using threshold-agnostic measures from the unintended bias analysis domain, we
identified influential tokens causing incorrect predictions. Understanding these tokens can aid in
developing bias mitigation strategies, which in turn can enhance the generalization and robustness
of models in this task.

The sample efficiency experiments demonstrated that in-domain performance is not linearly cor-
related with the performance of models, as larger models struggled with only a few samples avail-
able. Moreover, cross-domain performance started to plateau, indicating a tendency to overadapt
to the training domain beyond a certain threshold. Furthermore, upon examining the intra-domain
generalizability of Transformer-based networks, we found that both domain complexity and imbal-
anced training data directly impact the cross-domain performance of the top model, RoBERTalarge.

For future research, we suggest focusing on improving the generalizability of Transformer-based
models both within and across domains. There is a compelling need to strengthen model robustness
against unseen samples and to develop strategies to pinpoint and reduce the effects of lexical bias
in this field of study. While the previously discussed research paths address technical barriers to
adopting ML for customer needs analysis, developing an evaluation system that comprehensively
examines the societal implications of ML models remains essential. This step is vital to ensure the
responsible and beneficial use of AI in real-world environments.
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Chapter 5

Conclusion and Future Work

This thesis investigated intelligent approaches to identifying customer needs from UGC, with a
particular focus on Transformer-based models, and emphasized the importance of treating this task
as a distinct ML/NLP problem requiring comprehensive, taxonomy-aware, and fairness-oriented
evaluation methods.

In Chapter 5, we discussed the key challenges of identifying customer needs from UGC and
argued that they should be treated not simply as technical hurdles but as fundamental characteristics
that define the task. The aim was to reframe common difficulties—such as inconsistent terminology,
annotation subjectivity, data bias, temporal variation, and implicit needs—not as side issues, but as
core elements that evaluation frameworks must explicitly address. This perspective highlighted the
need for a more holistic approach to customer-needs identification, one that goes beyond accuracy
on a single dataset and instead emphasizes transparency, robustness, and responsible use. To extend
this discussion, we conducted a focused review of 35 recent works, categorizing their motivations
and contributions. The review revealed a clear misalignment: while many studies recognize the
difficulty of implicit or evolving needs, most concentrate on pipeline development or incremental
improvements, leaving challenges such as identification of rare or unseen needs, development of
interpretable automated methods,and responsible AI largely underexplored. The overall takeaway
encourages researchers, particularly from computer science, to approach customer-needs identifi-
cation as a distinct ML/NLP task that demands clearer constructs, taxonomy-aware evaluation, and
explicit consideration of fairness and social context, rather than treating it as a generic application
of text classification or topic modeling.

Building on the insights gained in Chapter 3, Chapter 4 focused on applying those lessons by
developing a model for the ISCN task while considering a comprehensive evaluation framework
aligned with the task’s objectives and complexities. Particularly, the main purpose of evaluation
framework was to better assess generalization and robustness, beside exploring the extent to which
Transformer-based models are influenced by unintended bias. To this end, we introduced a se-
ries of evaluations that examined model performance from the mentioned perspectives, offering a
more complete picture of both their strengths and limitations. The findings showed that although
Transformer-based models outperform traditional machine learning and deep learning approaches
by a considerable margin, their heavy reliance on lexical cues makes them highly sensitive to fre-
quent tokens in the dataset. This tendency reduced precision and weakened their ability to recog-
nize less frequent yet informative samples—often representing hidden opportunities in new product
development—raising concerns about their robustness in real-world applications. More broadly, the
results suggested that the success of these models cannot be judged by accuracy alone on a single
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test set, but also depends on how well they handle linguistic diversity in customer needs and resist
overfitting to surface-level patterns. Taken together, the outcomes of this chapter reinforced the
importance of evaluating models beyond simple performance scores and motivated us to extend our
investigation into a new context of social bias analysis of these methods which we leave for future
work.

In summary, this thesis shows that evaluating customer-needs identification from multiple per-
spectives is essential for understanding model strengths and limitations. The findings guide future
research toward improving robustness, fairness, and interpretability while bridging gaps between
marketing perspectives and ML/NLP methods. Taken together, the work positions customer-needs
identification as a distinct research area with opportunities for both technical progress and practical
impact.

5.1 Limitations

This section explains the limitations of the thesis and points out possible challenges and biases
that may have affected the results.

In Chapter 3, the review was conducted using a non-exhaustive search strategy, which means
some relevant studies may have been overlooked. In addition, the categorization of motivations and
contributions relied on our own interpretation, introducing subjectivity that may have influenced the
conclusions drawn.

In Chapter 4, the analysis relied on well-defined clusters of informative samples within a specific
dataset, which may limit how broadly the findings apply to other domains or less structured datasets.
Moreover, the evaluation assumed that labels across domains were consistent and reliable, but given
the subjectivity of the ISCN task, this assumption may not always hold, potentially affecting the
validity of out-of-domain results.

5.2 Directions for Future Research

Future work should first expand the Chapter 3 review into a full systematic literature review
that widens coverage beyond need identification and uses protocol-driven methods to examine, at
scale, how motivations, contributions, and limitations align across methodologies.This would re-
duce selection bias, improve reproducibility, and provide a more rigorous understanding of the
misalignment between motivations, contributions, and limitations observed in existing studies.

Second, the work in Chapter 4 can be extended by focusing on improving model generalization
within and across domains, enhancing robustness to rare or unseen samples, and reducing reliance
on frequent lexical cues. Another interesting avenue for future work would be to investigate whether
the observed bias toward frequent lexical cues in the informative class directly affects the detection
of rare but informative samples, and to examine the extent to which this influence shapes overall
model performance.

Third, Chapter 5 points to the need for clear definitions and practical metrics for social bias in
customer-needs pipelines, including fully automated systems that employ generative AI, whether
proprietary or open-weight, in order to understand how bias arises, how it impacts the outcomes of
such systems despite pre-release mitigation efforts, and who is affected by these outcomes.

Finally, a general recommendation is for researchers in this area to organize workshops aimed
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at improving standards in the field, particularly by clarifying task definitions and introducing bench-
marks and datasets that can serve as common points of comparison, which the field currently lacks.
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Appendix A

Unsupervised Annotation

In this section, we present a preliminary assessment of the annotating capabilities of AI-based
tools. The objective is not only to evaluate their functionality but also to explore the potential
benefits of using these tools, such as cost-effectiveness, improved efficiency, and scalability. Our
tool of choice for this annotation task is ChatGPT 3.5 turbo (OpenAI, 2023), which was deployed to
unsupervisedly annotate datasets as introduced in Section 4.5.1 with the presumption of accepting
their labels as the “gold standard”, thereby comparing the annotation ability of ChatGPT 3.5 turbo
with the existing labels.

To carry out the annotation process, two prompts per sentence were created using the customer
need definitions outlined in Section 3.2.1, with a restrained application of prompt engineering tech-
niques solely to yield parsable output. For each prompt, we explored two temperature settings,
zero and one, to modulate the determinism of the model’s output. Consequently, four ChatGPT re-
sponses were generated for each sentence, totaling 24,000 requests for the 8,000 samples included
in each dataset, at the cost of $22.18 for both datasets, covering approximately 11 million tokens.
It is important to note that the API environment of ChatGPT does not carry over the annotation
history, as each request initiates a new chat history. The zero-shot model’s accuracy is illustrated in
Figure A.1.

In terms of accuracy, prompts derived from the customer need definition outlined in (Timo-
shenko & Hauser, 2019) outperformed those generated from the second definition, despite both
sets achieving over 60% agreement with the golden labels. This is promising, as the model’s per-
formance is at least 10% above random guess performance, and its capability can be dramatically
increased if appropriate prompts are provided. While we did not have access to OpenAI’s latest
chat model, GPT-4, which is more powerful than the version we used, we believe this model could
potentially enhance performance to an acceptable range. Furthermore, model accuracy remained
unaffected by different temperature values, despite occasional inconsistencies when handling non-
coherent sentences such as those comprising a single word in our datasets. Yet, after enhancing
prompts by modifying action requests, these inconsistencies were successfully addressed in an ad-
ditional investigation, resulting in relevant model outputs. The intercoder agreement was not eval-
uated in our study because it did not involve prompt engineering techniques, and the two prompts
used were distinct (different definitions).

As for scalability and efficiency, and considering OpenAI’s API restrictions (OpenAI, 2023b),
all annotation processes were completed in under 40 hours, with an average of 1,200 API requests
per hour. This efficiency surpasses that of human annotators, which we evaluated in a small-sample
study with three research assistants. Based on our findings, each annotator was able to annotate
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Figure A.1: Performance of ChatGPT in zero-shot text annotation, measured by accuracy in agree-
ment with golden labels.

approximately 200-300 samples per hour, which is significantly lower than ChatGPT performance
since its API limit can also be increased upon user request.

Despite ChatGPT’s encouraging performance, one must not ignore potential inconsistencies and
reliability concerns, given that varying responses can be generated for identical requests. Therefore,
it remains crucial to establish comprehensive validation measures to ensure the model’s reliability.
In this context, an intriguing approach can be the use of an aggregation strategy Gilardi et al. (2023);
Reiss (2023) in which the model’s reliability and consistency can be significantly improved by
pooling the outputs from repeated iterations of the same and different prompts. The implementation
of such a method could further enhance the overall performance and reliability of ChatGPT, thus
making it more useful for practical applications.
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Appendix B

Structured Review Results

Table B.1 present summary of over idea of selected papers in the structure review study dis-
cussed in Section 3.4.

Table B.1: General overview of the reviewed literatures

Reference Termino-
logy

General Idea

Jhamtani
et al.
(2015)

✓ – The authors proposed a system that uses linguistic patterns and supervised
machine learning to automatically identify product improvement suggestions
in online product reviews. Their approach combines natural language process-
ing with classification models to distinguish suggestions from other review
content.

Kuehl et
al. (2016)

✓ – The authors propose a Machine Learning approach to identify micro blog
posts that express customer needs. Following a Design Science Research
framework, they developed a classification artifact through a five-step process:
data retrieval (via Twitter API and IBM Insights), data coding (manual descrip-
tive coding), data filtering (language, URLs, duplicates), data labeling (crowd-
sourced classification), and supervised learning (preprocessing, sampling, and
testing various algorithms). This enables scalable elicitation of customer needs
from large datasets.

Guzman
et al.
(2017)

✓ – The authors present ALERTme, an approach to automatically classify, group,
and rank tweets about software applications. They use supervised machine
learning for classification, Biterm Topic Modeling for grouping related tweets,
and a weighted ranking function to prioritize tweets according to attributes
such as sentiment, category, likes, retweets, and duplicates.

(C. Li et
al., 2018)

✗ – The authors propose a keywords-based machine learning approach to semi-
automatically classify user requests in crowdsourcing requirements engineer-
ing. It combines non-project-specific and project-specific keywords, heuristic
properties of user requests, and active learning strategy, with classifiers built
using k-NN, Naı̈ve Bayes, and SVM.

Continued on next page
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Reference Termino-
logy

General Idea

Timoshenko
and
Hauser
(2019)

✓ – The authors propose a hybrid method using machine learning to identify
customer needs from user-generated content (UGC). Their five-stage process
involves preprocessing UGC, training word embeddings, applying a CNN to
filter non-informative content, clustering sentence embeddings to reduce re-
dundancy, and having professional analysts manually extract customer needs.

Ayoub et
al. (2019)

✗ – The authors propose a machine-learning approach to analyze customer needs
in product ecosystems by filtering uninformative reviews with fastText, ex-
tracting topics using latent Dirichlet allocation (LDA), predicting sentiment
and intensity with VADER, and categorizing needs with an analytical Kano
model

M. Li et
al. (2020)

✗ – The author proposes using multi-task learning (MTL) with hard parameter
sharing to jointly address the tasks of requirements discovery (RD) and re-
quirements annotation (RA). In this approach, requirements discovery (RD)
is framed as a binary classification problem, where the goal is to determine
whether a new document qualifies as a valid requirement. Meanwhile, require-
ments annotation (RA) is treated as a multi-label classification problem, focus-
ing on assigning semantic categories to the sentences within the document

Kocon et
al. (2021)

✗ – The authors propose the Automatic Aspect-Based Sentiment Analysis
(AABSA) model, which automatically identifies hierarchical aspects (hyper-
nyms and hyponyms) from Chinese online reviews using k-means clustering,
BERT-based sentence embeddings, word2vec, and PageRank, and then per-
forms sentiment analysis with Maximum Entropy (MaxEnt). The model is
fully automated, domain-knowledge agnostic, and applied to Alibaba product
reviews.

Kovacs et
al. (2021)

✓ – The authors propose an unsupervised approach to assess customer needs
from online reviews by combining topic modeling (LDA) with linguistic cues,
followed by semantic consistency ranking using ELMo embeddings, and a
manual aspect revision step. The method extracts, ranks, and refines prod-
uct/service aspects from nearly 64 million Japanese customer reviews to gen-
erate requirement candidates.

De Araújo
and Mar-
cacini
(2021)

✗ – The authors propose RE-BERT (Requirements Engineering using Bidirec-
tional Encoder Representations from Transformers), which uses pre-trained
BERT language models fine-tuned with a focus on local and global contexts
for token classification in app reviews, enabling automatic extraction of soft-
ware requirements.

Han and
Moghad-
dam
(2021)

✓ – The authors propose new formulation for CN extraction (ACOSI) with five
labels (aspect, category, opinion, sentiment, implicit indicator) and develop a
unified deep learning–based NLP model (fine-tuned T5) that extracts all labels
simultaneously in a generative manner. The framework automates large-scale
elicitation of implicit user needs from online product reviews.

Continued on next page
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Reference Termino-
logy

General Idea

M. Zhang
et al.
(2021)

✓ – The authors propose a deep learning-based approach (REE-LSTM) to iden-
tify sentences in online reviews that contain innovation ideas. They develop
a novel RNN-based Ensemble Embedding (REE) method combining GloVe,
BERT, and XLNet embeddings, use a bidirectional LSTM for classification,
and incorporate a focal loss function to address class imbalance.

Bian et
al. (2022)

✗ – The authors develop a refined fine-grained sentiment analysis methodol-
ogy with four steps: sentiment element extraction (Bi-LSTM+CRF), aspect-
opinion pair identification (improved CNN combining structured and unstruc-
tured features), sentiment value calculation (dictionary-based with modifiers),
and aspect term clustering (word2vec + K-means) to identify customer prefer-
ences from hotel online reviews.

Q. Zhao
et al.
(2022)

✗ – This method is divided into three parts. Firstly, text mining is adopted to
collect online review data of multi-generation products and identify product
attributes. Secondly, the attention and sentiment scores of product attributes
are calculated with a natural language processing tool, and further integrated
into the corresponding satisfaction scores. Finally, the improvement direction
for next-generation products is determined based on the changing satisfaction
scores of multi-generation product attributes.

Xiao et
al. (2022)

✗ – The paper proposes a user preference mining method based on fine-grained
sentiment analysis, modeled as a sequence labeling problem. It integrates a
pre-trained BERT model to encode contextual user features, incorporates lin-
guistic knowledge (POS and segmentation), and applies multi-scale convolu-
tion to capture text features at different scales. Finally, a Conditional Random
Field (CRF) decodes the optimal label sequence, enabling accurate sentiment
polarity detection in user reviews.

Mahdi et
al. (2022)

✗ – The authors propose an Idea Mining framework with three stages: (1) Fil-
tering – a classifier (feedforward neural network with BERT encoder and pre-
processing layer) removes non-suggestive reviews, (2) Similarity Measures –
cosine similarity with BERT-based sentence embeddings clusters similar sug-
gestive reviews, and (3) Evaluation – assessing ideas as good/bad using NLP
and statistical factors.

Salminen
et al.
(2022)

✗ – The authors collected 4.2 million tweets targeting 20 global brands from five
industries, annotated samples, and trained multiple machine learning (ML)
models to detect customer pain points and their types. They compared al-
gorithms, optimized neural networks and transformer-based models, and pro-
posed “pain point profiling” to categorize issues into five classes for manage-
rial insights.

Stahlmann
et al.
(2023)

✓ – The study benchmarks previously proposed needmining models (SVM, naı̈ve
Bayes, CNN, RNN ensemble, RoBERTa) using a newly created publicly avail-
able gold set of annotated Amazon product reviews. They use design science
research, build the dataset, validate inter-rater agreement, label sentences, and
evaluate models with cross-validation.

Continued on next page
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Reference Termino-
logy

General Idea

Cong et
al. (2023)

✗ – The paper proposes a small sample data-driven method (ERNIE-ISIFRank)
for eliciting user needs from online reviews. The framework has two stages:
(1) topic-based classification of online reviews using ERNIE; (2) extraction of
key product information phrases (PIPs) with improved SIFRank (ISIFRank),
then manual transformation into explicit user needs.

Lee et al.
(2023)

✗ – The authors propose a context-aware approach using linguistic pattern min-
ing on online product reviews. The method extracts context information and
product functions, clusters them using word embedding and k-means, and
identifies customer needs by analyzing co-occurrence of context and function
clusters.

Kaur
and Kaur
(2023)

✗ – The paper proposes MNoR-BERT, a transfer learning-based framework us-
ing BERT to classify multi-label user reviews into non-functional requirements
(NFRs). It evaluates performance on a dataset of 6000 app store reviews, com-
paring with baseline machine learning, deep learning, and keyword-based ap-
proaches.

M. Zhang
et al.
(2023)

✗ – The authors propose a framework combining initial and supplementary on-
line reviews to identify dynamic customer requirements. They use LDA to ex-
tract product attributes, machine learning–based sentiment analysis for aspect
orientation, SnowNLP for overall satisfaction, regression to measure attribute
effects, and the Kano model to classify product attributes.

Han et al.
(2023)

✓ – The study proposes a context-aware approach for identifying customer needs
from online product reviews. It extracts context information and product func-
tions using linguistic pattern mining, clusters them with BERT and k-means,
then defines customer needs through co-occurrence analysis of context and
product function clusters.

K. Zhang
et al.
(2023)

✓ – The authors develops the UNISON framework, a systematic, data-driven
approach for eliciting and evaluating smart product-service system (PSS) re-
quirements. Using user online reviews as data, they apply Bi-LSTM for clas-
sifying product- and service-related requirements, and BTM topic modeling
for requirement elicitation. For evaluation, they integrate sentiment analysis,
IPA-Kano model, and the opportunity algorithm to assess, classify, and prior-
itize requirements. An empirical study on smart cleaning robots validate the
framework’s effectiveness.

Q. Li et
al. (2023)

✗ – The study proposes a user demand mining method that integrates online
reviews and complaint information. Product attributes are extracted using
TF–IDF, expert consultation, and LDA; aspect-level sentiment is analyzed with
a fine-tuned BERT model; complaint information is manually labeled and clas-
sified using BERT. Results from sentiment analysis and complaint classifica-
tion are integrated to obtain comprehensive user demand elements.

Continued on next page
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Reference Termino-
logy

General Idea

Yin et al.
(2023)

✗ – The authors develop a framework based on lead user theory and machine-
learning algorithms to automatically capture improvement ideas from social
media chatter. The framework includes data preprocessing, improvement chat-
ter identification using features of lead users and text, imbalanced classification
methods, and topic-modeling-based summarization for managers

Z. Zhang
et al.
(2024)

✗ – The framework combines ERNIE 3.0-LDA-K-Means for topic modeling
of product attributes, fine-tuned SKEP for sentiment analysis, and the Kano
model for requirement classification, using online product reviews (e.g., smart-
phones) to improve accuracy and reduce dependence on large annotated
datasets.

C. Wang
et al.
(2024)

✓ – The authors propose a customer needs mining framework using LLM agents
to transform unstructured user-generated content into structured customer
needs. The process involves classification, alignment, feasibility analysis,
product improvement, and expert analysis, with LLM agents performing spe-
cific roles through prompt design.

Han and
Moghad-
dam
(2024)

✗ – The paper proposes the ACOSI (Aspect, Category, Opinion, Sentiment, Im-
plicit indicator) analysis task and develops a unified model based on T5 trans-
formers. It introduces a Design-Knowledge-Guided (DKG) position encoding
algorithm and a domain knowledge benchmark (DKG-ROUGE) to extract im-
plicit knowledge from online product reviews in a generative manner.

Barandoni
et al.
(2024)

✓ – The authors conduct a comparative analysis of various open-source and pro-
prietary LLMs (e.g., GPT-4, Gemini, Mistral) to extract travel customer needs
from TripAdvisor posts. They manually label needs, designed prompts (few-
shot and optimized Chain-of-Thought via DSPy), deploy models, and evaluate
outputs using BERTScore, ROUGE, and BLEU against the manual annota-
tions.

Ettrich et
al. (2024)

✓ – The study reconceptualizes Needmining from a binary classification task to
a token classification task. The authors develop an artifact that identifies at-
tributes and characteristics in user-generated content using transformer-based
models and token classification, thereby extracting specific customer needs
and organizing them to support decision making.

Kilroy et
al. (2024)

✓ – The study builds a supervised Multivariate Time Series Classification
(MTSC) model trained on the Trending Customer Needs (TCN) dataset and
Reddit posts. It incorporates Multi-Task Learning (MTL) across multiple prod-
uct categories, enabling prediction of future customer needs (1–3 years ahead)
even in categories unseen during training.

Huang et
al. (2025)

✗ – The authors reframe identifying novel customer needs as a text classification
problem using a regularized dual BERT structure to analyze online product re-
views. They mitigate class imbalance by introducing Kullback-Leibler (KL)
divergence as a regularization mechanism, enabling robust and accurate detec-
tion of novel needs from user-generated content.

Continued on next page
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Reference Termino-
logy

General Idea

Timoshenko
et al.
(2025)

✓ – The authors evaluate whether large language models can extract customer
needs from qualitative data. They compare three approaches: (1) Base LLM
with prompt engineering, (2) supervised fine-tuned (SFT) LLM trained on pro-
fessional CN data, and (3) professional analysts, using blind studies across
multiple product categories.

W. Wei et
al. (2025)

✗ – The authors propose a framework based on large language models (LLMs) to
analyze user needs from user-generated content (UGC). The method involves
four steps: (1) collecting and preprocessing UGC data with a self-developed
crawler, (2) extracting product attributes using LLMs and normalization, (3)
conducting sentiment analysis via LLM embeddings and multilayer perceptron
classification, and (4) mapping attributes into a quantified IPA-Kano model to
prioritize product features and support user-centric optimization strategies.
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Appendix C

The Role of Lexical Cues in False
Predictions

We presented precision scores for the top 20, 35, and 50 tokens identified by our method as
prominent lexical clues for all types of prediction outcomes in Table C.1. This table shows the
contribution of lexical bias to the model’s performance. Specifically, false positives contain more
lexical clues that cause right score shift (RSS) than lexical clues that cause a left score shift (LSS).
This pattern is also observed in single-topic false negatives that contain more LSS tokens, generally
associated with non-informative classes, than RSS tokens. For example, only 33% of false negatives
in the infrequent single-topic informative subgroup contained the top 50 RSS tokens. In contrast,
64% of them had LSS tokens, which makes these informative samples difficult for the model to
classify correctly. In comparison, multi-topic false negatives contain slightly more RSS tokens than
LSS ones, which complicates the conclusion that LSS-inducing tokens are the primary contributors
to their misclassification. Our analysis also shows that the precision score increases as the token set
size expands across informative and non-informative samples. This indicates our method’s efficacy
in accurately identifying the most critical tokens from both classes.

In summary, false positives are largely affected by the presence of RSS tokens. Similarly, false
negatives, which are the primary concern in this application, are mainly triggered by left score shift
tokens and are typically found among single-topic samples. Our findings emphasize that identifying
and mitigating lexical bias is pivotal in improving the generalization, robustness, and fairness of
Transformer-based networks, especially when they are utilized in challenging tasks such as ISCN.
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Table C.1: Precision scores for prominent lexical cues in informative and non-informative samples,
categorized by frequency and type (single-topic and multi-topic). RSS denotes right-side tokens
displayed in Fig. 4.6, which contribute to a Right Score Shift in predictions, whereas LSS represents
left-side tokens from the same figure, contributing to a Left Score Shift.

Rank Category Subgroup Metric
Single Topic Multi Topic

RSS LSS Shared RSS LSS Shared

Top 20

Non-informative All Samples
TN 5.09 26.88 1.09
FP 20.36 16.30 3.58

Informative

Infrequent
TP 29.31 13.89 5.56 50.37 18.41 11.34
FN 10.75 23.53 2.54 32.08 27.36 16.04

High FR.
TP 29.31 15.02 4.92 53.94 16.29 9.29
FN 14.89 19.94 4.68 35.79 46.32 30.53

Very High FR.
TP 44.91 17.18 8.40 64.59 16.92 11.19
FN 15.44 19.68 2.19 47.93 44.24 34.10

Top 35

Non-informative All Samples
TN 16.05 43.11 5.65
FP 44.10 29.65 13.20

Informative

Infrequent
TP 57.58 27.63 16.10 78.64 30.57 25.23
FN 21.10 42.19 11.66 50.00 35.85 24.53

High FR.
TP 57.47 29.47 16.23 82.55 29.49 24.78
FN 37.98 37.88 16.22 50.53 51.58 36.84

Very High FR.
TP 71.01 31.25 22.77 90.04 31.66 28.60
FN 38.94 38.55 16.40 69.12 56.68 51.15

Top 50

Non-informative All Samples
TN 29.58 63.68 16.74
FP 50.71 50.02 25.73

Informative

Infrequent
TP 70.65 46.09 30.80 92.28 43.30 38.21
FN 33.67 64.71 24.75 59.43 56.60 42.45

High FR.
TP 71.81 43.69 30.12 92.86 44.40 41.33
FN 51.34 51.91 24.90 68.42 62.11 54.74

Very High FR.
TP 79.43 48.75 39.57 93.96 48.76 45.36
FN 49.93 57.17 28.06 76.50 76.50 62.67
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Appendix D

Separability Index Value

The separability Index value is calculated for different k-nearest neighbor settings based on
Euclidean distance, revealing the complexity of the task. The SI(i, k) denotes the normalized
proportion of i’s k-nearest neighbors from the same class as sample i. The generalized formula is
given by:

SI(i, k) =
1

k
· |{j ∈ Sk(i) | c(i) = c(j)}| (15)

where, Sk(i) is the set of i’s k-nearest neighbors, and c(x) signifies the class of x.
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