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Abstract

Entanglements of Galois Representations for Elliptic Curves over Q: Foundations and
Future Directions

Alessandro Campanella

This thesis investigates the non-surjectivity of adelic Galois representations associated with
elliptic curves over Q, a phenomenon explained by two forms of entanglement. We introduce
and di!erentiate between vertical and horizontal entanglements, providing a group-theoretic
perspective on the latter. We also develop the concept of ’entanglement networks’, diagrams
derived from a theorem on field intersections, which o!er a framework for analyzing these
phenomena and suggest avenues for future combinatorial and cryptographic study. Com-
putationally, we address the classification of potential mod-n Galois images by providing
SageMath code to compute all applicable subgroups of GL2(Z/nZ) for any n. Further Sage-
Math implementations are presented to compute relevant entanglements for a given elliptic
curve, utilizing data from the LMFDB database. Finally, we present a theorem providing
conditions for the surjectivity of mod-n Galois representations, linking it to the surjectivity
of mod-p representations for prime factors p of n and a constant related to Serre’s work.
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Introduction

For an elliptic curve E defined over the field of rational numbers Q, the set of its n-torsion
points, E[n], forms a Z/nZ-module isomorphic to Z/nZ→Z/nZ. The action of the absolute
Galois group GQ := Gal(Q/Q) on these points gives rise to a family of Galois representations:

εE,n : GQ ↑ Aut(E[n]) ↓= GL2(Z/nZ).

These representations can be collected into the adelic Galois representation εE : GQ ↑

GL2(Ẑ), which encodes the entire Galois action on the torsion subgroup of E. The image of
this representation, a subgroup of GL2(Ẑ), holds a wealth of arithmetic information about
the curve.

For an elliptic curve without complex multiplication (non-CM), the foundational Open
Image Theorem of Serre [1] states that the image of εE is always an open subgroup of GL2(Ẑ)
and thus has finite index. Serre also proved that for any elliptic curve over Q, this index
is always greater than 1, meaning the representation is never surjective. The reasons for
this non-surjectivity are explained by phenomena known as “entanglements”, which can be
broadly divided into two types. Vertical entanglement occurs when the ω-adic component
of the representation, εE,ω→ , is non-surjective for some prime ω. Horizontal entanglement
occurs when the adelic image is not the full direct product of its ω-adic images, a situation
arising from non-trivial intersections between torsion fields of coprime level.

This thesis investigates these phenomena from both a theoretical and computational
standpoint. We present a group-theoretic framework to analyze the structure of Galois im-
ages and provide tools to explicitly compute and interpret entanglements. One of the central
results presented in this work is a theorem that provides a practical criterion for the surjec-
tivity of mod-n Galois representations, linking it to the surjectivity of the constituent mod-p
representations and a constant related to Serre’s work. A key theoretical contribution is the
concept of “entanglement networks”, which are diagrams derived from a theorem on field
intersections. These networks provide a visual and structural framework for analyzing en-
tanglement phenomena and suggest new avenues for future combinatorial and cryptographic
investigation. Computationally, this thesis addresses the problem of classifying potential
Galois images by providing a concrete algorithm, implemented in SageMath, to construct all
“applicable subgroups” of GL2(Z/nZ) for any given integer n. We further present SageMath
implementations to compute entanglement data for specific elliptic curves, leveraging the
extensive resources of the LMFDB database.

The thesis is structured as follows.

• Chapter 1 provides the necessary foundations in algebra, reviewing key concepts
from Galois theory, field theory, and the theory of profinite groups, culminating in an
overview of infinite Galois theory.

• Chapter 2 introduces the main objects of study: elliptic curves and their associated
Galois representations. We cover the geometry of elliptic curves, the Weil pairing, the
construction of Tate modules, and the formal definitions of the mod-n, ω-adic, and
adelic representations.

• Chapter 3 develops the group-theoretic tools that underpin the main results of this
thesis. This chapter is dedicated to proving the necessary structural theorems about
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subgroups of GL2(Z/nZ) that are required for both the surjectivity criterion and the
classification of applicable subgroups.

• Chapter 4 is the heart of the thesis, where we apply these tools to the study of en-
tanglements. We define the adelic level and index, and then systematically investigate
vertical and horizontal entanglements. We present a group-theoretic interpretation of
horizontal entanglement and use a field-theoretic degree formula to analyze its size.
This culminates in the introduction of entanglement networks, which we illustrate
with detailed case studies. The chapter concludes by presenting a new criterion for
constructing integers whose associated torsion fields are unentangled.

• Finally, the Appendix contains the complete SageMath code for the algorithms de-
veloped in this thesis, including the construction of applicable subgroups and the com-
putation of entanglement data.
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1. Foundations in Algebra: Galois Theory, Fields and Profinite Groups

This chapter lays the algebraic groundwork necessary for understanding the subsequent
material on elliptic curves and their Galois representations. We will review key concepts
from Galois theory, field theory, and the theory of profinite groups.

1.1. Galois Theory

We briefly recall the essential definitions and results from Galois theory needed for our
discussion. For a more comprehensive treatment, see [2]. Throughout, let K be a field and
K a fixed algebraic closure of K.

Definition 1.1.1 (Automorphism Group). Let L/K be a field extension. The automorphism
group of L over K is the group of field automorphisms of L that fix every element of K:

Aut(L/K) = {ϑ ↔ Aut(L) | ϑ(x) = x for all x ↔ K}.

Definition 1.1.2 (Separability). An irreducible polynomial f(X) ↔ K[X] is separable if it
has distinct roots in K. An element ϖ ↔ L, where L/K is an algebraic extension, is separable
over K if its minimal polynomial over K is separable. The extension L/K is separable if
every element ϖ ↔ L is separable over K.

Remark 1.1.1. In characteristic 0, all irreducible polynomials and all algebraic extensions
are separable. In characteristic p > 0, issues arise only for inseparable polynomials like
Xp

↗ t over Fp(t).

Definition 1.1.3 (Normality). An algebraic extension L/K is called normal if it satisfies
the following equivalent conditions:

(a) Every irreducible polynomial in K[X] that has at least one root in L splits completely
into linear factors in L[X].

(b) L is the splitting field over K for some family of polynomials in K[X].

(c) For every K-embedding ϑ : L ϱ↑ K, the image ϑ(L) is equal to L.

The key concept connecting field extensions and group theory is that of a Galois extension.

Theorem 1.1.1 (Characterization of Galois Extensions). For a finite field extension L/K,
the following conditions are equivalent:

(a) L/K is separable and normal.

(b) L is the splitting field over K of a separable polynomial in K[X].

(c) The fixed field of the automorphism group Aut(L/K) is precisely K, i.e., LAut(L/K) =
K.

(d) The order of the automorphism group equals the degree of the extension, i.e., |Aut(L/K)| =
[L : K].
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Definition 1.1.4 (Galois Extension). A finite field extension L/K satisfying the equivalent
conditions of above is called a Galois extension. In this case, the group Aut(L/K) is called
the Galois group of L over K, denoted by Gal(L/K). Its order is |Gal(L/K)| = [L : K].

Definition 1.1.5 (Fixed Field). Let L be a field and let H be a subgroup of Aut(L). The
fixed field of H is the subfield

LH = {x ↔ L | ϑ(x) = x for all ϑ ↔ H}.

If L/K is Galois, then LGal(L/K) = K.

Example 1.1.1 (Quadratic Extensions). If Char(K) ↘= 2, any quadratic extension L/K
is Galois. Such an extension can be written as L = K(

≃
d) for some d ↔ K which is not

a square in K. L is the splitting field of the separable polynomial X2
↗ d ↔ K[X]. The

Galois group Gal(L/K) has order [L : K] = 2. The non-identity element ϑ is determined by
ϑ(
≃
d) = ↗

≃
d.

Example 1.1.2 (Cyclotomic Extensions). For n ⇐ 1, the n-th cyclotomic field Q(ςn), where
ςn is a primitive n-th root of unity, is a Galois extension of Q. Its Galois group is iso-
morphic to the group of units modulo n, (Z/nZ)→. An automorphism ϑa corresponding to
a ↔ (Z/nZ)→ is defined by ϑa(ςn) = ςa

n
.

Theorem 1.1.2 (Subextensions). If L/K is a finite Galois extension and F is an inter-
mediate field (K ⇒ F ⇒ L), then the extension L/F is also Galois. (Note: F/K is not
necessarily Galois).

The cornerstone of the theory is the relationship between the structure of the Galois
group and the structure of the intermediate fields.

Theorem 1.1.3 (Fundamental Theorem of Galois Theory). Let L/K be a finite Galois
extension with Galois group G = Gal(L/K). Let F be the set of intermediate fields F such
that K ⇒ F ⇒ L, and let G be the set of subgroups H of G. There is an inclusion-reversing
bijection between F and G given by the maps:

” : F ↑ G # : G ↑ F

F ⇑↑ Gal(L/F ) H ⇑↑ LH

These maps are inverses (# ⇓” = idF , ” ⇓# = idG) and satisfy the following properties for
corresponding pairs F ⇔ H (i.e., H = Gal(L/F ) and F = LH):

(a) |H| = [L : F ] and [G : H] = [F : K].

(b) Let F and F ↑ be two intermediate fields of the extension, and let H and H ↑ be their
corresponding subgroups in G. The intermediate fields F and F ↑ are isomorphic over
K if and only if H and H ↑ are conjugate subgroups of G. In particular, for any ϑ ↔ G,

Gal(L/ϑ(F )) = ϑGal(L/F )ϑ↓1.
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(c) The extension F/K is Galois if and only if the corresponding subgroup H = Gal(L/F )
is a normal subgroup of G (H φG). If F/K is Galois, then the restriction map ϑ ⇑↑ ϑ|F
induces an isomorphism

G/H ↓= Gal(F/K).

Example 1.1.3 (Illustration of FTGT). Consider the extension L = Q(
≃
2,
≃
3) over K =

Q. This is the splitting field of (X2
↗2)(X2

↗3), hence it is Galois. The degree is [L : Q] = 4.
The Galois group G = Gal(L/Q) is isomorphic to the Klein four-group V4

↓= Z/2Z→ Z/2Z.
Let ϑ and ↼ be the automorphisms defined by:

ϑ(
≃
2) = ↗

≃
2, ϑ(

≃
3) =

≃
3

↼(
≃
2) =

≃
2, ↼(

≃
3) = ↗

≃
3

Then G = {e, ϑ, ↼, ϑ↼}. The intermediate fields and corresponding subgroups are shown
below.

Lattice of Subfields:

L = Q(
≃
2,
≃
3)

Q(
≃
2) Q(

≃
6) Q(

≃
3)

Q

Lattice of Subgroups:

{e}

Hε = ↖↼↙ Hϑε = ↖ϑ↼↙ Hϑ = ↖ϑ↙

G = Gal(L/Q)

The Galois correspondence (F ⇔ H = Gal(L/F )) is:

• Q(
≃
2,
≃
3) ∝↑ {e}

• Q(
≃
2) ∝↑ Hε = {e, ↼}

• Q(
≃
3) ∝↑ Hϑ = {e, ϑ}

• Q(
≃
6) ∝↑ Hϑε = {e, ϑ↼} (since ϑ↼ fixes

≃
6 =

≃
2
≃
3)

• Q ∝↑ G

Note that all subgroups of G are normal (since G is abelian), corresponding to the fact that
all intermediate fields Q(

≃
2)/Q, Q(

≃
3)/Q, and Q(

≃
6)/Q are Galois extensions.

The following proposition, particularly part (b) concerning the condition for the Galois
group of a compositum to be the direct product of individual Galois groups, will be crucial
in our later analysis of horizontal entanglements.

Proposition 1.1.1. Let L1 and L2 be finite Galois extensions of K.
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(a) There is an injective homomorphism

↽ : Gal(L1L2/K) ϱ↑ Gal(L1/K)→Gal(L2/K)

given by ↽(ϑ) = (ϑ|L1 , ϑ|L2).

(b) The embedding ↽ is an isomorphism if and only if L1 ′ L2 = K. In particular,

[L1L2 : K] = [L1 : K][L2 : K]

if and only if L1 ′ L2 = K.

Proof. (a) First, note that a composite of Galois extensions is Galois [3, Section 14.4,
Proposition 21], so L1L2/K is Galois.

Any ϑ ↔ Gal(L1L2/K) restricted to L1 or L2 is an automorphism of that subfield. This
holds because L1 and L2 are both Galois over K and, in particular, normal extensions.
As a result, we can define a map

↽ : Gal(L1L2/K) ↑ Gal(L1/K)→Gal(L2/K)

by sending ϑ ⇑↑ (ϑ|L1 , ϑ|L2). We will now show that ↽ is an injective homomorphism.

To show ↽ is a homomorphism, it su$ces to show that the component maps ↽i :
Gal(L1L2/K) ↑ Gal(Li/K) given by ↽i(ϑ) = ϑ|Li are homomorphisms for i = 1, 2.
Let ϑ, ↼ ↔ Gal(L1L2/K) and let ϖ ↔ L1. Then

(ϑ↼)|L1(ϖ) = (ϑ↼)(ϖ) = ϑ(↼(ϖ)).

Since L1/K is Galois, we know ↼(ϖ) ↔ L1. Therefore,

ϑ(↼(ϖ)) = ϑ|L1(↼(ϖ)).

Furthermore, since ϖ ↔ L1, we have ↼(ϖ) = ↼ |L1(ϖ). Thus,

ϑ|L1(↼(ϖ)) = ϑ|L1(↼ |L1(ϖ)) = (ϑ|L1 ⇓ ↼ |L1)(ϖ).

Combining these, we have shown (ϑ↼)|L1(ϖ) = (ϑ|L1 ⇓ ↼ |L1)(ϖ) for all ϖ ↔ L1. This
means the functions are equal:

(ϑ↼)|L1 = ϑ|L1 ⇓ ↼ |L1 .

The proof that (ϑ↼)|L2 = ϑ|L2 ⇓ ↼ |L2 is identical.

To show injectivity, consider the kernel of ↽. Suppose ϑ ↔ ker(↽) then ↽(ϑ) =
(ϑ|L1 , ϑ|L2) = (eL1 , eL2). This means that ϑ fixes every element of L1 and every el-
ement of L2. Any automorphism fixing all elements in L1 and L2 must fix all elements
in L1L2. Therefore, ϑ must be the identity automorphism on L1L2. The kernel of ↽ is
thus trivial, which proves that ↽ is injective.
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(b) Because ↽ is injective, ↽ is an isomorphism if and only if [L1L2 : K] = [L1 : K][L2 : K],
or equivalently, by the tower law, [L1L2 : L2] = [L1 : K]. We will show this equality
occurs if and only if L1 ′ L2 = K.

We compare the Galois groups corresponding to these degrees to compare [L1L2 : L2]
and [L1 : K]. Consider the restriction homomorphism:

” : Gal(L1L2/L2) ↑ Gal(L1/K)

sending ϑ ⇑↑ ϑ|L1 . Any automorphism ϑ in the kernel of ” fixes L1 and fixes L2. Thus,
ϑ fixes the composite field L1L2, meaning ϑ is the identity automorphism. The kernel
is therefore trivial, and ” is injective.

The fact that the image of a group homomorphism is a subgroup of its codomain and
the Fundamental Theorem of Galois Theory tells us that the image of ” is of the
form Gal(L1/E) for some intermediate field E with K ⇒ E ⇒ L1. The field E is the

fixed field LIm(!)
1 , which consists of the elements of L1 fixed by Im(”) = {ϑ|L1 | ϑ ↔

Gal(L1L2/L2)}. An element ϖ ↔ L1 is fixed by all such ϑ|L1 if and only if ϑ(ϖ) = ϖ
for all ϑ ↔ Gal(L1L2/L2). An element of L1L2 is fixed by Gal(L1L2/L2) if and only if
it lies in L2. So, we are looking for elements ϖ ↔ L1 that also lie in L2. Thus, the fixed
field is E = L1 ′ L2.

Hence, Im(”) = Gal(L1/(L1 ′ L2)) and the injectivity of ” provides an isomorphism:

Gal(L1L2/L2) ↓= Gal(L1/(L1 ′ L2)).

Comparing the orders of these groups which equal the degrees of the corresponding
field extensions:

[L1L2 : L2] = [L1 : L1 ′ L2].

This degree [L1 : L1 ′ L2] is equal to [L1 : K] if and only if L1 ′ L2 = K. Therefore,
the condition [L1L2 : L2] = [L1 : K] which is equivalent to ↽ being an isomorphism
holds if and only if L1 ′ L2 = K.

↭

1.2. Field Theory

This section presents several miscellaneous results, primarily from Field Theory. The
opening result, however, is group-theoretic; it is included here because it is instrumental
in proving a subsequent field-theoretic statement within this collection. These results are
specifically gathered for their application in our later section on horizontal entanglements in
terms of group theory.

Lemma 1.2.1 (Dedekind’s Modular Law). Let H,K,L be subgroups of a group and assume
that K ⇒ L. Then (HK) ′ L = (H ′ L)K.

Proof. The proof was taken from [4, Result 1.3.14]. In the first place (H ′ L)K ⇒ HK and
(H ′ L)K ⇒ LK = L: hence (H ′ L)K ⇒ (HK) ′ L. Conversely let x ↔ (HK) ′ L and
write x = hk, (h ↔ H, k ↔ K): then h = xk↓1

↔ LK = L, so that h ↔ H ′ L. Hence
x ↔ (H ′ L)K. ↭
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Proposition 1.2.1 (Modular Law for Galois Extensions). Let H,K,L be finite Galois ex-
tensions for some base field F and assume that K ⇒ L. Then (HK) ′ L = (H ′ L)K.

Proof. First note that the compositum HKL is Galois over F by [3, Chapter 14, Proposition
21]. So (HK)′L and (H′L)K are intermediate fields between F and HKL. By the Galois
correspondence, proving (HK) ′ L = (H ′ L)K is equivalent to proving

Gal(HKL/((H ′ L)K)) = Gal(HKL/((HK) ′ L)).

Let M = HKL. We define the following corresponding Galois groups:

GH := Gal(M/H)

GK := Gal(M/K)

GL := Gal(M/L)

Staying consistent with this notation and using [2, Theorem 5.13], we obtain the groups
corresponding to the relevant field constructions:

• Field: H ′ L ∝↑ Group: Gal(M/(H ′ L)) = ↖GH , GL↙

• Field: (H ′ L)K ∝↑ Group: Gal(M/((H ′ L)K)) = ↖GH , GL↙ ′GK

• Field: HK ∝↑ Group: Gal(M/HK) = GH ′GK

• Field: (HK) ′ L ∝↑ Group: Gal(M/((HK) ′ L)) = ↖GH ′GK , GL↙

Using the above, the statement we are trying to prove (equality of Galois groups) becomes

↖GH , GL↙ ′GK = ↖GH ′GK , GL↙.

Let G := Gal(M/F ). Since H,K,L are finite Galois extensions of F , their corresponding
groups GH , GK , GL are normal subgroups of G (i.e., GH φG, GK φG, GL φG).

We now claim that ↖GH , GL↙ = GHGL and ↖GH ′GK , GL↙ = (GH ′GK)GL. This claim
is true if and only if GHGL and (GH ′ GK)GL are subgroups, which in turn is true if and
only if GHGL = GLGH and (GH ′ GK)GL = GL(GH ′ GK) respectively [3, Chapter 3,
Proposition 14]. The proof of our claim is as follows:

• Since L/F is Galois, GLφG. Therefore, any subgroup ofG normalizesGL. In particular,
GH (being a subgroup of G) normalizes GL. Thus, GHGL = GLGH , which implies
↖GH , GL↙ = GHGL.

• Similarly, GH ′ GK normalizes GL. Thus, (GH ′ GK)GL = GL(GH ′ GK), which
implies ↖GH ′GK , GL↙ = (GH ′GK)GL.

The statement to prove now becomes

(GHGL) ′GK = (GH ′GK)GL.

By the Galois correspondence, the field inclusion K ⇒ L implies the group inclusion GL ⇒

GK . We can now apply Dedekind’s Modular Law for groups to the subgroups GH , GL, and
GK of G to obtain

(GHGL) ′GK = (GH ′GK)GL.

This is precisely the group equality we needed to show, which completes the proof. ↭
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Proposition 1.2.2. Let M,L,K be finite Galois extensions for some base field F and assume
that K ⇒ L. Then M ′ L ⇒ K if and only if MK ′ L = ML ′K.

Proof. Since K ⇒ L, we have that K ⇒ ML and as a result K ⇒ ML ′ K. Conversely
ML ′K is contained in K so we have that ML ′K = K. The statement we wish to prove
is show M ′ L ⇒ K if and only if MK ′ L = K given our assumptions.

Suppose that M ′ L ⇒ K. Since K ⇒ MK and K ⇒ L we have that K ⇒ MK ′ L.
On the other hand, MK ′ L = (M ′ L)K ⇒ KK = K, where the equality follows from the
previous Proposition and the containment follows from our assumption. Thus, MK′L = K.

Conversely, suppose that MK ′ L = K. Let x be an element of M ′ L. In particular, x
is an element of M ⇒ MK and also x ↔ L. Thus, x ↔ MK ′ L = K. ↭
Proposition 1.2.3. Let M,L,K be finite field extensions over the same base field F . Then
LK ′M = (L ′M)(K ′M) if and only if (LK \ (L ∞K)) ′M ⇒ (L ′M)(K ′M).

Proof. First note that LK′M = ((LK\(L∞K))′M)∞(L′M)∞(K′M). Suppose first that
LK′M = (L′M)(K′M). Then (L′M)(K′M) = ((LK\(L∞K))′M)∞(L′M)∞(K′M).
Therefore we must have that (LK \ (L ∞K)) ′M ⇒ (L ′M)(K ′M).

Conversely, suppose that (LK \ (L ∞ K)) ′ M ⇒ (L ′ M)(K ′ M). We know that
(L ′M) ∞ (K ′M) ⇒ (L ′M)(K ′M) so ((LK \ (L ∞K)) ′M) ∞ (L ′M) ∞ (K ′M) ⇒
(L ′M)(K ′M) which implies that LK ′M ⇒ (L ′M)(K ′M). We now want to show
that (L ′ M)(K ′ M) ⇒ LK ′ M . L ′ M ⇒ LK ′ M and K ′ M ⇒ LK ′ M and so
(L ′ M)(K ′ M) ⇒ LK ′ M as LK ′ M is a field that contains both those fields so it
contains their compositum. Finally, (L ′M)(K ′M) = LK ′M . ↭
Remark 1.2.1. It is important to note that the proposition establishes an equivalence between
an equality of fields and a set-theoretic inclusion.

Let us recall a few well-known facts from algebraic number theory without proof.

Lemma 1.2.2. (a) Let p be an odd prime. Then
≃
⇀ · p ↔ Q(ςp) where ⇀ = (↗1)(p↓1)/2. In

particular,
≃
p ↔ Q(ςp) if p ∈ 1 (mod 4), and

≃
↗p ↔ Q(ςp) if p ∈ 3 (mod 4).

(b) Q(ς8) contains
≃
2,

≃
↗2, and i.

(c) Let n,m > 1 be integers. Then the compositum Q(ςn)Q(ςm) = Q(ςlcm(n,m)).

The following proposition will be instrumental when we later demonstrate that the adelic
Galois representation is never surjective for an elliptic curve over Q.

Proposition 1.2.4. Let n ↔ Z, n ↘= 0, be square-free. Then:

(a) Q(
≃
n) ⇒ Q(ς|n|) if n ∈ 1 (mod 4).

(b) Q(
≃
n) ⇒ Q(ς4|n|) if n ∈ 2 (mod 4) or n ∈ 3 (mod 4).

Proof. First let us suppose that n ∈ 1 (mod 4). As n is square-free, n = ±p1p2 . . . pk
with pi distinct odd primes (The latter also hods if n ∈ 3 (mod 4)). We claim that
≃
n =

∏
1↔i↔k

≃
⇁ipi =

√∏
1↔i↔k

⇁i ·
√∏

1↔i↔k
pi. If the claim were true, then

≃
n ↔

Q(ςp1)Q(ςp2) . . .Q(ςpk) = Q(ς|n|) by Lemma 1.2.2 part (a) and (c). The goal is to prove
our claim for n ∈ 1 (mod 4) and n ∈ 3 (mod 4). The case where n ∈ 2 (mod 4) will then
be addressed by reducing it to one of these preceding cases.
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• Suppose that n is positive. Then n = p1 . . . pk ∈ 1 (mod 4), which means that the
number of pi such that pi ∈ 3 (mod 4) (where ⇁i = ↗1) is even. This further implies
that

∏
1↔i↔k

⇁i = 1. Thus
≃
n =

√∏
pi =

√
1 ·

∏
pi =

√
(
∏

⇁i)
∏

pi =
∏

1↔i↔k

≃
⇁ipi.

• Suppose now that n is negative. Then n = ↗|n|, and ↗|n| ∈ 1 (mod 4), meaning
|n| ∈ 3 (mod 4). And so |n| = p1 . . . pk ∈ 3 (mod 4) implies that the number of pi
such that pi ∈ 3 (mod 4) (where ⇁i = ↗1) is odd. Therefore,

∏
1↔i↔k

⇁i = ↗1. Then
≃
n =

√
↗|n| =

√
(
∏

⇁i)
∏

pi =
∏

1↔i↔k

≃
⇁ipi.

Thus, for n ∈ 1 (mod 4), we have that Q(
≃
n) ⇒ Q(ς|n|).

Let us suppose that n ∈ 3 (mod 4). Then we can use a similar argument as above to
show that

≃
↗n ↔ Q(ς|n|).

• Suppose n is positive. Knowing that n = p1 . . . pk ∈ 3 (mod 4), we can infer that there
are an odd number of primes pi such that pi ∈ 3 (mod 4) (where ⇁i = ↗1). Thus,∏

1↔i↔k
⇁i = ↗1. Then

≃
↗n =

√
(↗1)

∏
pi =

√
(
∏

⇁i)
∏

pi =
∏

1↔i↔k

≃
⇁ipi ↔ Q(ς|n|).

• Suppose that n is negative. Then n = ↗|n|, so ↗|n| ∈ 3 (mod 4), which implies |n| ∈ 1
(mod 4). This means there are an even number of primes pi (in the factorization of
|n|) such that pi ∈ 3 (mod 4). And,

∏
1↔i↔k

⇁i = 1. Then
≃
↗n =

√
|n| =

√∏
pi =√

(
∏

⇁i)
∏

pi =
∏

1↔i↔k

≃
⇁ipi ↔ Q(ς|n|).

As
≃
↗1 ↔ Q(ς4), we get

≃
n =

≃
↗1

≃
↗n ↔ Q(ς4)Q(ς|n|) = Q(ς4|n|) (since |n| is odd when

n ∈ 3 (mod 4)).
Finally, if n ∈ 2 (mod 4), then n = 2m with m odd and square-free, so m ∈ 1 or 3

(mod 4). In either case using the results above for m, we get Q(
≃
m) ⇒ Q(ς4|m|) ⇒ Q(ς4|n|)

where the last inclusion comes from m | n. As 8 | 4|n| (since |n| is even), we get Q(ς8) ⇒
Q(ς4|n|). Moreover,

≃
2 ↔ Q(ς8), so

≃
2 ↔ Q(ς4|n|). Thus,

≃
n =

≃
2
≃
m ↔ Q(ς4|n|). ↭

1.3. Profinite Groups

This section is dedicated to presenting several results about profinite groups which are
instrumental for understanding Galois representations of elliptic curves. The definitions,
theorems, and propositions in this section are taken from the lecture notes [5].

Definition 1.3.1. A poset (J,∋) is an inverse system if for any i, j ↔ J there is some k ↔ J
such that i ∋ k and j ∋ k.

An inverse system of groups consists of an inverse system (J,∋) and a collection of groups
indexed by J such that whenever i ∋ j, we have some homomorphism ↽ji : Gj ↑ Gi such
that ↽ii = idGi and ↽ji ⇓ ↽kj = ↽ki when i ∋ j ∋ k. The abbreviation for the notion of the
inverse system of groups is as follows: (Gj)j↗J . The maps ↽ji are called transition maps.

We will state the following proposition to define the inverse limit of an inverse system of
groups.

Proposition 1.3.1. Let (Gj)j↗J be an inverse system of groups. Then the inverse limit of
(Gj)j↗J exists, and is given by

lim
∝↗

Gj = {(gj)j↗J ↔

∏

j↗J

Gj | ↽ji(gj) = gi for all i ∋ j}.

10



The inverse limit of an inverse system of groups comes equipped with the maps pi :
lim
∝↗

Gj ↑ Gi such that pi = ↽ji ⇓ pj when i ∋ j.

Definition 1.3.2. A profinite group is the inverse limit of an inverse system of finite groups.

The explicit description of an inverse limit in the proposition above allows us to define
a topology on a profinite group. Let’s now recall the basis for the discrete and product
topology, as we will invoke both topologies when we define the topology of a profinite group.

In the discrete topology on a set X, every subset of X is open. Therefore, the basis for
the discrete topology is simply the set of all singletons: B = {{x} | x ↔ X}. This is because
any subset of X can be written as a union of singletons, and thus is open.

The product topology on X =
∏

j↗J Xj has basis

{

∏

j↗J

Uj | Uj ⇒ Xj is open and Ui = Xi for all but finitely many i}

Notice that the box and product topologies are the same if the indexing set is finite.

Definition 1.3.3. Let (Gj)j↗J be an inverse system of finite groups. Endow each Gj with the
discrete topology, and give

∏
j↗J Gj the product topology. The topology on lim

∝↗
Gj ⇒

∏
j↗J Gj

is the subspace topology.

Remark 1.3.1. By Tychono! ’s Theorem,
∏

j↗J Gj is compact and Hausdor!. Each con-
dition ↽ij(gi) = gj describes a closed subset of

∏
j↗J Gj, and the intersection of all these

subsets is lim
∝↗

Gj. Thus, the inverse limit, endowed with the subspace topology, is a closed
subspace of

∏
j↗J Gj. Note that lim

∝↗
Gj is thus a compact Hausdor! space.

Definition 1.3.4. A topological group is a group G endowed with a topology such that the
multiplication and inversion maps are continuous.

A profinite group endowed with the topology above is a topological group.

Proposition 1.3.2. Let f : H ↑ G be a homomorphism from a topological group to a finite
group (equipped with the discrete topology). Then f is continuous if and only if ker(f) is an
open subgroup of H.

Proof. Since {e} is an open subset in the discrete topology on G, if f is continuous, then
ker(f) = f↓1({e}) is open.

Conversely, suppose f↓1({e}) is open. Let U be an open set in G, i.e., a subset of G since
it has the discrete topology. If U is empty, then f↓1(U) is empty, which is open. If U is
not empty, then for each g ↔ U , f↓1({g}) is either empty (open) or f↓1({g}) = h · f↓1({e})
where h ↔ H such that f(h) = g. Moreover, f↓1({g}) is open because translations of open
sets are open since left (or right) multiplication is a homeomorphism. Finally, f↓1(U) =⋃

g↗U f↓1({g}) is open since each f↓1({g}) is open and the union of open sets is open. ↭

Proposition 1.3.3. Let G be a compact topological group. A subgroup of G is open if and
only if it has finite index and is closed.
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Proof. Let U be an open subgroup. We have G =
⋃

g↗G gU , and each gU is open for
similar reasons as stated in the proposition above, so

⋃
g↗G gU is an open cover of G. By

compactness, it has a finite subcover, G = g1U ∞ · · · ∞ gnU . The gi form a finite set of
coset representatives for U , which thus has a finite index in G. We also have that U =
G \ (g↓1

1 g2U ∞ · · · ∞ g↓1
1 gnU) by multiplying both sides of G = g1U ∞ · · · ∞ gnU by g↓1

1 and
rearranging. The latter implies that U is the complement of an open set and, hence, is
closed.

Conversely, suppose U has a finite index and is closed in G. Let g1, . . . , gn be the coset
representatives of U in G, then U = G \ (g↓1

1 g2U ∞ · · · ∞ g↓1
1 gnU). And so, U is open

because it’s the complement of a closed set as the finite union of closed sets is closed, and
homeomorphisms send closed sets to closed sets.

↭

It is immediate from the definition of a profinite group G = lim
∝↗

Gj that G has a good
supply of open subgroups: the kernels Uj of the maps pj : G ↑ Gj. In fact the topology of
a profinite group is entirely governed by its open subgroups.

Proposition 1.3.4. Let (Gj)j↗J be an inverse system of finite groups with inverse limit
G. The open subgroups Uj = ker(pj : G ↑ Gj) form a basis of open neighbourhoods of the
identity in the sense that any open set V ⇒ G which contains the identity contains some Uj.

Proof. Let V be an open subset of G containing the identity, eG. By definition of the
product topology, V is a union of basic open sets of the form p↓1

j1
(Xj1) ′ · · · ′ p↓1

jn
(Xjn) for

some j1, . . . , jn ↔ J and Xji ⇒ Gji . Fix one such basic open set that contains the identity,
then certainly eji ↔ Xji for each i as homomorphisms maps identity to identity. So we have

eG ↔ p↓1
j1
({ej1}) ′ · · · ′ p↓1

jn
({ejn}) = Uj1 ′ · · · ′ Ujn ⇒ p↓1

j1
(Xj1) ′ · · · ′ p↓1

jn
(Xjn) ⇒ V

The goal now is to turn the first intersection above into a single Uj. We achieve the latter
by using the definition of an inverse system to find k ↔ J such that ji ∋ k for all i. Since
pji = ↽kji ⇓ pk where ↽kji is a transition map, we have ker(pk) ⇒ ker(pji) hence Uk ⇒ Uji for
all i, and eG ↔ Uk ⇒ V . ↭

Example 1.3.1. Let J = N with the usual ordering. For each n ↔ N, let Gn = Z/pnZ,
which is the cyclic group of order pn. These are our finite groups.

Now, for n △ m, define the transition map ↽mn to be the reduction modulo pn map. The
following conditions: ↽ii = idGi and ↽ji ⇓ ↽kj = ↽ki when i △ j △ k are satisfied as the
transition maps are surjective.

Thus, (Z/pnZ)n↗N with the transition maps ↽mn forms an inverse system of finite groups.
The inverse limit of this system is precisely the p-adic integers, Zp:

Zp
↓= lim

∝↗
Z/pnZ.

Since each Z/pnZ is finite (and thus compact with the discrete topology), Zp is a compact
Hausdor! space by Tychono! ’s theorem.
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Example 1.3.2. The profinite completion of Z, denoted Ẑ, is another example of profinite
group.

Let J = N ordered by divisibility (i.e., i ∋ j if i divides j). For each n ↔ N, let
Gn = Z/nZ, which is the cyclic group of order n.

Now, for m,n ↔ N with n|m, define the transition map ↽mn : Gm ↑ Gn by the reduction
modulo n map. The conditions for the latter to be an inverse system of groups are satisfied
similarly as above.

Thus, (Z/nZ)n↗N with the transition maps ↽mn forms an inverse system of finite groups.
The inverse limit of this system is precisely the profinite completion of Z, denoted Ẑ:

Ẑ ↓= lim
∝↗

Z/nZ.

The following theorem makes use of the previous two examples to produce a vital iso-
morphism that will play a crucial role in the section on Entanglements.

Theorem 1.3.1. There is an isomorphism of topological rings

Ẑ ↓=
∏

p prime

Zp.

Example 1.3.3. Matrix groups over Zp and Ẑ provide interesting examples of profinite
groups. For instance, consider the general linear group of degree N over the p-adic integers,
denoted GLN(Zp). This group can be expressed as the inverse limit of matrix groups over
finite rings:

GLN(Zp) = lim
∝↗

GLN(Z/pnZ).

Similarly, the general linear group over the profinite completion of Z, denoted GLN(Ẑ),
can be expressed as

GLN(Ẑ) = lim
∝↗

GLN(Z/nZ) ↓=
∏

p

GLN(Zp),

where the product is taken over all prime numbers p. These examples highlight how matrix
groups with coe”cients in profinite rings inherit a profinite structure.

1.4. Infinite Galois Theory

Finite Galois theory establishes a fundamental correspondence between intermediate
fields of a finite Galois extension L/K and subgroups of the Galois group Gal(L/K). Infinite
Galois theory seeks to extend this framework to extensions of infinite degree. We primarily
follow the exposition in [6] and in [7, Chapter 7].

Definition 1.4.1 (Infinite Galois Extension). An algebraic field extension L/K is called
Galois if it is normal and separable. This is equivalent to saying that L is the splitting field
over K of some (possibly infinite) family of separable polynomials in K[X]. The Galois group
is Gal(L/K) = Aut(L/K).
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A naive attempt to directly generalize the Fundamental Theorem fails because the map
from subgroups of Gal(L/K) to intermediate fields F = LH is generally not injective when
[L : K] is infinite. There can be distinct subgroups H1 ↘= H2 such that LH1 = LH2 .

Example 1.4.1 (Cardinality Mismatch). Let L = Q(
≃
↗1,

≃
2,
≃
3,
≃
5,
≃
7, . . . ), the com-

positum of Q(i) and Q(
≃
p) for all primes p. Then Gal(L/Q) ↓=

∏
p prime{±1} (where the

first component corresponds to
≃
↗1), a countable direct product of the group {±1}. This

is an abelian group where each non-identity element has order 2. The group Gal(L/Q) is
uncountable as |Gal(L/Q)| = 2↘0, so Gal(L/Q) has uncountably many subgroups of order 2.
At the same time, L has only countably many subfields of each finite (2-power) degree over
Q, more precisely ▽0 many. Therefore the subfields of L and the subgroups of Gal(L/Q) do
not have the same cardinality.

The resolution, proposed by Krull (building on ideas of Dedekind), is to introduce a topol-
ogy on the Galois group Gal(L/K). This Krull topology restricts the Galois correspondence
to a bijection between intermediate fields and closed subgroups of Gal(L/K).

The intuition behind the topology is that two automorphisms ϑ, ↼ ↔ Gal(L/K) are ”close”
if they agree on a ”large” finite Galois subextension F/K of L/K. The topology is formally
defined using subgroups corresponding to finite extensions.

Lemma 1.4.1. Let L/K be a Galois extension (possibly infinite) with G = Gal(L/K).

(a) For ϑ ↔ G and an intermediate field F between L and K, the coset ϑGal(L/F ) is all
automorphisms of G that look like ϑ on F :

ϑGal(L/F ) = {↼ ↔ G | ↼ |F = ϑ|F}.

(b) If F/K is a finite extension inside L then Gal(L/F ) has index [F : K] in Gal(L/K).

Definition 1.4.2 (Krull Topology). Let L/K be a Galois extension. The Krull topology on
G = Gal(L/K) is defined by taking the set of all cosets

{ϑGal(L/F ) | ϑ ↔ G, K ⇒ F ⇒ L, [F : K] < ̸}

as a basis of open sets. Equivalently, the subgroups Gal(L/F ) for finite extensions F/K form
a basis of open neighborhoods of the identity element e ↔ G.

Remark 1.4.1 (Properties of Krull Topology). The Galois group Gal(L/K) equipped with
the Krull topology is a profinite group. This means it is:

• Hausdor!: Distinct elements can be separated by open sets.

• Compact: Every open cover has a finite subcover.

• Totally disconnected: The only connected subsets are single points.

In fact, Gal(L/K) can be realized as an inverse limit of finite groups: Gal(L/K) ↓= lim
∝↗

Gal(F/K),
where the limit is taken over all finite Galois subextensions F/K. The Krull topology coin-
cides with the topology inherited from this inverse limit structure. For a finite Galois exten-
sion L/K, the Krull topology is the discrete topology (all subgroups are open and closed).
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The main theorem of infinite Galois theory establishes the correspondence using this
topology.

Proposition 1.4.1. Let L/K be a Galois extension (possibly infinite) with Galois group
G = Gal(L/K) equipped with the Krull topology.

(a) Let F be an intermediate field, i.e., K ⇒ F ⇒ L. Then L/F is also a Galois extension,
the group Gal(L/F ) is a closed subgroup of G, and the fixed field of Gal(L/F ) is F
(i.e., LGal(L/F ) = F ).

(b) For every subgroup H of G, the Galois group Gal(L/LH) is the closure of H in G.
That is, Gal(L/LH) = H.

Theorem 1.4.1 (Fundamental Theorem of (Infinite) Galois Theory). Let L/K be a Ga-
lois extension (possibly infinite) with Galois group G = Gal(L/K) equipped with the Krull
topology. The maps

H ⇑↗↑ LH and F ⇑↗↑ Gal(L/F )

are inverse bijections between the set of closed subgroups of G and the set of intermediate
fields F such that K ⇒ F ⇒ L:

{closed subgroups H of G} ∝↑ {intermediate fields F,K ⇒ F ⇒ L}.

Moreover, this correspondence has the following properties:

(a) H1 ⊇ H2 ∀∃ LH1 ⇒ LH2 (the correspondence is inclusion-reversing).

(b) A closed subgroup H of G is open if and only if its fixed field LH has finite degree over
K. In this case, the index [G : H] is equal to the degree [LH : K].

(c) For any ϑ ↔ G and any closed subgroup H ⇒ G, LϑHϑ
↑1

= ϑ(LH). For any ϑ ↔ G and
any intermediate field F , Gal(L/ϑ(F )) = ϑGal(L/F )ϑ↓1.

(d) A closed subgroup H of G is a normal subgroup (i.e., H φ G) if and only if its fixed
field LH is a Galois extension of K. In this case:

Gal(LH/K) ↓= G/H.

Example 1.4.2 (Algebraic Closure of Q). Consider the absolute Galois group of the rational
numbers, GQ = Gal(Q/Q). This is a central object in number theory. It is an extremely
complex profinite group. The Fundamental Theorem guarantees a correspondence between
subfields K ⇒ Q (which are the number fields and their infinite algebraic extensions) and the
closed subgroups of GQ. For example, the field Q(ς≃) =

⋃
n
Q(ςn) corresponds to the closed

kernel of the cyclotomic character χ : GQ ↑ Ẑ→ ↓= lim
∝↗

(Z/nZ)→. Finite extensions K/Q
correspond to open (and hence closed) subgroups of finite index in GQ.
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2. Elliptic Curves and Their Galois Representations

This section reviews fundamental results concerning elliptic curves, with the material
primarily drawn from Chapter III of J.H. Silverman’s “The Arithmetic of Elliptic Curves”
[8]. For brevity and focus, most proofs will be omitted; however, proofs will be included if
they o!er particular insight relevant to the subsequent discussion of entanglements. Results
not originating from this source and chapter will have their specific references cited within
their respective statements or proofs.

2.1. The Geometry of Elliptic Curves

Let K be a perfect field and K an algebraic closure of K.

Definition 2.1.1. An elliptic curve E over K can be defined equivalently as:

(a) A nonsingular projective plane curve E/K of degree 3 with a specified K-rational point
O ↔ E(K).

(b) A nonsingular projective plane curve E of genus 1 together with a specified K-rational
point O ↔ E(K).

(c) A nonsingular projective plane curve over K defined by a generalized Weierstrass equa-
tion:

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3,

where ai ↔ K for i = 1, 2, 3, 4, 6. The specified point O is taken to be [0 : 1 : 0].

The set of K-rational points on E is denoted by E(K).

The assumption that K is a perfect field is significant for these definitions, particularly
concerning the term “nonsingular.” A field K is perfect if every algebraic extension of K is
separable. This implies that the separable closure Ksep (the maximal separable extension of
K within K) is identical to the algebraic closure K itself, i.e., Ksep = K. (Recall that all
fields of characteristic 0 are perfect; a field of characteristic p > 0 is perfect if and only if
every element has a p-th root in K). Working over a perfect field K ensures that the notion
of nonsingularity (or smoothness) behaves as expected geometrically.

Specifically, if E is defined over a perfect field K and is nonsingular over K, then it re-
mains nonsingular when considered over any algebraic extension ofK, including the algebraic
closure K. Since for a perfect field Ksep = K, there are no purely inseparable extensions
to cause complications when extending scalars to K. If K were not perfect, a curve could
be nonsingular over K but develop singularities upon base change to K due to inseparable
phenomena.

For convenience, we often work with the a$ne form of the Weierstrass equation by setting
x = X/Z and y = Y/Z (remembering the additional point O at infinity):

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (2.1)

The set of K-rational points in a$ne coordinates is

E(K) = {(x, y) ↔ K2
| y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6} ∞ {O}.
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If Char(K) ↘= 2, 3, a change of variables simplifies the equation to the short Weierstrass
form:

E : y2 = x3 + Ax+B, (2.2)

with A,B ↔ K. Associated with this equation are the quantities:

Definition 2.1.2 (Discriminant and j-invariant). Let E be an elliptic curve given by the
short Weierstrass equation y2 = x3 + Ax+B, where A,B ↔ K.

• The discriminant of E, denoted %E, is defined as:

%E = ↗16(4A3 + 27B2).

• If %E ↘= 0 (i.e., the curve is nonsingular), the j-invariant of E, denoted j(E) or simply
j, is defined as:

j = ↗1728
(4A)3

%E

.

More general formulas for %E and the j-invariant also exist for elliptic curves given by the
general Weierstrass equation (2.1); these can be found in [8, Appendix A].

Proposition 2.1.1. A curve given by a Weierstrass equation (2.1) (or (2.2)) is nonsingular
if and only if its discriminant %E ↘= 0.

Proposition 2.1.2. Two elliptic curves E1, E2 defined over K are isomorphic over the
algebraic closure K if and only if they have the same j-invariant, i.e., j(E1) = j(E2).

Remark 2.1.1. Given an elliptic curve E in short Weierstrass form (2.2) defined over K,
and λ ↔ K→, the change of variables (x, y) ⇑↑ (λ↓2x,λ↓3y) yields an isomorphic curve

y2 = x3 + (λ4A)x+ (λ6B).

This allows scaling of the coe”cients (A,B). Moreover, any elliptic curver over Q is iso-
morphic to (2.2) where a, b ↔ Z.

The set of points E(K) on an elliptic curve E forms an abelian group with the specified
K-rational point O as the identity element. The group law can be defined geometrically. A
crucial ingredient for this geometric definition is Bézout’s Theorem, which guarantees the
number of intersection points between curves.

Theorem 2.1.1 (Bézout’s Theorem). Let C1 and C2 be projective plane curves over a field
K of degrees m and n respectively. If C1 and C2 have no irreducible component in common,
then C1 and C2 intersect in K in exactly mn points, counted with multiplicity. That is,

∑

P↗C1(K)⇐C2(K)

I(P,C1 ′ C2) = mn,

where I(P,C1 ′ C2) denotes the intersection multiplicity of C1 and C2 at the point P .

Proof. The proof can be found in [9, I.Corollary 7.8]. ↭
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With Bézout’s Theorem in mind, the group law is defined as follows:

Definition 2.1.3 (Group Law). Let P,Q ↔ E(K).

1. Let L be the line passing through P and Q. If P = Q, let L be the tangent line to E at
P .

2. An elliptic curve E has degree 3, and a line L has degree 1. Since L is not a com-
ponent of E (because E is not nonsingular cubic curve), by Bézout’s Theorem, L and
E intersect in 3 points in E(K), counted with multiplicity. Two of these points are P
and Q (if P = Q, then P is counted with multiplicity at least 2). Let the third point of
intersection be R ↔ E(K).

3. Let L↑ be the line passing through R and the identity element O. Again, by Bézout’s
Theorem, L↑ intersects E at a third point. This third point is defined as P+Q ↔ E(K).

L

L↑

P

QR

P +Q

O

x

y

Figure 2.1: Geometric illustration of the addition law P +Q on an elliptic curve.

Remark 2.1.2. Equivalently, three points P,Q,R ↔ E(K) sum to the identity O, i.e.,
P + Q + R = O, if and only if P,Q,R are collinear. The set of K-rational points E(K)
forms a subgroup of E(K).

Proposition 2.1.3. The composition law defined above makes E(K) into an abelian group
with identity element O. Specifically:

(a) (Identity) P +O = P for all P ↔ E.

(b) (Commutativity) P +Q = Q+ P for all P,Q ↔ E.

(c) (Inverse) For each P ↔ E, there exists a point ↗P ↔ E such that P + (↗P ) = O. If
P = (x, y) in a”ne coordinates for equation (2.1) or (2.2), then ↗P = (x,↗a1x↗a3↗y)
or ↗P = (x,↗y) respectively.
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(d) (Associativity) (P +Q) +R = P + (Q+R) for all P,Q,R ↔ E.

Definition 2.1.4 (Isogeny). Let E1, E2 be elliptic curves over K with identity points O1, O2.
An isogeny from E1 to E2 is a morphism of algebraic curves ↽ : E1 ↑ E2 satisfying ↽(O1) =
O2. If ↽ can be defined by rational functions with coe”cients in K, we say ↽ is defined
over K. An isogeny ↽ is called a non-zero isogeny if it is not the zero map (the constant
map sending all points of E1 to O2). It is a known result that any non-zero isogeny is
automatically a surjective morphism [9, II.Proposition 6.8]. Two elliptic curves E1 and E2

are isogenous over K if there exists a non-zero isogeny ↽ : E1 ↑ E2 defined over K.

Proposition 2.1.4. Every isogeny ↽ : E1 ↑ E2 is a group homomorphism. Furthermore,
the kernel of a non-zero isogeny is a finite subgroup of E1(K).

Definition 2.1.5 (Endomorphism Rings). Let E1, E2 be elliptic curves defined over a field
K.

• We denote the set of all isogenies from E1 to E2 (defined over the algebraic closure K)
by Hom(E1, E2). This set forms an abelian group under pointwise addition.

• The subgroup of isogenies that are defined over K is denoted by HomK(E1, E2).

• The endomorphism ring of E, denoted End(E), is the ring Hom(E,E) where multi-
plication is composition. The subring of endomorphisms defined over K is denoted
EndK(E).

Example 2.1.1 (Multiplication-by-m maps). For any integer m ↔ Z, the multiplication-by-
m map [m] : E ↑ E is defined by [m](P ) = P + · · · + P (m times) if m > 0, [0](P ) = O,
and [m](P ) = [↗m](↗P ) if m < 0. The map [m] is an endomorphism defined over the field
of definition of E. If m ↘= 0, [m] is a non-zero isogeny.

Definition 2.1.6 (Complex Multiplication). Let E be an elliptic curve defined over a field K.
The map m ⇑↑ [m] gives an injective ring homomorphism from Z into the full endomorphism
ring, End(E).

• We say E does not have complex multiplication (non-CM) if this map is an isomor-
phism, i.e., End(E) ↓= Z.

• We say E has complex multiplication (CM) if the endomorphism ring is strictly larger
than the integers, i.e., End(E) ⊋ Z.

Definition 2.1.7 (Torsion Subgroups). Let E be an elliptic curve and let m ⇐ 1 be an
integer.

• The m-torsion subgroup of E is E[m] = ker[m] = {P ↔ E(K) | [m]P = O}.

• The torsion subgroup of E is Etors =
⋃≃

m=1 E[m].

If E is defined over K, E[m](K) = E[m] ′ E(K) and Etors(K) = Etors ′ E(K) denote the
m-torsion points and torsion points rational over K, respectively.
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Theorem 2.1.2 (Structure of Torsion Subgroups). Let E be an elliptic curve defined over
a field K and let m ↔ Z ⇒=0.

(a) The degree of the multiplication-by-m map is deg[m] = m2.

(b) If Char(K) = 0 or if Char(K) = p > 0 and p ⫅̸ m, then

E[m] ↓= Z/mZ→ Z/mZ.

(c) If Char(K) = p > 0, then either E[pe] = {O} for all e ⇐ 1, or E[pe] ↓= Z/peZ for all
e ⇐ 1.

Remark 2.1.3. • It is important to note that in each of the cases described in Theo-
rem 2.1.2(b) and (c), the torsion subgroup E[N ] (where N = m in case (b), or N = pe

in case (c)) is naturally a module over the ring Z/NZ.

• Furthermore, for any integer m ↘= 0, the m-torsion subgroup E[m] is identical to the
(↗m)-torsion subgroup E[↗m].

Example 2.1.2. Assume Char(K) ↘= 2. Let E be given by y2 = x3 + Ax + B. A point
P = (x, y) satisfies P = ↗P if and only if y = 0. Thus, the points of order 2 are O and the
points (xi, 0) where x1, x2, x3 are the roots of x3 +Ax+B = 0. Since %E ↘= 0, the roots are
distinct. Thus, E[2] = {O, (x1, 0), (x2, 0), (x3, 0)}. This is a group of order 4 where every
non-identity element has order 2, so E[2] ↓= Z/2Z→Z/2Z, consistent with Theorem 2.1.2(b).

Having laid some groundwork, we can now state some crucial properties related to torsion
points that will be essential for our upcoming discussion on entanglements. Let E be an
elliptic curve defined over Q. The coordinates of points in E[m] are algebraic over Q. The
field extension Q(E[m]) obtained by adjoining the coordinates of all points in E[m] to Q is
a finite Galois extension of Q. Further details will be explored later in this chapter.

2.2. The Weil Pairing

Let E/K be an elliptic curve defined over a perfect field K, and let K be a fixed algebraic
closure of K. The Weil pairing is a crucial tool for the material presented in this paper. An
explicit construction often relies on the theory of divisors, which would require extensive
background. Therefore, this section will introduce the Weil pairing by its characteristic
properties, which are su$cient for our purposes.

Definition 2.2.1 (Weil Pairing). Let m ⇐ 2 be an integer. Assume that if Char(K) = p > 0,
then p ⫅̸ m. The Weil em-pairing is a map

em : E[m]→ E[m] ↗↑ µm,

where E[m] = {P ↔ E(K) | [m]P = O} is the m-torsion subgroup of E, and µm = {ς ↔

K
→
| ςm = 1} is the group of m-th roots of unity in K.

The Weil pairing possesses several fundamental properties, crucial for studying the arith-
metic of elliptic curves:
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Proposition 2.2.1 (Properties of the Weil Pairing). The Weil em-pairing has the following
properties for all S, S1, S2, T, T1, T2 ↔ E[m]:

(a) Bilinearity:

em(S1 + S2, T ) = em(S1, T )em(S2, T ),

em(S, T1 + T2) = em(S, T1)em(S, T2).

(b) Alternating:
em(T, T ) = 1.

This implies em(S, T ) = em(T, S)↓1.

(c) Nondegeneracy: If em(S, T ) = 1 for all S ↔ E[m], then T = O.

(d) Galois Invariance: For all ϑ ↔ Gal(K/K) (the absolute Galois group of K),

ϑ(em(S, T )) = em(ϑ(S), ϑ(T )).

(e) Compatibility: For integers m,m↑
⇐ 2 (satisfying the characteristic condition),

emm↓(S, T ) = em([m
↑]S, T ) for all S ↔ E[mm↑] and T ↔ E[m].

A key consequence of nondegeneracy and the structure of E[m] is:

Corollary 2.2.1. There exist points S, T ↔ E[m] such that em(S, T ) is a primitive m-th root
of unity. In particular, if E[m] ⇒ E(K), then µm ⇒ K→.

Proof. Consider {em(S, T ) | S, T ↔ E[m]} ⇒ µm and note by the first two properties of the
Weil pairing that {em(S, T ) | S, T ↔ E[m]} is in fact a subgroup of µm and so {em(S, T ) |
S, T ↔ E[m]} = µd for some d|m. We now want to show that d = m. Suppose d ↘= m. Fix
an S ↔ E[m] and consider

1 = em(S, T )
d = em([d]S, T )

the second equality results from the bilinearity of the Weil pairing. The above is true for all
T ↔ E[m] which implies that [d]S = O by the nondegeneracy of the Weil Pairing. Moreover,
we can pick S ↔ E[m] to have exact order m, which forces d = m.

Finally, suppose E[m] ⇒ E(K) and let S, T ↔ E[m] such that em(S, T ) is a primitive
m-th root of unity. For all ϑ ↔ Gal(K/K) we have

ϑ(em(S, T )) = em(ϑ(S), ϑ(T )) = em(S, T )

where the second equality follows from E[m] ⇒ E(K). The latter implies em(S, T ) ↔ K→

hence µm ⇒ K→. ↭

Remark 2.2.1. As we shall see in Lemma 2.4.2, the existence of a basis {S, T} for E[m] such
that the Weil pairing em(S, T ) generates µm is fundamental. It connects the arithmetic of
the elliptic curve’s torsion points to cyclotomic fields and plays a vital role in understanding
Galois representations and entanglement phenomena, which will be discussed later.
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2.3. Tate Modules

Building upon the concept of inverse limits, we define important modules associated with
the torsion subgroups of an elliptic curve E defined over a perfect field K, namely the ω-adic
and adelic Tate modules.

First, let ω be a prime number. We construct an inverse system of groups indexed by
N with its usual ordering △. For each n ↔ N, let Gn = E[ωn], the ωn-torsion subgroup of
E(K). For n △ m, the transition map ↽m,n : Gm ↑ Gn is given by multiplication by ωm↓n,
i.e., ↽m,n = [ωm↓n] : E[ωm] ↫ E[ωn]. This forms an inverse system as checked previously.

Definition 2.3.1 (ω-adic Tate Module). Let E/K be an elliptic curve and ω a prime. The
ω-adic Tate module of E is the inverse limit of the system described above:

Tω(E) := lim
∝↗
n

E[ωn] =

{
(Pn)n⇑1 ↔

∏

n⇑1

E[ωn] | [ω]Pn+1 = Pn for all n ⇐ 1

}
.

Recall that E[ωn] is a module over the ring Z/ωnZ. The transition maps ↽m,n = [ωm↓n]
are surjective homomorphisms of these modules, compatible with the natural ring homo-
morphisms Z/ωmZ ↑ Z/ωnZ. Consequently, the inverse limit Tω(E) naturally inherits the
structure of a module over the inverse limit ring lim

∝↗
Z/ωnZ = Zω, the ring of ω-adic integers.

The structure of this Zω-module is well-known:

Theorem 2.3.1 (Structure of Tω(E)). Let E/K be an elliptic curve and ω a prime.

(a) If ω ↘= Char(K), then Tω(E) ↓= Zω → Zω as a Zω-module.

(b) If ω = p = Char(K) > 0, then Tp(E) ↓= {0} or Zp as a Zp-module.

Next, analogous to the construction of the profinite completion Ẑ = lim
∝↗

Z/nZ using
the divisibility ordering, we define the adelic Tate module. Consider the inverse system
indexed by N where the partial order is divisibility (n ∋ m if n|m). For each n ↔ N, let
Gn = E[n]. For n|m, the transition map ↽m,n : Gm ↑ Gn is given by multiplication by m/n,
i.e., ↽m,n = [m/n] : E[m] ↫ E[n]. This forms an inverse system.

Definition 2.3.2 (Adelic Tate Module). Let E/K be an elliptic curve. The adelic Tate
module (or full Tate module) of E is the inverse limit of this system:

T (E) := lim
∝↗
n

E[n].

Remark 2.3.1. Similar to the ω-adic case, E[n] is a Z/nZ-module and the transition maps
are compatible with the ring maps Z/mZ ↑ Z/nZ. Therefore, the adelic Tate module T (E)
inherits the structure of a module over lim

∝↗
Z/nZ = Ẑ, the ring of profinite integers.

If Char(K) = 0 (e.g., K = Q), then for every n, E[n] ↓= Z/nZ → Z/nZ. Taking the
inverse limit preserves this structure, yielding

T (E) ↓= Ẑ→ Ẑ (if Char(K) = 0).

Furthermore, just as the ring of profinite integers decomposes as a product over primes, Ẑ ↓=∏
ω
Zω, the adelic Tate module decomposes accordingly via the Chinese Remainder Theorem

applied to torsion subgroups:
T (E) ↓=

∏

ω prime

Tω(E).
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2.4. Galois Representations of Elliptic Curves

The primary goal of this section is to formally define the mod-n Galois representation,
denoted εE,n, attached to an elliptic curve E. We will then establish several fundamental
properties concerning the n-torsion field Q(E[n]), namely:

• The cyclotomic fieldQ(ςn) is contained within the n-torsion field, i.e., Q(ςn) ⇒ Q(E[n]).

• The n-torsion field Q(E[n]) is a finite Galois extension of Q.

• The image of the mod-n Galois representation is isomorphic to the Galois group of the
n-torsion field: εE,n(GQ) ↓= Gal(Q(E[n])/Q).

From this section onwards, unless otherwise specified, we will restrict our attention to elliptic
curves defined over the field of rational numbers. Thus, let K = Q. An elliptic curve E over
Q can then be given by a Weierstrass equation of the form

E : y2 = x3 + ax+ b,

where a, b ↔ Z.

Proposition 2.4.1. Let E be an elliptic curve defined by an equation with coe”cients in Q,
and let K be a Galois extension of Q.

(a) The set E(K) of points with coordinates in K is a subgroup of E(Q).

(b) For P ↔ E(K) and ϑ ↔ Gal(K/Q), define

ϑE(P ) =

{
(ϑ(x), ϑ(y)) if P = (x, y),

O if P = O.

Then ϑE(P ) ↔ E(K).

(c) For all P ↔ E(K) and all ϑ, ↼ ↔ Gal(K/Q),

(ϑ↼)E(P ) = ϑE(↼E(P )).

Further, the identity element e ↔ Gal(K/Q) acts trivially, eE(P ) = P .

(d) For all P,Q ↔ E(K) and all ϑ ↔ Gal(K/Q),

ϑE(P +Q) = ϑE(P ) + ϑE(Q) and ϑE(↗P ) = ↗ϑE(P ).

In particular, ϑE([n]P ) = [n]ϑE(P ) for all integers n.

(e) Let P ↔ E(K) be a point of order n and let ϑ ↔ Gal(K/Q). Then ϑE(P ) also has order
n.

Proof. (a) Refer to [10, Proposition 6.3]. Similalry for (b)-(d).
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(e) Let P ↔ E(K) have order n. Using (d), we find that

O = ϑE([n]P ) = [n]ϑE(P )

So ϑE(P ) has finite order m and m|n. Conversely, using that O = [m]ϑE(P ) =
ϑE([m]P ) and applying ϑ↓1

E
to both sides, we find that

O = ϑ↓1
E
(O) = ϑ↓1

E
(ϑE([m]P )) = (ϑ↓1ϑ)E([m]P ) = [m]P

Hence n|m and m = n.
↭

Remark 2.4.1. Part (b) follows because the coe”cients defining the elliptic curve E are in
Q and are thus fixed by ϑ ↔ Gal(K/Q). Part (d) is true because the group law on E is defined
by rational functions with coe”cients in Q. While a full proof of (d) involves the explicit
formulas for elliptic curve addition, we omit it here to avoid overburdening the reader with
details not essential for the current development.

The proposition states that every ϑ ↔ Gal(K/Q) can be extended to act upon the points
P ↔ E(K). Moreover, every ϑ ↔ Gal(K/Q) induces an endomorphism on E(K). Since ϑ
has an inverse in Gal(K/Q), every induced endomorphism has an inverse as well, so every ϑ
induces an automorphism on E(K).

Corollary 2.4.1. The map

εE/Q,K : Gal(K/Q) ↗↑ Aut(E(K))

ϑ ⇑↑ ϑE

is a group homomorphism.

Fortunately for us, Q is a perfect field and so Q is Galois over Q. We can consider:

ε
E,Q/Q : Gal(Q/Q) ↗↑ Aut(E(Q))

As established in Proposition 2.4.1(e), any ϑ ↔ Gal(Q/Q) preserves the order of points
in E(Q). Since E[n] ⇒ E(Q) (a fact that will be formally addressed shortly), ϑ thus maps
E[n] to itself, e!ectively permuting its points. This restricted action of Gal(Q/Q) on the
n-torsion subgroup defines the mod-n Galois representation:

εn : Gal(Q/Q) ↗↑ Aut(E[n])

ϑ ⇑↑ ϑE|E[n]

Given that E[n] ↓= Z/nZ→ Z/nZ, selecting a basis for E[n] leads to the conclusion that
Aut(E[n]) ↓= GL2(Z/nZ). To illustrate this more precisely, consider P1 and P2 as a basis for
E[n]. Consequently, any P ↔ E[n] can be expressed as

P = [a]P1 + [b]P2
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where a, b ↔ Z/nZ. Therefore, with ϑ ↔ Aut(E[n]) (omitting the subscript), it follows that

ϑ(P ) = [a]ϑ(P1) + [b]ϑ(P2).

This implies that to fully determine the automorphism ϑ, it su$ces to know the images of
the basis elements, ϑ(P1) and ϑ(P2). For conciseness in the following, we will often denote
the induced automorphism on E[n] simply as ϑ.

ϑ(P1) = [a]P1 + [c]P2

ϑ(P2) = [b]P1 + [d]P2

Since ϑ has an inverse, the matrix

(
a b
c d

)
is invertible and we can now define the

following map:

” : Aut(E[n]) ↑ GL2(Z/nZ)

ϑ ⇑↑ Mϑ =

(
a b
c d

)

One can show that ” is a group isomorphism. We are now ready to show that there exists
a homomorphism from Gal(Q/Q) to GL2(Z/nZ).

Corollary 2.4.2. Let E/Q be an elliptic curve and n ↔ Z⇑2. Fix generators P1 and P2 for
E[n]. Then the map

εE,n : Gal(Q/Q) ↑ GL2(Z/nZ)
εE,n = ” ⇓ εn

is a group homomorphism.

Remark 2.4.2. • We denote the absolute Galois group of Q by GQ := Gal(Q/Q).

• The group homomorphism εE,n : Gal(Q/Q) ↑ GL2(Z/nZ) is commonly known as the
mod-n Galois representation attached to the elliptic curve E.

Note that εE,n(GQ) depends on the choice of isomorphism between E[n] and Z/nZ→Z/nZ
and is therefore only defined up to conjugation. This means that di!erent isomorphisms
↽,↽↑ : E[n] ↓= Z/nZ→Z/nZ induce di!erent Galois representations εE,n(GQ), ε↑E,n

(GQ) with
εE,n(GQ) = g(ε↑

E,n
(GQ))g↓1 for some g ↔ GL2(Z/nZ). We have now defined the mod-n

Galois representation attached to an elliptic curve. Our focus will next shift to defining
division fields and stating some important results associated with them.

E[n] is a finite subgroup of E(Q) of order n2. Therefore, we can write E[n] as

E[n] = {O, (x1, y1), . . . , (xn2↓1, yn2↓1)}.

We construct the n-division field by adjoining the coordinates from every element in E[n] to
Q.
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Definition 2.4.1. Let E/Q be an elliptic curve and let n ⇐ 1, then we define the n-division
field of E as

Q(E[n]) := Q(x1, y1, . . . , xn2↓1, yn2↓1).

Note that Q(E[1]) is just Q.

Every x ↔ Q is algebraic over Q, that is, [Q(x) : Q] < ̸. The degree of the extension of
Q(E[n]) is finite because we are adjoining only a finite number of algebraic elements to Q.

Proposition 2.4.2. Let E be an elliptic curve defined by an equation with coe”cients in Q.

(a) Let P = (x1, y1) ↔ E[n] be a point of order dividing n. Then x1 and y1 are algebraic
over Q, i.e., x1 and y1 are roots of polynomials with rational coe”cients.

(b) Q(E[n]) is a Galois extension of Q.

Proof. Refer to [10, Proposition 6.5]. ↭
Remark 2.4.3. The proof uses the fact that the x coordinates of the torsion points on an el-
liptic curve are roots to division polynomials, which are polynomials with rational coe”cients.
Part (b) follows quite easily from Proposition 2.4.2(a) and Proposition 2.4.1(e).

Lemma 2.4.1. Let E/Q be an elliptic curve and let n ↔ Z⇑1. Then Q(ςn) ⇒ Q(E[n]).

Proof. As we have seen, there exists S, T ↔ E[n] such that en(S, T ) is a primitive n-th root of
unity. Moreover, we have that Q/Q(E[n]) is a Galois extension as Q/Q is a Galois extension.
Let ϑ ↔ Gal(Q/Q(E[n])) then consider,

ϑ(en(S, T )) = en(ϑ(S), ϑ(T )) = en(S, T ).

Where the first equality comes from the Galois invariance of the Weil pairing. Thus, Galois
theory tells us that en(S, T ) ↔ Q(E[n]) i.e. Q(ςn) ⇒ Q(E[n]). ↭
Lemma 2.4.2. Let E/Q be an elliptic curve and let ϑ ↔ Gal(Q/Q). Then ϑ(ςn) =

ς
det(ϖE,n(ϑ))
n for all n-th roots of unity ςn. Consequently, the determinant map is full ,i.e.,
det(εE,n(GQ)) = (Z/nZ)→.

Proof. Note that the result doesn’t depend on the choice of basis used to define the Galois
representation εE,n, as the determinant det(εE,n(ϑ)) is invariant under conjugation and thus
the same for any choice of basis for E[n].

By Corollary 2.2.1, there exist S, T ↔ E[n] such that en(S, T ) = ςn, where ςn is a
primitive n-th root of unity. We now show that S, T form a basis for E[n] (as a Z/nZ-
module). Suppose they are linearly dependent, so there exist u, v ↔ Z/nZ, not both zero,
such that [u]S + [v]T = O. Then by properties of the Weil pairing we obtain:

1 = en(O, T )

= en([u]S + [v]T, T )

= en([u]S, T ) · en([v]T, T ) (by bilinearity)

= en(S, T )
u
· en(T, T )

v

= ςu
n
· 1v = ςu

n
.
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Since ςn is a primitive n-th root of unity, ςu
n

= 1 implies u ∈ 0 (mod n). The linear
dependence assumption thus simplifies to [v]T = O. Applying a similar argument:

1 = en(S,O)

= en(S, [v]T )

= en(S, T )
v

= ςv
n
.

This implies v ∈ 0 (mod n). Therefore, u = v = 0 in Z/nZ, which contradicts our assump-
tion that S, T were linearly dependent with not both coe$cients zero. Thus, S, T are linearly
independent and, since E[n] ↓= (Z/nZ)2, they form a basis for E[n].

Let ϑ ↔ GQ. By the Galois invariance of the Weil pairing, we have ϑ(ςn) = ϑ(en(S, T )) =
en(ϑ(S), ϑ(T )). Recall that ϑ maps n-torsion points to n-torsion points, so ϑ(S), ϑ(T ) ↔

E[n]. Since S, T form a basis for E[n], we can write ϑ(S) = [a]S+[c]T and ϑ(T ) = [b]S+[d]T
for unique a, b, c, d ↔ Z/nZ. The matrix for the action of ϑ with respect to the basis {S, T}
is therefore

εE,n(ϑ) =

(
a b
c d

)
,

and its determinant is det(εE,n(ϑ)) = ad↗ bc.
Using the properties of the Weil pairing:

ϑ(ςn) = en(ϑ(S), ϑ(T ))

= en([a]S + [c]T, [b]S + [d]T )

= en([a]S, [b]S) · en([a]S, [d]T ) · en([c]T, [b]S) · en([c]T, [d]T ) (by bilinearity)

= en(S, S)
ab
· en(S, T )

ad
· en(T, S)

cb
· en(T, T )

cd

= 1ab · ςad
n

· (ς↓1
n

)cb · 1cd (using en(X,X) = 1 and en(Y,X) = en(X, Y )↓1)

= ςad↓cb

n

= ςdet(ϖE,n(ϑ))
n

.

This establishes the identity for a primitive n-th root of unity ςn. Now, let ▷ = ςk
n
be any n-th

root of unity for some integer k. Since ϑ is a field automorphism, it acts as a homomorphism
on the group of n-th roots of unity:

ϑ(▷) = ϑ(ςk
n
) = (ϑ(ςn))

k =
(
ςdet(ϖE,n(ϑ))
n

)k
= (ςk

n
)det(ϖE,n(ϑ)) = ▷det(ϖE,n(ϑ)).

Thus, the identity holds for all n-th roots of unity.

From ϑ(ςn) = ς
det(ϖE,n(ϑ))
n , we identify det(εE,n(·)) with the n-th cyclotomic character

χn. The surjectivity of χn : GQ ↑ (Z/nZ)→ follows because χn factors as the surjective
restriction GQ ↫ Gal(Q(ςn)/Q) composed with the isomorphism Gal(Q(ςn)/Q) ↓= (Z/nZ)→.
Thus, det(εE,n(GQ)) = (Z/nZ)→. ↭

Remark 2.4.4 (Kernel and Image of εE,n). Let E/Q be an elliptic curve and consider its
mod-n Galois representation

εE,n : GQ ↑ GL2(Z/nZ).
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The kernel of this representation, ker(εE,n), consists of the automorphisms in GQ = Gal(Q/Q)
that act trivially on the n-torsion subgroup E[n]. An automorphism ϑ fixes every point in
E[n] if and only if it fixes the field extension generated by their coordinates, Q(E[n]). By the
Galois correspondence, this subgroup is precisely Gal(Q/Q(E[n])). Thus,

ker(εE,n) = Gal(Q/Q(E[n])).

The First Isomorphism Theorem for groups then gives an isomorphism between the image of
the representation and the quotient of the domain by the kernel:

εE,n(GQ) ↓= GQ/ ker(εE,n) = GQ/Gal(Q/Q(E[n])).

Furthermore, since Gal(Q/Q(E[n])) is a normal subgroup of GQ, the Fundamental Theo-
rem of Infinite Galois Theory (Theorem 1.4.1) provides the canonical isomorphism for the
quotient group:

GQ/Gal(Q/Q(E[n])) ↓= Gal(Q(E[n])/Q).

We conclude this section by combining these isomorphisms to show that the image of the
Galois representation is precisely the Galois group of the n-torsion field:

εE,n(GQ) ↓= Gal(Q(E[n])/Q).

2.5. ω-adic and Adelic Galois Representations of Elliptic Curves

We have previously established that for an elliptic curve E/Q, the absolute Galois group
GQ acts on each finite n-torsion subgroup E[n]. This action can be extended naturally to
define actions on the ω-adic Tate module Tω(E) and the adelic Tate module T (E).

Consider the ω-adic Tate module Tω(E) = lim
∝↗n

E[ωn]. Recall that an element of Tω(E)

is a sequence (Pn)n⇑1 with Pn ↔ E[ωn] such that the transition map [ω] : E[ωn+1] ↑ E[ωn]
relates consecutive terms: [ω]Pn+1 = Pn for all n ⇐ 1.

Let ϑ ↔ GQ. We know that the action of ϑ commutes with the multiplication-by-m maps
for any integer m. In particular, for any P ↔ E[ωn+1], we have:

[ω](ϑ(P )) = ϑ([ω]P ). (2.3)

We define the action of ϑ on an element (Pn)n⇑1 ↔ Tω(E) component-wise:

ϑ((Pn)n⇑1) := (ϑ(Pn))n⇑1.

We must verify that this resulting sequence is indeed an element of Tω(E). Let P ↑
n+1 =

ϑ(Pn+1) and P ↑
n
= ϑ(Pn). We need to check if [ω]P ↑

n+1 = P ↑
n
. Using the compatibility

condition (2.3) and the fact that (Pn)n⇑1 ↔ Tω(E) (so [ω]Pn+1 = Pn), we have:

[ω]P ↑
n+1 = [ω](ϑ(Pn+1)) = ϑ([ω]Pn+1) = ϑ(Pn) = P ↑

n
.

Thus, the compatibility condition [ω]P ↑
n+1 = P ↑

n
holds for the sequence ϑ((Pn)n⇑1), confirming

that ϑ((Pn)n⇑1) ↔ Tω(E).
Since ϑ acts as a group automorphism on each E[ωn] and respects the inverse limit

structure, the induced map ϑ|Tω(E) is an automorphism of the Zω-module Tω(E). The map
sending ϑ ↔ GQ to ϑ|Tω(E) ↔ AutZω

(Tω(E)) is a group homomorphism.
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Definition 2.5.1 (ω-adic Galois Representation). The ω-adic Galois representation attached
to E/Q is the continuous group homomorphism

εE,ω→ : GQ ↗↑ AutZω
(Tω(E))

induced by the action of GQ on Tω(E). As Tω(E) ↓= Zω→Zω, choosing a basis yields the matrix
representation

εE,ω→ : GQ ↗↑ GL2(Zω).

Remark 2.5.1. The homomorphism εE,ω→ is continuous with respect to the Krull topology
on Gal(Q/Q) and the ω-adic topology on GL2(Zω) (induced by the topology on Zω). A similar
remark can be made for the following defintion.

An analogous argument applies to the adelic Tate module T (E) = lim
∝↗n

E[n]. The tran-
sition maps are ↽m,n = [m/n] for n|m. Since the action of ϑ ↔ GQ commutes with [m/n]
for the same reason as above (ϑ([k]P ) = [k]ϑ(P )), the action extends component-wise to an
action on T (E).

Definition 2.5.2 (Adelic Galois Representation). The adelic Galois representation (or full
Galois representation) attached to E/Q is the continuous group homomorphism

εE : GQ ↗↑ AutẐ(T (E))

induced by the action of GQ on T (E). As T (E) ↓= Ẑ→ Ẑ, choosing a basis yields the matrix
representation

εE : GQ ↗↑ GL2(Ẑ) ↓=
∏

ω prime

GL2(Zω).

Remark 2.5.2. The isomorphism T (E) ↓= Ẑ → Ẑ relies on the fact that E is defined over
Q, a field of characteristic 0. If E were defined over a field K with positive characteristic
p = Char(K), the structure of the p-primary part of the Tate module T (E), namely Tp(E),
could di!er (it might be {0} or Zp instead of Zp→Zp). This would alter the overall structure
of T (E) and consequently the target group of the adelic representation.

We end this section and chapter by stating the most important result related to the
Adelic Galois representation attached to an elliptic curve.

Theorem 2.5.1 (Serre’s open image theorem). Let E be a non-CM elliptic curve defined
over a number field K. Then εE(Gal(K/K)) is an open subgroup of GL2(Ẑ). Equivalently,
εE(Gal(K/K)) is a finite index subgroup of GL2(Ẑ).

Proof. Refer to [1]. ↭

Remark 2.5.3. Serre’s open image theorem implies that there exists only a finite number of
primes ω for which the representation εE,ω is not surjective. The details of this implication
can be found in [1].
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3. Group-Theoretic Tools for Entanglements

This chapter develops the group-theoretic machinery required to prove two main results
related to entanglements. The proof of the first main result is deferred to a later chapter.
The first section establishes the necessary background to prove the following result on the
surjectivity of mod-n Galois representations:

Theorem. If E is an elliptic curve defined over Q and n is any integer with gcd(n, 30) = 1,
then the Galois representation

εE,n : Gal(Q/Q) ↑ Aut(E[n]) ↓= GL2(Z/nZ)

is surjective if and only if the Galois representations εE,p are surjective for every prime
p | n. In particular, if E is a non-CM elliptic then εE,n is surjective for every integer n with
gcd(n,A30(E)) = 1 (See Definition 4.9.1 for A30(E)).

In the second section, we present the results required for our second main result and prove
the second main result. This result is of practical importance for this thesis, as it provides the
theoretical justification for the algorithm we developed to construct all applicable subgroups
of GL2(Z/nZ).

Proposition. Let E/Q be an elliptic curve for which the mod-n Galois representation εE,n

is not surjective. Then the subgroup {±I}εE,n(GQ) is an applicable subgroup of GL2(Z/nZ).

Definition (Applicable Subgroup). We say that a subgroup G of GL2(Z/nZ) is applicable
if it satisfies the following conditions:

• G ↘= GL2(Z/nZ),

• ↗I ↔ G and det(G) = (Z/nZ)→,

• G contains an element with trace 0 and determinant ↗1 that fixes a point in (Z/nZ)2
of order n.

3.1. Group Theory for Surjectivity Criterion

This section presents a sequence of technical results, the exposition of which is adapted
from Kani [11, Appendix].

Definition 3.1.1. Let G be a group. The commutator subgroup (or derived subgroup) of G,
denoted G↑ or [G,G], is the subgroup generated by the set of all its commutators:

G↑ := ↖{[x, y] | x, y ↔ G}↙,

where the commutator of two elements x, y ↔ G is defined as [x, y] = xyx↓1y↓1.

Remark 3.1.1. The normality of the commutator subgroup G↑ follows from the identity
g[x, y]g↓1 = [gxg↓1, gyg↓1].

Definition 3.1.2. A group G is said to be simple if it possesses exactly two normal subgroups:
{e} and G itself.
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Remark 3.1.2. The trivial group is not a simple group as it only has one normal subgroup.

Definition 3.1.3. Let G be a group. A composition series of G is a finite sequence of
subgroups

{e} = G0 φG1 φ · · · φGn = G

where Gi+1/Gi is simple for all 0 △ i < n. We refer to Gi+1/Gi as a composition factor of
G.

Remark 3.1.3. If we relax the condition that the factor groups Gi+1/Gi must be simple, the
sequence is called a subnormal series.

Theorem 3.1.1 (Jordan-Hölder). Let G be a group. Suppose G has two composition series

{e} = G0 φ · · · φGn = G,

and
{e} = H0 φ · · · φHm = H.

Then there is a bijection ◁ : {1, ..., n} ↑ {1, ...,m} such that

Gϱ(i)/Gϱ(i)↓1 = Hi/Hi↓1,

for all 0 △ i < n. The existence of a bijection implies n = m.

Remark 3.1.4. It should be noted that while all finite groups admit a composition series, not
all infinite groups do. Nevertheless, if an infinite group does possess a composition series,
the conclusion of the Jordan-Hölder theorem still holds.

The following well-known facts can be found in [12, Theorems II.6.13 and II.8.14]:

Lemma 3.1.1. Let p and q be prime numbers. Define PSL2(p) := SL2(Z/pZ)/{±I}. Then:

(a) PSL2(p) is a simple group for any p ⇐ 5;

(b) PSL2(p) ↓= PSL2(q) if and only if p = q;

(c) If H is a proper subgroup of PSL2(p), then H is solvable or H ↓= A5;

(d) PSL2(p) ↓= A5 if and only if p = 5.

Lemma 3.1.2. No proper subgroup of SL2(Z/pZ) maps onto PSL2(p).

Proof. The case p = 2 is special. The center K = {±I} of SL2(Z/2Z) is trivial, since
↗I = I in characteristic 2. Thus, the natural projection ◁ : SL2(Z/2Z) ↑ PSL2(2) is an
isomorphism. Consequently, the only subgroup of SL2(Z/2Z) that maps onto PSL2(2) is
SL2(Z/2Z) itself, so no proper subgroup with this property.

Now, let p be an odd prime. Let K = {±I} be the center of SL2(Z/pZ). Assume for
contradiction that there exists a proper subgroup H ¬ SL2(Z/pZ) that maps surjectively
onto PSL2(p). For any g ↔ SL2(Z/pZ), surjectivity provides an h ↔ H such that gK = hK,
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which implies gh↓1
↔ K. We can then write g = (gh↓1)h; since gh↓1

↔ K and h ↔ H, we
have SL2(Z/pZ) = KH.

The intersection H ′ K must be a subgroup of K, so it is either {I} or K. If H ′

K = K, then K ⇒ H, which together with KH = SL2(Z/pZ) implies H = SL2(Z/pZ).
This contradicts our assumption that H is a proper subgroup. Therefore, we must have
H ′K = {I}.

The conditions KH = SL2(Z/pZ), H ′K = {I}, and HK = KH (since K is the center)
imply that SL2(Z/pZ) is the direct product of H and K by [13, Theorem 2.1]. Thus, we
have a group isomorphism:

SL2(Z/pZ) ↓= H →K = H → {±I}.

It is a standard result that SL2(Z/pZ) is generated by the matrices T =

(
1 1
0 1

)
and S =

(
1 0
1 1

)
, both of which have order p. Let’s consider the generator T . Under the isomorphism,

T corresponds to a pair (h, k) for some h ↔ H and k ↔ K. The order of T must be
lcm(ord(h), ord(k)). Since ord(T ) = p (an odd prime) and ord(k) is either 1 or 2, we must
have ord(k) = 1. This means k = I. Therefore, T corresponds to the pair (h, I), which
implies that T is an element of H. By the same logic, the generator S must also be in
H. Since H contains a generating set for SL2(Z/pZ), it follows that H = SL2(Z/pZ). This
contradicts our initial assumption that H was a proper subgroup. Thus, no such proper
subgroup H can exist. ↭

Remark 3.1.5. The proof of the fact that

(
1 1
0 1

)
and

(
1 0
1 1

)
generate SL2(Z/pZ) can be

found in [14, Corollary 3.5].

Corollary 3.1.1. If p ⇐ 5 is a prime, then the commutator subgroup SL2(Z/pZ)↑ of SL2(Z/pZ)
is SL2(Z/pZ).

Proof. Let G = SL2(Z/pZ). For p ⇐ 5, we know from Lemma 3.1.1(a) that the group
PSL2(p) is simple. A simple group is abelian if and only if it is cyclic of prime order. The

order of PSL2(p) is p(p2↓1)
2 , which is not prime for p ⇐ 5. Thus, PSL2(p) is a non-abelian

simple group.
The commutator subgroup of any group is always a normal subgroup. Since PSL2(p) is

simple, its commutator subgroup, PSL2(p)↑, must be either the trivial group or PSL2(p) itself.
If PSL2(p)↑ were trivial, the group would be abelian, which is a contradiction. Therefore,
PSL2(p)↑ = PSL2(p).

Now, consider the natural surjective projection map ◁ : G ↑ PSL2(p). A standard
theorem of group theory states that the image of the commutator subgroup is the commutator
subgroup of the image. That is, ◁(G↑) = (PSL2(p))↑. Combining these results, we have:

◁(G↑) = PSL2(p).

This shows that the commutator subgroup G↑ = SL2(Z/pZ)↑ is a subgroup of G that maps
surjectively onto PSL2(p). By Lemma 3.1.2, the only subgroup of SL2(Z/pZ) with this
property is SL2(Z/pZ) itself. Therefore, we must conclude that G↑ = G. ↭
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To generalize the previous result to SL2(Z/mZ) for an arbitrary integer m, let d | m be
a divisor of m and consider the surjective group homomorphism

pr
d
= pr(m)

d
: GL2(Z/mZ) ↗↑ GL2(Z/dZ),

induced by reduction modulo d.

Lemma 3.1.3. Let ω ⇐ 5 be a prime and let X be a closed subgroup of SL2(Zω) whose image
in SL2(Z/ωZ) is SL2(Z/ωZ). Then X = SL2(Zω).

Remark 3.1.6. The proof in [15] uses an inductive argument to show that

X ↫ SL2(Z/ωnZ)

for every n ↔ N using properties of the Lie algebra sl2(Z/ωZ).

Corollary 3.1.2. Let H be a subgroup of SL2(Z/prZ), where p ⇐ 5 is a prime and r is a
positive integer. If pr

p
(H) = SL2(Z/pZ), then H = SL2(Z/prZ).

Proof. Let ◁r : SL2(Zp) ↑ SL2(Z/prZ) be the natural projection and consider the preimage
X = ◁↓1

r
(H). The target group SL2(Z/prZ) is finite and is thus endowed with the discrete

topology, in which every subset is closed. Therefore, the subgroup H is a closed set. Since
the projection ◁r is continuous, the preimage X is a closed subgroup of SL2(Zp).

The image of X under the mod-p projection ◁1 : SL2(Zp) ↑ SL2(Z/pZ) is given by
◁1(X) = pr

p
(H). By hypothesis, this is SL2(Z/pZ).

Thus, X satisfies the hypotheses of the Lemma 3.1.3, and we conclude that X = SL2(Zp).
Applying the surjective projection ◁r to this equality immediately yields

H = ◁r(X) = ◁r(SL2(Zp)) = SL2(Z/prZ),

which completes the proof. ↭
Corollary 3.1.3. For any positive integer m with (m, 6) = 1, we have that the commutator
subgroup SL2(Z/mZ)↑ is SL2(Z/mZ).

Proof. Since SL2(Z/mZ) ↓=
∏

pr||m SL2(Z/prZ) by the Chinese Remainder Theorem, it is
enough to show SL2(Z/prZ)↑ = SL2(Z/prZ) for p ⇐ 5 as the commutator subgroup of a
direct product is isomorphic to the direct product of the individual commutator subgroups
[16, Result 1.6.2(b)]. Consider the following:

pr
p
(SL2(Z/prZ)↑) = pr

p
(SL2(Z/prZ))↑ = SL2(Z/pZ)↑ = SL2(Z/pZ).

The first equality comes from the fact that the image of the commutator subgroup is the
commutator subgroup of the image, and the third equality comes from Corollary 3.1.1.
Finally, Corollary 3.1.2 applied to SL2(Z/prZ)↑ yields the result. ↭
Corollary 3.1.4. Let m be a positive integer with (m, 6) = 1. If

SL2(Z/mZ) △ H △ GL2(Z/mZ)

then H ↑ = SL2(Z/mZ). In particular, GL2(Z/mZ)↑ = SL2(Z/mZ).
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Proof. Let G = GL2(Z/mZ) and let N = SL2(Z/mZ). It is a standard result that N is
a normal subgroup of G, with the quotient G/N being isomorphic to the abelian group
(Z/mZ)→ via the determinant map.

We are given an intermediate subgroup H such that N △ H △ G. Since N φG, it follows
that N is also a normal subgroup of H. Consider the quotient group H/N . We have the
inclusion of groups:

H/N △ G/N ↓= (Z/mZ)→.
Since any subgroup of an abelian group is abelian, H/N is abelian.

We now use the standard group-theoretic result that if H/N is abelian, then the com-
mutator subgroup H ↑ must be contained in N [3, Section 5.4, Proposition 7(4)]. This gives
us our first inclusion:

H ↑
△ SL2(Z/mZ).

From our assumption N △ H, it follows that N ↑
△ H ↑. Combining the latter and Corol-

lary 3.1.3 gives:
SL2(Z/mZ) = SL2(Z/mZ)↑ △ H ↑.

We have shown both H ↑
△ SL2(Z/mZ) and SL2(Z/mZ) △ H ↑, which together imply the

desired equality H ↑ = SL2(Z/mZ). The particular case for H = GL2(Z/mZ) follows directly.
↭

The following definitions are crucial for formulating and proving the subsequent results.
We begin by defining two sets associated with the composition factors of a finite group G.

Definition 3.1.4. Given a finite group G, we define N (G) to be the set of isomorphism
classes of non-abelian composition factors of G itself.

Definition 3.1.5. Given a finite group G, we define Occ(G) (for “occurs”) to be the set of
all non-abelian simple groups that appear as a composition factor of at least one subgroup of
G. This can be expressed as the union of the sets N (H) over all subgroups H △ G:

Occ(G) =
⋃

H↔G

N (H).

The following example illustrates the crucial distinction between these two sets.

Example 3.1.1. Consider the symmetric group Sn for n ⇐ 5. Its only non-abelian compo-
sition factor is the alternating group An, so N (Sn) = {An}.

Now, let’s specialize to the case G = S10. We have N (S10) = {A10}. However, to
compute Occ(S10), we must consider all of its subgroups. The group A5 can be embedded as a
subgroup of S10 by letting it act on the first 5 elements of a set of 10 and fixing the remaining
5. Since A5 is simple, its only non-abelian composition factor is itself, so N (A5) = {A5}.

Because A5 is a subgroup of S10, the set Occ(S10) must contain N (A5). It must also
contain N (S10). Therefore,

{A5, A10} ⇒ Occ(S10).

This example clearly shows that the set of non-abelian composition factors found among the
subgroups of a group can be strictly larger than the set of non-abelian composition factors of
the group itself.
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Lemma 3.1.4. Let G be a finite group. Then N (G) = N (H) ∞N (G/H) where H φG.

Proof. Let us first recall that any finite group admits a composition series. Let {e} = H0φH1φ
· · ·φHn = H be a composition series for H. And let {H} = K0φK1φ · · ·φKm = G be a series
of subgroups of G such that Ki/H form a composition series for G/H via the correspondence
theorem [3, Section 3.3, Theorem 19 and 20] where also Ki/Ki↓1

↓= (Ki/H)/(Ki↓1/H). Now
combine the composition series of H and G/H to form a composition series for G:

{e} = H0 φH1 φ · · · φHn = H = K0 φK1 φ · · · φKm = G.

The set of composition factors of this series is the union of the composition factors of H
and G/H. By the Jordan-Hölder theorem, this set is uniquely determined up to isomor-
phism. Therefore, the set of non-abelian composition factors N (G) is the union of N (H)
and N (G/H). ↭
Definition 3.1.6. A finite group G is said to be solvable if it has a subnormal series whose
factor groups are all abelian, equivalently if N (G) = ∅.

Lemma 3.1.5. Let G be a finite group. Then:

(a) Occ(G) = ∅ if and only if G is solvable.

(b) If H is a normal subgroup of G, then Occ(G) = Occ(H) ∞Occ(G/H).

Proof. (a) If Occ(G) = ∅, then N (G) = ∅, which implies that G is solvable. Conversely, if
G is solvable, then so are any of its subgroups H △ G. Therefore, N (H) = ∅ for all
H △ G and Occ(G) = ∅.

(b) We prove the equality by showing two set inclusions.

(⊇) We first show that Occ(G) ⊇ Occ(H) ∞Occ(G/H).

• Let S ↔ Occ(H). By definition, S ↔ N (B) for some subgroup B △ H. Since B is
also a subgroup of G, N (B) ⇒ Occ(G), so S ↔ Occ(G). Thus, Occ(H) ⇒ Occ(G).

• Let S ↔ Occ(G/H). Then S ↔ N (L) for some L △ G/H. By the Correspondence
Theorem, L = A/H for some subgroup A with H △ A △ G. By Lemma 3.1.4,
we know that N (L) = N (A/H) ⇒ N (A). Since A △ G, N (A) ⇒ Occ(G). Thus,
Occ(G/H) ⇒ Occ(G).

Combining these two results gives the first inclusion.

(⇒) For the reverse inclusion, we must show that Occ(G) ⇒ Occ(H)∞Occ(G/H). This
is equivalent to showing that for any arbitrary subgroup K △ G, we have N (K) ⇒

Occ(H) ∞Occ(G/H).

By the Second Isomorphism Theorem [3, Section 3.3, Theorem 18], H ′K is a normal
subgroup of K, and K/(H ′K) ↓= (KH)/H. Applying Lemma 3.1.4 to the group K
and its normal subgroup H ′K, we have:

N (K) = N (H ′K) ∞N (K/(H ′K))

= N (H ′K) ∞N ((KH)/H)

Now we analyze each term in the union.
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• Since H ′K is a subgroup of H, by definition N (H ′K) ⇒ Occ(H).

• Since (KH)/H is a subgroup of G/H, by definition N ((KH)/H) ⇒ Occ(G/H).

Therefore, N (K) ⇒ Occ(H) ∞Occ(G/H). As this holds for any subgroup K △ G, the
union over all N (K) (which is Occ(G)) must also be contained in this set. This proves
the inclusion and completes the proof.

↭
Lemma 3.1.6. If m is a positive integer, then

Occ(GL2(Z/mZ)) = Occ(SL2(Z/mZ)) =
⋃

p|m

Occ(PSL2(p)).

Moreover, if p ⇐ 5 is a prime, then

{PSL2(p)} ⇒ Occ(PSL2(p)) ⇒ {PSL2(p), A5}.

Proof. First note that SL2(Z/mZ) φGL2(Z/mZ), thus

Occ(GL2(Z/mZ)) = Occ(SL2(Z/mZ))∞Occ(GL2(Z/mZ)/SL2(Z/mZ)) = Occ(SL2(Z/mZ))

as Occ(GL2(Z/mZ)/SL2(Z/mZ)) = ∅ since GL2(Z/mZ)/SL2(Z/mZ) ↓= (Z/mZ)→ is abelian
and hence solvable.

Now consider the subnormal series of the direct product SL2(Z/mZ) =
∏

pr||m SL2(Z/prZ):

{e1}→ · · ·→ {ek} φ SL2(Z/pr11 Z)→ {e2}→ · · ·→ {ek}

φ SL2(Z/pr11 Z)→ SL2(Z/pr22 Z)→ {e3}→ · · ·→ {ek} φ · · · φ
k∏

i=1

SL2(Z/prii Z)

whose factors are isomorphic to SL2(Z/pr11 Z), . . . , SL2(Z/prkk Z). We repeatedly use Lemma 3.1.5(b)
to obtain

Occ(SL2(Z/mZ)) =
⋃

pr||m

Occ(SL2(Z/prZ)).

We would now like to show that Occ(SL2(Z/prZ)) = Occ(SL2(Z/pZ)). We can show the
latter by considering SL2(Z/prZ)/ ker(prp) ↓= SL2(Z/pZ), which allows us to write

Occ(SL2(Z/prZ)) = Occ(ker(pr
p
)) ∞Occ(SL2(Z/pZ))

where Occ(ker(pr
p
)) = ∅ as ker(pr

p
) is a p-group and hence is solvable. An easy way to see

that ker(pr
p
) is a p-group is to compute

|SL2(Z/prZ)|
|SL2(Z/pZ)|

= p3r↓3.

Finally, what’s left to show is Occ(SL2(Z/pZ)) = Occ(PSL2(p)), which is clear because
SL2(Z/pZ)/{±I} = PSL2(p) and {±I} is abelian. Therefore,

Occ(SL2(Z/mZ)) =
⋃

pr||m

Occ(SL2(Z/prZ)) =
⋃

p|m

Occ(SL2(Z/pZ)) =
⋃

p|m

Occ(PSL2(p)).

The second statement of the Lemma follows from Lemma 3.1.1(a) and (c). ↭
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Remark 3.1.7. One may wonder if a direct product G = G1 → · · ·→Gm can have a compo-
sition factor that is not a composition factor of any of the individual groups Gi. This is not
possible. The set of composition factors of G is precisely the union of the sets of composition
factors of the Gi. This can be proven by applying Lemma 3.1.4 inductively to the subnormal
series:

{(e1, . . . , em)}↬G1 → {e2}→ · · ·→ {em}↬G1 →G2 → {e3}→ · · ·→ {em}↬ · · ·↬G

whose factors are isomorphic to G1, G2, . . . , Gm. A full proof can be found in the work of
Keith Conrad [14, Lemma 4.1].

Corollary 3.1.5. If p > 5 is a prime and m is an integer such that p ⫅̸ m, then PSL2(p) /↔
Occ(GL2(Z/mZ)).

Proof. Since p > 5, we have by Lemma 3.1.1 that PSL2(p) is not isomorphic to A5 and that
PSL2(p) is not isomorphic to PSL2(q) for any prime q | m. Thus, PSL2(p) /↔ Occ(GL2(Z/mZ))
by Lemma 3.1.6. ↭

Dickson, in [17], provides a classification of the subgroups of GL2(Z/pZ) up to conjugacy
by analyzing their images in PGL2(Z/pZ). This classification is fundamental to the results
that follow.

Theorem 3.1.2. Let H △ GL2(Z/pZ) with image H ↑
△ PGL2(Z/pZ). Up to conjugacy,

one of the following holds:

1. H contains an element of order p.

(a) H △ B(p)

(b) SL2(Z/pZ) △ H

2. H does not contain an element of order p.

(a) H ↑ is cyclic and H △ Cs(p) or Cns(p).

(b) H ↑ is dihedral and H △ N(Cs(p)) or N(Cns)(p) but H ↘△ Cs(p), Cns(p)

(c) H ↑
ℜ A4, S4 or A5 and H ↘△ N(Cs(p)), N(Cns)(p).

Remark 3.1.8. The Borel subgroup of GL2(Z/pZ), B(p), (i.e. group of upper-triangular
matrices) is solvable and can be seen by constructing a subnormal series with abelian com-

position factors. Consider the unipotent subgroup U =

{(
1 b
0 1

)
| b ↔ Z/pZ


↓= (Z/pZ,+).

Notice that U is the kernel of the surjective homomorphism ↽ : B(p) ↑ (Z/pZ)→ → (Z/pZ)→

defined by ↽

((
a c
0 d

))
= (a, d), which proves that U is a normal subgroup of B(p). By

the First Isomorphism Theorem, the quotient group B(p)/U ↓= (Z/pZ)→ → (Z/pZ)→ is also
abelian. The series {I} φ U φB(p) thus demonstrates that B(p) is solvable.

Lemma 3.1.7. Let G △ GL2(Z/prZ), where p ⇐ 5 is a prime and r is a positive integer.
Then the following statements are equivalent:
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(i) PSL2(p) ↔ Occ(G).

(ii) SL2(Z/prZ) △ G.

(iii) SL2(Z/pZ) △ pr
p
(G).

Proof. (ii) =∃ (i): PSL2(p) is a composition factor of SL2(Z/prZ) as Occ(SL2(Z/prZ)) =
Occ(PSL2(p)) and {PSL2(p)} ⇒ Occ(PSL2(p)) by Lemma 3.1.6.

(iii) =∃ (ii): Consider H := G↑
△ GL2(Z/prZ)↑ = SL2(Z/prZ) where the last

equality follows from Corollary 3.1.4. Since SL2(Z/pZ) △ pr
p
(G) by hypothesis, we have

SL2(Z/pZ)↑ △ pr
p
(G)↑ = pr

p
(G↑) = pr

p
(H) △ SL2(Z/pZ) where the first equality comes

from the fact that the image of the commutator subgroup is the commutator subgroup of
the image. But SL2(Z/pZ)↑ = SL2(Z/pZ) by Corollary 3.1.1, and so SL2(Z/pZ) = pr

p
(H).

Therefore, (ii) follows from Corollary 3.1.2 as SL2(Z/prZ) = H = G↑
△ G.

(i) =∃ (iii): Let H := G ′ ker(pr
p
) then by the first isomorphism theorem, pr

p
(G) ↓=

G/H where H △ ker(pr
p
) is a p-group as ker(pr

p
) is. By Lemma 3.1.5, we have Occ(G) =

Occ(H) ∞ Occ(G/H) = Occ(G/H) = Occ(pr
p
(G)) as Occ(H) = ∅ since H is a p-group,

hence solvable. Now, for any subgroup K △ GL2(Z/pZ), we know by Theorem 3.1.2 that
K ⇐ SL2(Z/pZ) if and only if p | |K| and K is not contained in a Borel subgroup. Now,
we apply Theorem 3.1.2 setting K := pr

p
(G). By our assumption, PSL2(p) ↔ Occ(G) =

Occ(K), which means K is not solvable and hence cannot be contained in a Borel subgroup
of GL2(Z/pZ) as they are solvable Remark 3.1.8. All that is left to show is p | |K|. PSL2(p) ↔
Occ(K) so PSL2(p) ↓= L/N for some L △ K and N ↬ L, which implies |PSL2(p)| | |L|
and |L| | |K| by Lagrange’s theorem. Furthermore we know p | |PSL2(p)|, so the result
follows. ↭
Theorem 3.1.3. Let G be a subgroup of GL2(Z/mZ) where (m, 30) = 1. Then:

(a) G = GL2(Z/mZ) if and only if G ⇐ SL2(Z/mZ) and 0(m) | [G : G↑].

(b) G ⇐ SL2(Z/mZ) if and only if PSL2(p) ↔ Occ(G) for all primes p | m.

Proof. (a) IfG = GL2(Z/mZ), then clearlyG ⇐ SL2(Z/mZ). Moreover, 0(m) = [GL2(Z/mZ) :
SL2(Z/mZ)] = [GL2(Z/mZ) : GL2(Z/mZ)↑] = [G : G↑], where the second equality follows
from Corollary 3.1.4, so in particular 0(m) | [G : G↑].

Conversely, if G ⇐ SL2(Z/mZ) then G↑ = SL2(Z/mZ) by Corollary 3.1.4 so [G : G↑] ·
| SL2(Z/mZ)| = |G|. Using the fact that |GL2(Z/mZ)| = 0(m) · | SL2(Z/mZ)| and the
second part of the hypothesis, 0(m) | [G : G↑] (i.e., k · 0(m) = [G : G↑]), we obtain:

[G : G↑] · | SL2(Z/mZ)| = |G|

k · 0(m) · | SL2(Z/mZ)| = |G|

k · |GL2(Z/mZ)| = |G|

Thus, |GL2(Z/mZ)| divides |G| and hence G = GL2(Z/mZ).
(b) If G ⇐ SL2(Z/mZ), then G/ SL2(Z/mZ) is abelian as it is a subgroup of (Z/mZ)→ and

hence solvable. Now, Occ(G) = Occ(SL2(Z/mZ))∞Occ(G/ SL2(Z/mZ)) = Occ(SL2(Z/mZ)) ⊇
{PSL2(p) : p | m} where the first and second equality follow from Lemma 3.1.5, and the
containment follows from Lemma 3.1.6.
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Conversely, suppose that Occ(G) ⊇ {PSL2(p) : p | m}. For any pr || m, consider the
following:

GL2(Z/mZ)

∏
q|m GL2(Z/qrqZ) {e}→

∏
q|m
q ⇒=p

GL2(Z/qrqZ)

GL2(Z/(m/pr)Z)
pr

m/pr

↓= ↓=

◁

Thus, ker(pr
m/pr) ↓= GL2(Z/prZ). Now, for any subgroup H △ GL2(Z/mZ), let H(p) :=

H ′ ker(pr
m/pr). Note that H(p) ↬ H is a normal subgroup of H [18, Proposition 7.8] and

that H(p)
△ GL2(Z/mZ)(p) ↓= GL2(Z/prZ).

We claim that PSL2(p) ↔ Occ(H(p)). First note that PSL2(p) /↔ Occ(GL2(Z/(m/pr)Z))
by Corollary 3.1.5 as p ⫅̸ (m/pr). Since H/H(p) ↓= pr

m/pr(H), we can consider the follow-

ing Occ(H) = Occ(H(p)) ∞ Occ(pr
m/pr(H)) by Lemma 3.1.5. Because Occ(pr

m/pr(H)) ⇒

Occ(GL2(Z/(m/pr)Z)) and we know that PSL2(p) /↔ Occ(GL2(Z/(m/pr)Z)) but PSL2(p) ↔
Occ(H) by our hypothesis then we have that PSL2(p) ↔ Occ(H(p)). With the latter, we can
apply the (i) =∃ (ii) direction of Lemma 3.1.7 to H(p), which is a subgroup of GL2(Z/prZ),
and so SL2(Z/prZ) △ H(p). Since this is true for all p | m, we obtain

∏

p|m

SL2(Z/prZ) △
∏

p|m

H(p)
△ H.

But by the Chinese Remainder Theorem, we have

SL2(Z/mZ) ↓=
∏

p|m

SL2(Z/prZ),

and so we obtain SL2(Z/mZ) △ H as desired. ↭

3.2. Group Theory for Applicable Subgroups

The exposition in this section follows the appendix of Zywina’s work in [19, Appendix]
and the second section of his subsequent paper [20, Section 2].

Definition 3.2.1. The abelianization of a group G, often denoted Gab, is the quotient of G
by its commutator subgroup, G↑ = [G,G]. It is defined as:

Gab := G/G↑.

The abelianization is the largest abelian quotient of G.

Remark 3.2.1 (Universal Property of the Abelianization). Let ◁ : G ↑ Gab be the canonical
projection. For any abelian group H and any group homomorphism 0 : G ↑ H, there exists
a unique homomorphism 1 : Gab

↑ H such that 0 = 1 ⇓ ◁.
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Lemma 3.2.1. (Goursat’s Lemma) Let G1 and G2 be groups and let G △ G1 → G2 be a
subgroup such that the projections ◁1 : G ↑ G1 and ◁2 : G ↑ G2 are surjective. Then, there
exists a group Q and surjective homomorphisms 11 : G1 ↑ Q, 12 : G2 ↑ Q such that

G = {(a, b) ↔ G1 →G2 | 11(a) = 12(b)}.

Proof. Let N1 = (G1 → {e2}) ′ G and N2 = ({e1} → G2) ′ G, then N1 = ker(◁2) and N2 =
ker(◁1). Note that N1 φG as it is the kernel of ◁2, hence ◁1(N1) △ ◁1(G) as homomorphisms
are structure-preserving maps. So it follows ◁1(N1) △ G1 as ◁1(G) = G1. Similarly we
have ◁2(N2) △ G2. Note that ◁i(Ni) ↓= Ni, thus (G1 → {e2})/N1

↓= G1/◁1(N1) and ({e1} →
G2)/N2

↓= G2/◁2(N2).
Define 11 : G1 ↑ G2/◁2(N2) where a ⇑↑ b◁2(N2) where (a, b) ↔ G. If (a, b), (a, c) ↔ G,

then (e1, b↓1c) = (a, b)↓1(a, c) ↔ G implies b↓1c ↔ ◁2(N2) and hence b◁2(N2) = c◁2(N2). So,
11 is well-defined. It is easily checked that 11 is a surjective homomorphism. We will now
show that ker(11) = ◁1(N1).

Indeed, if a ↔ ker(11), then for (a, b) ↔ G, b ↔ ◁2(N2). But then (e1, b) ↔ G from the
definition of N2 and (a, e2) = (a, b)(e1, b)↓1

↔ G which gives a ↔ ◁1(N1). So by the first
isomorphism theorem, G1/◁1(N1) ↓= G2/◁2(N2).

Similarly, we define 12 : G2 ↑ G1/◁1(N1) where b ⇑↑ a◁1(N1) where (a, b) ↔ G and
obtain ker(12) = ◁2(N2). The result now follows. ↭

Remark 3.2.2. • Notice that if G = G1 → G2, then ◁1(N1) = G1 and ◁2(N2) = G2.
Moreover, Q = {e} where Q := G1/◁1(N1) ↓= G2/◁2(N2) and G/(◁1(N1) → ◁2(N2)) ↓=
{e}. In a sense, when G △ G1→G2, G/(◁1(N1)→◁2(N2)) measures how far G is from
being the direct product G1 →G2.

• Let K be an arbitrary subgroup of G1 → G2, not necessarily with surjective projection
maps. We can then apply Goursat’s Lemma to ◁1(K)→◁2(K). Thus, Goursat’s Lemma
is the general result describing a direct product’s subgroups.

The following definition and two subsequent results are not strictly required for the group-
theoretic tools this section aims to develop. They are included, however, as they represent
an interesting and relevant extension of the ideas discussed.

Definition 3.2.2. Given a finite group G, we define In(G) to be the set of isomorphism
classes of all simple groups that appear as a composition factor of some subgroup H △ G.

The set In(G) contains both the abelian and non-abelian simple composition factors. Our
previously defined set, Occ(G), consists of only the non-abelian ones. Therefore, we have
the subset relation Occ(G) ⇒ In(G).

Lemma 3.2.2. Let G be a finite group.

(a) In(G) = ∅ if and only if G = {e}.

(b) If H is a normal subgroup of G, then In(G) = In(H) ∞ In(G/H).

Proof. (a) The first direction follows from the fact that every nontrivial finite group has a
composition series. The other direction is trivial.
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(b) The proof is the same as Lemma 3.1.5(b).
↭

Lemma 3.2.3. Let G1, G2 be two finite groups. The following statements are equivalent:

(i) In(G1) ′ In(G2) = ∅.

(ii) Every subgroup of G1 →G2 is of the form H1 →H2 with H1 △ G1 and H2 △ G2.

Proof. (i) =∃ (ii) Let H be a subgroup of G1 → G2 and set H1 = ◁1(H) and H2 =
◁2(H), where ◁1 and ◁2 are the projection homomorphisms. We apply Goursat’s Lemma
to H △ H1 → H2 and obtain H1/◁1(N1) ↓= H2/◁2(N2) where N1 = (H1 → {e2}) ′ H and
N2 = ({e1} → H2) ′ H. Let us consider ↽ : H ↑ H1/◁1(N1) where (a, b) ⇑↑ a◁1(N1). It
is easily checked that ↽ is a surjective homomorphism. We will now show that ker(↽) =
◁1(N1)→ ◁2(N2).

ker(↽) = {(a, b) ↔ H | a ↔ ◁1(N1)}

= {(a, b) ↔ H | (a, e2) ↔ H}

= {(a, b) ↔ H | (a, e2) ↔ H, (e1, b) ↔ H}

= ◁1(N1)→ ◁2(N2)

The third equality follows from (e1, b) = (a, b)(a, e2)↓1
↔ H. As a consequence,

H1/◁1(N1) ↓= H/(◁1(N1)→ ◁2(N2)) ↓= H2/◁2(N2).

Suppose H is not a direct product, i.e., H ↘= H1 →H2, then H/(◁1(N1)→ ◁2(N2)) ↘= {e}
and so we have a non-empty set

In(H1/◁1(N1)) = In(H/(◁1(N1)→ ◁2(N2))) = In(H2/◁2(N2))

contained in In(G1) ′ In(G2) where we implicitly used the second statement of the previous
Lemma.

(ii) =∃ (i) Suppose there exists S ↔ In(G1)′In(G2), then there exist subgroups N1 φH1

of G1 and N2 φ H2 of G2 such that S ↓= H1/N1
↓= H2/N2. Let ↽i : Hi ↑ Hi/Ni

↓= S for
i = 1, 2. Then (↽1,↽2) : H1 →H2 ↑ S → S. Consider the subgroup D = {(s, s) | s ↔ S} (the
diagonal subgroup) and its inverse image H = (↽1 → ↽2)↓1(D). Then H is a subgroup of
H1 →H2 as the inverse image of a subgroup is a subgroup. We claim that H is not a direct
product of a subgroup of G1 with a subgroup of G2.

Note that ◁1(H) = H1 and ◁2(H) = H2 which follows from ↽i being surjective. So, it
su$ces to show that H ↘= H1 → H2. Let h1 ↔ H1 \ N1 and h2 ↔ N2 (We can always find
an h1 ↔ H1 \ N1 because N1 is strictly contained in H1, and the latter follows from the
definition of a composition series). Then (↽1,↽2)(h1, h2) = (↽1(h1), e2) where ↽1(h1) ↘= e1,
and so (h1, h2) ↔ (H1 →H2) \H. ↭

Lemma 3.2.4. Let G1, . . . , Gn be finite groups, and assume that for each i ↘= j, N (Gi) ′
N (Gj) = ∅ and gcd(|Gab

i
|, |Gab

j
|) = 1. Let H be a subgroup of G1 → · · · → Gn such that

◁i(H) = Gi for every projection ◁i : G1 → · · ·→Gn ↑ Gi. Then H = G1 → · · ·→Gn.
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Proof. By induction, we may reduce to the case n = 2. We apply Goursat’s Lemma to
H △ G1 → G2 and obtain G1/◁1(N1) ↓= G2/◁2(N2) where N1 = (G1 → {e2}) ′ H and
N2 = ({e1} → G2) ′ H. The latter isomorphism and Lemma 3.1.4 gives N (G1/◁1(N1)) =
N (G2/◁2(N2)) ⇒ N (G1) ′N (G2) = ∅, thus G1/◁1(N1) and G2/◁2(N2) are solvable.

Recall that G/N is abelian if and only if G↑
△ N . Moreover, if we have G↑ ↬ N ↬ G,

then the Third Isomorphism Theorem yields (G/G↑)/(N/G↑) ↓= G/N , which implies that the
order of every abelian quotient of G divides the order of Gab = G/G↑. Thus G1 and G2 have
no common abelian quotients besides {e} because gcd(|Gab

1 |, |Gab

2 |) = 1.
We have the following composition series for G1/◁1(N1):

{e}↬K1/◁1(N1)↬ · · ·↬Kn/◁1(N1)↬G1/◁1(N1)

Then the composition factor (G1/◁1(N1))/(Kn/◁1(N1)) ↓= G1/Kn is a quotient of G1 and
abelian as G1/◁1(N1) is solvable. However, G1/◁1(N1) ↓= G2/◁2(N2) so G1/Kn is also an
abelian composition factor for G2/◁2(N2) (also solvable) but G1 and G2 have no common
abelian quotients besides {e} and so G1/Kn = {e} which implies G1/◁1(N1) = G2/◁2(N2) =
{e}. Furthermore, we obtain N1 = G1 → {e2} and N2 = {e1}→G2 meaning that H contains
G1 → {e2} and {e1}→G2 hence H = G1 →G2. ↭

In the next examples, our aim is to give explicit descriptions of SL2(Z/2Z)ab, SL2(Z/3Z)ab
and SL2(Z/4Z)ab for the sake of the Lemmas that come next.

Example 3.2.1. It is known that SL2(Z/2Z) ↓= S3, so we’ll now find the abelianization of
S3. The only normal subgroups of S3 are {e}, ↖(123)↙ and itself. We quotient S3 by all
three of them and find that the largest abelian quotient is S3/↖(123)↙ ↓= Z/2Z. Therefore,
SL2(Z/2Z)ab ↓= Z/2Z.

Example 3.2.2. The order of SL2(Z/3Z)ab can be computed in Sage as follows:

SL2Z3Z = SL(2,Integers(3))

commutators = list(set([A*B*A^(-1)*B^(-1) for A in SL2Z3Z for B in SL2Z3Z]))

SL2Z3Z_prime = SL2Z3Z.subgroup(commutators)

elements_SL2Z3Z_prime = [A for A in SL2Z3Z_prime]

order_SL2Z3Z_ab = len(SL2Z3Z)/len(SL2Z3Z_prime)

From the code above we obtain | SL2(Z/3Z)ab| = 3 which means SL2(Z/3Z)ab ↓= Z/3Z. We
are then able to find explicit representatives for the cosets of SL2(Z/3Z)ab by selecting any
element of SL2(Z/3Z) \ SL2(Z/3Z)↑ and using it as the generator of SL2(Z/3Z)ab. The
fourth line of code allows us to view the elements of SL2(Z/3Z)↑ explicitly. We see that
1 0
1 1


/↔ SL2(Z/3Z)↑ and so we use it as the generator. The set of coset representatives

for SL2(Z/3Z)ab is:

{
1 0
0 1


,


1 0
1 1


,


1 0
2 1


. Also note that ↗I =


2 0
0 2


↔ SL2(Z/3Z)↑.

The latter will become useful in the discussion following the next example.

Example 3.2.3. Similarly, the order of SL2(Z/4Z)ab can be computed in Sage as follows:
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SL2Z4Z = SL(2,Integers(4))

commutators = list(set([A*B*A^(-1)*B^(-1) for A in SL2Z4Z for B in SL2Z4Z]))

SL2Z4Z_prime = SL2Z4Z.subgroup(commutators)

elements_SL2Z4Z_prime = [A for A in SL2Z4Z_prime]

order_SL2Z4Z_ab = len(SL2Z4Z)/len(SL2Z4Z_prime)

We obtain | SL2(Z/4Z)ab| = 4, which means SL2(Z/4Z)ab ↓= Z/4Z or Z/2Z → Z/2Z. We

notice that ↗I =


3 0
0 3


/↔ SL2(Z/4Z)↑, thus, we use it as one of our coset representatives.

However, the order of ↗I in SL2(Z/4Z)ab is 2, so it is still not clear whether SL2(Z/4Z)ab
is isomorphic to Z/4Z or Z/2Z→Z/2Z yet. We need to search for one more representative.
We compute the coset of SL2(Z/4Z)ab with ↗I as representative with the code below.

minusI = Matrix(Integers(4),[[3, 0], [0, 3]])

coset_minusI = [minusI*B for B in SL2Z4Z_prime]

We notice that


1 3
2 3


is not in SL2(Z/4Z)↑ nor in the coset of ↗I. The order of


1 3
2 3



in SL2(Z/4Z)ab is 4, so we have found its generator and namely that SL2(Z/4Z)ab ↓= Z/4Z.

The set of coset representatives for SL2(Z/4Z)ab is

{
1 0
0 1


,


3 0
0 3


,


1 3
2 3


,


3 1
2 1


.

The universal property of the abelianization of a group gives us the following diagram:

SL2(Z) SL2(Z/4Z)ab

SL2(Z)ab

f

g

h

Where f is the composition of the reduction map SL2(Z) ↑ SL2(Z/4Z) with the natural
surjection map SL2(Z/4Z) ↑ SL2(Z/4Z)/ SL2(Z/4Z)↑ = SL2(Z/4Z)ab. Moreover, g is the
natural surjection map, and h is the unique homomorphism we obtain from the universal
property. As seen by the example above, f takes ↗I to one of the non-identity cosets
represented in our example by ↗I. In other words, ↗I /↔ ker(f). Consequently, ↗I /↔ ker(g)
since f = h ⇓ g, which tells us that ↗I /↔ SL2(Z)↑.

It is well known that ↗I is in the center of SL2(Z), so it commutes with everything, and in
particular, it doesn’t contribute to the commutator structure. Using this and ↗I /↔ SL2(Z)↑,
we obtain SL2(Z)↑ ↓= PSL2(Z)↑ where PSL2(Z) := SL2(Z)/{±I}.

Lemma 3.2.5. Let m > 1 be an integer, and define b := gcd(m, 12). Reduction modulo b
induces an isomorphism

SL2(Z/mZ)ab ⇓
↗↑ SL2(Z/bZ)ab.

The group SL2(Z/mZ)ab is cyclic of order b.
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Proof. It is well-known that the group PSL2(Z) has a presentation ↖A,B : A2 = 1, B3 = 1↙
[14, Theorem C.1], thus PSL2(Z)ab is a cyclic group of order 6.

From our discussion above, we learned that SL2(Z)↑ ↓= PSL2(Z)↑ which yields the follow-
ing:

PSL2(Z)/PSL2(Z)↑ ↓= (SL2(Z)/{±I})/ SL2(Z)↑ ↓= (SL2(Z)/ SL2(Z)↑)/{±I}

More succinctly, SL2(Z)ab/{±I} ↓= PSL2(Z)ab which means | SL2(Z)ab| is either 6 or 12.
Suppose it is 6, then ↗I lies in the coset represented by the identity in SL2(Z)ab, but that’s
impossible if ↗I /↔ SL2(Z)↑ thus | SL2(Z)ab| = 12.

We have seen in an earlier proof that the commutator subgroup of a direct product is
isomorphic to the direct product of the commutator subgroups of each component [16, Result
1.6.2(b)]. The latter and [3, Section 5.1, Exercise 14] give us that the abelianization of a
direct product is isomorphic to the direct product of the abelianizations of each component.
We now apply this result to SL2(Z/12Z) ↓= SL2(Z/3Z)→ SL2(Z/4Z) and obtain

SL2(Z/12Z)ab ↓= SL2(Z/3Z)ab → SL2(Z/4Z)ab ↓= Z/3Z→ Z/4Z ↓= Z/12Z

where the before last isomorphism follows from the two previous examples.
For each integer m > 1, the natural reduction map SL2(Z) ↑ SL2(Z/mZ) is onto [14,

Theorem 3.2]. The previous surjection induces:

SL2(Z) SL2(Z/mZ)ab

SL2(Z)ab

In particular, SL2(Z)ab ↫ SL2(Z/12Z)ab where both groups are of order 12, therefore
SL2(Z)ab ↓= SL2(Z/12Z)ab. Finally, SL2(Z/12Z)ab ↫ SL2(Z/mZ)ab meaning:

SL2(Z/mZ)ab ↓= SL2(Z/2eZ)ab → SL2(Z/3fZ)ab,

where gcd(m, 12) = 2e3f . Moreover, SL2(Z/2eZ)ab ↓= {e} or Z/2Z or Z/4Z when 2e = 1 or
2e = 2 or 2e ⇐ 4 respectively, and SL2(Z/3fZ)ab ↓= {e} or Z/3Z when 3f = 1 or 3f ⇐ 3
respectively. ↭

Remark 3.2.3. Our last step in the proof implies Corollary 3.1.3.

We have seen in Lemma 3.1.1 that for p ⇐ 5, PSL2(p) is a non-abelian simple group.
It has been hinted, but never explicitly said, until now that the groups SL2(Z/2Z) and
SL2(Z/3Z) are solvable. Lemma 3.1.4 of the group-theoretic section allows us to write
N (SL2(Z/pZ)) = N ({±I}) ∞ N (PSL2(p)) = N (PSL2(p)) = {PSL2(p)}. Similarly to the
proof of Lemma 3.1.6, with the previous information, we obtain:

N (SL2(Z/dZ)) =
⋃

p|d

N (PSL2(p)) = {PSL2(p) | p|d, p ⇐ 5}

where d ↔ Z>1.
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Lemma 3.2.6. Let m,n ↔ Z>1 be relatively prime and let H be a subgroup of SL2(Z/mnZ).
Then H = SL2(Z/mnZ) if and only if H surjects onto SL2(Z/mZ) and SL2(Z/nZ) by
reduction modulo m and n, respectively.

Proof. The first direction is immediate.
Suppose H surjects onto SL2(Z/mZ) and SL2(Z/nZ). Since gcd(m,n) = 1, we have

N (SL2(Z/mZ)) ′ N (SL2(Z/nZ)) = ∅ by the discussion above and Lemma 3.2.5 tells us
that gcd(| SL2(Z/mZ)ab|, | SL2(Z/nZ)ab|) = gcd(m,n, 12) = 1. The result is now a direct
consequence of Lemma 3.2.4. ↭
Lemma 3.2.7. Let f : G ↑ H be a surjective group homomorphism and let K △ H be a
subgroup of finite index. Then f↓1(K) is a subgroup of G and

[G : f↓1(K)] = [H : K].

Proof. The fact that f↓1(K) is a subgroup of G is a well-known result from group theory
[3, Section 3.1, Exercise 1].

For each coset hK ↔ H/K, its preimage under f is the set f↓1(hK) := {g ↔ G | f(g) ↔
hK}. Note that f↓1(hK) = gf↓1(K) where f(g) = h. This shows that each coset of K in
H corresponds to a coset of f↓1(K) in G. Consider the map:

↽ : G/f↓1(K) ↑ H/K defined by ↽(gf↓1(K)) = f(g)K.

We show that ↽ is a well-defined bijection.
Well-defined: We need to show that if g1f↓1(K) = g2f↓1(K), then f(g1)K = f(g2)K.

g1f
↓1(K) = g2f

↓1(K) =∃ g↓1
1 g2 ↔ f↓1(K)

=∃ f(g↓1
1 g2) ↔ K

=∃ f(g1)
↓1f(g2) ↔ K

=∃ f(g1)K = f(g2)K.

Thus, ↽ is well-defined.
Surjective: It is induced by the surjectivity of f .
Injective: We need to show that if ↽(g1f↓1(K)) = ↽(g2f↓1(K)), then g1f↓1(K) =

g2f↓1(K).

↽(g1f
↓1(K)) = ↽(g2f

↓1(K)) =∃ f(g1)K = f(g2)K

=∃ f(g1)
↓1f(g2) ↔ K

=∃ f(g↓1
1 g2) ↔ K

=∃ g↓1
1 g2 ↔ f↓1(K)

=∃ g1f
↓1(K) = g2f

↓1(K).

Thus, ↽ is injective.
Since ↽ is a well-defined bijection between the sets of cosets G/f↓1(K) and H/K. We

obtain,
[G : f↓1(K)] = [H : K].

↭

45



Lemma 3.2.8. There is no proper subgroup S of SL2(Z/nZ) such that {±I}S = SL2(Z/nZ).

Proof. Suppose there is a proper subgroup, call it S, such that {±I}S = SL2(Z/nZ). Let Si

be the image of S in SL2(Z/ωeii Z) (where n =
∏

ωei
i
). If for every i, Si = SL2(Z/ωeii Z) then by

Lemma 3.2.6 S =
∏

i
Si = SL2(Z/nZ), contradicting that S is proper. So there is a prime,

ωj, such that Sj ⫆̸ SL2(Z/ωejj Z). Moreover, {±I}Sj = SL2(Z/ωejj Z) since the reduction of
{±I}S is equal to {±I}Sj. So without loss of generality, we may assume that n = ωe and
now set S := Sj.

The group S has index 2 in SL2(Z/ωeZ); therefore, S is normal and SL2(Z/ωeZ)/S ↓=
Z/2Z. Recall that if G is a group, then every abelian quotient is a quotient of Gab. So,
2 = |Z/2Z| must divide | SL2(Z/ωeZ)ab| = gcd(ωe, 12), by Lemma 3.2.5, which forces ω to be
2. Moreover, from Lemma 3.2.5, we have that SL2(Z/2eZ)ab ↓= Z/2Z or Z/4Z, depending on
e.

We claim that S is the unique group of index 2 in SL2(Z/2eZ). The number of in-
dex 2 subgroups for a group G is equal to the number of nontrivial homomorphisms from
G to Z/2Z. The homomorphisms correspond to elements of Hom(Gab,Z/2Z) since every
homomorphism from G to Z/2Z factors through its abelianization. In either case when
SL2(Z/2eZ)ab ↓= Z/2Z or Z/4Z, there exists exactly one such nontrivial homomorphism. So
we conclude that S is the unique subgroup of index 2 in SL2(Z/2eZ).

The uniqueness of S and Lemma 3.2.7 tells us that S maps to A3
↓= Z/3Z, the unique in-

dex 2 subgroup in SL2(Z/2Z), under the reduction homomorphism SL2(Z/2eZ) ↑ SL2(Z/2Z) ↓=
S3. Therefore, {±I}S maps to A3 also, as I ∈ ↗I (mod 2). But we assumed {±I}S =
SL2(Z/2eZ), and the image of SL2(Z/2eZ) under the reduction map is SL2(Z/2Z) = S3.
This implies S3 = A3, which is false. This contradiction ensures no such S exists. ↭

Fix an integer n ⇐ 2. For an elliptic curve E/Q, let E[n] be the n-torsion subgroup.
After choosing a basis for E[n] as a Z/nZ-module, the natural GQ-action on E[n] can be
expressed in terms of a Galois representation,

εE,n : GQ ↑ GL2(Z/nZ).

We now describe some restrictions on the possible images of εE,n.

Definition 3.2.3 (Applicable Subgroup). We say that a subgroup G of GL2(Z/nZ) is ap-
plicable if it satisfies the following conditions:

• G ↘= GL2(Z/nZ),

• ↗I ↔ G and det(n) = (Z/NZ)→,

• G contains an element with trace 0 and determinant ↗1 that fixes a point in (Z/nZ)2
of order n.

Remark 3.2.4. The property of being an applicable subgroup is invariant under conjugation.
We now show that each condition from the above condition is invariant under conjugation:

1. The property of being a proper subgroup is preserved, as conjugation is an automor-
phism of the ambient group.
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2. The determinant of a subgroup is invariant under conjugation. Furthermore, since ↗I
is a central element, it is fixed by conjugation.

3. If M ↔ G has trace 0 and determinant -1, its conjugate gMg↓1 has the same trace and
determinant, as both are invariant under conjugation. Moreover, if M fixes a point v
of order n, then gMg↓1 fixes the point gv. This new point gv also has order n since g
is an automorphism of the module (Z/nZ)2

This definition is justified by the following.

Proposition 3.2.1. Let E/Q be an elliptic curve for which the mod-n Galois representa-
tion εE,n is not surjective. Then the subgroup {±I}εE,n(GQ) is an applicable subgroup of
GL2(Z/nZ).

Proof. Set G := {±I}εE,n(GQ). Clearly G contains ↗I. By Lemma 2.4.2, we have that
det(εE,n(GQ)) = (Z/nZ)→, so det(G) = (Z/nZ)→.

Let c ↔ GQ be an automorphism corresponding to complex conjugation under some
embedding Q ϱ↑ C and set g := εE,n(c). As a topological group, the connected component
of E(R) containing the identity is isomorphic to S1 [21, Chapter 2.2, p.17]. Therefore E(R)
contains a point P1 of order n and we know P1 ↔ E(Q) as E(Q) contains all points of finite
order on an elliptic curve. We may assume that εE,n is chosen with respect to a basis whose
first term is P1, and hence g is upper triangular whose first diagonal term is 1. We know

from Lemma 2.4.2 that ϑ(ςn) = ς
det(ϖE,n(ϑ))
n and because c acts by inversion on n-th roots of

unity, c(ςn) = ς↓1
n

. Thus det(g) = ↗1. Therefore g is upper triangular with diagonal entries
1 and -1 and hence tr(g) = 0.

Now suppose that G = GL2(Z/nZ). Define S := εE,n(GQ) ′ SL2(Z/nZ). Since G =
GL2(Z/nZ), εE,n(GQ) ↘= GL2(Z/nZ) (by hypothesis), and det(εE,n(GQ)) = (Z/nZ)→, we
deduce that S ↘= SL2(Z/nZ). If S = SL2(Z/nZ), then εE,n(GQ) = GL2(Z/nZ) by a similar
decomposition argument as in Example 4.2.1 which would then contradict the hypothesis.
Moreover, it follows from G = GL2(Z/nZ) = {±I}εE,n(GQ) that {±I}S = SL2(Z/nZ).
However, the existence of such a proper subgroup S is impossible by Lemma 3.2.8. So we
must have G ↘= GL2(Z/nZ). ↭

Remark 3.2.5. If we relax Definition 3.2.3 by removing the condition that ↗I ↔ G, then for
any elliptic curve E, the image of its Galois representation, εE,n(GQ), is a subgroup satisfying
this less restrictive definition. The condition ↗I ↔ G was included in the definition by experts
in the field because its presence allows one to associate a modular curve XG to the subgroup
G. In the Appendix A.1 where we present the code to compute applicable subgroups, we will,
in fact, compute all subgroups satisfying this more slack definition.
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4. Entanglements in Adelic Galois Representations

Let E/Q be an elliptic curve over Q and let GQ = Gal(Q/Q) be the absolute Galois
group of Q, where Q is an algebraic closure of Q. We have for n ⇐ 2 the n-torsion group
E[n] of E(Q) and the associated Galois representation

εE,n : GQ ↑ Aut(E[n]) ↓= GL2(Z/nZ).

We also have for ω prime the ω-adic Tate module Tω(E) = lim
∝↗k

E[ωk] and we get an ω-adic
Galois representation

εE,ω→ : GQ ↑ Aut(Tω(E)) ↓= GL2(Zω).

Finally, we have the adelic Tate module T (E) ↓=
∏

ω
Tω(E) ↓= Ẑ2 and its associated full Galois

representation
εE : GQ ↑ Aut(T (E)) ↓= GL2(Ẑ).

Let’s recall the following isomorphism ↽ : Ẑ ↓=
∏

ω
Zω. Note that ↽ induces an isomorphism

GL2(Ẑ) ↓=
∏

ω
GL2(Zω). Let’s call this induced isomorphism ”. If X ↔ GL2(Ẑ) has entries

xij ↔ Ẑ, then xij = (xij,ω)ω where xij,ω ↔ Zω. Then ”(X) = (Xω)ω, where Xω is the matrix
(xij,ω) with entries in Zω.

The image of the full adelic representation is εE(GQ) ⇒ GL2(Ẑ). The map 1 takes an
element X ↔ εE(GQ) and maps it to its “tuple of components” under the isomorphism ”.

1 : εE(GQ) ↑
∏

ω

εE,ω→(GQ) ⇒
∏

ω

GL2(Zω),

Essentially, if ϑ ↔ GQ, then εE(ϑ) is a matrix in GL2(Ẑ). 1(εE(ϑ)) is the tuple (εE,ω→(ϑ))ω.
Crucially, 1 is always injective. If εE(ϑ) acts as the identity on all torsion, it certainly

acts as the identity on Tω(E) for every ω. Conversely, if (εE,ω→(ϑ))ω is the identity tuple (i.e.,
εE,ω→(ϑ) is identity for all ω), then εE(ϑ) must be the identity. In other words, the kernel is
trivial.

The “maximum possible size” for the image εE(GQ) would be the full GL2(Ẑ). This
never happens for an elliptic curve over Q as we’ll see in Proposition 4.4.2. Moreover, for a
non-CM elliptic curve over Q, Serre’s Open Image Theorem says εE(GQ) is an open subgroup
of GL2(Ẑ), which means it has finite index. This implies εE,ω→(GQ) is GL2(Zω) for all but
finitely many primes ω. We have two ways in which the image of the full representation is
smaller than it could be.

Vertical Entanglement: εE,ω→(GQ) is non-surjective for some ω An elliptic curve E/Q is
said to have a vertical entanglement if there is at least one prime ω where the image of the
ω-adic representation, εE,ω→(GQ), is a proper subgroup of GL2(Zω). The group GL2(Zω) is
the “largest possible” image for the ω-adic representation.

Horizontal Entanglement: The map 1 is not surjective Recall 1 : εE(GQ) ϱ↑
∏

ω
εE,ω→(GQ).

If 1 is not surjective, it means that the adelic image εE(GQ) is strictly smaller than the
Cartesian product of the individual ω-adic images. These individual images, εE,ω→(GQ),
might themselves already be smaller than GL2(Zω) due to a vertical entanglement. When

48



1 is not surjective, indicating that εE(GQ) does not “fill” this product of its actual ω-adic
components, we call this phenomenon horizontal entanglement.

Before we proceed to our analysis of vertical and horizontal entanglements, we must first
define two important quantities associated with an elliptic curve: the adelic level and the
adelic index.

4.1. Adelic Level and Index

Let E/Q be an elliptic curve with its adelic Galois representation εE : GQ ↑ GL2(Ẑ). For
any integer n ⇐ 2, we define the natural projection map onto the components corresponding
to primes dividing n:

Pn : GL2(Ẑ) ↓=
∏

ω

GL2(Zω) ↗↑
∏

ω|n

GL2(Zω).

Consider the following composition map:

↽n : GQ GL2(Ẑ) ↓=
∏

ω

GL2(Zω)
∏

ω|n

GL2(Zω)
ϖE Pn

We denote the image of this map by Gn:

Gn := im(↽n) = Pn(εE(GQ)) △
∏

ω|n

GL2(Zω).

Remark 4.1.1 (Kernel and Image of ↽n). The kernel ker(↽n) consists of all ϑ ↔ GQ such
that εE(ϑ) projects trivially onto

∏
ω|n GL2(Zω). This means εE,ω→(ϑ) must be the identity

for all primes ω | n. This is equivalent to ϑ fixing all points in E[ωm] for all m ⇐ 1 and all
ω|n. This set of points generates the field extension Kn := Q(

⋃
m⇑1 E[nm]). The field Kn

can be called the ”n-power torsion field” of E. By Galois theory,

ker(↽n) = Gal(Q/Kn).

By the First Isomorphism Theorem for groups and the fundamental theorem of Galois theory,
we have

Gn
↓= GQ/ ker(↽n) = Gal(Q/Q)/Gal(Q/Kn) ↓= Gal(Kn/Q).

For brevity, let G(n) denote the image of the mod n representation: G(n) := εE,n(GQ) △
GL2(Z/nZ). Recall that G(n) ↓= Gal(Q(E[n])/Q).

We now define conditions related to how the full adelic image εE(GQ) relates to its
projections Gn and reductions G(n).

Definition 4.1.1 (Splitting Integer). An integer n ↔ Z⇑2 is said to split εE if the image of
the adelic representation decomposes as a direct product corresponding to the prime factors
of n:

εE(GQ) ↓= Gn →

∏

ω⫅̸n

GL2(Zω)

49



Remark 4.1.2. • The property of n splitting εE depends only on the set of prime factors
of n, not on the specific powers of those primes appearing in n. For example, if 6 splits
εE, then 12 also splits εE.

• The group Gn is a subgroup of the product
∏

ω|n GL2(Zω), but it is not necessarily
equal to the product of the individual ω-adic images,

∏
ω|n εE,ω→(GQ). There might be

”horizontal” relations or entanglement between the di!erent ω-adic components within
Gn.

Now we relate the ω-adic information contained in Gn to the mod n information in G(n).
Let

◁n :
∏

ω|n

GL2(Zω) ↗↑ GL2(Z/nZ)

be the natural reduction map.

Definition 4.1.2 (Stable Integer). An integer n ↔ Z⇑2 is said to be stable (for εE) if the
projected adelic image Gn is exactly the pre-image of the mod n image under the reduction
map ◁n. That is, n is stable if

Gn = ◁↓1
n
(G(n)).

Remark 4.1.3. In the following lemma and subsequent definitions, we will use ◁n to denote
the reduction map from the full adelic group GL2(Ẑ) to GL2(Z/nZ).

Lemma 4.1.1. For every elliptic curve E/Q without CM, there is a positive integer m which
splits εE and is stable for εE.

Proof. Let G := εE(GQ). Since G is an open subgroup of GL2(Ẑ) ↓= lim
∝↗n

GL2(Z/nZ) accord-
ing to Serre’s open image theorem (2.5.1), it contains an open neighborhood of the identity
matrix I. By Proposition 1.3.4, this implies that G contains some principal congruence
subgroup Um for an integer m ⇐ 1. Recall that Um = ker(◁m : GL2(Ẑ) ↑ GL2(Z/mZ)).

We claim that this integer m satisfies G = ◁↓1
m
(G(m)), where G(m) = ◁m(G) is the

reduction of G modulo m.

(⇒) Let g ↔ G. By definition of G(m), we have ◁m(g) ↔ G(m). This directly implies that
g ↔ ◁↓1

m
(G(m)).

(⊇) Let h ↔ ◁↓1
m
(G(m)) then ◁m(h) ↔ G(m). By the definition of G(m), there exists

some element g ↔ G such that ◁m(h) = ◁m(g). We have ◁m(hg↓1) = ◁m(h)◁m(g)↓1 =
◁m(g)◁m(g)↓1 = I, where I is the identity in GL2(Z/mZ). Therefore, hg↓1

↔ ker(◁m) =
Um. Since we established that Um ⇒ G, we have hg↓1

↔ G. Because G is a group and
both hg↓1

↔ G and g ↔ G, their product h = (hg↓1)g must also be an element of G.

Finally, G = ◁↓1
m
(G(m)) = Gm →

∏
ω⫅̸m GL2(Zω). ↭

Given an integer m ↔ Z⇑2 which is stable and splits εE, we see that the adelic image
G := εE(GQ) is completely determined by its reduction modulo m, denoted by G(m). The
structure of G can therefore be described by finitely many conditions related to the finite
group G(m). Note also that if an integer m is stable and splits εE, then so is any integer m↑

such m | m↑. The group G has the following invariants:
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Definition 4.1.3 (Adelic Level). Let E/Q be a non-CM elliptic curve. The Adelic Level of
G is the smallest positive integer mE such that G is the full inverse image of its projection
modulo mE meaning

G = ◁↓1
mE

(G(mE)).

Definition 4.1.4 (Adelic Index). Let E/Q be a non-CM elliptic curve. The Adelic Index
of G is the index of the reduction G(mE) within the group GL2(Z/mEZ), where mE is the
level defined above. It is the positive integer

[GL2(Z/mEZ) : G(mE)].

Remark 4.1.4. • The equality of indices [GL2(Z/mEZ) : G(mE)] = [GL2(Ẑ) : G] fol-
lows directly from the index preservation property of the Lattice Isomorphism Theorem
[3, Section 3.3, Theorem 20]. This application of this theorem leverages the fact that
UmE ⇒ G.

• The minimal integer mE necessarily divides any other integer m↑ that is stable and
splits εE.

Nathan Jones, in his work [22], proves an interesting result that provides an upper bound
for the adelic level of an elliptic curve using the adelic index.

Theorem 4.1.1. Let E/Q be a non-CM elliptic curve, and let mE be the adelic level asso-
ciated to this elliptic curve. Then one has

mE △ 2 · [GL2(Ẑ) : εE(GQ)] · rad(|%E|),

where %E denotes the minimal discriminant of E, and rad(n) :=
∏

ω|n,ω prime ω.

Remark 4.1.5. The author makes reference to results indicating that there are infinitely
many elliptic curves E/Q satisfying

mE = 2 · [GL2(Ẑ) : εE(GQ)] · rad(|%E|).

Thus, the bound for mE given in the theorem is sharp.

Furthermore, Zywina [23] formulates a conjecture identifying the complete set of possible
values for the adelic index.

Conjecture 4.1.1. Let E/Q be a non-CM elliptic curve, then the index [GL2(Ẑ) : εE(GQ)]
lies in the set:

{2, 4, 6, 8, 10, 12, 16, 20, 24, 30, 32, 36, 40, 48, 54, 60, 72, 80, 84, 96, 108,

112, 120, 128, 144, 160, 182, 192, 200, 216, 220, 224, 240, 288, 300, 336,

360, 384, 480, 504, 576, 768, 864, 1152, 1200, 1296, 1536, 2736}.
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We conclude this section by providing references for the practical computation of the
adelic image.

Determining the adelic image G = εE(GQ) often involves finding an integer m (a level)
such that G = ◁↓1

m
(G(m)). While finding the adelic level mE can be complex, practical

algorithms provide a suitable level. Brau Avila, in his doctoral thesis [24], details such an
algorithm.

His approach begins by defining a set of critical primes T := {2, 3} ∞ SE ∞ {ω prime |

ω | %E}, where SE consists of primes of non-surjective mod ω representation and %E is the
minimal discriminant of E (Zywina in [20] gives a simple and practical algorithm to compute
the finite set SE consisting of these exceptional primes ω). Let m0 :=

∏
ω↗T ω. A key result

[24, Lemma 1.5.1] is that this m0 splits εE:

G = Gm0 →

∏

ω⫅̸m0

GL2(Zω),

where Gm0 is the projection of G onto
∏

ω|m0
GL2(Zω). It follows that all prime factors of the

adelic level mE must be in T .
Furthermore, a method described in [24, Proposition 1.5.3] determines an integer m̃,

divisible only by primes in T , such that m̃ serves as a level for G:

G = ◁↓1
m̃
(G(m̃)).

This implies mE | m̃. Although m̃ may not be the adelic level mE, it and the corresponding
mod-m̃ image G(m̃) are su$cient to completely determine the full adelic image G. This
computational description is crucial for analyzing G and its properties such as horizontal
entanglements.

4.2. Prelude to Vertical Entanglement

The purpose of this section is to prove a key result that will be mentioned repeatedly in
the following subsection on Vertical Entanglements.

Lemma 4.2.1. Let ω ⇐ 5 be a prime and let X be a closed subgroup of GL2(Zω) whose
projection modulo ω contains SL2(Z/ωZ). Then X contains SL2(Zω).

Proof. This follows from Lemma 3.1.3. ↭

Example 4.2.1. Let R be a commutative ring with identity. Let G := GL2(R), H := SL2(R),

and K :=

{(
x 0
0 1

)
| x ↔ R→


(K ↓= R→). For each g ↔ G, let d := det(g) ↔ R→. The

matrix kd =

(
d 0
0 1

)
is in K and has det(kd) = d. We can write

g =


g

(
d 0
0 1

)↓1
(

d 0
0 1

)
.

The first factor gk↓1
d

↔ H and the second factor kd ↔ K. Thus, GL2(R) = HK.
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Remark 4.2.1. The logic of this example can be generalized: Any subgroup of GL2(R) that
contains SL2(R) and has a surjective determinant map must be GL2(R) itself. This is because
any element g ↔ GL2(R) can be written as the product of an element from SL2(R) and an
element with the same determinant as g.

Before we can prove the main result of this section, one final point must be addressed.
This is best illustrated by the following commutative diagram:

G(ωn+1) (Z/ωn+1Z)→

G(ωn) (Z/ωnZ)→

det

(mod ω
n) (mod ω

n)

det

We saw in Lemma 2.4.2 that det(G(ωn)) = (Z/ωnZ)→ for all n ⇐ 1. Although it was
not explicitly written in this form, in Section 2.5 we identified the ω-adic image of the
Galois representation as the inverse limit of the reductions, i.e. lim

∝↗n
G(ωn) = εE,ω→(GQ).

Let Gω = εE,ω→(GQ). Combining this identification with the commutativity shown in the
preceding diagram, we obtain:

det(Gω) = det


lim
∝↗
n

G(ωn)


= lim

∝↗
n

det(G(ωn)) = lim
∝↗
n

(Z/ωnZ)→ = Z→
ω
.

In other words, the determinant of the ω-adic image is the full group of ω-adic units:

det(εE,ω→(GQ)) = det(Gω) = Z→
ω
.

Corollary 4.2.1. Let E/Q be an elliptic curve. Let ω ⇐ 5 be a prime and let G(ω) =
GL2(Z/ωZ). Then Gω = GL2(Zω).

Proof. Gω is a profinite group, so it is closed (details are in Remark 1.3.1). Its projection mod-
ulo ω is GL2(Z/ωZ), which therefore contains SL2(Z/ωZ). By Lemma 4.2.1, Gω ⊇ SL2(Zω).
Since det(Gω) = Z→

ω
, for every d ↔ Z→

ω
, Gω contains an element gd such that det(gd) = d.

Combining Gω ⊇ SL2(Zω) with det(Gω) = Z→
ω
, the decomposition argument shown in Exam-

ple 4.2.1 implies that Gω = GL2(Zω). ↭

4.3. Vertical Entangelement

We will now dive a little deeper into vertical entanglements and in the following subsection
we will do the same for horizontal entanglements.

Definition 4.3.1. Let E/Q be a non-CM elliptic curve and ω a prime. We say that ω is
exceptional for E if the mod-ω Galois representation εE,ω is not surjective.

Definition 4.3.2. Let E/Q be a non-CM elliptic curve and ω a prime. We say that ω is
adically-exceptional for E if the ω-adic Galois representation εE,ω→ is not surjective.

Remark 4.3.1. The definition of ω being adically-exceptional for E means that the ω-adic
Galois representation εE,ω→ is not surjective. This is precisely the condition for E to exhibit
vertical entanglement at the prime ω.
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As seen in Corollary 4.2.1, a prime ω is exceptional if and only if it is adically-exceptional,
provided ω ⇐ 5. This equivalence may fail only for ω = 2 or ω = 3. The reason is that
there are proper subgroups of SL2(Z/4Z) and SL2(Z/8Z) that surject onto SL2(Z/2Z) under
the standard reduction map, as well as a proper subgroup of SL2(Z/9Z) that surjects onto
SL2(Z/3Z).

For the primes ω = 2 and ω = 3, the surjectivity of the full ω-adic representation is
determined by surjectivity at a specific finite level:

• For ω = 2, the 2-adic representation εE,2→ is surjective if and only if the mod-8 repre-
sentation εE,8 is surjective [15].

• For ω = 3, the 3-adic representation εE,3→ is surjective if and only if the mod-9 repre-
sentation εE,9 is surjective [25].

Definition 4.3.3. Let E/Q be a non-CM elliptic curve. For each prime ω, let kω ⇐ 1 be the
smallest integer such that the mod-ωkω Galois representation ε

E,ω
kω is non-surjective. If εE,ωn

is surjective for all n ⇐ 1, set kω = 0. Then, Serre’s constant associated to E is defined as

A(E) =
∏

ω prime

ωkω .

In other words, A(E) is a product over the adically-exceptional primes ω. As a con-
sequence of the preceding discussion, which establishes that a prime ω ⇐ 5 is exceptional
if and only if it is adically-exceptional, we deduce that kω = 1 for all adically-exceptional
primes ω ⇐ 5. This implies that A(E) is square-free, except possibly at the primes ω = 2
and ω = 3. For these primes, the maximum possible exponents kω are bounded: k2 △ 3
and k3 △ 2. In the case where there are no adically-exceptional primes for E, we have
A(E) = 1. Furthermore, Jones in [26] proved that almost all non-CM elliptic curves over Q
have A(E) = 1.

In his influential paper [1], Serre established that for any non-CM elliptic curve E/Q, the
ω-adic Galois representation εE,ω→ is surjective onto GL2(Zω) for all su$ciently large primes
ω. Building upon this, Serre inquired whether an absolute constant C (not depending on
E) exists such that εE,ω→ achieves surjectivity for all primes ω > C. Moreover, he asked
wheter that surjectivity might occur for all ω > 37. Zywina and Sutherland independently
conjectured a slightly stronger version of Serre’s question in [20] and [27], respectively. We
denote the j-invariant of E by jE.

Conjecture 4.3.1 (Zywina, Sutherland). If E is a non-CM elliptic curve over Q and ω > 13
is a prime, then either εE,ω(GQ) = GL2(Z/ωZ) or

(ω, jE) ↔ {(17,↗172 · 1013/2), (17,↗17 · 3733/217), (37,↗7 · 113), (37,↗7 · 1373 · 20833)}.

Consequently, assuming the conjecture to be true, for non-CM elliptic curves and primes ω >
13, vertical entanglement that stems from the non-surjectivity of the mod ω representation is
confined to these few, explicitly identified, exceptional cases. For the remaining small primes
ω △ 13, Zywina’s work [20] already provides a complete classification of all possible mod-ω
images.
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The problem of classifying the possible images of ω-adic Galois representations attached
to elliptic curves over Q is completely resolved for the prime ω = 2. This classification was
given by Rouse and Zureick-Brown [28]. For primes ω > 2, the analogous problem remains
open.

In essence, Nathan Jones’s theorem 4.1.1 provides a relationship between the adelic level,
mE, and the adelic index. Building upon this, we now seek to establish a connection between
the adelic level mE and Serre’s constant A(E). Let’s recall that:

mE = min{m ↔ N | ker(GL2(Ẑ) ↑ GL2(Z/mZ)) ⇒ εE(GQ)},

where the condition is equivalent to ker
∏

ω
GL2(Zω) ↑

∏
ω|m GL2(Z/ωkZ)


⇒ εE(GQ) ϱ↑

∏
ω
εE,ω→(GQ). The main di!erences between mE and A(E) are the following:

1. A prime power ωe divides mE whenever ker(GL2(Zω) ↑ GL2(Z/ωe↓1Z)) ↘⇒ εE,ω→(GQ)
and the prime power ωn that appears as a factor ofmE respects the latter and ker(GL2(Zω) ↑
GL2(Z/ωnZ)) ⇒ εE,ω→(GQ). Thus, εE,ω→(GQ) = ◁↓1

ωn
(G(ωn)) using a similar argument

in Lemma 4.1.1. It is evident now that A(E) divides mE because A(E) collects the
minimal exponents of non-surjectivity for each prime and a prime power dividing A(E)
is at most ωn. In other words, for each prime ω, mE encodes the action of GQ on the
entire ω-adic Tate module, whereas, for ω ⇐ 5, A(E) only encodes the action of GQ on
the ω-torsion of E.

2. It may happen that there is a non-trivial intersection Q ↘= Q(E[a])′Q(E[b]) for some
a, b ↔ Z⇑2 with gcd(a, b) = 1. The constant mE encodes such horizontal entanglements
whereas A(E) does not. Because mE captures these horizontal entanglements, it often
has more distinct prime factors in its factorization than A(E).

In some sense, A(E) sees things on a local level while mE sees things on a global level.
We are now ready to dive deeper into the second point above.

4.4. Horizontal Entanglement

We begin with the key lemma upon which the rest of this subsection is built.

Lemma 4.4.1. Let E/Q be an elliptic curve, let ã, d, a be positive integers such that ã = da
and gcd(d, a) = 1. Then the field Q(E[ã]) is the compositum of Q(E[d]) and Q(E[a]), i.e.,
Q(E[ã]) = Q(E[d])Q(E[a]).

Proof. We aim to prove the equality Q(E[ã]) = Q(E[d])Q(E[a]) by establishing containment
in both directions. Recall that E[ã] ↓= (Z/ãZ)2. Since gcd(d, a) = 1, the Chinese Remainder
Theorem and properties of direct products yield the following group isomorphism:

E[ã] ↓= (Z/ãZ)2 ↓= (Z/dZ→ Z/aZ)2 ↓= (Z/dZ)2 → (Z/aZ)2 ↓= E[d]→ E[a].

This isomorphism means that, more concretely, using Bézout’s identity xd + ya = 1, any
point P ↔ E[ã] can be uniquely decomposed as P = Pd + Pa, where Pd = [ya]P ↔ E[d] and
Pa = [xd]P ↔ E[a] via the elliptic curve group law.

First, we establish that Q(E[d])Q(E[a]) ⇒ Q(E[ã]). Since d and a both divide ã, any
point P ↔ E[d] or P ↑

↔ E[a] must satisfy [ã]P = O and [ã]P ↑ = O, respectively. Thus, E[d] ⇒
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E[ã] and E[a] ⇒ E[ã]. It follows directly that the fields generated by their coordinates,
Q(E[d]) and Q(E[a]), are both subfields of Q(E[ã]). The compositum Q(E[d])Q(E[a]),
being the smallest field containing both, must therefore also be contained within Q(E[ã]).

Next, we show the reverse containment Q(E[ã]) ⇒ Q(E[d])Q(E[a]). The field Q(E[ã]) is
generated over Q by the coordinates of all points P ↔ E[ã]. As established earlier, any such
P can be expressed as P = Pd + Pa where Pd ↔ E[d] and Pa ↔ E[a]. The coordinates of P
are computed using the elliptic curve addition law, which involves rational functions (with
coe$cients in Q) of the coordinates of Pd and Pa. Since the coordinates of Pd lie in Q(E[d])
and the coordinates of Pa lie in Q(E[a]), the coordinates of P must necessarily reside in the
compositum field Q(E[d])Q(E[a]). Thus, Q(E[ã]) = Q(E[d])Q(E[a]). ↭

Consider an integer n ⇐ 2 with prime factorization n = pe11 · . . . · pem
m
. The n-torsion E[n]

decomposes as a direct product:

E[n] ↓=
m∏

i=1

E[pei
i
].

This isomorphism induces an isomorphism of automorphism groups:

Aut(E[n]) ↓=
m∏

i=1

Aut(E[pei
i
]),

which, upon choosing bases, translates to an isomorphism for the general linear groups:

GL2(Z/nZ) ↓=
m∏

i=1

GL2(Z/peii Z).

The Galois representation εE,n : GQ ↑ Aut(E[n]) can thus be viewed as a map whose image
lands in this product. Let Gn := εE,n(GQ) and for each i, let G

p
ei
i

:= ε
E,p

ei
i
(GQ). The

projection of Gn onto the i-th factor Aut(E[pei
i
]) is precisely G

p
ei
i
. This gives us a natural

injective homomorphism:

1n : Gn ϱ↑
m∏

i=1

G
p
ei
i
.

Now, let’s suppose that Gn is not the full product
∏

m

i=1 Gp
ei
i
(i.e., 1n is not surjective). The

non-surjectivity of 1n signifies a dependency or correlation between the action of Galois on
the di!erent E[pei

i
] components.

We can translate this into the language of Galois field extensions. Recall that Gn
↓=

Gal(Q(E[n])/Q) and G
p
ei
i

↓= Gal(Q(E[pei
i
])/Q). The field Q(E[n]) is the compositum of

the fields Q(E[pei
i
]) for i = 1, . . . ,m. Let L = Q(E[n]) and Li = Q(E[pei

i
]). Then L =

L1L2 . . . Lm. The map 1n corresponds to the natural restriction map:

#n : Gal(L/Q) ↑
m∏

i=1

Gal(Li/Q), defined by ϑ ⇑↑ (ϑ|L1 , . . . , ϑ|Lm).

We can analyze the condition for #n being an isomorphism by recursively applying Propo-
sition 1.1.1. Let n = ab be any factorization of n into coprime positive integers a and b.
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Let Ka = Q(E[a]) and Kb = Q(E[b]). By Lemma 4.4.1, L = Q(E[n]) is equal to KaKb.
Proposition 1.1.1 states that the natural map Gal(L/Q) ↑ Gal(Ka/Q) → Gal(Kb/Q) is an
isomorphism if and only if Ka ′Kb = Q.

The target group of #n can be decomposed according to the factorization n = ab. Let
Ia = {i | pei

i
|a} and Ib = {j | p

ej

j
|b}. Then

m∏

k=1

Gal(Lk/Q) ↓=


∏

i↗Ia

Gal(Li/Q)


→


∏

j↗Ib

Gal(Lj/Q)


.

Assuming Ka ′ Kb = Q, for #n to be an isomorphism, we then require that the maps
#a : Gal(Ka/Q) ↑

∏
p
ei
i |a Gal(Q(E[pei

i
])/Q) and#b : Gal(Kb/Q) ↑

∏
p
ej
j |b Gal(Q(E[p

ej

j
])/Q)

are themselves isomorphisms. To check if #a is an isomorphism, we repeat the process: if
a = a1a2 with gcd(a1, a2) = 1, let Ka1 = Q(E[a1]) and Ka2 = Q(E[a2]). Then Gal(Ka/Q) ↓=
Gal(Ka1/Q)→Gal(Ka2/Q) if and only if Ka1 ′Ka2 = Q. If this holds, we then require #a1

and #a2 to be isomorphisms. This recursive argument continues until the factors are prime
powers pek

k
. And then we repeat this argument for #b.

Therefore, #n is an isomorphism if and only if Q(E[a]) ′ Q(E[b]) = Q for all coprime
divisors a, b of n. Furthermore, the existence of such coprime a, b implies that the full adelic
Galois representation εE is non-surjective by the commutative diagram below,

εE(GQ)
∏

ω
εE,ω→(GQ)

Gn = εE,n(GQ)
∏

m

i=1 εE,p
ei
i
(GQ).

ς

ςn

Motivated by the significance of the intersection Q(E[a]) ′ Q(E[b]) when a and b are
coprime, we now present the general definition of horizontal entanglement for arbitrary
integers a, b, as given by Daniels, Lozano-Robledo, and Morrow in [29].

Definition 4.4.1. Let E/Q be an elliptic curve and let a < b be integers with d = gcd(a, b).
Then we have horizontal (a, b)-entanglement if

Q(E[d]) ⫆̸ Q(E[a]) ′Q(E[b]).

We define the type of this entanglement to be the isomorphism class of the Galois group
corresponding to the field extension

(
Q(E[a]) ′Q(E[b])

)
/Q(E[d]).

Remark 4.4.1. If a|b, then d = gcd(a, b) = a. Therefore, Q(E[d]) = Q(E[a]) ′ Q(E[b]).
Thus, there is no horizontal (a, b)-entanglement when a|b.

We dedicate the remainder of this section to proving the fundamental result that the
adelic Galois representation attached to an elliptic curve over Q is never surjective. Our
proof will rely on two key results, which we now state without proof before proceeding to
the main argument.

Proposition 4.4.1. Let E/Q be an elliptic curve. Then Gal(Q(E[2])/Q) is isomorphic to
the following:
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(a) GL2(Z/2Z) ↓= S3 if %E ↘↔ (Q→)2 and E[2] contains no rational points,

(b) Z/3Z if %E ↔ (Q→)2 and E[2] contains no rational points,

(c) Z/2Z if %E ↘↔ (Q→)2 and E[2] contains a rational point,

(d) {e} if %E ↔ (Q→)2 and E[2] contains a rational point.

In particular, we have that Q(
≃
%E) is the unique quadratic subfield of Q(E[2]) when %E ↘↔

(Q→)2. (Note: %E is the minimal discriminant.)

Proof. The proof can be found in [30, Proposition 5.4.2]. ↭

Theorem 4.4.1. Let E : y2 = x3+ ax+ b be an elliptic curve over Q with minimal discrim-
inant %E = ↗16(4a3 + 26b2) and j-invariant j = ↗1728(4a)3/%E. Then

(a) εE,2 is surjective if and only if x3 + ax+ b is irreducible and %E ↘↔ (Q→)2.

(b) εE,4 is surjective if and only if εE,2 is surjective, %E ↘↔ ↗1 · (Q→)2 and j ↘= ↗4t3(t+8)
for any t ↔ Q.

(c) εE,8 is surjective if and only if εE,4 is surjective and %E ↘↔ ±2 · (Q→)2.

Proof. The proof can be found in [31]. ↭

Proposition 4.4.2. Let E/Q be an elliptic curve and let %E be the squarefree part of its
minimal discriminant %E. Then E exhibits (1) or (2i) or (1) and (2i).

(1) E has a vertical 2-entanglement.

(2a) %E ∈ 1 (mod 4) and E has horizontal (2, |%E|)-entanglement.

(2b) %E ∈ 3 (mod 4) and E has horizontal (4, |%E|)-entanglement.

(2c) %E ∈ 2 (mod 4) and E has horizontal (8, |”E
2 |)-entanglement.

In particular, we have that the full adelic Galois representation εE is non-surjective.

Proof. The proof presented here follows the strategy of Mein [32, Proposition 3.16].
We begin by recalling a key result from Serre in [15] that says vertical 2-entanglement

in an elliptic curve E occurs if and only if the Galois representation εE,8 is non-surjective.
Consequently, assuming εE,8 is non-surjective directly implies that E exhibits vertical 2-
entanglement.

For our analysis, we will consider a set of conditions, which we term ‘Condition (B)’, that
are related to, but weaker than, the full surjectivity of εE,8. Drawing from the previously
stated theorem, Condition (B) consists of the following three assumptions:

(1) εE,2 is surjective.

(2) %E ↘↔ ↗1 · (Q→)2.

(3) %E ↘↔ ±2 · (Q→)2.
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It is important to understand how Condition (B) relates to the surjectivity of εE,8.
According to the previous theorem if Condition (B) holds and the additional criterion
j ↘= ↗4t3(t + 8) for any t ↔ Q is met, then εE,8 is surjective. Conversely, if Condition
(B) holds but j = ↗4t3(t + 8) for some t ↔ Q, then εE,4 would be non-surjective, which in
turn implies εE,8 is non-surjective (and thus E would have vertical 2-entanglement).

Therefore, our proof strategy involves two main perspectives:

1. The direct implication from Serre: non-surjective εE,8 =∃ vertical 2-entanglement.

2. A detailed analysis under Condition (B). Within this framework, εE,8 may be either
surjective or non-surjective, depending on the j-invariant as outlined above.

For the remainder of this proof, our arguments will proceed under the assumption that
Condition (B) holds. Let n := %E be the squarefree part of %E. Note that Q(

≃
n) is non-

trivial (i.e., Q ⫆̸ Q(
≃
n)) as %E ↘↔ (Q→)2, since εE,2 is surjective by the previous theorem.

Let us assume that n ∈ 1 (mod 4). By Proposition 1.2.4, Q(
≃
n) ⇒ Q(ς|n|) as n ∈ 1

(mod 4). Furthermore, by Lemma 2.4.1, Q(ς|n|) ⇒ Q(E[|n|]) and so Q(
≃
n) ⇒ Q(E[|n|]).

Also by Proposition 4.4.1 we have that Q(
≃
n) ⇒ Q(E[2]), therefore Q(

≃
n) ⇒ Q(E[2]) ′

Q(E[|n|]). As Q(
≃
n) is non-trivial and gcd(2, |n|) = 1, we get that Q ⫆̸ Q(E[2])′Q(E[|n|])

and so E has horizontal (2, |%E|)-entanglement.
Let us assume that n ∈ 3 (mod 4). So, ↗n ∈ 1 (mod 4) and we obtain Q(

≃
↗n) ⇒

Q(ς|n|) by Proposition 1.2.4. Similarly, as in the last argument, by Lemma 2.4.1, Q(
≃
↗n) ⇒

Q(ς|n|) ⇒ Q(E[|n|]). We also know that
≃
n ↔ Q(E[2]) ⇒ Q(E[4]). Lemma 2.4.1 also implies

that Q(ς4) ⇒ Q(E[4]) and in particular
≃
↗1 ↔ Q(E[4]). So,

≃
↗n =

≃
↗1

≃
n ↔ Q(E[4]),

therefore Q(
≃
↗n) ⇒ Q(E[4]) ′Q(E[|n|]). Q(

≃
↗n) is non-trivial because %E ↘↔ ↗1 · (Q→)2.

Since gcd(4, |n|) = 1, E has horizontal (4, |%E|)-entanglement.
Let us assume that n ∈ 2 (mod 4), then n/2 ∈ 1, 3 (mod 4). Let us suppose further that

n/2 ∈ 1 (mod 4). By Proposition 1.2.4 and Lemma 2.4.1 we get Q(
√

n/2) ⇒ Q(E[|n/2|]).
We know

≃
2 ↔ Q(ς8) ⇒ Q(E[8]) by Lemma 1.2.2 and Lemma 2.4.1. Moreover,

≃
n ↔

Q(E[2]) ⇒ Q(E[8]) by Proposition 4.4.1. We obtain
√
n/2 =

≃
n/

≃
2 ↔ Q(E[8]). Thus,

Q(
√

n/2) ⇒ Q(E[8]) ′Q(E[|n/2|]) and Q(
√

n/2) is non-trivial since %E ↘↔ ±2 · (Q→)2. We
have gcd(8, |n/2|) = 1 so E has horizontal (8, |%E/2|)-entanglement.

Now let’s consider the case when n/2 ∈ 3 (mod 4), equivalently ↗n/2 ∈ 1 (mod 4). By
Proposition 1.2.4 and Lemma 2.4.1 we get Q(

√
↗n/2) ⇒ Q(E[|n/2|]). Note that

≃
↗n =

≃
n
≃
↗1 ↔ Q(E[4]) ⇒ Q(E[8]), so we get that

√
↗n/2 =

≃
↗n/

≃
2 ↔ Q(E[8]). Thus,

Q(
√

↗n/2) ⇒ Q(E[8]) ′ Q(E[|n/2|]) and Q(
√

↗n/2) is non-trivial since %E ↘↔ ±2 · (Q→)2.
We have gcd(8, |n/2|) = 1 so E has horizontal (8, |%E/2|)-entanglement.

In summary, E exhibits case (1) from the statement of the Proposition if εE,8 is non-
surjective and E doesn’t satisfy Condition (B). E exhibits case (2i) if εE,8 is surjective, which
implies Condition (B) is satisfied by the previous theorem. E exhibits both cases (1) and
(2i) if εE,8 is non-surjective and E satisfies Condition (B). In particular, we have that the
index of the image of εE is always bigger than 1. ↭
Proposition 4.4.3. Let E/Q be an elliptic curve with minimal discriminant %E. Let %E

be the squarefree part of %E, and suppose it admits a factorization %E = ab where a and
b are coprime, odd integers di!erent than 1, both congruent to 1 (mod 4). Then E exhibits
horizontal entanglement for the pairs (2, |ab|), (2|a|, |b|), and (|a|, 2|b|).
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Proof. The proof relies on the known inclusions Q(
≃
%E) ⇒ Q(E[2]) (Proposition 4.4.1)

and, for a squarefree integer m ∈ 1 (mod 4), Q(
≃
m) ⇒ Q(E[|m|]) (Proposition 1.2.4 &

Lemma 2.4.1).
Since ab ∈ 1 (mod 4), both Q(E[2]) and Q(E[|ab|]) contain

≃
ab. Their intersection is

therefore larger than Q, which implies (2, |ab|)-entanglement.
For the pair (2|a|, |b|), we consider the intersection Q(E[2|a|])′Q(E[|b|]). The composi-

tum field Q(E[2|a|]) = Q(E[2])Q(E[|a|]) contains both
≃
ab and

≃
a, and thus contains their

product
≃
b. Since Q(E[|b|]) also contains

≃
b, their intersection is a non-trivial extension of

Q, proving (2|a|, |b|)-entanglement.
The argument for (|a|, 2|b|)-entanglement is identical by symmetry, with

≃
a being in the

intersection Q(E[|a|]) ′Q(E[2|b|]). ↭
Example 4.4.1. The elliptic curve with LMFDB label 65.a1 is a curve satisfying the hy-
potheses of the above proposition.

Example 4.4.2. The elliptic curve with LMFDB label 216.a1 exhibits both case (1) and
case (2a) from Proposition 4.4.2. This scenario is possible because Condition (B) from
the proof is satisfied, while the full 2-adic representation remains non-surjective. The ex-
istence of vertical 2-entanglement is confirmed by data from the LMFDB showing that its
mod-4 Galois representation is not surjective, even though its mod-2 representation is. Si-
multaneously, %E = ↗3, the condition ↗3 ∈ 1 (mod 4) implies the existence of horizontal
(2, 3)-entanglement, satisfying case (2a).

Example 4.4.3. Consider the elliptic curve with LMFDB label 7098.v1. The adelic level
for this elliptic curve is mE = 4. Recall that the adelic level mE captures all entanglement
phenomena of an elliptic curve. Given mE = 4, this particular elliptic curve serves as an
example where there is no horizontal entanglement. The primary entanglement present would
be vertical 2-entanglement. Furthermore, examining the data provided on the LMFDB page
for this elliptic curve reveals that its mod 2 Galois representation is surjective, while its mod 4
representation is not surjective. Note that Condition (B) from the proof of Proposition 4.4.2
is not satisfied.

Example 4.4.4. Consider the elliptic curve with LMFDB label 162.d2. The adelic level for
this curve is mE = 12 = 22 · 3. Although the adelic level has two distinct prime factors, this
curve serves as a key example that exhibits no horizontal entanglement. The only entangle-
ments present are vertical. Note that Condition (B) from the proof of Proposition 4.4.2 is
not satisfied.

We conclude this section with a question that stems from the observations in the preceding
two examples.

Question 4.4.1. Can we characterize all elliptic curves E/Q such that their adelic level mE

has at least two distinct prime factors, yet E exhibits no horizontal entanglements?

4.5. Horizontal Entanglement in Terms of Group Theory

In their work [33], Daniels and Morrow developed a method to characterize horizontal
entanglement using primarily group-theoretic language. Their framework is established as
follows.
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Let E/Q be an elliptic curve, n ↔ Z⇑2, and a < b be divisors of n. Define d = gcd(a, b)
and c = lcm(a, b). The image of the mod-n Galois representation is Gn := εE,n(GQ) ⇒

GL2(Z/nZ), which is isomorphic to Gal(Q(E[n])/Q). Since c = lcm(a, b) divides n, the
natural reduction homomorphism ◁c : GL2(Z/nZ) ↑ GL2(Z/cZ) induces a map on the
image of the mod-n representation. We define Gc := ◁c(Gn). Given that ◁c ⇓ εE,n = εE,c

as c | n, Gc is equal to εE,c(GQ) ↓= Gal(Q(E[c])/Q). For any e ↔ {a, b, d}, there are further
reduction maps ◁e : GL(2,Z/cZ) ↑ GL(2,Z/eZ). The relevant subgroups are then defined
as Ne := ker(◁e) ′ Gc. With this group-theoretic apparatus, Daniels and Morrow provide
the following definition:

Definition 4.5.1. The group Gn (or more precisely, its image Gc) is said to have horizontal
(a, b)-entanglement if

↖Na, Nb↙ ⫆̸ Nd.

The type of this entanglement is the isomorphism class of the quotient group Nd/↖Na, Nb↙.

This group-theoretic condition is equivalent to the field-theoretic definition of horizontal
entanglement previously established, and the type defined here corresponds to the Galois
group of (Q(E[a]) ′ Q(E[b]))/Q(E[d]). The equivalence arises from the Galois correspon-
dence as we will now see. We have Gc

↓= Gal(Q(E[c])/Q). For e ↔ {a, b, d}, the image ◁e(Gc)
is εE,e(GQ) ↓= Gal(Q(E[e])/Q). By the First Isomorphism Theorem for groups, Gc/(ker(◁e)′
Gc) ↓= ◁e(Gc). Since Ne = ker(◁e) ′ Gc, this yields Gc/Ne

↓= εE,e(GQ) ↓= Gal(Q(E[e])/Q).
The fundamental theorem of Galois theory states that Gal(Q(E[c])/Q)/Gal(Q(E[c])/Q(E[e])) ↓=
Gal(Q(E[e])/Q), as Q(E[e])/Q being a Galois extension ensures that Gal(Q(E[c])/Q(E[e]))
is a normal subgroup of Gal(Q(E[c])/Q). Comparing the latter isomorphisms and recall-
ing Gc

↓= Gal(Q(E[c])/Q), we deduce that Ne
↓= Gal(Q(E[c])/Q(E[e])). Therefore, Ne is

precisely the subgroup of Gc that fixes the intermediate field Q(E[e]).
According to [2, Theorem 5.13], the subgroup corresponding to Q(E[a]) ′ Q(E[b]) is

↖Na, Nb↙. Thus, ↖Na, Nb↙ is the subgroup of Gc fixing Q(E[a])′Q(E[b]). The group-theoretic
condition ↖Na, Nb↙ ⫆̸ Nd is then translated by the inclusion-reversing property of the Ga-
lois correspondence directly to the field-theoretic condition Q(E[d]) ⫆̸ Q(E[a]) ′ Q(E[b]).
Furthermore, the quotient group Nd/↖Na, Nb↙ corresponds, by Galois theory, to the Galois
group of the field extension (Q(E[a])′Q(E[b]))/Q(E[d]). This demonstrates the equivalence
of the two definitions of entanglement, including their types.
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This Galois correspondence is summarized in the following diagram:

Q(E[c]) {e}

Q(E[a]) Q(E[b]) Na Nb

Q(E[a]) ′Q(E[b]) ↖Na, Nb↙

Q(E[d]) Nd

Q Gc

Definition 4.5.2. The size of a horizontal (a, b)-entanglement is defined as the degree

[Q(E[a]) ′Q(E[b]) : Q(E[d])].

It is noted that this quantity is also equal to the group index

[Nd : ↖Na, Nb↙].

The work presented in the remainder of this thesis is original, unless otherwise noted. We
will now give a group-theoretic interpretation of the size of a horizontal (a, b)-entanglement,
followed by its field-theoretic interpretation in the next section.

Lemma 4.5.1. Let a, b ↔ Z⇑2 such that gcd(a, b) = 1. Then

[Nd : ↖Na, Nb↙] = [εE,a(GQ)→ εE,b(GQ) : εE,c(GQ)].

Proof. First note that d = 1 and c = ab. As a result, Nd = ker(◁d)′Gc = GL2(Z/cZ)′Gc =
Gc. And so what we are really trying to prove is

[Gc : ↖Na, Nb↙] = [εE,a(GQ)→ εE,b(GQ) : εE,c(GQ)].

We first want to show that ↖Na, Nb↙ = NaNb and the latter is true if and only if NaNb

is a subgroup and that is true if and only if NaNb = NbNa [3, Section 3.2, Proposition 14].
We aim to prove NaNb = NbNa by showing that Na ⊜ ↖Na, Nb↙. Recall that Na ⊜ Gc by the
Galois correspondence because Q(E[a])/Q is Galois, which implies that Na ⊜ ↖Na, Nb↙.

Our goal now is to show that NaNb
↓= Na →Nb. Consider,

{e} = Gal(Q(E[c])/Q(E[c]))

= Gal(Q(E[c])/Q(E[a])Q(E[b]))

= Na ′Nb

where the second equality follows from Q(E[c]) = Q(E[a])Q(E[b]) since gcd(a, b) = 1, and
the third equality follows from [2, Theorem 5.12]. Thus, Na ′ Nb = {e}. And so, we have
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that NaNb = NbNa (as Na, Nb ⊜ Gc) and Na ′Nb = {e}, which implies NaNb
↓= Na →Nb by

[13, Theorem 4.1]. This gives us

|↖Na, Nb↙| = |NaNb| = |Na →Nb| = |Na||Nb|.

We’re finally ready to prove the statement in the Lemma.

[Gc : ↖Na, Nb↙] =
|Gal(Q(E[ab])/Q)|

|Gal(Q(E[ab])/Q(E[a]))| · |Gal(Q(E[ab])/Q(E[b]))|

=
|Gal(Q(E[ab])/Q)|

|Gal(Q(E[ab])/Q)|
|Gal(Q(E[a])/Q)| ·

|Gal(Q(E[ab])/Q)|
|Gal(Q(E[b])/Q)|

=
|Gal(Q(E[a])/Q)||Gal(Q(E[b])/Q)|

|Gal(Q(E[ab])/Q)|

where in the second equality, we used Gal(Q(E[e])/Q) ↓= Gal(Q(E[c])/Q)
Gal(Q(E[c])/Q(E[e])) .

Clearly,

[εE,a(GQ)→ εE,b(GQ) : εE,c(GQ)] =
|Gal(Q(E[a])/Q)||Gal(Q(E[b])/Q)|

|Gal(Q(E[ab])/Q)|
.

↭

The Lemma established above is particularly useful. It provides a framework for calcu-
lating the index [GL2(Z/nZ) : Gn], where n ↔ Z⇑2. This calculation relies on understanding
the indices of the individual mod-ω representations, and the sizes of of all nontrivial horizon-
tal entanglements among the divisors of n. Furthermore, if n represents the adelic level of
the representation, then this approach can be used to determine the adelic index.

To apply this, consider a, b ↔ Z⇑2 with gcd(a, b) = 1. Let c = ab. By the Chinese Re-
mainder Theorem, GL2(Z/cZ) ↓= GL2(Z/aZ)→GL2(Z/bZ). Then the index we are interested
in, [GL2(Z/cZ) : εE,c(GQ)], can be written as:

[GL2(Z/cZ) : εE,c(GQ)] = [GL2(Z/aZ)→GL2(Z/bZ) : εE,c(GQ)].

Here, εE,c(GQ) is identified with its image under the natural injection 1c : εE,c(GQ) ϱ↑
εE,a(GQ) → εE,b(GQ). We now proceed depending on whether there is horizontal (a, b)-
entanglement:

1. Suppose there is no horizontal (a, b)-entanglement. This means Q(E[a]) ′
Q(E[b]) = Q (since d = gcd(a, b) = 1). By Proposition 1.1.1, this implies that
εE,c(GQ) ↓= εE,a(GQ)→ εE,b(GQ). Thus,

[GL2(Z/aZ)→GL2(Z/bZ) : εE,c(GQ)] = [GL2(Z/aZ)→GL2(Z/bZ) : εE,a(GQ)→ εE,b(GQ)]

= [GL2(Z/aZ) : εE,a(GQ)] · [GL2(Z/bZ) : εE,b(GQ)].

The last equality holds because for groups G1, G2 and subgroups H1 △ G1, H2 △ G2,
the index [G1 →G2 : H1 →H2] = [G1 : H1][G2 : H2].
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2. Suppose there is horizontal (a, b)-entanglement. This means Q(E[a])′Q(E[b]) ⊋
Q. Consequently, εE,c(GQ) is a proper subgroup of εE,a(GQ) → εE,b(GQ). Using the
tower law for indices,

[GL2(Z/aZ)→GL2(Z/bZ) : εE,c(GQ)] = [GL2(Z/aZ)→GL2(Z/bZ) : εE,a(GQ)→ εE,b(GQ)]

· [εE,a(GQ)→ εE,b(GQ) : εE,c(GQ)]

= [GL2(Z/aZ) : εE,a(GQ)] · [GL2(Z/bZ) : εE,b(GQ)]

· [εE,a(GQ)→ εE,b(GQ) : εE,c(GQ)].

The term [εE,a(GQ) → εE,b(GQ) : εE,c(GQ)] is precisely the index that measures the
entanglement. From the previous lemma, this factor can be written as [Gc : ↖Na, Nb↙].
This index is also equal to [Q(E[a]) ′Q(E[b]) : Q].

To compute the individual indices [GL2(Z/aZ) : εE,a(GQ)] and [GL2(Z/bZ) : εE,b(GQ)], we
would recursively apply this same logic, breaking down a and b into their coprime factors
until we reach prime powers.

We now present an example to illustrate the concepts discussed, calculating the index of
a specific mod-n representation in two di!erent ways.

Example 4.5.1. Consider the elliptic curve with LMFDB label 84.b2. Using SageMath, we
have computed the following:

• Horizontal (2, 3)-entanglement with size 2 (i.e., [G6 : ↖N2, N3↙] = 2).

• No horizontal (3, 7)-entanglement.

• No horizontal (6, 7)-entanglement.

• Horizontal (2, 21)-entanglement with size 2.

Furthermore, from the LMFDB database, we know the individual indices:

• [GL2(Z/2Z) : εE,2(GQ)] = 3.

• [GL2(Z/3Z) : εE,3(GQ)] = 8.

• [GL2(Z/7Z) : εE,7(GQ)] = 1.

We will now compute [GL2(Z/42Z) : εE,42(GQ)] in two di!erent ways, using the formula
derived from the previous discussion:

[GL2(Z/cZ) : εE,c(GQ)] = [GL2(Z/aZ) : εE,a(GQ)] · [GL2(Z/bZ) : εE,b(GQ)]

· [εE,a(GQ)→ εE,b(GQ) : εE,c(GQ)]

for c = ab with gcd(a, b) = 1. The last factor is 1 if there is no (a, b)-entanglement, and is
the size of the horizontal (a, b)-entanglement otherwise.
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Way 1: Decomposing 42 = 6 · 7.

[GL2(Z/42Z) : εE,42(GQ)] = [GL2(Z/6Z) : εE,6(GQ)] · [GL2(Z/7Z) : εE,7(GQ)]

· [εE,6(GQ)→ εE,7(GQ) : εE,42(GQ)]  
No (6,7)-entanglement, so =1

= [GL2(Z/6Z) : εE,6(GQ)] · 1 · 1

= [GL2(Z/6Z) : εE,6(GQ)]

= [GL2(Z/2Z) : εE,2(GQ)] · [GL2(Z/3Z) : εE,3(GQ)]

· [εE,2(GQ)→ εE,3(GQ) : εE,6(GQ)]  
(2,3)-entanglement, type size =2

= 3 · 8 · 2

= 48.

Way 2: Decomposing 42 = 2 · 21.

[GL2(Z/42Z) : εE,42(GQ)] = [GL2(Z/2Z) : εE,2(GQ)] · [GL2(Z/21Z) : εE,21(GQ)]

· [εE,2(GQ)→ εE,21(GQ) : εE,42(GQ)]  
(2,21)-entanglement, type size =2

= [GL2(Z/2Z) : εE,2(GQ)]

· ([GL2(Z/3Z) : εE,3(GQ)] · [GL2(Z/7Z) : εE,7(GQ)]

· [εE,3(GQ)→ εE,7(GQ) : εE,21(GQ)]  
No (3,7)-entanglement, so =1





· 2

= 3 · (8 · 1 · 1) · 2

= 3 · 8 · 2

= 48.

Both ways yield the same result, as expected.

Remark 4.5.1. The SageMath code used to compute the size of the horizontal entanglements
is provided in the appendix at the end of this thesis.

4.6. Miscellaneous Results related to the Division Fields

To enrich the subsequent discussion, we first present some relevant results from [30] before
giving our field-theoretic interpretation of the size of a horizontal (a, b)-entanglement.

Given any finite subgroup U of an elliptic curve E defined over some number field, K,
there exists an elliptic curve E ↑ defined over K and a separable isogeny ↽ : E ↑ E ↑ satisfying
ker(↽) = U . If U is stable under the action of Gal(K/K), then E ↑ and ↽ can be chosen to
be defined over K. In this case, the curve E ↑ is uniquely determined up to K-isomorphism,
is denoted by E/U , and its j-invariant j(E/U) is an element of K.
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Let E/Q be an elliptic curve. The cyclic subgroups of order n of E[n] can be viewed as
kernels of isogenies. Any such subgroup U is stable under the action of Gal(Q/Q(E[n])).
The quotient curve E/U is therefore defined over Q(E[n]). We thus set:

Definition 4.6.1 (j-Invariants Field). Let E/Q be an elliptic curve and n ⇐ 2 an integer.
The set of isogeny j-invariants is

Jn = Jn(E) := {j(E/U) | U △ E[n] is a cyclic subgroup of order n}.

The field Q(Jn) is the extension of Q generated by the elements of this set.

Remark 4.6.1. The discussion above shows that Jn ⇒ Q(E[n]), which implies the field
inclusion Q(Jn) ⇒ Q(E[n]).

Proposition 4.6.1. Let E/Q be a non-CM elliptic curve and let n ↔ Z⇑2 be an integer such
that representation εE,n is surjective, i.e., Gal(Q(E[n])/Q) ↓= GL2(Z/nZ).

(a) For any integer m ⇐ 2 with m | n, we have Q(E[m]) ⇒ Q(E[n]). The corresponding
fixed group is the kernel of the reduction map modulo m:

ker
(
GL2(Z/nZ) ↑ GL2(Z/mZ)

)
=

{
A ↔ GL2(Z/nZ) | A ∈

(
1 0
0 1

)
(mod m)


.

(b) We have Q(ςn) ⇒ Q(E[n]), and the corresponding fixed group is SL2(Z/nZ).

(c) We have Q(Jn) ⇒ Q(E[n]), and the corresponding fixed group is the center, Z(GL2(Z/nZ)) ↓=
(Z/nZ)→.

Remark 4.6.2. The inclusion Q(ςn) ⇒ Q(E[n]) was established previously in Lemma 2.4.1.

Proposition 4.6.2. Let E/Q be a non-CM elliptic curve. Let p be a prime and m ↔ N be
such that the representation εE,pm+1 is surjective.

(a) If p ↘= 2, then Q(E[pm+1]) is the compositum of three key subfields:

Q(E[pm+1]) = Q(E[pm])Q(ςpm+1)Q(Jpm+1).

(b) If p = 2 and m ↔ N, there exists an additional subfield M2m+1 such that:

Q(E[2m+1]) = Q(E[2m])Q(ς2m+1)Q(J2m+1)M2m+1 .

Remark 4.6.3. The field M2m+1 appearing in part (b) of the proposition can be described
via Galois theory. It is the fixed field of a specific subgroup of GL2(Z/2m+1Z). Let W2m+1 be
the subgroup defined as:

W2m+1 :=

{(
1 0
0 1

)
,

(
1 2m

2m 1

)
,

(
1 + 2m 2m

0 1 + 2m

)
,

(
1 + 2m 0
2m 1 + 2m

)
.

The field M2m+1 is then the subfield of Q(E[2m+1]) fixed by the group ±W2m+1.
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Proof Sketch. By the Fundamental Theorem of Galois Theory, the compositum of fields
corresponds to the intersection of their fixed groups. The fixed group of the composi-
tum Q(E[pm])Q(ςpm+1)Q(Jpm+1) is the intersection of the corresponding subgroups inside
GL2(Z/pm+1Z):

H = ker(◁pm) ′ SL2(Z/pm+1Z) ′ Z(GL2(Z/pm+1Z)).

A direct calculation shows that this intersection is:

H =

{
{I} if p ↘= 2,

{I, (1 + 2m)I} if p = 2.

For p ↘= 2, the trivial intersection implies the compositum is the entire field, proving (a).
For p = 2, the intersection is a non-trivial group of order 2. This shows that an additional
field extension is needed to reduce the fixed group to the identity. This extension is precisely
M2m+1 , whose fixed group ±W2m+1 doesn’t contain (1 + 2m)I, thus proving (b). ↭

Corollary 4.6.1. Let E/Q be a non-CM elliptic curve (not necessarily with surjective rep-
resentation). The compositum formulas from Proposition 4.6.2 still hold.

Proof Sketch. The proof strategy is identical to that of Proposition 4.6.2, except we work
within the actual Galois image G(pm+1) := εE,pm+1(GQ). The fixed group of the compositum
is now the intersection

H = G(pm+1) ′ ker(◁pm) ′ SL2(Z/pm+1Z) ′ Z(GL2(Z/pm+1Z)).

This is simply the intersection of the previous groupH with the actual Galois image G(pm+1).
↭

The main purpose of this section was to establish that the torsion field Q(E[pm+1]) can
be decomposed as the compositum of the next-lowest torsion field and a field K containing
the remaining structural information. That is,

Q(E[pm+1]) = Q(E[pm])K,

where K is the compositum of the cyclotomic and j-invariants field (and the field M2m+1 in
the case p = 2).

4.7. The Size of Horizontal Entanglement in Terms of Field Theory

We are now ready for our field-theoretic interpretation for the size of a horizontal (a, b)-
entanglement. Let M,L,K be finite Galois extensions over the same base field F . First,
note that (L ′M)(K ′M) is a subfield of LK ′M . Using [3, Section 14.4, Corollary 20],
the degree of the compositum (L ′M)(K ′M) over F is given by:

[(L ′M)(K ′M) : F ] =
[L ′M : F ][K ′M : F ]

[(L ′M) ′ (K ′M) : F ]

=
[L ′M : F ][K ′M : F ]

[L ′M ′K : F ]
.

67



By the tower law for field extensions, we have

[LK ′M : F ] = [LK ′M : (L ′M)(K ′M)] · [(L ′M)(K ′M) : F ]

= [LK ′M : (L ′M)(K ′M)] ·
[L ′M : F ][K ′M : F ]

[L ′M ′K : F ]

=
[L ′M : F ][K ′M : F ] · [LK ′M : (L ′M)(K ′M)]

[L ′M ′K : F ]
.

We consider the case where M,L,K are the torsion fields Q(E[m]),Q(E[l]),Q(E[k]) re-
spectively, for an elliptic curve E/Q where gcd(lk,m) = 1 and gcd(l, k) = 1 (i.e. pair-
wise coprime), which implies Q(E[l])Q(E[k]) = Q(E[lk]). Suppose further that l and k
are prime. If m is not prime, we can find coprime factors u, v such that uv = m. Then
M = Q(E[m]) = Q(E[u])Q(E[v]). The task of computing degrees such as [L ′M : F ] (i.e.,
[Q(E[l])′Q(E[m]) : Q]) and [K ′M : F ] (i.e., [Q(E[k])′Q(E[m]) : Q]) would then involve
a recursive approach with the field degree formula above by repeatedly decomposing m.

We now apply this general degree formula to analyze the entanglement between the
prime-power torsion field Q(E[pk+1]) and a torsion field Q(E[m]) where m ⇐ 2 is an integer
such that gcd(pk+1,m) = 1. From the decomposition in Proposition 4.6.2, we can set:

• L = Q(E[pk])

• K = Q(ςpk+1)Q(Jpk+1) (and its extra component if p = 2)

• M = Q(E[m])

With these definitions, the compositum is LK = Q(E[pk+1]). We are interested in the size
of the entanglement between m and pk+1, which is the degree [LK ′M : Q]. Our formula
applies directly:

[Q(E[pk+1]) ′Q(E[m]) : Q] =
[Q(E[pk]) ′Q(E[m]) : Q] · [K ′Q(E[m]) : Q]

[Q(E[pk]) ′K ′Q(E[m]) : Q]

· [Q(E[pk+1]) ′Q(E[m]) : (Q(E[pk]) ′Q(E[m]))(K ′Q(E[m]))].

This formula shows that the total entanglement is determined by the entanglement ofm with
the previous torsion level (L = Q(E[pk])) and with the non-torsion structural parts (K). Any
degree term on the right-hand side being greater than 1 pinpoints a specific source of this
interaction.

These two applications provide a complete recursive framework by repeatedly using the
first strategy to break down composite levels and the second to break down prime-power
levels. The following examples will illustrate the use of the previously described formula, in
order to clarify each of its terms in the numerator and denominator. Before we turn to these
examples, however, we want to introduce a question that remains open to us.

Question 4.7.1. Let E/Q be a non-CM elliptic curve. Letm, l, k ↔ Z⇑2 such that gcd(lk,m) =
1 and gcd(l, k) = 1. Then

[Q(E[m]) ′Q(E[l]) ′Q(E[k]) : Q] = 1.
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Remark 4.7.1. For elliptic curves with complex multiplication (CM), the answer to this
question is known to be “no”. A result in [34, Lemma 3.15.] demonstrates the latter.

Example 4.7.1. The diagram below represents the first “entanglement network” example
discussed in this paper. The theoretical result that formally allows the construction and in-
terpretation of such networks will be presented after the following set of illustrative examples.
We focus here on various horizontal entanglements for the elliptic curve with LMFDB label
700.c1. The following diagram visualizes some of these relationships:

(14, 21)

(3, 14) (2, 21)

(3, 7) (2, 3) (2, 7)

Based on computations using SageMath, we have determined the following entanglement
properties for this curve:

• No horizontal (2, 3)-entanglement.

• No horizontal (3, 7)-entanglement.

• Horizontal (2, 7)-entanglement with size 2.

• No horizontal (3, 14)-entanglement.

• Horizontal (2, 21)-entanglement with size 2.

• No horizontal (14, 21)-entanglement.

Notice that the horizontal (2, 21)-entanglement is actually a horizontal (2, 7)-entanglement,
as their entanglement sizes are both 2 (details below). Initially, one might hypothesize that
(14, 21) would also exhibit entanglement due to the underlying (2, 7)-entanglement. However,
it’s not the case. The details of why that is will be worked out in the following example.
Consider:

[Q(E[21]) ′Q(E[2]) : Q] =
[Q(E[3]) ′Q(E[2]) : Q] · [Q(E[7]) ′Q(E[2]) : Q]

[Q(E[2]) ′Q(E[3]) ′Q(E[7]) : Q]

· [Q(E[21]) ′Q(E[2]) : (Q(E[3]) ′Q(E[2]))(Q(E[7]) ′Q(E[2]))]

Note the following values from Sage computations:

• [Q(E[3]) ′Q(E[2]) : Q] = 1.

• As a consequence, [Q(E[2]) ′Q(E[3]) ′Q(E[7]) : Q] = [Q ′Q(E[7]) : Q] = 1.
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• [Q(E[7]) ′Q(E[2]) : Q] = 2.

Since Sage also indicates that [Q(E[21]) ′ Q(E[2]) : Q] = 2, substituting these values into
the formula implies that the remaining degree term must be 1:

[Q(E[21]) ′Q(E[2]) : (Q(E[3]) ′Q(E[2]))(Q(E[7]) ′Q(E[2]))] = 1.

By Proposition 1.2.3, this degree is 1 if and only if

(Q(E[3])Q(E[7]) \ (Q(E[3]) ∞Q(E[7]))) ′Q(E[2])

⇒ (Q(E[3]) ′Q(E[2]))(Q(E[7]) ′Q(E[2])).

Given Q(E[3]) ′Q(E[2]) = Q, the right-hand side simplifies:

(Q(E[3]) ′Q(E[2]))(Q(E[7]) ′Q(E[2])) = Q · (Q(E[7]) ′Q(E[2])) = Q(E[7]) ′Q(E[2]).

Thus, the condition from Proposition 1.2.3, combined with our derived equality, implies

(Q(E[21]) \ (Q(E[3]) ∞Q(E[7]))) ′Q(E[2]) = ∅.

This is what we were expecting because the size of the (2, 21)-entanglement is the same as
the (2, 7)-entanglement in this context.

Example 4.7.2. The following diagram illustrates an entanglement network for the elliptic
curve with LMFDB label 2646.g2.

(6, 21)

(6, 7) (2, 21)

(3, 7) (2, 7) (2, 3)

Based on our computations using SageMath for this curve:

• No horizontal (2, 7)-entanglement.

• Horizontal (3, 7)-entanglement with size 2.

• Horizontal (2, 3)-entanglement with size 2.

• Horizontal (6, 7)-entanglement with size 2.

• Horizontal (2, 21)-entanglement with size 2.

• No horizontal (6, 21)-entanglement.
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Observing the sizes, we can infer relationships between these entanglements. Since the
sizes are the same, the (6, 7)-entanglement is really a (3, 7)-entanglement. Similarly, the
(2, 21)-entanglement is really a (2, 3)-entanglement. Interestingly, despite having entan-
glements at lower levels that contribute to the factors of 6 and 21, the pair (6, 21) itself
does not exhibit horizontal entanglement. For the non-coprime case (6, 21), the definition
of entanglement requires the intersection Q(E[6]) ′ Q(E[21]) to be a proper extension of
Q(E[3]). Our computational data suggests that the entanglements between the prime fac-
tors of 6 and 21 are already accounted for within Q(E[3]), leading to the trivial result
Q(E[6]) ′Q(E[21]) = Q(E[3]).

In Sage, we have already shown that [Q(E[6]) ′ Q(E[21]) : Q(E[3])] = 1, but we would
like to prove this again using our techniques developed in Section 1.2.

By the tower law, we have:

[Q(E[21]) ′Q(E[6]) : Q] = [Q(E[21]) ′Q(E[6]) : Q(E[3])] · [Q(E[3]) : Q]. (4.1)

From our previous discussion, letting M = Q(E[6]), L = Q(E[7]), K = Q(E[3]) (so LK =
Q(E[21]) as gcd(3, 7) = 1), we have:

[Q(E[21]) ′Q(E[6]) : Q] =
[Q(E[7]) ′Q(E[6]) : Q] · [Q(E[3]) ′Q(E[6]) : Q]

[Q(E[7]) ′Q(E[6]) ′Q(E[3]) : Q]

· [Q(E[21]) ′Q(E[6]) : (Q(E[7]) ′Q(E[6]))(Q(E[3]) ′Q(E[6]))]
(4.2)

Since Q(E[3]) ⇒ Q(E[6]), we have Q(E[3])′Q(E[6]) = Q(E[3]). Also, Q(E[7])′Q(E[6])′
Q(E[3]) = Q(E[7]) ′Q(E[3]). Substituting these into (4.2):

[Q(E[21]) ′Q(E[6]) : Q] =
[Q(E[7]) ′Q(E[6]) : Q] · [Q(E[3]) : Q]

[Q(E[7]) ′Q(E[3]) : Q]

· [Q(E[21]) ′Q(E[6]) : (Q(E[7]) ′Q(E[6]))Q(E[3])].

Comparing this with equation (4.1) and dividing both sides by [Q(E[3]) : Q], we obtain:

[Q(E[6]) ′Q(E[21]) : Q(E[3])] =
[Q(E[7]) ′Q(E[6]) : Q]

[Q(E[7]) ′Q(E[3]) : Q]

· [Q(E[21]) ′Q(E[6]) : (Q(E[7]) ′Q(E[6]))Q(E[3])].

By Proposition 1.2.1, since Q(E[3]) ⇒ Q(E[6]), we have

Q(E[21]) ′Q(E[6]) = (Q(E[7])Q(E[3])) ′Q(E[6]) = (Q(E[7]) ′Q(E[6]))Q(E[3]).

Therefore, the degree term

[Q(E[21]) ′Q(E[6]) : (Q(E[7]) ′Q(E[6]))Q(E[3])] = 1.

So,

[Q(E[6]) ′Q(E[21]) : Q(E[3])] =
[Q(E[7]) ′Q(E[6]) : Q]

[Q(E[7]) ′Q(E[3]) : Q]
.
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The above is equal to 1 by our Sage computations from the beginning of the example. There-
fore, there is no horizontal (6, 21)-entanglement. However, while interactions between compo-
nents like Q(E[2]) (from Q(E[6])) and Q(E[3]) (from Q(E[21])) might suggest entanglement,
these interactions are contained within Q(E[3]). Our field-theoretic definition specifically re-
quires entanglement to manifest outside of Q(E[gcd(a, b)]).

Remark 4.7.2. This phenomenon, where lower-level entanglements are not visible at a
higher composite level, has the potential to be exploited in cryptographic applications, such
as a honeytoken.

We dedicated significant thought to the following statement, and while a proof is o!ered
in [32, Lemma 3.26], we remained unsettled by its conclusions.

Statement 4.7.1. Let n ⇐ 12. Let ã, b̃ be divisors of n such that ã < b̃. Let d̃ = gcd(ã, b̃).
Define a := ã/d̃ and b := b̃/d̃. (Note that gcd(a, b) = 1). Suppose gcd(d̃, a) = 1 and
gcd(d̃, b) = 1. If Gn has (ã, b̃)-entanglement, then Gn has (a, b)-entanglement.

My reservations were eventually confirmed when I discovered the following counterexam-
ple that disproves the statement as originally formulated.

Example 4.7.3. The following diagram illustrates an entanglement network for the elliptic
curve with LMFDB label 2541.f1.

(14, 21)

(3, 14) (2, 21)

(3, 7) (2, 3) (2, 7)

Based on computations using SageMath, we have determined the following entanglement
properties for this curve:

• No horizontal (2, 3)-entanglement.

• No horizontal (3, 7)-entanglement.

• No horizontal (2, 7)-entanglement.

• Horizontal (14, 3)-entanglement with size 2.

• Horizontal (2, 21)-entanglement with size 2.

• Horizontal (14, 21)-entanglement with size 2.
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Since we have no entanglements at lower levels that would contribute to a (14, 3)-entanglement,
any (14, 3)-entanglement would have to be considered intrinsic to this pair. A similar argu-
ment can be made for (2, 21), suggesting its entanglement status is also not merely inherited
from the non-entanglement of its sub-pairs like (2, 3) and (2, 7).

The goal now is to show with precision where the horizontal (3, 14)-entanglement is hap-
pening. We start with the degree formula:

[Q(E[14]) ′Q(E[3]) : Q] =
[Q(E[2]) ′Q(E[3]) : Q] · [Q(E[7]) ′Q(E[3]) : Q]

[Q(E[2]) ′Q(E[3]) ′Q(E[7]) : Q]

· [Q(E[14]) ′Q(E[3]) : (Q(E[2]) ′Q(E[3]))(Q(E[7]) ′Q(E[3]))]
(4.3)

Our previous computations from Sage shows that there is no (3, 7) horizontal entanglement.
This means [Q(E[7]) ′ Q(E[3]) : Q] = 1. As a consequence, the denominator becomes
[Q(E[2]) ′ Q(E[3]) ′ Q(E[7]) : Q] = [Q ′ Q(E[2]) : Q] = [Q : Q] = 1. The formula thus
simplifies to:

[Q(E[14]) ′Q(E[3]) : Q] = [Q(E[14]) ′Q(E[3]) : (Q(E[2]) ′Q(E[3]))(Q(E[7]) ′Q(E[3]))].

Furthermore, if we know from Sage that [Q(E[14]) ′Q(E[3]) : Q] = 2, then it must be that

[Q(E[14]) ′Q(E[3]) : (Q(E[2]) ′Q(E[3]))(Q(E[7]) ′Q(E[3]))] = 2.

A degree greater than 1 implies that the fields are not equal:

Q(E[14]) ′Q(E[3]) ↘= (Q(E[2]) ′Q(E[3]))(Q(E[7]) ′Q(E[3])).

Using Proposition 1.2.3 (which states LK ′M ↘= (L′M)(K ′M) if and only if (LK \ (L∞

K)) ′M ↘⇒ (L ′M)(K ′M)), which means there exists an element in

(Q(E[14]) \ (Q(E[2]) ∞Q(E[7]))) ′Q(E[3])

that is not in
(Q(E[2]) ′Q(E[3]))(Q(E[7]) ′Q(E[3])).

Since Q(E[2]) ′ Q(E[3]) = Q and Q(E[7]) ′ Q(E[3]) = Q, their compositum is Q. So,
the condition means there exists an element in (Q(E[14]) \ (Q(E[2]) ∞ Q(E[7]))) ′ Q(E[3])
that is not in Q. It is a long-winded way to articulate what our intuition might suggest, but
developing a precise language for these phenomena is always beneficial.

More importantly, this example provides a counterexample to the previous statement, as
(14, 21)-entanglement does not imply (2, 3)-entanglement.

The endeavor of constructing and seeking this counterexample was, however, fruitful in
an unexpected way: it led us to an important theorem that gives precise language to the
observations I had been grappling with and which I will now present.
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4.8. Entanglement Networks

We now present a pivotal result that will serve as our primary guide, our “north star” in
navigating the complexities of horizontal entanglements. The discussion and consequences
derived from this theorem will form the core of our current study. However, to fully capture
the horizontal entanglement phenomenon in its entirety, especially the precise arithmetic
origins, the insights gained here should ideally be supplemented by a rigorous analysis of the
division polynomials of the elliptic curve. This deeper arithmetic exploration is a natural
avenue for future research. For now, the following theorem illuminates the path forward.

Theorem 4.8.1. Let K and L be finite Galois extensions of F , and let E be a finite Galois
extension of F such that F ⇒ E ⇒ K. Then

K ′ L = F ∀∃ (E ′ L = F and K ′ EL = E).

Proof. The proof can be found in [35, Theorem 20.12]. ↭

A diagram illustrating the theorem:

K

E

F

KL

EL

L

The hypothesis of the theorem can be relaxed. Instead of requiring both E and L to be
finite Galois extensions of F , it is enough that at least one of them is, as long as K remains
a finite Galois extension of F . For a detailed explanation, see [35, Example 20.6]. However,
the version of the theorem where K,E, and L are all assumed to be finite Galois extensions
of F is particularly well-suited to our current application. This is because we intend to use
this theorem by setting K = Q(E[k]), E = Q(E[e]), L = Q(E[l]), and F = Q for some
elliptic curve E/Q, where k, e, l ↔ Z⇑2. As established in Proposition 2.4.2, these division
fields are, in fact, finite Galois extensions of Q. To connect this theorem specifically to
the analysis of horizontal entanglement, we will also use the property that if gcd(a, b) = 1,
then Q(E[ab]) = Q(E[a])Q(E[b]). This property allows us to impose conditions such as
gcd(k, l) = 1 and gcd(e, l) = 1, which helps structure the fields Q(E[k]),Q(E[e]), and Q(E[l])
in a manner conducive to applying the theorem within this context.

Let us begin our study of horizontal entanglements from our newfound perspective. Let
ã, b̃ ↔ Z⇑2 such that ã < b̃. Define d̃ = gcd(ã, b̃), and let a = ã/d̃ and b = b̃/d̃. Note that
this construction ensures gcd(a, b) = 1. We will now examine two cases, imposing further
conditions on a, b and d̃. In the first case, we will provide a detailed analysis, whereas the
second case will be presented more concisely.
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4.8.1. Case 1

Suppose gcd(a, d̃) = 1. We can build the following diagrams with the help of Theo-
rem 4.8.1.

Q(E[b̃])

Q(E[b])

Q

Q(E[a])Q(E[b̃])

Q(E[a])Q(E[b])

Q(E[a])

Q(E[b̃])

Q(E[d̃])

Q

Q(E[a])Q(E[b̃])

Q(E[a])Q(E[d̃])

Q(E[a])

Theorem 4.8.1, when applied to the context of horizontal entanglement and interpreted
for the diagram shown above on the left, states the following: There is no horizontal (a, b̃)-
entanglement if and only if there is no horizontal (a, b)-entanglement AND no horizontal
(ab, b̃)-entanglement. Equivalently (by negating both sides of the biconditional), there IS
horizontal (a, b̃)-entanglement if and only if there IS horizontal (a, b)-entanglement OR there
IS horizontal (ab, b̃)-entanglement. A similar reformulation can be made for the diagram
shown above on the right. These conceptual relationships can be visualized as depicted
below.

(a, b)

(a, b̃)

(ab, b̃) (ã, b̃)

(a, b̃)

(a, d̃)

We refer to the middle node in our diagrams as the entanglement key. Based on the
reformulation of Theorem 4.8.1, if the entanglement key itself is “turned o!” (meaning there
is no horizontal entanglement associated directly with its defining parameters), then we can
deduce that both nodes directly connected to it must also be “turned o!”.

In a more extensive entanglement network, the relationships between various nodes and
a specific entanglement key may become less immediately apparent. A notable pattern,
however, is that the greatest common divisor of the two integers defining a “higher” node
(the node above the entanglement key) often appears as one of the integers defining a “lower”
node connected to it or to the key.

We can conclude the theoretical discussion in this subsection by illustrating how an
entanglement network can be formed by combining the two diagrams presented above.
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(a, b̃)

(ã, b̃) (ab, b̃)

(a, b) (a, d̃)

Figure 4.1: Entanglement Network for Case 1

Remark 4.8.1. If the entanglement key (a, b̃) is “turned o!” (i.e., exhibits no horizontal
entanglement associated with its parameters), then as a consequence, the four outer nodes
connected to it in our combined diagram are also “turned o!”.

Definition 4.8.1. An entanglement network is a diagram constructed by meshing together
multiple individual entanglement diagrams, where each such individual diagram is derived
from the application of Theorem 4.8.1.

Example 4.8.1. Let us consider the elliptic curve with LMFDB label 21.a1. We will
construct an entanglement network related to this curve, analogous to the general struc-
ture discussed above, taking ã = 6 and b̃ = 8. The corresponding parameters would be
d̃ = gcd(6, 8) = 2, a = ã/d̃ = 6/2 = 3, and b = b̃/d̃ = 8/2 = 4. The entanglement key in
this specific instance would correspond to (a, b̃) from our general diagram, which is (3, 8).

(3, 8)

(6, 8) (12, 8)

(3, 4) (3, 2)

For the elliptic curve 21.a1, the following entanglement properties were computed using
Sage:

• No horizontal (3, 2)-entanglement.

• Horizontal (3, 4)-entanglement with size 2.

• Horizontal (3, 8)-entanglement (the key) with size 2.

• Horizontal (6, 8)-entanglement with size 2.

• No horizontal (12, 8)-entanglement.
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Remark 4.8.2. Conventionally, any entanglement pair is denoted as (a, b) where a < b.
However, in the preceding example, we have not strictly adhered to this convention for all
listed pairs. This was done intentionally so that the position and order of the variables in the
entanglement pairs correspond to the structure and labeling of the general diagram presented
before the example.

The adelic level, mE (see Definition 4.1.3), captures all the entanglement behavior, both
horizontal and vertical, associated with an elliptic curve. Our prior analysis of horizontal
entanglements suggests to investigate horizontal entanglements arising from coprime integers.
Therefore, a thorough understanding of the adelic index requires examining all pairs of
coprime integers (a, b) such that a | mE, b | mE, and their product ab △ mE (Since gcd(a, b) =
1, it is necessarily true that ab △ mE). Of course, a complete understanding of the adelic
index would also necessitate a thorough analysis of all vertical entanglements. However, in
this section, our focus is specifically confined to horizontal entanglements.

Definition 4.8.2. A full entanglement network for a given elliptic curve E/Q is an entan-
glement network that explicitly includes all nodes (a, b) for which the pair of integers (a, b)
exhibits a horizontal entanglement relevant to E and gcd(a, b) = 1.

Remark 4.8.3. Proposition 4.4.2 states that for an elliptic curve over Q, the adelic Galois
image is never surjective onto GL2(Ẑ). Suppose that an elliptic doesn’t exhibit only condition
(1) from Proposition 4.4.2, then there is always at least one node in the full entanglement
network that is “turned on”.

Example 4.8.2. Let us consider the elliptic curve with LMFDB label 300.b2. The LMFDB
indicates that its adelic level is mE = 30. We are interested in pairs of coprime integers:
(2, 3), (2, 5), (3, 5), (2, 15), (3, 10), and (5, 6).

Furthermore, we can build three distinct entanglement networks based on Figure 4.1 and
then mesh these three networks together to obtain a full entanglement network for the elliptic
curve 300.b2.
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(6, 15) (10, 15) (6, 10)

(2, 15) (5, 6) (3, 10)

(2, 5) (2, 3) (3, 5)

In this network, the middle row represents the entanglement keys. The nodes in the above
row don’t contribute to the computation of the adelic index. Our computations in Sage for
the elliptic curve 300.b2 show the following horizontal entanglement properties:

• Has horizontal (2, 3)-entanglement with size 6.

• Has no horizontal (2, 5)-entanglement.

• Has horizontal (2, 15)-entanglement with size 6.

• Has horizontal (3, 5)-entanglement with size 2.

• Has horizontal (3, 10)-entanglement with size 12.

• Has horizontal (5, 6)-entanglement with size 2.

Moreover, data from the LMFDB tells us that the mod-2 and mod-5 Galois representations
are surjective, while the index [GL2(Z/3Z) : εE,3(GQ)] = 4. We can now compute the adelic
index for the given elliptic curve.

[GL2(Z/30Z) : εE,30(GQ)] = [GL2(Z/3Z) : εE,3(GQ)] · [GL2(Z/10Z) : εE,10(GQ)]

· [εE,3(GQ)→ εE,10(GQ) : εE,30(GQ)]

= 4 · [GL2(Z/2Z) : εE,2(GQ)] · [GL2(Z/5Z) : εE,5(GQ)]

· [εE,3(GQ)→ εE,10(GQ) : εE,30(GQ)]

= 4 · 1 · 1 · 12 = 48

Remark 4.8.4. Consider the entanglement network above as an entanglement network and
not a full entanglement network associated to an elliptic curve. If two of the entanglement
keys (i.e. two of (2, 15), (5, 6), (3, 10)) were “turned o!”, then the entire network would also
be “turned o!”.
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Remark 4.8.5. Several interesting questions arise from this perspective. For instance, what
is the minimum number of key entanglement nodes that need to be “turned o!” for the entire
entanglement network to be o!? Exploring the structure of these entanglement networks
might benefit from combinatorial approaches. Furthermore, one might speculate whether
these entanglement networks could have potential cryptographic applications.

4.8.2. Case 2

Suppose gcd(a, d̃) = 1 and gcd(b, d̃) = 1. We can build the three following diagrams with
the help of Theorem 4.8.1.

(a, b̃)

(ã, b̃) (ab, b̃)

(a, b) (a, d̃)

(d̃, ab)

(ab, b̃) (ã, ab)

(a, d̃) (d̃, b)

(ã, b)

(ã, ab) (ã, b̃)

(d̃, b) (a, b)

We now mesh the diagrams presented above to form a comprehensive entanglement net-
work. This network is specifically tailored to the assumptions outlined at the beginning of
this subsection.

(ã, b̃)

(ab, b̃) (ã, ab)

(a, b̃) (ã, b)(d̃, ab)

(a, d̃) (d̃, b)

(a, b)

Figure 4.2: Entanglement Network for Case 2
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The nodes (a, b̃), (d̃, ab), and (ã, b) serve as the entanglement keys for the entanglement
network depicted above. If any two of these three keys are “turned o!” (i.e., exhibit no
horizontal entanglement associated with their parameters), then the entire network would
consequently be “turned o!”.

Each entanglement key is connected to two “higher” nodes and two “lower” nodes in the
diagram. A “higher” node is related to a “lower” node if the greatest common divisor of the
two integers defining the “higher” node appears as one of the integers defining the “lower”
node.

Example 4.8.3. Below is a numerical example, corresponding to the structure of Figure
4.2, for the elliptic curve with LMFDB label 2646.g2.

(6, 21)

(14, 21) (6, 14)

(2, 21) (6, 7)(3, 14)

(2, 3) (3, 7)

(2, 7)

Based on computations using SageMath, we have determined the following horizontal
entanglement properties for this curve:

• No horizontal (6, 21)-entanglement.

• Horizontal (14, 21)-entanglement with size 2.

• Horizontal (6, 14)-entanglement with size 2.

• Horizontal (2, 21)-entanglement with size 2.

• Horizontal (3, 14)-entanglement with size 4.

80



• Horizontal (6, 7)-entanglement with size 2.

• Horizontal (2, 3)-entanglement with size 2.

• Horizontal (3, 7)-entanglement with size 2.

• No horizontal (2, 7)-entanglement.

The only “real” horizontal entanglements in this network are the (2, 3) and (3, 7). Con-
sider

[Q(E[14]) ′Q(E[3]) : Q] =
[Q(E[2]) ′Q(E[3]) : Q] · [Q(E[7]) ′Q(E[3]) : Q]

[Q(E[2]) ′Q(E[3]) ′Q(E[7]) : Q]

· [Q(E[2])Q(E[7]) ′Q(E[3]) : (Q(E[2]) ′Q(E[3]))(Q(E[7]) ′Q(E[3]))]

We know the LHS of the equation is 4 and [Q(E[2])′Q(E[3]) : Q] = [Q(E[7])′Q(E[3]) :
Q] = 2, which forces

[Q(E[2])Q(E[7]) ′Q(E[3]) : (Q(E[2]) ′Q(E[3]))(Q(E[7]) ′Q(E[3]))]

[Q(E[2]) ′Q(E[3]) ′Q(E[7]) : Q]
= 1.

Also, we know that [Q(E[2])′Q(E[3])′Q(E[7]) : Q] = 1 as there is no (2, 7) entanglement,
therefore

[Q(E[2])Q(E[7]) ′Q(E[3]) : (Q(E[2]) ′Q(E[3]))(Q(E[7]) ′Q(E[3]))] = 1,

meaning the (3, 14) entanglement is strictly from (2, 3) and (3, 7) as

(Q(E[14]) \ (Q(E[2]) ∞Q(E[7]))) ′Q(E[3]) ⇒ (Q(E[2]) ′Q(E[3]))(Q(E[7]) ′Q(E[3])),

this means that Q(E[14]) ′ Q(E[3]) contains Q(E[2]) ′ Q(E[3]), Q(E[7]) ′ Q(E[3]), and
their aggregate. So there is no inherent or true entanglement happening between Q(E[14])
and Q(E[3]).

In a similar way, one can show that all other pairs that exhibit horizontal entanglement
in this network are really from (2, 3) or (3, 7).

Furthermore, (6, 21) exhibits no entanglement as per the definition because all entangle-
ments happen under the gcd threshold.

Example 4.8.4. Below is another numerical example, corresponding to the structure of
Figure 4.2, for the elliptic curve with LMFDB label 700.c1.
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(14, 21)

(6, 21) (6, 14)

(2, 21) (3, 14)(6, 7)

(2, 7) (3, 7)

(2, 3)

Based on computations using SageMath, we have determined the following horizontal
entanglement properties for this curve:

• No horizontal (14, 21)-entanglement.

• Horizontal (6, 21)-entanglement with size 2.

• No horizontal (6, 14)-entanglement.

• Horizontal (2, 21)-entanglement with size 2.

• Horizontal (6, 7)-entanglement with size 2.

• No horizontal (3, 14)-entanglement.

• Horizontal (2, 7)-entanglement with size 2.

• No horizontal (3, 7)-entanglement.

• No horizontal (2, 3)-entanglement.

We will not go into detail as the tools for navigating such examples have been presented.
However, we note that in this network, the only “real” entanglement is the horizontal (2, 7)-
entanglement.
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Remark 4.8.6. The diagrams presented in the previous two examples portray a full entangle-
ment network for their respective elliptic curves. This is because each diagram is constructed
to include all nodes (a, b) such that gcd(a, b) = 1, a | mE, b | mE and ab △ mE for the
corresponding elliptic curve.

We will now conclude this section on entanglements by presenting an interesting example
of a phenomenon related to entanglement that, to our knowledge, appears to be new. This
phenomenon we term entangled entanglements.

Example 4.8.5. For the elliptic curve with LMFDB label 2541.f1, we have seen that
[εE,2(GQ)→εE,3(GQ) : εE,6(GQ)] = 1, [εE,2(GQ)→εE,7(GQ) : εE,14(GQ)] = 1, and [εE,3(GQ)→
εE,7(GQ) : εE,21(GQ)] = 1, as there is no (2, 3), (2, 7), or (3, 7) horizontal entanglement.
We also know that [εE,14(GQ) → εE,3(GQ) : εE,42(GQ)] = 2 as E has horizontal (3, 14)-
entanglement with size 2. Moreover, the LMFDB database tells us thatmE = 42, [GL2(Z/2Z) :
εE,2(GQ)] = 1, [GL2(Z/7Z) : εE,7(GQ)] = 1, and [GL2(Z/3Z) : εE,3(GQ)] = 8. We calculate
the adelic index in three di!erent ways:

1. [GL2(Z/42Z) : εE,42(GQ)] = [GL2(Z/14Z) : εE,14(GQ)] · [GL2(Z/3Z) : εE,3(GQ)]
· [εE,14(GQ)→ εE,3(GQ) : εE,42(GQ)]
= [GL2(Z/2Z) : εE,2(GQ)] · [GL2(Z/7Z) : εE,7(GQ)]
· [εE,2(GQ)→ εE,7(GQ) : εE,14(GQ)]
· [GL2(Z/3Z) : εE,3(GQ)] · [εE,14(GQ)→ εE,3(GQ) : εE,42(GQ)] = (1 · 1 · 1) · 8 · 2 = 16.

2. [GL2(Z/42Z) : εE,42(GQ)] = [GL2(Z/2Z) : εE,2(GQ)]·[GL2(Z/3Z) : εE,3(GQ)]·[GL2(Z/7Z) :
εE,7(GQ)] · [εE,21(GQ)→ εE,2(GQ) : εE,42(GQ)]. Since the LHS is 16, and the product of
the first three terms on the RHS is 8, this forces [εE,21(GQ)→εE,2(GQ) : εE,42(GQ)] = 2,
meaning there is horizontal (2, 21)-entanglement with size 2.

3. [GL2(Z/42Z) : εE,42(GQ)] = [GL2(Z/2Z) : εE,2(GQ)]·[GL2(Z/3Z) : εE,3(GQ)]·[GL2(Z/7Z) :
εE,7(GQ)]·[εE,6(GQ)→εE,7(GQ) : εE,42(GQ)]. Similarly, this forces [εE,6(GQ)→εE,7(GQ) :
εE,42(GQ)] = 2, meaning there is horizontal (6, 7)-entanglement with size 2.

The entanglements (3, 14), (2, 21), and (6, 7) are all “true” entanglements as they do
not arise from entanglements at the lower level (in our case, the lower level would be (2, 3),
(2, 7), and (3, 7), which have no entanglement). In some sense, for this specific example,
once we know that there is horizontal (3, 14)-entanglement, then we know immediately that
there is also (2, 21) and (6, 7)-entanglement because of the calculations above. Therefore,
these entanglements are entangled.

Let us define

• K2 := (Q(E[21]) \ (Q(E[3]) ∞Q(E[7]))) ′Q(E[2]), and K2 ↘⇒ Q.

• K3 := (Q(E[14]) \ (Q(E[2]) ∞Q(E[7]))) ′Q(E[3]), and K3 ↘⇒ Q.

• K7 := (Q(E[6]) \ (Q(E[2]) ∞Q(E[3]))) ′Q(E[7]), and K7 ↘⇒ Q.

Furthermore, these distinct entanglement phenomena (represented by K2, K3, K7) do not
originate from a single, common underlying intersection. This is evidenced by the fact that
K2 ′ K3 = ∅, K2 ′ K7 = ∅, and K3 ′ K7 = ∅, because we first mentioned that Q(E[2]) ′
Q(E[3]) = Q, Q(E[2]) ′Q(E[7]) = Q, and Q(E[3]) ′Q(E[7]) = Q.
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4.9. Finding Unentangled Integers

We conclude this chapter by presenting a theorem from [11] that provides a condition for
constructing integers n such that there is no entanglement among the torsion fields associated
with its divisors. The proof of this theorem will draw heavily upon the group-theoretic results
established in Section 3.1.

The following result requires a specific constant, which is a variation of Serre’s constant.

Definition 4.9.1. Let E/Q be a non-CM elliptic curve. We define the constant A30(E) by
the formula

A30(E) = 30 ·
∏

p↗SE

p,

where SE is the set of primes p for which the mod-p Galois representation εE,p is not sur-
jective.

Theorem 4.9.1. If E is an elliptic curve defined over Q and n is any integer with gcd(n, 30) =
1, then the Galois representation

εE,n : Gal(Q/Q) ↑ Aut(E[n]) ↓= GL2(Z/nZ)

is surjective if and only if the Galois representations εE,p are surjective for every prime p | n.
In particular, if E is a non-CM elliptic curve then εE,n is surjective for every integer n with
gcd(n,A30(E)) = 1.

Proof. If εE,n is surjective, then so is εE,p = pr(n)p ⇓εE,n for every p | n.
Conversely, suppose εE,p is surjective for all p | n. Then εE,n(GQ) ↫ GL2(Z/pZ), i.e.,

GL2(Z/pZ) is a quotient of εE,n(GQ) △ GL2(Z/nZ) by the First Isomorphism Theorem. As
a result, applying Lemma 3.1.5 and Lemma 3.1.6, Occ(εE,n(GQ)) ⊇

⋃
p|n Occ(GL2(Z/pZ)) =⋃

p|n Occ(PSL2(p)) and so PSL2(p) ↔ Occ(εE,n(GQ)) for every p | n and hence εE,n(GQ) ⇐
SL2(Z/nZ) by Theorem 3.1.3(b).

Recall that εE,n(GQ) ↓= Gal(Q(E[n])/Q) and that Q(ςn) ⇒ Q(E[n]) by the existence of
the Weil Pairing. Via the Galois correspondence, we have

Gal(Q(ςn)/Q) ↓= Gal(Q(E[n])/Q)/Gal(Q(E[n])/Q(ςn))

and so 0(n) = [εE,n(GQ) : H] whereH := Gal(Q(E[n])/Q(ςn)). Finally, because Gal(Q(ςn)/Q)
is abelian we have that εE,n(GQ)↑ △ Gal(Q(E[n])/Q(ςn)), which means |εE,n(GQ)↑| · k = |H|

and so

0(n) =
|εE,n(GQ)|

|H|
=

|εE,n(GQ)|

|εE,n(GQ)↑| · k

k · 0(n) =
|εE,n(GQ)|

|εE,n(GQ)↑|
= [εE,n(GQ) : εE,n(GQ)

↑].

The result now follows from Theorem 3.1.3(a).
The last assertion is clear, for by definition A30(E) = 30

∏
p↗SE

p, where SE is the set of
primes p such that εE,p is not surjective. ↭
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Appendix A. CODE

The following appendix is divided into two sections. The first section is dedicated to
providing the SageMath code for an algorithm that constructs all applicable subgroups of
GL2(Z/nZ) for any integer n ⇐ 2. The second section provides the SageMath code used to
compute the horizontal entanglement data for a specific elliptic curve.

A.1. CODE for Applicable Subgroups

The SageMath code presented in this section was inspired by the MAGMA implemen-
tation written by Sutherland and Zywina, which is designed to compute all applicable sub-
groups of GL2(Z/nZ) for any integer n ⇐ 2. The original code is associated with the work
in [36] and is available online [37].

To avoid potential errors caused by copying code from this PDF, please use the original
source available on GitHub:

https://github.com/campanella98/

Computing-Applicable-Subgroups-of-GL2-Z-nZ-in-SageMath

Using the GitHub version is highly recommended for accuracy.
The following definition is essential for understanding the logic of the subsequent code.

Definition A.1.1 (Invariant Factor Decomposition). Any finite abelian group G is isomor-
phic to a direct product of cyclic groups of the form:

G ↓= Z/d1Z→ Z/d2Z→ · · ·→ Z/dnZ

where the integers di satisfy the divisibility condition dn | dn↓1 | · · · | d2 | d1. The integers
d1, d2, . . . , dn are called the invariant factors (or simply invariants) of G.

Remark A.1.1 (Isomorphism Criterion). Two finite abelian groups are isomorphic if and
only if they have the same sequence of invariant factors.

The function GL2ModuleInvariants(V) computes the abelian group invariants of a Z/nZ-
submodule of Z/nZ → Z/nZ. The function assumes that V is generated by at most two
elements.

def GL2ModuleInvariants(V):

# Define n earlier to avoid repeating len(V.base_ring())

n = len(V.base_ring())

# Check if the module has no generators

if len(V.gens()) == 0:

return []

# Check if the module has one generator. Use set() to avoid duplicates

in the list.

if len(V.gens()) == 1:

# Calculate #V

V_elements = [tuple(a * V.gens()[0]) for a in range(n)]
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return [len(set(V_elements))]

# Assert there are at most 2 generators

assert len(V.gens()) <= 2

# The list of elements generated by the first generator

firstgen_list = set([tuple(a * V.gens()[0]) for a in range(n)])

# The list of elements generated by the second generator

secondgen_list = set([tuple(a * V.gens()[1]) for a in range(n)])

# Compute r1 and r2 upfront

r1 = len(firstgen_list)

r2 = len(secondgen_list)

# Function to check if two vectors are dependent

def are_dependent(v, list):

return v in list

# Check if the generators are dependent (checking both conditions)

if are_dependent(tuple(V.gens()[1]), firstgen_list) or

are_dependent(tuple(V.gens()[0]),

secondgen_list):

# If dependent, return max(r1, r2)

rmax = max(r1, r2)

return [rmax]

# If not dependent (linearly independent), return gcd and lcm

return [gcd(r1, r2), lcm(r1, r2)]

The function find largest order element(generator list) iterates through the list
of generators of a submodule, computes the order of each element, and returns the element
from the list that corresponds to the largest computed order.

def find_largest_order_element(generator_list):

largest_order = 0

largest_order_element = generator_list[0] # Initialize first element

for element in generator_list:

order = element.order()

if order > largest_order:

largest_order = order

largest_order_element = element
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return largest_order_element

The function SubmoduleRank(V) reduces the generator list of a submodule V of Z/nZ→

Z/nZ to at most two generators, prioritizing combinations involving the generator of highest
order.

def SubmoduleRank(V):

R = V[0][0].base_ring()

M = R^2

V_sub = M.submodule(V)

generators = V_sub.gens()

n = len(R)

if len(generators) == 0:

return M.submodule([]) # Submodule gen. by (0,0)

if len(generators) == 1:

return M.submodule([generators[0]]) # Submodule with one generator

#m is the index of one of the generators with the highest order

m = generators.index(find_largest_order_element(generators))

#V_elements is the set with all the elements in V

V_elements = set(V)

# Iterate through pairs of generators

for i in range(len(generators)):

if set([tuple(a*generators[m]+(b*generators[i])) for a in range(n)

for b in range(n)])

== V_elements:

return M.submodule([generators[m], generators[i]])

The function GL2FixModule(H) takes a finite subgroup of GL(2,Z/nZ) as input and
computes the abelian group invariants of the submodule of (Z/nZ)2 fixed pointwise by the
left matrix multiplication action of every element in H.

• It initializes a list V containing all elements of (Z/nZ)2.

• It iterates through the generators h of H. In each iteration, it filters the list V, keeping
only those elements v such that h · v = v. After checking all generators, V contains the
set of elements fixed by all of H.

• It then calls SubmoduleRank(V) on this list of fixed elements to obtain a representation
of the fixed submodule, aiming for at most two generators.
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• Finally, it passes this resulting submodule object to GL2ModuleInvariants to calculate
and return the list of invariants (typically [], [a], or [a, b] where a | b | n).

from sage.modules.free_module_element import vector

from sage.matrix.constructor import Matrix

def GL2FixModule(H):

# Determine the ring Z/nZ

R = H.base_ring()

M = R^2

# Find the submodule fixed by the left action of H.

# Start with all of (Z/nZ)^2. In Magma this is Eigenspace(Identity(H),1);

V = [(x, y) for x in R for y in R] # (Z/nZ)^2 represented as a list of tuples

# In Magma take of transpose h_sage (Magma default is right action!)

for h in H.gens(): #Iterate over the generators, as that is sufficient.

new_V = []

for v in V:

v = vector(R, list(v))

h_sage = Matrix(R,h) #Convert h to a standard Sage matrix

if (h_sage * v == v):

new_V.append(tuple(v))

V = [value for value in V if value in new_V]

"""

SubmoduleRank(V) limits the generating set to two elements. However,

the two generating elements may not be linearly independent so inside

the GL2ModuleInvariants(V) function, we have an extra filter to deal with that.

"""

V_twogen = SubmoduleRank(V)

return GL2ModuleInvariants(V_twogen)

The function GL2IsSubModule(A, B) takes two lists of integers, A = [a1, a2] and B =
[b1, b2], representing the abelian group invariants of two Z/nZ-modules, MA and MB, re-
spectively. It returns True if MA is isomorphic to a submodule of MB, and False otherwise.

def GL2IsSubModule(A, B):

i = len(B) - len(A)

if i < 0:

return False
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# loop with python 0-based indexing

for j in range(len(A)):

if B[i + j] % A[j] != 0: # python indexing starts at 0. Magma starts at 1.

return False

return True

The function GL2ContainsCC(H) checks if a given subgroup H of GL(2,Z/nZ) contains
an element h with trace tr(h) = 0 and determinant det(h) = ↗1 such that the cyclic subgroup
C = ↖h↙ fixes a submodule of (Z/nZ)2 isomorphic to Z/nZ. This latter condition implies
that h fixes at least one element of order n in (Z/nZ)2.

The implementation iterates through elements h ↔ H, testing det(h) = ↗1 and tr(h) = 0.
If these hold, it then verifies the fixed submodule condition using GL2IsSubModule([n],

GL2FixModule(↖h↙)). The function returns True if such an h is found, and False otherwise.
(Note: This method of checking the determinant, trace, and the fixed submodule of the cyclic
group is stated to be faster than explicitly checking if H contains an element conjugate to(
1 0
0 ↗1

)
or

(
1 1
0 ↗1

)
).

def GL2ContainsCC(H):

R = H.base_ring()

found = False

for h in H:

h_sage = Matrix(R, h)

if h_sage.det() == -1 and h_sage.trace() == 0:

#Check this element to see if its’ GL2SubModule stuff works.

invariants_base_ring = [R.cardinality()] # size of R = Z/nZ

cyclic_group = H.subgroup([h])

invariants_fixed_module = GL2FixModule(cyclic_group)

if GL2IsSubModule(invariants_base_ring, invariants_fixed_module):

found = True

break # Exit the loop early once a suitable element is found

return found

The final algorithm presented in this section incorporates the following result from [38],
which allows us to add an e!ective computational filter.

Theorem A.1.1. Let E/Q be an elliptic curve. If there is an integer n ⇐ 2 such that
Q(E[n]) = Q(ςn), then n = 2, 3, 4, or 5. More generally, if Q(E[n])/Q is abelian, then
n = 2, 3, 4, 5, 6, or 8. Moreover, Gal(Q(E[n])/Q) is isomorphic to one of the following
groups:
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n 2 3 4 5 6 8

Gal(Q(E[n])/Q)
{0}
Z/2Z
Z/3Z

Z/2Z
(Z/2Z)2

Z/2Z
(Z/2Z)2
(Z/2Z)3
(Z/2Z)4

Z/4Z
Z/2Z→ Z/4Z

(Z/4Z)2
(Z/2Z)2
(Z/2Z)3

(Z/2Z)4
(Z/2Z)5
(Z/2Z)6

Furthermore, each possible Galois group occurs for infinitely many distinct j-invariants.

Corollary A.1.1. For any n ⇐ 9, and any elliptic curve E/Q, the image of εE,n is non-
abelian.

This result allows us to add the condition that any subgroup must be non-abelian as a
filter in our code. This significantly restricts the pool of candidate subgroups, making the
computation more e$cient, although it should be noted that the algorithm’s runtime still
grows substantially with n.

The function GL2Subgroups with surjectivedet CC(n) computes a list of representa-
tives for conjugacy classes of subgroups of G = GL(2,Z/nZ). The returned subgroups satisfy
the following conditions:

1. Surjective Determinant: The map det : H ↑ (Z/nZ)→ is surjective. This is checked
by verifying that the set {det(h) | h ↔ H} is equal to the set of units modulo n.

2. Contains Complex Conjugation Element: The subgroup H must contain an
element satisfying the criteria checked by the helper function GL2ContainsCC(H).

3. Non-Abelian Pre-filter (Conditional): If n ⇐ 9, the function first filters the
initial list of all conjugacy class representatives, keeping only the non-abelian ones
before applying checks (1) and (2). If n < 9, all representatives are considered.

The function iterates through the appropriate set of subgroup representatives, applies these
checks, and returns a list containing those subgroups that satisfy all applicable conditions.

def GL2Subgroups_with_surjectivedet_CC(n):

# Define GL(2, Z/nZ)

GLN = GL(2, IntegerModRing(n))

# Get the set of numbers coprime to n

coprime_set = set(x for x in range(1, n) if gcd(x, n) == 1)

# Generate all possible subgroups (this may be slow for large n)

subgroups = GLN.conjugacy_classes_subgroups()

if n >= 9:

subgroups = [H for H in subgroups if not H.is_abelian()]

# List to store subgroups with surjective determinant maps and CC

surjectiveCC_subgroups = []
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for H in subgroups:

# Compute the set of determinants for this subgroup

determinants = {mat.matrix().det() for mat in H}

# If the set of determinants is equal to the set of numbers coprime to n

if determinants == coprime_set:

if GL2ContainsCC(H) == True:

surjectiveCC_subgroups.append(H)

return surjectiveCC_subgroups

A.2. CODE for Horizontal Entanglements

The function coprime divisor pairs(n) takes a positive integer n as input. It returns
a list of all unique pairs (d1, d2) where d1 and d2 are positive divisors of n and are coprime
to each other. Each pair is typically represented as a tuple.

def coprime_divisor_pairs(n):

divs = divisors(n) # Get divisors and sort them

coprime_pairs = []

for i in range(1, len(divs)): # Start range at first index to avoid 1

for j in range(i, len(divs)): # Iterate from i onwards avoid duplicates

if gcd(divs[i], divs[j]) == 1:

coprime_pairs.append((divs[i], divs[j]))

return coprime_pairs

The function reduce subgroup mod c(subgroup, n, c) reduces a subgroup of GL2(Z/nZ)
modulo c, where c is a divisor of n.

def reduce_subgroup_mod_c(subgroup, n, c):

if n % c != 0:

raise ValueError("c must be a divisor of n.")

Zn = IntegerModRing(n)

Zc = IntegerModRing(c)

GLc = GL(2, Zc) #Define general linear group GL(2, Z/cZ)

def reduce_mod_c(matrix_in_Zn):

"""Reduces a 2x2 matrix over Z/nZ to a 2x2 matrix over Z/cZ."""

matrix_Zn = matrix(Zn, matrix_in_Zn.list())

return GLc(matrix(Zc, [[matrix_Zn[i, j] % c for j in range(2)]

for i in range(2)]))
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reduced_subgroup = [reduce_mod_c(g) for g in subgroup]

return reduced_subgroup

The function GL mod homomorphism(N, M) computes the kernel of the natural reduction
homomorphism ↽ : GL2(Z/NZ) ↑ GL2(Z/MZ). The function returns a representation of
this kernel as a list of matrices.

def GL_mod_homomorphism(N, M):

if N % M != 0:

raise ValueError("M must divide N for the reduction to be well-defined.")

# Define the general linear groups

GLN = GL(2, IntegerModRing(N))

GLM = GL(2, IntegerModRing(M))

# Define the identity matrix in GL(2, Z/MZ)

I_M = GLM(matrix(IntegerModRing(M), [[1, 0], [0, 1]]))

# Define the homomorphism that reduces entries modulo M

def modM_homomorphism(MN):

MN_sage = matrix(IntegerModRing(N), MN.list())

return GLM(matrix(IntegerModRing(M), [[MN_sage[i, j] % M for j in

range(2)] for i in range(2)]))

# Compute the kernel: elements mapping to the identity matrix mod M

kernel = [MN for MN in GLN if modM_homomorphism(MN) == I_M]

return kernel

We now present the SageMath implementation for computing all (a, b)-horizontal en-
tanglements of an elliptic curve such that gcd(a, b) = 1. This implementation utilizes the
functions previously defined in this section and employs generators of the mod-mE Galois
image, εE,mE , sourced from the LMFDB database. The methodology will be illustrated by
presenting the specific code used to compute all horizontal entanglements for the elliptic
curve with LMFDB label 300.b2.

Example A.2.1.
n = 30

G = GL(2, Integers(n))

gens = [G([[21,16],[25,21]]), G([[1,0],[6,1]]), G([[25,6],[24,7]]),

G([[5,6],[18,29]]),

G([[2,5],[1,3]]), G([[1,6],[0,1]])]

H = G.subgroup(gens)

coprime_pairs = coprime_divisor_pairs(n)

for pair in coprime_pairs:
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a = pair[0]

b = pair[1]

c = lcm(a,b)

GLc = GL(2, Integers(c))

Gc = reduce_subgroup_mod_c(H, n, c)

ker_a = GL_mod_homomorphism(c, a)

ker_b = GL_mod_homomorphism(c, b)

Na = [x for x in ker_a if x in Gc]

Nb = [x for x in ker_b if x in Gc]

GroupGc = GLc.subgroup(Gc)

Nab = GLc.subgroup(Na+Nb)

if len(Nab) < len(GroupGc):

print(f"({a},{b})-entanglement with size {len(GroupGc)/len(Nab)}")

In the preceding example, the elliptic curve has an adelic level of 30, which determined
our choice of n = 30. The specific generators for εE,mE(GQ) used were obtained from the
LMFDB data for that curve. To apply this code for computing horizontal entanglements of
an arbitrary elliptic curve, two modifications are necessary:

1. The variable n must be set to the adelic level of the desired elliptic curve.

2. The set of generators must be replaced with those corresponding to εE,mE(GQ) for the
target elliptic curve, typically also sourced from a database like LMFDB.

A significant limitation, however, is the computational cost: as n (the adelic level) becomes
very large, the execution time for these computations can increase substantially, potentially
becoming prohibitively long.

For non-coprime pairs (a, b), the implementation requires a modification from the coprime
case presented above. The following example checks for (14, 21)-entanglement for the elliptic
curve with LMFDB label 2541.f1.

Example A.2.2.
a = 14

b = 21

c = lcm(a,b)

d = gcd(a,b)

G = GL(2, Integers(c))

gens = [G([[1,0],[6,1]]), G([[4,3],[9,7]]), G([[38,9],[1,22]]),

G([[3,4],[8,11]]), G([[37,6],[36,7]]), G([[39,40],[32,35]]), G([[1,6],[0,1]]), G([[31,6],[9,19]])]

Gc = G.subgroup(gens)

ker_a = GL_mod_homomorphism(c, a)

ker_b = GL_mod_homomorphism(c, b)

ker_d = GL_mod_homomorphism(c, d)

Na = [x for x in ker_a if x in Gc]

Nb = [x for x in ker_b if x in Gc]
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Nd = [x for x in ker_d if x in Gc]

Nab = G.subgroup(Na+Nb)

if len(Nab) < len(Nd):

print(f"({a},{b})-entanglement with size {len(Nd)/len(Nab)}")

In the preceding example, the specific generators for εE,42(GQ) used were obtained from
the LMFDB data for that curve.
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