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Abstract

Feature-Centric Approaches to Non-Intrusive Load Monitoring and Appliance
Identification

Muhammad Asad

Load disaggregation refers to estimating appliance-level consumption from overall household

energy data. It includes tasks like load identification and energy disaggregation. Researchers are

actively developing various machine learning and deep learning techniques to disaggregate total

household energy consumption into appliance-level usage. At the same time, many are focusing on

identifying individual appliance loads to detect faulty devices or to improve the overall disaggrega-

tion process. This thesis makes two significant contributions to the field, addressing the challenges

of total load separation and appliance identification. The first contribution focuses on energy disag-

gregation using a simplified Feed-Forward Neural Network architecture optimized for performance

and efficiency. Oversampling techniques are developed for training data to improve the detection of

appliance activation cycles. Furthermore, the model incorporates additional features derived from

aggregate consumption profiles, enhancing input diversity and robustness. This approach is tested

on the RAE, REFIT, and REDD datasets under both clean and noisy conditions. The second contri-

bution addresses appliance-level load identification using a Kolmogorov–Arnold Network, offering

a lightweight and efficient alternative to deep models. Around 75 features are extracted from voltage

and current signals, grouped into statistical, power-related, and frequency-domain categories. An ef-

fective feature selection process is conducted using multiple tests and correlation matrices to retain

only the most informative inputs, thereby reducing model complexity and enhancing generaliza-

tion. Additionally, we tune the hyperparameters of the KAN to control the degree of oversampling,

allowing it to better handle imbalanced data. The model is evaluated using three public datasets:

COOLL, PLAID, and WHITED.
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Chapter 1

Introduction

Energy consumption is a fundamental driver of modern life; however, it also produces exter-

nalities that must be acknowledged and addressed. About 73% of global electricity comes from

fossil fuels and nuclear power, with coal making up 36.4% Akbar et al. (2024). Nearly 60% is

consumed by homes and businesses Akbar et al. (2024); Faustine, Mvungi, Kaijage, and Kisangiri

(2017), leading to environmental concerns like CO2 emissions and global warming Kelly and Knot-

tenbelt (2015). Recent studies show that providing appliance-level energy data to consumers can

reduce annual consumption by up to 12% Akbar et al. (2024); Bonfigli et al. (2018). Non-Intrusive

Load Monitoring (NILM) is the process of obtaining the energy usage of each appliance from a

single metering site Akbar et al. (2024); Bucci, Ciancetta, Fiorucci, and Mari (2020). The potential

for energy savings arises from a combination of factors involving both residential consumers and

energy providers. Due to increasing usage of electricity, limited energy resources, and increasing

demand for electrical appliances, it has become essential for users to monitor their energy usage and

manage it. For consumers, having detailed data on appliance energy usage empowers them to take

steps to lower their bills, such as by replacing older, inefficient devices with more energy-efficient

models. Meanwhile, energy providers can use this data to forecast energy demand more accurately,

implement improved management strategies, and mitigate the risk of overloading or blackouts in

the energy grid Abubakar, Khalid, Mustafa, Shareef, and Mustapha (2017); Bonfigli et al. (2018).

NILM assists users by providing appliance-level energy data. It involves breaking down the

total power consumption of a building into individual appliance usages without installing sensors
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on each device. Load identification, on the other hand, is the process of recognizing different ap-

pliances by analyzing their voltage and current signals. This step is fundamental for NILM, as it

helps determine the number and types of appliances present, as illustrated in Figure 1.1. Addi-

tionally, load identification enables users to detect faulty appliances that consume excessive energy,

which can impact costs and waste resources. These tasks can be addressed using either super-

vised or unsupervised methods. In supervised learning, machine learning models are trained with

labeled power and signal data for NILM and load identification. Conversely, unsupervised meth-

ods use unlabeled data, requiring the models to learn patterns on their own through clustering or

generative models. Supervised approaches typically achieve higher accuracy but depend on costly,

labor-intensive labeled datasets, limiting scalability. Unsupervised approaches are more adaptable

but often face lower accuracy and difficulties in accurately identifying appliances. A key challenge

in NILM is differentiating between similar power signatures among various appliances, overlapping

usage patterns, and changing power consumption behaviors over time, making precise disaggrega-

tion inherently difficult. Moreover, the absence of standardized and limited labeled datasets and the

challenge of applying models across different households in real time present ongoing obstacles for

both methods.

Figure 1.1: Flowchart of Load Identification and Non-Intrusive Load Monitoring

1.1 Problem Formulation

This section formulates the problem statement of NILM and load identification mathematically,

highlighting the enhancements introduced to improve performance.
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1.1.1 Non-Intrusive Load Monitoring

The goal of NILM is to disaggregate the total power consumption of a building into individual

appliance-level power signals. Let the total power consumption at time t, denoted as P (t), be the

sum of the power consumed by N individual appliances as shown in equtation 1.

P (t) =
N∑
i=1

Pi(t) + ε(t) (1)

where P (t) is the total measured power at time t, Pi(t) is the power consumed by the ith

appliance at time t, and ϵ(t) represents noise or measurement error. In a denoised scenario, the

term ϵ(t) equals zero, whereas in a noisy scenario, ϵ(t) can include both measurement noise and

interference from other appliances, such as unknown or always-on devices. The objective of NILM

is to estimate Pi(t) for each appliance i from the total power signal P (t). This can be expressed as:

P̂i(t) = f(P (t), θ) (2)

where P̂i(t) is the estimated power consumption of appliance i at time t, f(·) is a function

(model) that disaggregates the total power P (t) into individual components, and θ represents the

parameters of the model.

1.1.2 Load Identification

The goal of Load Identification is to determine the state of the appliance (ON or OFF) by

analyzing the energy data of the house’s main supply lines (aggregate profiles). Every appliance has

its own unique current and power, which can be used to generate distinct features such as current

harmonics, reactive power, and apparent power. Whenever an appliance changes its status (OFF ->

ON), it generates certain types of fluctuations in the current that alternatively cause changes in the

features. These changes are then used to identify the loads Jiang, Wang, Qiu, Li, and Zhang (2025).

Let, for each appliance i at time t, the voltage and current waveforms which are sampled over a

3



window of length L as shown in Equations (3-4).

vx(t) = [vx(t1), vx(t2), . . . , vx(tL)] ∈ RL (3)

ix(t) = [ix(t1), ix(t2), . . . , ix(tL)] ∈ RL (4)

where x ∈ {1, 2, . . . , N} is the appliance index, t is the time index, and it refers to a specific

sampling window. Additionally, L refers to the number of samples in each waveform segment,

and vx(tk), ix(tk) are voltage and current samples for the appliance x, respectively. The feature

extraction function ϕ(·), which transforms the raw waveform current signal of the appliance x into

a feature vector, can be defined as follows.

vx(t) = ϕ (ix(t)) ∈ Rd (5)

ϕ(·) may include statistical, frequency-domain, or time-domain features. vx(t) is a feature vector

for appliance i at time t and d is the dimensionality of the feature vector. This feature vector vx(t)

is then used to train the classification model f to map it to the ON/OFF probability of the appliance

x as shown in Equation 6.

ŷi(t) = f (vx(t), θi) (6)

where ŷi(t) are predicted appliances and θi is the parameter for model f .

1.2 Related Work

This section reviews recent and well-established research studies conducted in the domains of

NILM and load identification. It highlights key developments, methodologies, and contributions

that have shaped the current landscape of this field.
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1.2.1 Non-Intrusive Load Monitoring

In recent research, Moreno et al. (2024) proposes two convolutional neural networks (CNNs):

VGG16 and MobileNet. VGG16 is a well-known model recognized for its deep architecture and

capacity to capture detailed spatial hierarchies, making it effective for feature extraction. In con-

trast, MobileNet is optimized for efficiency, employing depthwise separable convolutions to reduce

computational demands while maintaining high accuracy. The paper introduces a weighted aver-

age confidence voting (WeCV) ensemble method, which combines predictions from both VGG16

and MobileNet to capitalize on their individual strengths, resulting in improved accuracy. In Yaniv

and Beck (2024), the authors apply Robust Principal Component Analysis (RPCA) to reduce data

dimensionality, isolating the most significant features for distinguishing between different electri-

cal appliances, thereby enhancing classification with lower computational costs. In Chouchene,

Amayri, and Bouguila (2024), sparse coding is used to develop a compact, efficient representation

of energy consumption data, emphasizing key features. Transfer learning is also applied to lever-

age pre-existing knowledge from related tasks, enhancing model performance in identifying and

isolating the energy usage of individual appliances from a single aggregate signal.

In Shang, Chen, Chen, and Lu (2024), a graph neural network is proposed to exploit the in-

terconnected nature of household appliances by modeling their relationships as a graph. Initially,

Gaussian random variables represent the graph edges, which are later refined based on observed

appliance interrelationships, enabling simultaneous disaggregation of multiple appliances’ energy

consumption. Finally, Narges Zaeri Esfahani and Bahiraei (2024) presents a method for disaggre-

gating total energy use in commercial buildings into primary end-uses like lighting, cooling, and

heating. Using time series decomposition, this method separates energy data into components rep-

resenting distinct usage patterns, validated against actual submetered data from ten office buildings

in Ottawa, Canada, demonstrating its effectiveness in providing detailed energy insights without

extensive submetering infrastructure. Most recent research in NILM focuses on optimizing the

problem using novel methods and techniques.
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1.2.2 Load Identification

In recent studies, Yan, Hao, Nardello, Brunelli, and Wen (2025) proposes a weighted trans-

ferable random forest (WTRF) model for generalizable load identification. WTRF uses transfer

learning to adapt to new homes with only 1–3 labeled samples per appliance, updating a subset

of decision trees via the Improved Structure Expansion/Reduction (ISER) algorithm. It is being

tested on a Raspberry Pi 4 Board to evaluate its performance in an edge computing environment.

Raspberry Pi has been widely used in most of NILM research because of its cost-effectiveness and

support Kotsilitis, Marcoulaki, and Kalligeros (2024); Wu et al. (2023); Yan et al. (2025). In Mylona

and Bouhouras (2025) the authors present a Digital Twin-based NILM framework that uses CNNs

to classify appliance operation in real time from images of odd harmonic current distortions, specifi-

cally 3rd and 5th harmonic features. A VGG16-based CNN is used for classification, achieving high

accuracy in detecting single, combined, and event-based appliance states. It outperforms existing

models with fewer features and enables interactive monitoring through digital twin integration.

Lu et al. (2025) proposes a color-coded image-based load identification method that maps re-

active power, power factor, and current sequence features to RGB channels, integrating harmonic

information into mixed-color images. A lightweight model using Residual Shrink Building Unit

with Channel-Shared Threshold (RSBU-CW) residual units is developed and achieves high accu-

racy across multiple datasets. Compared to ordinary color image methods, the mixed-color approach

improves recognition accuracy. The method enhances smart grid reliability by enabling real-time

monitoring and fault detection. Limitations include restricted load diversity and a lack of testing on

higher-voltage systems.

In de Aguiar et al. (2025), the authors introduce a new high-frequency public dataset and a

framework for jointly identifying electrical loads and photovoltaic (PV) distributed generation (DG)

in NILM systems. The dataset includes voltage and current signals sampled at 1 kHz from residen-

tial appliances and a PV inverter. The authors test deep learning models, including InceptionTime,

DeepDFML, and Sequencer, in three classification tasks: identifying only the inverter, only loads,

and both together. Appliances include resistive (e.g., electric iron) and nonlinear loads (e.g., in-

duction motor, drill + transformer, dimmer). The framework evaluates how DG presence affects
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load classification and vice versa. The study shows that PV presence slightly affects nonlinear load

classification but not inverter detection. A limitation is the small number of appliances and the need

for more diverse real-world scenarios to improve generalization.

In Gao, Zhang, Wang, Tan, and Liang (2025) the authors proposed a model consisting of a fea-

ture extraction layer, a channel attention module, and a linear layer. Its process starts by converting

the steady-state voltage and current signals from an electrical device into a colored V-I trajectory

map. This map, which uses color to represent various electrical characteristics, serves as the input

image for a CNN. The CNN automatically extracts spatial features from the image using its convo-

lutional and pooling layers. Following this, the channel attention mechanism analyzes the extracted

features. It generates weights for each feature channel by using global pooling and fully connected

layers. This allows the model to adaptively adjust the contribution of different channels, effectively

focusing on the most important features for identification. Finally, these re-weighted features are

processed by the linear layer to classify the appliance.

1.3 Contributions

This research examines load disaggregation, focusing on NILM and its sub-task, Load Identifi-

cation. The key contributions of this thesis are outlined as follows:

• Feed Forward Neural Network for Non-Intrusive Load Monitoring: In this study, we

developed a NILM method based on a simple and effective Feedforward Neural Network

(FFNN). The training data is oversampled to enhance the detection of appliance activation

cycles. Additional features are incorporated by utilizing both aggregate profiles, improving

model input diversity.

• Appliance Identification Using Kolmogorov–Arnold Networks with Extended Feature

Extraction and Saliency Analysis: In this study we design a straightforward yet efficient

Kolmogorov-Arnold Network (KAN) model for load identification. Approximately 75 dis-

tinct features across three categories have been extracted from the voltage and current data.

Moreover, only effective features are selected for training the model by using effective feature
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analysis. To evaluate the scalability of the approach, a substantial number of appliances from

3 different datasets have been used in the investigation to study the performance of the model

as the number of appliances increases.

1.4 Thesis Overview

This thesis is structured into four chapters as follows:

• Chapter 1 presents the background and objectives of the research. It defines the problem

statement, reviews existing theories and literature on load disaggregation, and highlights the

key contributions of this thesis.

• Chapter 2 explores NILM for household energy consumption. It introduces a FFNN model

enhanced with oversampling and feature amplification techniques to improve appliance disag-

gregation performance. The chapter concludes with an evaluation of the FFNN across various

datasets and a discussion of the results.

• Chapter 3 introduces a new supervised load identification technique for recognizing individual

appliances. Despite limited labeled data, the model demonstrates the ability to accurately pre-

dict various appliances. The proposed approach is trained and evaluated using three datasets.

Additionally, the section explains the feature extraction process and discusses the importance

of each extracted feature.

• Chapter 4 concludes the thesis by summarizing the key findings and main contributions of the

research.

8



Chapter 2

Feed Forward Neural Network for

Non-Intrusive Load Monitoring

2.1 Introduction

Energy disaggregation presents several critical challenges. One of the primary difficulties is the

overlapping appliance signatures, where devices with similar energy consumption patterns generate

nearly indistinguishable load profiles, making it hard to differentiate between them. Furthermore,

the detection of low-power appliances becomes even more challenging when their activations over-

lap with high-power appliances, as the larger consumption masks the smaller. External noise and

signal interference further complicate the analysis, distorting the data and making it harder for

models to classify appliance usage accurately. Additionally, many appliances operate in multiple

states, adding complexity to their identification since their transient and steady-state behaviors vary

significantly. Generalization is another key issue; models trained on data from one household of-

ten struggle when applied to new households with different sets of appliances and usage patterns.

Moreover, ensuring real-time energy data processing while maintaining privacy is a major concern,

as is the challenge of achieving cost-effective deployment in practical, real-world scenarios.

From an algorithmic perspective, a well-designed privacy-protected energy disaggregation model

for NILM should meet the following criteria:
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• Achieve high accuracy.

• Perform consistently in the presence of noise, varying appliance behavior (different opera-

tional modes), or incomplete data (partial activations).

• Be computationally efficient, utilizing minimal resources during operation.

Most existing models tend to excel in one of these areas while compromising on the others. Owing

to their remarkable performance in disaggregation tasks, machine learning techniques have been

extensively utilized. For instance, the Hidden Markov Model (HMM) is employed in Makonin,

Popowich, Bajić, Gill, and Bartram (2016), and the multi-sequential, non-flush factorial hidden

Markov model (MN-FHMM) in Liang and Ma (2020), along with various other HMM variations.

For a comprehensive overview of recent studies, refer to Angelis, Timplalexis, Krinidis, Ioan-

nidis, and Tzovaras (2022). Additionally, solutions leveraging Support Vector Machines (SVM)

Figueiredo, de Almeida, and Ribeiro (2012), Decision Trees Gillis, Alshareef, and Morsi (2016),

k-Nearest Neighbor (KNN) Figueiredo et al. (2012), and numerous other machine learning models

have been proposed.

Deep Neural Networks (DNNs) have attracted considerable attention in recent years, as they

have demonstrated exceptional performance in load disaggregation. In Nie, Yang, and Xu (2022),

the authors proposed an encoder-decoder model, where the encoder transforms the input into an

embedding matrix and feeds it into a residual neural network (ResNet50). The decoder employs a

Transformer architecture with multiple attention mechanisms, which increases its complexity but

yields promising results. In the same study, the authors discuss the benefits and limitations of sev-

eral deep learning models. In contrast, the authors in Bonfigli et al. (2018) introduced a Denoising

Auto-Encoder-Decoder model, which is more lightweight. This model incorporates convolutional,

max-pooling, up-sampling, and dense layers, along with an early-stopping criterion to prevent over-

fitting. Additionally, dropout layers were employed. Though the overall results are satisfactory,

the model underperforms significantly for certain appliances. In Y. Liu, Liu, Shen, Zhao, and Gao

(2021) the authors proposed a Deep Dictionary model in which, first, an adaptive window-based

detection technique is used to manage different types of overlapping combinations and detect state

changes. Next, a deep dictionary learning model is proposed for real-time load monitoring. Lastly, a
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sparse coding algorithm is formulated to address the simultaneous occurrence of multiple switching

events effectively. This model performs well in handling the overlap of various electrical appliances.

However, it has a limitation in that it struggles to identify unknown appliances.

In Rafiq, Manandhar, Rodriguez-Ubinas, Ahmed Qureshi, and Palpanas (2024), the authors

compare deep learning, machine learning (ML), and advanced machine learning models compre-

hensively. The paper highlights that traditional ML models, such as Support Vector Machine (SVM)

Altrabalsi, Liao, Stankovic, and Stankovic (2014), Artificial Neural Network (ANN), K-Nearest

Neighbors (K-NN) Altrabalsi et al. (2014), Naive Bayes and Decision Tress (DT) Gillis et al. (2016),

are relatively easy to implement and require significantly fewer computational resources compared

to deep learning models. However, this simplicity comes at the expense of reduced accuracy. On the

other hand, deep learning models including Recurrent Neural Networks (RNN) Linh and Arboleya

(2019), Long Short-Term Memory (LSTM) Song et al. (2021), Bi-directional LSTM (Bi-LSTM)

Rafiq, Shi, Zhang, Li, and Ochani (2020), Convolutional Neural Networks (CNN) Athanasiadis,

Doukas, Papadopoulos, and Chrysopoulos (2021), Autoencoders Massidda, Marrocu, and Manca

(2020), and Gated Recurrent Units (GRU) Kalinke, Bielski, Singh, Fouché, and Böhm (2021) offer

superior accuracy and, when optimized, perform exceptionally well in disaggregation tasks. Despite

their effectiveness, these models require substantial computational power and vast labeled datasets

for training, which can be limiting in practical scenarios. To address these challenges, we proposed a

deep learning feed-forward neural network model that is both computationally efficient and capable

of delivering good or acceptable results. By introducing novel features and employing oversampling

techniques, we were able to enhance the model’s performance without sacrificing computational ef-

ficiency. The operating characteristics of the appliance include harmonics, active power, voltage,

current, and V-I trajectory Nie et al. (2022); Wang, Chen, Guo, and Xu (2021). The majority of

contemporary research is centered on active power Akbar et al. (2024); Athanasiadis et al. (2021);

Bonfigli et al. (2018); Bucci et al. (2020); Kalinke et al. (2021); Linh and Arboleya (2019); Mas-

sidda et al. (2020); Nie et al. (2022); Rafiq et al. (2020); Song et al. (2021); Todic, Stankovic, and

Stankovic (2023). In this study, we are also using active power for disaggregation.
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2.2 Methodology

For pattern recognition and time-series data processing, Convolutional Neural Networks (CNNs)

and Long Short-Term Memory networks (LSTMs) are very efficient, but they require a lot of compu-

tational resources. We propose a simpler yet effective Feed-Forward Neural Network (FFNN) model

to overcome this constraint. We increased the number of hidden layers, the number of neurons in

each hidden layer, and the number of input features in order to improve accuracy and detection

of appliance activation patterns. To ensure reliable model performance, the training data was also

oversampled to account for varying appliance activation patterns. This approach improves accuracy

across different appliances, with modest gains for some and substantial improvement for others

while maintaining low computational demands. Figure 2.1 outlines the workflow of the proposed

NILM method based on a Feed Forward Neural Network (FFNN) model. Energy consumption data

are initially gathered from households across three regions using the RAE Makonin (2017), REDD

Kolter and Johnson (2011), and REFIT Murray, Stankovic, and Stankovic (2017) datasets. This data

then undergoes preprocessing to ensure quality and consistency. During preprocessing, outliers are

removed to allow for uniform normalization, and two scenarios Noised and Denoised are created for

relevant datasets. After preprocessing, the data is split into training, validation, and testing sets. To

enhance model performance, particularly for detecting appliance activation cycles, oversampling is

applied to the training and validation sets. In the oversampling process, the refrigerator is used as a

reference appliance to compensate for the low activation frequency of appliances like washers, dry-

ers, dishwashers, and electric heaters. The FFNN model is then trained on the oversampled training

data and fine-tuned with the oversampled validation set. Once trained, the model is investigated on

the test data to generate the final disaggregation output. Seven different evaluation metrics are used

to assess the model’s accuracy, providing a comprehensive analysis of its performance. Lastly, a

comparative analysis is conducted on washers from the three different regions. This analysis re-

veals that appliances from various regions or brands exhibit distinct activation patterns, which leads

to varying model behavior for the same appliance across different datasets.

This section begins by presenting the architecture of our proposed approach, a Feed Forward

Neural Network (FFNN) model. Following this, we describe the architecture of the benchmark
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Figure 2.1: Flowchart of the whole study. where Train, Val., and Test are training, validation, and
test sets respectively

approach, a Denoising Auto-encoder (DAE) from Bonfigli et al. (2018), used as a baseline for com-

parison. A comparative analysis is conducted to evaluate the accuracy and effectiveness of our

model against the DAE model. Finally, we discuss the data preprocessing steps and the oversam-

pling technique applied to enhance model performance.

2.2.1 Proposed Approach

FFNN is an artificial neural network where information flows in a single direction from the input

layer, through one or more hidden layers, to the output layer. Each neuron in a layer receives input

from the previous layer, processes it with weights and an activation function, and passes the result

forward. No feedback connections exist, meaning data does not cycle through the network.

Our network comprises 11 layers, including an input layer, an output layer, and 9 hidden layers.

Each layer employs the ReLU activation function, except for the output layer. ReLU is a linear

function that outputs the input value when it is positive, and zero otherwise, effectively preventing

negative values in the disaggregated active power. The parameters of the network are provided in
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Table 2.1. We increased both the number of layers and neurons per layer to enhance the model’s ca-

pacity for pattern recognition. However, the current configuration represents the maximum number

of neurons and layers that provided satisfactory results. Further increasing the layers and neurons

did not improve the model’s performance and could negatively impact computational efficiency.

Table 2.1: Parameters for FFNN
Layer Number of Neurons Activation Function
Input 2 ReLU

Hidden 1 10 ReLU
Hidden 2 30 ReLU
Hidden 3 40 ReLU
Hidden 4 50 ReLU
Hidden 5 60 ReLU
Hidden 6 70 ReLU
Hidden 7 80 ReLU
Hidden 8 90 ReLU
Hidden 9 100 ReLU
Output 1 -

2.2.2 Benchmark Approach

In Bonfigli et al. (2018), the authors address the NILM (Non-Intrusive Load Monitoring) prob-

lem as a denoising challenge and propose a Denoising Auto-Encoder (DAE) model. The model

architecture is structured as follows: the encoder consists of one or more convolutional layers to

generate feature maps, each utilizing a linear activation function. Each convolutional layer is fol-

lowed by max-pooling layers, with additional convolutional and pooling layers to further process

the data. Before the decoder, the model incorporates one or more fully connected layers with ReLU

activation. The decoder mirrors the encoder, but max-pooling layers are replaced with upsampling

layers.

The model is optimized by minimizing the mean square error, and training is conducted us-

ing Stochastic Gradient Descent (SGD) with Nesterov momentum Sutskever, Martens, Dahl, and

Hinton (2013), along with early stopping to prevent overfitting. During the disaggregation phase,

overlapping signal components are combined using a median filter applied in a sliding window

analysis of the aggregated power data.
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2.2.3 Data Preprocessing

Numerous anomalies (shown in figure 2.2) were identified in the appliance-level data during

the REFIT dataset’s preprocessing phase. These outliers were removed before training, as their

enormous values could skew the mean and variance, leading to complications during normalization.

In real-world data, noise and recording errors are common across most domains. This is particularly

true in energy disaggregation, where researchers often create denoised scenarios for simplicity and

to assess model performance accurately. Following this approach, we propose two scenarios for

the REFIT dataset: a noised and a denoised scenario for each appliance. In the noised scenario,

as utilized in Bonfigli et al. (2018), the aggregate profiles include contributions from unknown

appliances not explicitly recorded in the dataset. Noise is further introduced as different appliances

intermittently connect and disconnect from power outlets.

Figure 2.2: Box plot for House 2 REFIT dataset. Anomalies (outliers) are marked with red circles.
Appliances are displayed on the x-axis. The y-axis represents the power in watts.

In the denoised scenario, in Bonfigli et al. (2018), the aggregate signal consists of the summed

disaggregated power profiles of each appliance. For the denoised scenario, we employ an alternative

approach where the aggregate profile is calculated as the sum of all appliances recorded in the

dataset, rather than only summing the power profiles of appliances being disaggregated at specific

time intervals. The REDD and RAE datasets are used without preprocessing since they contain two

mains (aggregate power profiles), with some appliances connected to one main and others to both.

The RAE dataset’s aggregate power profiles are already denoised. However, for the REDD dataset,

15



the lack of a detailed circuit diagram prevents us from identifying which appliances are connected

to each main, particularly for those with lower power consumption.

2.2.4 Oversampling

In household electrical appliances, a transient state occurs briefly when the appliance is first

powered on or off, leading to fluctuations, whereas a stable state is reached when it operates at a

steady power level. Appliances can be grouped into two categories: those that activate frequently

at set intervals, like refrigerators, or are often manually operated, like microwaves; and those that

activate less often, such as washers, dryers, electric heaters, and dishwashers. Appliances like

washers, dryers, and dishwashers undergo multiple transitions between transient and stable states

in each cycle. In contrast, refrigerators and microwaves generally shift states only once at the

beginning and once at the end of their activation cycle.

For oversampling purposes, we use the refrigerator as a reference appliance due to its approx-

imately 50% activation and 50% sparsity distribution. In contrast, data for less frequently used

appliances is over 95% sparse, making activation detection challenging for the model. To address

this, around 30% of the training data for each appliance is oversampled based on activations already

present in the training and validation sets, while test data activations remain untouched to ensure

unbiased evaluation on unseen data. The training data is not oversampled to precisely match the

activation percentage of the reference appliance; instead, it aims to maintain a balance, enabling

accurate predictions for both activations and sparse regions, which are prevalent in the test set.

Oversampling criteria are uniformly applied across datasets for appliances such as washers, dryers,

dishwashers, and electric heaters.

2.3 Experiments

This section presents the experimental evaluation conducted on the selected datasets and appli-

ances. A comprehensive performance comparison of the proposed model is performed using the

specified metrics. First, we describe our selected datasets. The experimental setup and procedures
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are then outlined. Finally, the results obtained from these experiments are discussed in detail.

2.3.1 Data sets

Three public datasets were selected to evaluate our model across different scenarios. The first is

the Rainforest Automation Energy (RAE) dataset Makonin (2017), which contains 1 Hz data (mains

and submeters) for two houses in Canada, spanning 72 days for House 1 and 59 days for House 2.

We conducted experiments using only House 2, as it includes readings from both main lines (main1

and main2). Appliances chosen for testing include the refrigerator, dishwasher, washer, and dryer.

The second dataset, the Reference Energy Disaggregation Dataset (REDD) Kolter and Johnson

(2011), provides data for six houses in the United States over 119 days, covering 92 appliances. The

mains (aggregate profiles) data are sampled at 1 second, while the appliances are sampled every 3

seconds. We selected four appliances for our experiments: the dishwasher, microwave, refrigerator,

and washer. The third dataset, REFIT Murray et al. (2017), consists of 20 houses in the UK and

records 117 appliances over two years. We focused on one house for simplicity and comparison and

conducted experiments on the refrigerator, washer, microwave, dishwasher, and electric heater. The

characteristics of the datasets used in this study are presented in Table 2.2.

Table 2.2: Characteristics of the aforementioned datasets

Dataset Release Date Buildings Total Appliances Period Characteristics
Aggregate
Sampling

Appliance
Sampling

RAE 2017 2 40
72 days for House 1
59 days for House 2 P,V,I 1 sec 1 sec

REDD 2011 6 92 119 days P,V,I 1 sec 3 sec
REFIT 2016 20 177 2 years P 8 sec 8 sec

There are two main reasons for selecting these datasets. First, the REDD and RAE datasets con-

tain readings from both main lines (the main electrical lines for the house), improving the model’s

learning capabilities, as discussed in the experimentation section. Secondly, by choosing datasets

from three different regions, we aimed to test our model on various types of appliances, ensuring its

generalizability across different settings.

The selected houses from each dataset were divided into three distinct subsets: training, val-

idation, and testing. Based on the true activations present in the data before oversampling, 70%

of the data was allocated for training, which included the oversampled activations (detailed in the
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”Experiments” subsection on oversampling). At the same time, 15% was assigned for validation

and 15% for testing (without oversampling). Importantly, only unseen data that was not used during

training was utilized for testing. The original dimensions of the data remained unchanged and were

used as-is for both training and prediction tasks.

2.3.2 Evaluation metrics

For the evaluation and comparative analysis of our model, the following metrics have been

selected.

R2score

R2 (R-squared) is a statistical measure that represents the proportion of the variance for a de-

pendent variable (also known as the ”response variable”) an independent variable or variables in a

regression model explain that. It provides insight into how well the independent variables predict or

explain the variation in the dependent variable.

The formula for calculating R2 is:

R2 = 1− SSres

SStot

where:

• SSres is the sum of squares of residuals (the difference between the observed and predicted

values):

SSres =
n∑

i=1

(yi − ŷi)
2

• SStot is the total sum of squares (the sum of the observed data):

SStot =
n∑

i=1

(yi − ȳ)2

where ȳ is the mean of the observed data, yi is observed value and ŷi is the predicted value.

Values of R2 range from 0 to 1, where an R2 of 0 means the independent variables explain none
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of the variation in the dependent variable and 1 means the independent variables explain all of the

variation in the dependent variable.

Precision, Recall, NEP, and F1

Precision measures the proportion of power predicted for an appliance correctly assigned to

it out of the total predicted power. Recall measures the proportion of actual power used by an

appliance that the model successfully identifies or assigns correctly Bonfigli et al. (2018).

Pi =

∑T
t=1min(ŷi(t), yi(t))∑T

t=1 ŷi(t)

Ri =

∑T
t=1min(ŷi(t), yi(t))∑T

t=1 yi(t)

The Normalized Error in Assigned Power (NEP) quantifies the difference between the es-

timated power ŷi(t) and the actual power yi(t), normalized by the appliance’s total energy usage

Bonfigli et al. (2018). NEP is computed for each appliance i as follows:

NEPi =

∑T
t=1 |yi(t)− ŷi(t)|∑T

t=1 yi(t)

where ŷi(t) is the predicted value,yi(t) is the actual value of sample i, and T is the total number of

samples.

F1-score is the harmonic mean of Precision and Recall, providing a balanced measure between

the two:

F1 = 2× Precision × Recall
Precision + Recall
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Mean Absolute Error

The Mean Absolute Error (MAE) measures the average absolute difference between predicted

and actual values in a dataset.

MAE =
1

n

n∑
i=1

|yi − ŷi|

where yi is the actual value, ŷi is the predicted value, and n is the total number of observations.

Mean Square Error

The Mean Squared Error (MSE) calculates the average squared difference between predicted

and actual values, placing more weight on larger errors.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

where yi is the actual value, ŷi is the predicted value, and n is the total number of observations.

2.3.3 Experimental Setup

The model was trained using the following parameters: data was fed into the model in mini-

batches with sizes ranging from 16 to 128. On the input data, a mean and variance normalization is

calculated. To ensure uniform normalization throughout the dataset, a random training set sample is

used to compute the mean and variance values. On the other hand, the maximum power consump-

tion value of the associated appliance is used to conduct a min-max normalization on the target data

Bonfigli et al. (2018). As previously mentioned, stochastic Gradient Descent (SGD) with a Nesterov

momentum of 0.9 was employed for optimization. The initial learning rate was set to 0.001, which

decreased by a factor of 10 if there was no improvement in the loss for up to 15 epochs. The min-

imum learning rate was capped at 10−6 (0.000001). Training was performed for a minimum of 50

epochs and a maximum of 100 epochs. Although we tested with more than 100 epochs, the model

consistently converged within this range for all appliances. The duration of each experiment varied

based on the size of the training dataset. Since the REDD dataset is approximately half the size of
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the REFIT and RAE datasets, it requires less time to process. On average, each experiment took

approximately 30 to 50 minutes to complete. The neural network was implemented using Tensor-

Flow, with Scikit-learn Pedregosa et al. (2011) used for metrics such as R² score, MSE, and MAE,

and Matplotlib Hunter (2007) and Seaborn Waskom (2021) for visualization. The experiments were

conducted on an Intel Xeon processor (3.60 GHz), with 32GB RAM.

2.3.4 Training

During training, Stochastic Gradient Descent (SGD) with Nesterov momentum Sutskever et al.

(2013) was employed. The data was fed into the model in mini-batches. The model was optimized

to minimize the Mean Squared Error (MSE). If the MSE did not decrease for a specific number of

epochs, the learning rate was reduced to ensure continued progress. A dropout layer with a rate of

0.2 was incorporated into the model to mitigate overfitting, particularly for certain appliances.

2.3.5 Results

This section will provide a detailed analysis of the model’s performance on individual appli-

ances. First, we examine the results for each appliance across different datasets. Then, we compare

the results of the same appliance across datasets to explore performance variations. In addition,

we will compare the performance of our model with the DAE model proposed in Bonfigli et al.

(2018) on both the RAE and REDD datasets. This comparison allowed us to evaluate the robustness

and generalizability of our model across different datasets. By using energy-based metrics such as

F1 score and NEP, we assessed how effectively the FFNN model disaggregated appliance-specific

energy consumption.

Table 2.3: Disaggregation performance on RAE dataset appliances.

Appliances
R² on

Training Data
R² on

Validation Data
R² on

Test Data
MSE for

Training Data MSE for Test Data Mean Absolute Error

Dishwasher 0.96 0.97 0.68 0.004914 0.001091 0.02242
Dryer 0.90 0.90 0.84 0.002099 0.00203 0.01089

Refrigerator 0.61 0.56 0.07 0.000346 0.000835 0.01673
Washer 0.67 0.51 0.143 0.001827 0.002438 0.01927
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Table 2.4: Performance comparison of DAE and FFNN model on RAE dataset
Algorithm Metric Dishwasher Dryer L1 Dryer L2 Refrigerator Washer Overall

DAE F1(%) 49.8 91.2 - 39.1 11.9 48
Bonfigli et al. (2018) NEP 0.64 0.131 - 0.94 4.416 1.53

FFNN F1(%) 60 83 66 53 41 60.6
NEP 1.022 0.35 0.66 0.75 1.44 0.84

Tables 2.3 and 2.4 summarize the results for appliances in the RAE dataset. The FFNN model

performs best on high-energy-consuming appliances such as dishwashers and dryers. These appli-

ances exhibit significant changes in the aggregate energy profiles, making it easier for the model to

detect their activation. Figure 2.3 presents the correlation matrix between the aggregate energy pro-

files (mains) and specific appliances, including the dryer and refrigerator, providing insight into the

relationship and interaction between these energy profiles. Where l1 and l2 are aggregate profiles.

The dryer is connected to both main lines and consumes a substantial amount of energy, exhibiting

a strong correlation with both aggregate profiles. In contrast, the refrigerator, connected to line L2,

shows a weaker correlation with the aggregate profiles due to its comparatively lower energy con-

sumption. To improve detection accuracy, we applied oversampling techniques to these appliances,

incorporating different types of activation sequences. Due to recent technological advancements,

many appliances now possess multiple features, leading to variations in energy consumption pat-

terns and activation durations.

In contrast, appliances like refrigerators and more specifically washers in this dataset consume

considerably less energy than dishwashers and dryers. After evaluating results across datasets, we

will conduct a comparative analysis for the washer. Larger appliances, such as clothes dryers, often

utilize two electrical lines (L1 and L2) in Canadian households Makonin (2017). The RAE dataset

contains readings from two aggregate energy profiles. For simplification, many energy disaggrega-

tion studies combine these profiles; however, in this paper, we improve model performance by using

the aggregate profiles without combining them. As shown in Figure 2.4, the dryer is connected to

both L1 and L2. To handle this, we employed multi-variable regression, and Tables 2.3 and 2.4

present the results for both connected profiles (L1 and L2).

From Table 2.3, the R² value close to 1 for the dishwasher indicates that the regression line

provides an excellent approximation of the actual data, reflecting a strong fit between the model’s
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Figure 2.3: Correlation matrix for dryer and refrigerator from the Rae dataset.

Figure 2.4: Part of the panel of house 2 from RAE dataset Makonin (2017) shows that the dryer is
connected to both mains (l1 & l2). The whole panel is present in the RAE dataset

predictions and observed values, but it drops slightly for the test data. Due to the limited number of

dishwasher activations in the test data, R² is decreased for the test data. Additionally, the F1 score

is lower than expected given the high R² values for training and validation. This slight performance

decline in the test data is due to variations in activation modes not present in the training set, as well

as overlapping activations from other appliances. The latter issue leads to false positives, thereby

increasing the NEP. The refrigerator, in contrast, has the lowest R² for both the training and test

datasets. Despite consuming a substantial portion of the total household energy, the refrigerator’s

frequent, low-energy activation cycles typically lasting 15 to 20 minutes, make it particularly diffi-

cult to disaggregate. Figure 2.5. displays the total energy consumption for house 2 from the RAE

dataset, detailing the energy usage across individual appliances. The refrigerator consumes 15.9%

of the total energy, while the clothes dryer and HVAC boiler also account for a substantial portion,
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often overlapping with the refrigerator’s usage. Plugs and lights contribute about half of the total

energy, introducing significant noise into the data, as these appliances are included in the aggre-

gate energy profiles but are not individually disaggregated. These two factors contribute to poor

disaggregation accuracy for appliances such as refrigerator and washer.

Figure 2.5: Percentages of energy consumed (in kWh) over the 59 days for RAE dataset appliances.

Compared to the DAE model, the FFNN model shows significant improvements and some trade-

offs for different appliances. The individual appliance performance comparison between the FFNN

and DAE models for RAE dataset appliances is as follows: For the dishwasher, the absolute im-

provement in the F1 score is 10.2%, though the Normalized Error in Assigned Power (NEP) shows

the increase of 0.38. For the refrigerator, there is an 13.9% increase in the F1 score, with a slight

reduction of 0.19 in NEP. For the washer, the F1 score improves substantially by 29.1%, accompa-

nied by 0.66 decrease in NEP. For the dryer, a direct comparison was not feasible. In Bonfigli et al.

(2018), the authors used amalgamated energy profiles of the dryer from AMPds dataset Makonin,

Ellert, Bajic, and Popowich (2016) (representing data from the same household as the RAE dataset

but with a different sampling frequency), whereas our approach treats them separately. Conse-

quently, our model provides two distinct predictions corresponding to each energy consumption
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Figure 2.6: Distribution of data for washer of REDD dataset before the oversampling of validation
data

line for the dryer. By taking the mean of both predictions, the F1 score decreases by 16.7% and

NEP is increased by 0.37. Overall, the FFNN model outperforms the DAE model in general per-

formance by 12.6% increase in F1 score and 0.69 decrease in NEP. In terms of appliance-specific

results, the FFNN model performs better than the DAE model for all appliances except for dryer.

The results for the REDD dataset are presented in Tables 2.5 and 2.6. The FFNN model ex-

hibited the best performance on the appliances in the REDD dataset. Unlike the RAE dataset, the

energy activation distributions for each appliance in the REDD dataset are uneven. This imbalance

results in a significant discrepancy between the R² values for the training and validation data. Be-

fore oversampling the validation data of the washer, the washer displayed an extremely negative R²

value for validation and 0.96 for training. This large difference is attributed to the substantial vari-

ation in training and validation data distribution. Figure 2.6 illustrates the validation, training, and

remaining data distribution for the washer. For the training data, the mean is 341.58 with a variance

of 802,874.53, whereas for the validation data, the mean is 0.0004 and the variance is 0.0025. This

disparity negatively impacted data normalization, leading to poor R² performance on the validation

set. To address this issue, we oversampled the validation data using activation sequences from the

training data. The R² value for the validation data in Table 2.5 represents the model performance

with oversampling of validation data.

Additionally, we used the microwave as an appliance for disaggregation from the REDD dataset.
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Table 2.5: Disaggregation performance on REDD dataset appliances

Appliances
R² on

Training Data
R² on

Validation Data
R² on

Test Data
MSE for

Training Data MSE for Test Data Mean Absolute Error

Dishwasher 0.94 0.04 0.87 0.00199 0.00255 0.01115
Microwave 0.69 0.34 0.45 0.00107 0.00576 0.01002
Refrigerator 0.80 0.14 0.61 0.00022 0.00073 0.01006

Washer 0.97 0.97 0.77 0.00261 0.00404 0.01050

Table 2.6: Performance comparison of DAE and FFNN model on REDD dataset

Algorithm Metric Dishwasher Washer Refrigerator Microwave Overall
DAE F1(%) 41.8 - 60.4 13.6 38.6

Bonfigli et al. (2018) NEP 0.756 - 1.053 1.752 1.187
FFNN F1(%) 80 78 79 47 71

NEP 0.4 0.56 0.37 0.76 0.523

Table 2.7: Disaggregation performance on REFIT dataset (Denoised scenario)

Appliances
R² on

Training Data
R² on

Validation Data
R² on

Test Data
MSE for

Training Data
MSE for Test Data Mean Absolute Error

Electric Heater 0.92 0.65 0.81 0.00356 0.00251 0.0079
Dishwasher 0.76 0.20 0.76 0.00024 0.00039 0.00287
Refrigerator 0.71 0.71 0.69 0.00022 0.00022 0.00538
Microwave 0.86 0.91 0.13 0.00032 0.00073 0.0017

Washer 0.67 0.51 0.14 0.00183 0.00244 0.01927

Table 2.6 shows that the microwave had the lowest F1 score and the highest NEP. Although the

energy consumption of the microwave during its activations is higher than that of the refrigerator,

making it detectable by the model, the microwave’s varied functionalities introduce multiple types

of activations in terms of energy consumption and duration. Each time the microwave is used,

different time settings are chosen by the user, and many of its activations are of very short duration.

These factors make the microwave one of the most challenging appliances to disaggregate. Due

to these complexities, many models struggle with microwave disaggregation. For instance, in the

noisy scenario, the DAE model exhibited a 13.6% F1 score for the microwave.

Table 2.6 presents the results of the DAE model, alongside the FFNN model’s performance in

noisy scenarios for the dishwasher, refrigerator, and microwave. The FFNN model consistently out-

performs the DAE model for these appliances, achieving higher true positive rates, which results in

a lower NEP. Even though the DAE model does not include results for the washer, the FFNN model

still surpasses its overall performance, even when accounting for one additional appliance in the

evaluation. The individual appliance performance comparison between the FFNN and DAE models
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for REDD dataset appliances is as follows: For the dishwasher, FFNN yields a 38.2% increase in F1

score and 0.36 decrease in NEP. The refrigerator also shows improvements, with F1 rising by 18.6%

and NEP reducing by 0.68. Similarly, for the microwave, FFNN achieves a 33.4% boost in F1 and

0.99 decrease in NEP. However, a comparison for the washer is unavailable, as the DAE model did

not disaggregate this appliance. Still, FFNN model shows satisfactory performance on washer with

78% F1 score and 0.56 NEP. Overall, the FFNN model outperforms the DAE model in general per-

formance by 32.7% increase in F1 score and 0.67 decrease in NEP. In terms of appliance-specific

results, the FFNN model performs better than the DAE model for all the appliances.

Table 2.8: Disaggregation performance on REFIT dataset (Noised scenario)

Appliances
R² on

Training Data
R² on

Validation Data
R² on

Test Data
MSE for

Training Data
MSE for Test Data Mean Absolute Error

Electric Heater 0.62 0.41 0.36 0.01664 0.0176 0.05014
Dishwasher 0.44 0.77 0.17 0.00471 0.00891 0.01868
Refrigerator 0.38 0.37 0.36 0.00047 0.00046 0.01451
Microwave 0.29 0.15 0.05 0.00672 0.0008 0.00261

Washer 0.12 0.04 -0.01 0.0033 0.00511 0.01611

Table 2.9: F1 score and NEP on REFIT dataset in denoised scenario
Appliance F1(%) NEP

Electric Heater 87 0.28
Refrigerator 86 0.28
Dishwasher 64 1.02

Washer 41 1.44
Microwave 42 1.84

Similar to the oversampling performed on the REDD dataset’s validation data, oversampling

was also applied to the validation data for REFIT dataset appliances. The results of the disaggre-

gation experiments on denoised aggregate profiles for REFIT dataset appliances are presented in

Tables 2.7 and 2.9. In addition to the refrigerator, microwave, dishwasher, and washer from the

REFIT dataset, we included an electric heater for disaggregation analysis. Due to its consistently

high energy consumption, the electric heater achieved the most accurate disaggregation performance

across all tested appliances and datasets. This superior performance is attributed to its strong corre-

lation with the aggregate energy profile. The washer’s test data contains limited activations, and the

microwave exhibits similar behavior to what was observed in the REDD dataset; as a result, both

appliances yield the lowest R² scores on the test data, which subsequently leads to the lowest F1
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scores.

Table 2.10: F1 score and NEP on REFIT dataset in noised scenario
Appliance F1(%) NEP

Electric Heater 40 1.8
Refrigerator 64 0.74
Dishwasher 36 1.53

Washer 10 2.44
Microwave 15 2.82

The results for experiments using the noised aggregate profile from the REFIT dataset are shown

in Tables 2.8 and 2.10. In the noisy scenario, the FFNN model achieves its highest accuracy with

the refrigerator; however, its performance deteriorates for other appliances. The substantial noise

within the REFIT dataset introduces frequent false positives and false negatives, leading to elevated

NEP values. Additionally, as noted earlier, the limitation of having only a single feature in the RE-

FIT dataset further constrains the model’s disaggregation capability, adversely affecting its overall

performance. The FFNN model performs better on the denoised aggregate profile for all appliances.

Figure 2.7 illustrates the activation cycles for the washer across each dataset. Specifically, in the

RAE dataset, the model’s performance on the washer is suboptimal not only for the FFNN model

but also for the DAE model. This underperformance is due to the lower energy consumption of

each washer cycle compared to that observed in the REDD and REFIT datasets. Additionally, each

activation cycle in the RAE dataset varies significantly in pattern. Thus, appliances from differ-

ent regions exhibit substantial differences in activation cycles, which impacts model performance.

These variations may arise from different operational modes within the same appliance; however,

the pronounced disparity in energy consumption suggests that other factors are at play. The highest

F1 score for the washer is observed in the REDD dataset, attributed to its uniform activation pattern,

the presence of two features (aggregate profiles), and higher energy consumption.
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Figure 2.7: Activation cycles of the washer from RAE, REFIT, and REDD dataset
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Chapter 3

Appliance Identification Using

Kolmogorov–Arnold Networks with

Extended Feature Extraction and

Saliency Analysis

3.1 Introduction

Non-Intrusive Load Monitoring (NILM) methods are generally divided into two types: event-

based and non-event-based. Non-event-based methods analyze the entire power signal over time,

while event-based methods focus on sudden changes in overall power that suggest an appliance has

been turned on or off. Identifying which appliance caused each change known as load identification

which is a key part of event-based NILM and helps recognize the unique patterns of different devices

Xiang et al. (2022). NILM breaks down total energy use into data for each appliance, making energy

use more transparent and easier to manage. When load identification is accurate, it helps connect

these changes to specific appliances, leading to better feedback, smarter energy use, and lower

energy costs Kelly and Knottenbelt (2015).
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There are two ways to identify the appliance status (on/off). The first approach considers in-

dividual sensors for each appliance. This solution is highly precise and accurate, but at the same

time, it is too complex and expensive from a hardware perspective. On the other hand, the most

practical approach involves detecting a signal at the main power bus and using a NILM algorithm

to identify the appliance. This method simplifies hardware requirements but shifts complexity to

signal processing through load identification techniques. Load identification poses several signifi-

cant challenges. One of the primary issues is the occurrence of overlapping appliance signatures,

where low-power-consuming appliances are activated concurrently with high-power-consuming ap-

pliances, masking the signal of the lower-power appliances. This overlap can hinder accurate detec-

tion and classification. Furthermore, external noise and signal interference increase the complexity

of the problem by distorting measurement data, which in turn reduces the effectiveness of load

identification models.

Another challenge arises from the presence of appliances with identical or similar operational

characteristics, making it difficult to distinguish between them solely based on power consump-

tion patterns or their voltage and current signals. In Hart (1992) the author categorized household

electrical appliances into four distinct types based on their operational behavior:

• Type 1: Binary-state devices that operate in two modes (ON/OFF); e.g., table lamps.

• Type 2: Multistate devices or finite state machines (FSMs), such as washing machines and

heat pumps.

• Type 3: Continuously variable devices (CVDs), characterized by their non-repetitive and

variable power consumption patterns. An electric drill exemplifies this category Bucci et al.

(2020).

• Type 4: Constant load or permanent consumer devices that operate continuously over ex-

tended periods (days or weeks), including smoke detectors, telephone sets, and cable televi-

sion receivers Zeifman and Roth (2011).

Types 2 and 3 raise a new challenge in detecting multistate and continuously variable appli-

ances, as these appliances may have different initial signals for different modes. Also, most of the
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traditional datasets don’t have multistate data which makes the model struggle to classify multistate

appliances. Generalization remains a major challenge, as models trained on one household often

underperform on others due to appliance and usage variability. Additionally, real-time processing,

privacy preservation, and cost-effective deployment are critical concerns for practical NILM appli-

cations. From an algorithmic perspective, an ideal load identification model should demonstrate

several key properties: it must achieve high accuracy, be computationally efficient, and maintain

consistent performance under a variety of conditions. These conditions include the presence of

similar appliances from different manufacturers, electrical noise interference, multistate operational

behaviors, and overlapping power consumption patterns.

Most existing machine learning (ML) and Deep learning (DL) models tend to achieve high ac-

curacy neglecting the computational cost of the models. For instance, in Xiang et al. (2022), the

authors introduced a method involving the feature fusion of Power and current, converting it into

color-coded 2D images. These features are then used as input to a CNN to classify images. First,

changing the features into images is a computationally expensive step, and using CNN to classify

them is more expensive especially when the number of appliances increases. Only a limited number

of appliances are being used for investigation but day by day number of appliances is increasing in

modern households. Most of the models struggle in that context. In Y. Liu, Wang, et al. (2021),

the authors proposed a probabilistic ensemble model trained on a dictionary. Each column of the

dictionary is treated as an atom, and a dictionary learning model is established through linear com-

binations. The idea is interesting but also computationally complex. Recently, most of the research

has been based on engineered features like active/reactive power Hart (1992) and harmonics features

Reinhardt, Burkhardt, Zaheer, and Steinmetz (2012); Srinivasan, Ng, and Liew (2006) rather than

on dictionary-based training approaches. In Roos, Lane, Botha, and Hancke (1994), the authors

conducted an in-depth study on steady-state appliance signatures to identify industrial electrical

loads. However, their approach involves complex calculations to obtain precise power signature

data. Moreover, creating a load model that can effectively classify and identify appliances under

constantly fluctuating load conditions is still an open issue that needs further investigation.

To address these challenges, we propose the adoption of the Kolmogorov-Arnold Network

(KAN) Z. Liu et al. (2025), which is a better alternative to multilayer perceptron (MLP). We have
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also investigated the performance of Deep Neural Networks (DNNs) which shows that KAN is not

only computationally less expensive than DNN but also much simpler. In contrast to most exist-

ing studies that primarily focus on features derived from voltage and current signals, our work also

utilizes such features.

3.2 Methodology

For multiclass classification of appliances, CNNs and ensemble models such as Random Forest

have been developed and shown to be highly effective. However, these models often require signif-

icant computational resources to achieve high accuracy. Also, most of the studies are focused on

the algorithmic side of Load Identification problem. We propose the Kolmogorov-Arnold Network

(KAN) as an efficient alternative to the traditional multilayer perceptron (MLP), while also empha-

sizing the importance of feature selection for appliance classification. A significantly smaller KAN

can perform like the large CNNs and ensemble models in terms of accuracy. To the best of our

knowledge, KAN has not yet been applied to load identification. Figure 3.1 outlines the workflow

of the proposed model. Appliance signatures, including current and voltage waveforms, were col-

lected from real households using the COOLL Picon et al. (2016), PLAID Medico et al. (2020), and

WHITED Kahl, Haq, Kriechbaumer, and Jacobsen (2016) datasets. These signals were then used

to extract 75 features. To minimize computational overhead and avoid large network architectures,

features were distributed into different combinations. The data was then split into training (80%)

and testing (20%) sets and fed into the KAN.

The model was trained and evaluated multiple times, and its average performance was calculated

using four evaluation metrics. For each feature combination, this process was repeated to determine

the most contributing features. Additionally, a correlation matrix was generated to identify and

exclude redundant, highly correlated features. In the final phase, only the most informative and

uncorrelated features were used to train the model. A comparative analysis was conducted between

all the datasets to understand how an increasing number of appliances affects model efficiency.

Finally, we discuss the limitations of KAN and propose directions for future research.
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Figure 3.1: Flow chart of the whole study, where Train, Test are training and testing sets, respec-
tively.

3.2.1 Proposed Approach

KAN is a type of neural network that applies learnable univariate functions to each input dimen-

sion in place of conventional weight-based linear transformations. Each node computes a trainable

non-linear function of a single variable in a sequence of layers, after which the nodes combine

linearly. Through functional learning, KANs actively modify the complexity and structure of the

transformation, in contrast to conventional networks that only use matrix multiplications and preset

activation functions. Standard activation functions are not necessary with this design, which enables

enhanced accuracy and interpretability Z. Liu et al. (2025).

Table 3.1: Parameters for KAN
Layer Number of Neurons
Input Input Dimensions
Hidden 1 16
Hidden 2 32
Output Num of classes

Our network comprises 4 layers, including an input layer, an output layer, and 2 hidden layers.
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The parameters of the network are given in Table 3.1. The number of neurons in the input layer

depends on the number of features used to train the KAN, and the number of neurons in the output

layer depends on the number of appliances present in the dataset. Meanwhile, the number of neurons

in the hidden layers varies from 16 to 32. The model’s performance was not enhanced by adding

more layers or neurons, negatively impacting the computing efficiency. The Kolmogorov–Arnold

Network (KAN) used in our study applies three successive nonlinear transformations on the input

vector, defined in Equation 7.

ŷ = Φ(3)
(
Φ(2)

(
Φ(1)(x)

))
(7)

Each layer-wise transformation Φ(l) is computed as:

Φ
(l)
j (x) =

nl∑
i=1

(
w

(l)
b · silu(xi) + w(l)

s ·
∑
k

c
(l)
k Bk(xi)

)
(8)

Where x ∈ Rn0 is the input feature vector, which may vary in dimensionality between tests. ŷ is

the final output of the network. Φ(1),Φ(2),Φ(3) denote the transformations performed by the three

KAN layers. Φ
(l)
j is the j-th output of layer l, computed by applying a nonlinear transformation

over each input coordinate xi. silu(x) = x
1+e−x is the base activation function. Bk(xi) are B-spline

basis functions. c
(l)
k are learnable spline coefficients for layer l. w

(l)
b and w

(l)
s are trainable scalar

weights that control the contribution of the base function and the spline, respectively. This formu-

lation captures the core innovation of KANs, which aims to replace traditional weight-based linear

transformations with coordinate-wise, learnable nonlinear functions. Each neuron in the KAN layer

learns a unique nonlinear mapping that combines a smooth spline-based function with a residual

base activation (SiLU) Z. Liu et al. (2025). This approach makes the network highly expressive and

better suited for settings where input feature dimensions may vary between evaluation scenarios.

Additionally, it enhances interpretability by allowing per-feature adaptive transformations.
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Table 3.2: Extracted features and their type, equation, and explanation
Name Type Equation Explanation
Mean Statistical Ī = 1

N

∑N
i=1 Ii Mean is the average value of the current and

voltage signals. Ii is the current at index i,
and N is the total number of recordings.

Standard
Deviation (std) Statistical σI =

√
1
N

∑N
i=1(Ii − Ī)2Measures the spread of current/voltage values

around the mean. Ii is the ith current value, Ī
is the mean, and N is the total count.

Skewness
(skew) Statistical SI = 1

N

∑N
i=1

(Ii−Ī)3

σ3
I

Skewness describes the symmetry of the sig-
nal. Ii is the current value, Ī is the mean, σI
is the standard deviation.

Peak Statistical Ipeak = max(|Ii|) Maximum absolute value of the current or
voltage signal.

Root Mean
Square (RMS) Statistical Irms =

√
1
N

∑N
i=1 I

2
i Effective value of the varying current signal.

Ii is the ith value; N is the total number of
values.

Crest Factor
(CF) Statistical CFI =

Ipeak
Irms

Indicates sharpness of peaks in the signal.
CF is high for spiky waveforms.

Form Factor
(FF) Statistical FFI = Irms

Ī
Describes how peaky or flat the voltage and
current signal is, where Ī and Irms are the
mean and RMS values of the current.

Kurtosis Statistical KI = 1
N

∑N
i=1

(Ii−Ī)4

σ4
I

Measures the tailedness of the waveform. Ii
is the ith current sample, N is the total num-
ber of recordings, Ī is the mean, and σI is the
standard deviation.

Apparent
Power (S) Power S = Vrms × Irms Apparent power represents the total power

flowing in the circuit, including both active
and reactive parts. Measured in volt-amperes
(VA).

Active
Power (P) Power P = 1

N

∑N
i=1 ViIi Actual power consumed by the appliance. Vi

and Ii are voltage and current at time i.
Reactive

Power (Q) Power Q =
√
S2 − P 2 Power that sustains magnetic/electric fields in

reactive components. Measured in VAR. S
and P are apparent and active power, respec-
tively.

Peak
Power Power

Ppeak = max(Pi)
Qpeak = max(Qi)
Speak = max(Si)

Maximum values of active, reactive, and ap-
parent power.

Minimum
Power Power

Pmin = min(Pi)
Qmin = min(Qi)
Smin = min(Si)

Minimum values of active, reactive, and ap-
parent power.

Current
Harmonics

Frequency
Domain
Features

HarI = FFT(Ii) First 25 harmonic components extracted us-
ing Fast Fourier Transform. Ii is the current
waveform.
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3.2.2 Feature Extraction

A total of 75 features from three different classes (or types) have been extracted from the raw

current and voltage signals. These features are detailed in Table 3.2. All features presented in Table

3.2 were extracted for both current and voltage waveforms. Although 25 voltage harmonic features

were initially computed, they demonstrated limited effectiveness in distinguishing appliance signa-

tures. Consequently, these features were excluded from the final analysis, and the remaining 50

features were utilized for appliance classification.

3.3 Experiments

The experiments aim to evaluate the performance of KAN across the selected datasets and ap-

pliances. First, we describe our selected datasets. The experimental setup and training are then

outlined. Finally, the results obtained from all tests are discussed in detail, and the best-performing

ones are validated using 5-fold cross-validation, where the train-test splits are stratified by appliance

type.

3.3.1 Data sets

Three Public datasets are selected to evaluate KAN’s performance. The first dataset is the Con-

trolled On/Off Loads Library (COOLL) dataset Picon et al. (2016). It contains current and voltage

measurements for 12 different types of appliances, sampled at a rate of 100 kHz. These appliances

are located in the PRISME Laboratory at the University of Orléans, France. The dataset includes

the following appliances: drill, fan, grinder, hair dryer, hedge trimmer, lamp, paint stripper, planer,

router, sander, saw, and vacuum cleaner. The second dataset is the Plug-Load Appliance Identifi-

cation Dataset (PLAID) Medico et al. (2020). It has two versions namely PLAID1 and PLAID2.

We are using PLAID1, which has current and voltage measurements of 11 different types of ap-

pliances sampled at 30 kHz. These appliances are present in 56 different houses in Pittsburgh,

Pennsylvania, USA. The dataset includes the following appliances: air conditioner, bulb, compact

fluorescent lamp, fan, fridge, hairdryer, heater, laptop, microwave, vacuum, and washing machine.

The second dataset, A Worldwide Household and Industry Transient Energy Dataset (WHITED)

37



Kahl et al. (2016), contains current and voltage recordings for 110 different appliances, which can

be grouped into 47 distinct types. The dataset includes data from households located in four regions

of Germany, one in Austria, and two in Indonesia. The sampling rate of the data is 44 kHz.

Table 3.3: Characteristics of the datasets

Dataset Collection Date Buildings
Total

Appliances
Types of

Appliances
Variety Characteristics

Sampling
Frequency

WHITED 2015–2016 – 110 47 1–9 V, I 44 kHz
PLAID Summer 2013 56 200 11 ∼20 V, I 30 kHz
COOLL June 2016 1 42 12 20–160 V, I 100 kHz

The characteristics of the datasets used in this study are presented in Table 3.3. It gives the

data collection date, the number of buildings, the number of appliances, the number of appliance

types (classes), and the number of appliances for each class (Variety). The reason for choosing the

COOLL dataset is its high sampling frequency, unique set of appliances, and substantial number

of samples for each appliance, in contrast to the other two datasets, which contain more appliance

types but fewer samples per appliance. The main reason for choosing the PLAID dataset is that it

contains recordings of different operating modes of appliances, which separates it from traditional

load identification datasets. This characteristic helps models learn various initiation patterns. Sec-

ondly, we selected the WHITED dataset due to its larger number of appliances of different types,

which allows the model to be trained on a diverse range of appliance categories.

3.3.2 Experimental Setup

The experiments were conducted using the following parameters: depending on the dataset

complexity, the hyperparameters Grid (G) and k in KAN were varied. For example, since the

number of appliances in the PLAID and COOLL datasets is smaller than in the WHITED dataset, k

was set to 2 for PLAID and COOLL, and 3 for WHITED. To prevent overfitting, the value of G was

kept constant at 10 across all datasets. Cross-entropy loss was used to monitor both training and test

losses. The Limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm D. C. Liu

and Nocedal (1989) was employed as the optimizer, with a learning rate of 1 (the default value for

LBFGS). To address overfitting, a regularization parameter, lamb of 0.01, was added to the model.
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The following evaluation metrics have been used to analyze the performance of the model.

Accuracy is the percentage of correct predictions that a trained classification model makes. It is

calculated as Accuracy =
∑N

i=1 TPi+TNi∑N
i=1(TPi+FPi+FNi+TNi)

. Macro precision is the average of the per-

class precision values, computed as Pmacro = 1
N

∑N
i=1

TPi
TPi+FPi

. Macro recall is the average of the

per-class recall values and is given by Rmacro = 1
N

∑N
i=1

TPi
TPi+FNi

. Macro F1 score is the average

of the F1 scores for each class, where each class-specific F1 is the harmonic mean of its precision

and recall: F1macro = 1
N

∑N
i=1 2×

Precisioni×Recalli
Precisioni+Recalli

. Where TPi and FPi are true positives and false

positives, respectively, while TNi and FNi are true negatives and false negatives, respectively.

3.3.3 Training

The data was split into 80% for training and 20% for testing. 80% of the data was used for

training and fed directly into the KAN after feature extraction. The hyperparameters were tuned

to minimize the cross-entropy loss and improve accuracy. The learning rate remained constant

throughout all experiments during training.

3.3.4 Results

This section provides a detailed analysis of all the tests and examines the results based on dif-

ferent combinations of features. The model was trained using various feature subsets to identify

the most effective ones for achieving the highest accuracy. Furthermore, the model’s performance

is evaluated using evaluation metrics and various graphical representations. The performance of

the proposed model has been compared against benchmark models De Baets, Ruyssinck, Develder,

Dhaene, and Deschrijver (2018); De Baets et al. (2017); De Baets, Dhaene, Deschrijver, Develder,

and Berges (2018); Dimbiniaina, Pau, and Naramo (2023); Le, Heo, and Kim (2021); Mulinari et

al. (2019) to evaluate its relative effectiveness.

For each dataset, voltage harmonics were extracted but not utilized in any tests, as they were

found to be strongly correlated with one another. Additionally, most voltage features, when used

to train the model, resulted in decreased performance and increased computational cost. This is be-

cause the voltage across most appliances is quite similar, and for many Type 1, 2, and 3 appliances,

the voltage stabilizes after initiation. For harmonic features, only the 1st to 6th and 20th to 25th
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harmonics were used for training in all the datasets, since the remaining harmonics were highly

correlated with each other, as illustrated in Figures 3.4 and 3.6. Tables 3.4, 3.5, and 3.7 present the

results of the model on the COOLL, PLAID, and WHITED datasets, respectively. Where G and K

are hyperparameters for KAN, q is reactive power, cf is crest factor, ff is form factor, std is standard

deviation, and skew is skewness. The first column specifies the type of features used in each test,

while the second column lists the selected features used to train the model. Columns 3 and 4 show

the accuracy and F1 score, respectively.

Table 3.4: KAN’s parameters, hyperparameters, and performance on different types and combina-
tions of features for COOLL dataset. The best results are highlighted in bold.

Type Combinations
Accuracy

(%)

F1

(%)
Network

Individual i cf, v cf 56 36 2, G10, K=2

Individual i RMS, v RMS 40 21 2, G10, K=2

Individual i ff, v ff 16 6 2, G10, K=2

Individual i peak, v peak 35 12 2, G10, K=2

Individual i kurtosis, v kurtosis 48 23 2, G10, K=2

Individual i std, v std 19 3 2, G10, K=2

Individual i skew, v skew 32 24 2, G10, K=2

Individual i mean, v mean 19 3 2, G10, K=2

Selective i Harmonics i harmonics (1–6) 96 96 2, G10, K=2

i Harmonics All i Harmonics 95 94 2, G10, K=2

All Power Power Features (RMS, Peak, Min) 91 92 2, G10, K=2

i Statistical
i cf, i ff, i RMS, i kurtosis,

i mean, i peak, i skew, i std
76 72 2, G10, K=2

Power & i Harmonics
All Power Features (RMS, Peak, Min),

i harmonics (1–6, 19–25)
95 95 2, G10, K=2

All All 50 features 9 3 2, G10, K=2

Table 3.4 presents the results of the KAN on the COOLL dataset. The first eight tests were

conducted on individual combinations of current and voltage statistical features. Among them, the
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Figure 3.2: Confusion matrices for COOLL and PLAID best test from Tables 3.4 and 3.5. Hedge =
hedge trimmer, Paint = paint stripper, Vacuum = vacuum cleaner, CFL = compact fluorescent lamp,
ILB = incandescent light bulb, AC = air conditioner.

current and voltage Crest Factor were the most effective, achieving an accuracy of 56% and an F1

score of 36%. In contrast, as shown in Tests 3, 6, and 8, features such as Form Factor, standard

deviation, and mean were the least effective. Current and voltage kurtosis showed performance

close to the Crest Factor due to their high correlation. Compared to harmonics and power features,

none of the statistical features achieved competitive performance. When all statistical features were

combined in Test 12, the accuracy and F1 score reached 76% and 72%, respectively, still lower than

the selective harmonic features.

In Test 10, using all harmonic features, the model achieved 95% accuracy and 94% F1. How-

ever, most harmonic features are highly correlated, and higher-order harmonics become smaller and

less informative. To address this, only the first six harmonics were used in Test 9, yielding 96%

accuracy and 96% F1. Meanwhile, Test 11 used only power features, achieving 91% accuracy and

92% F1. Although power features are highly effective, their strong correlation can lead the model

to learn incorrect patterns. This is evident in Test 14, where using all features caused a drastic drop

in performance down to 9% accuracy and 3% F1. Based on these findings, the final test utilized

the most effective and uncorrelated features (power and harmonics), resulting in 95% accuracy and

95% F1 score, which is very close to results from the selective harmonics (1-6). These results are

highlighted in bold in Table 3.4.

Figure 3.2 displays the confusion matrix corresponding to the best-performing test on the COOLL
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Table 3.5: KAN’s parameters, hyperparameters, and performance on different types and combina-
tions of features for PLAID dataset. The best results are highlighted in bold.

Type Combinations
Accuracy

(%)
F1

(%)
Network

Individual i cf, v cf 54 47 2, G10, K=2
Individual i RMS, v RMS 11 2 2, G10, K=2
Individual i ff, v ff 34 16 2, G10, K=2
Individual i peak, v peak 56 43 2, G10, K=2
Individual i kurtosis, v kurtosis 53 37 2, G10, K=2
Individual i std, v std 55 37 2, G10, K=2
Individual i skew, v skew 49 31 2, G10, K=2
Individual i mean, v mean 33 27 2, G10, K=2

Selective i Harmonics i harmonics (1–6) 72 62 2, G10, K=2
i Harmonics All i Harmonics 78 69 2, G10, K=2
All Power Power Features (RMS, Peak, Min) 92 88 2, G10, K=2
i Statistical i (cf, ff, kurtosis, mean, skew, std, peak, RMS) 72 49 2, G10, K=2

Power & i Harmonics
All Power Features (RMS, Peak, Min),

i harmonics (1–6)
87 83 2, G10, K=2

All All 50 features 73 48 2, G10, K=2
Selective (Power &

i Harmonics & Statistical)
i harmonics (2–6), q – i (RMS),

i mean, i peak, q min
85 78 2, G10, K=2

dataset, as reported in Table 3.4. Certain appliances such as the fan, grinder, planer, router, and

hedge trimmer achieved perfect classification, with no instances misclassified. Among all appli-

ances, the paint stripper had the highest number of misclassifications relative to its total sample

count. Despite this, the majority of appliances in the COOLL dataset were classified correctly, lead-

ing to strong overall performance KAN achieved 96% accuracy and F1-score, while Random Forest

attained 99% accuracy and F1-score.

Table 3.5 presents the results on the PLAID dataset. Initially, similar to the COOLL dataset,

the model was trained and tested on individual statistical feature combinations. Among them, the

Crest Factor (cf) showed the highest performance, achieving an accuracy of 54% and an F1 score

of 47%. Tests using current and voltage kurtosis produced comparable results, which is expected

due to their strong correlation with the Crest Factor (as shown in Figure 3.3). Therefore, only one

of these features was selected for the last test. Moreover, features such as form factor (ff) and the
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mean of current and voltage produced approximately the same accuracy and F1 scores. Therefore,

only one feature from this group was selected for the last test to avoid unnecessary computational

overhead. A similar approach was applied to other features, such as skewness, standard deviation

(std), and peak values of current and voltage; only one feature was selected.

In Test 10, the model was trained using all 25 harmonics, achieving an accuracy of 78% and

an F1 score of 69%, outperforming all tests using statistical features. However, Figure 3.4 shows

that all harmonics beyond the 6th are strongly correlated with each other. Including all 25 harmon-

ics in training, as in Test 9, increased computational complexity while yielding only a marginal

performance improvement. By selecting only the uncorrelated harmonics (1st–6th) for training,

we achieved 72% accuracy and an F1 score of 62%, which is 6% lower than the result using all

harmonics.

Figure 3.3: The correlation matrix of features (excluding harmonic features) extracted from the
PLAID dataset appliances shows several strong correlations.

In the 11th test, we used all the power-related features, which resulted in an accuracy of 92% and

an F1 score of 88%. Combining selective harmonic features with power features yielded slightly
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Figure 3.4: The correlation matrix for current harmonics extracted from the PLAID dataset shows
that, except for the 1st to 6th harmonics, all remaining harmonics are strongly correlated with each
other.

lower performance (as shown in Test 11 of Table 3.5). Using all available features simultaneously

led to a decline in model performance, as the inclusion of many non-contributing or less infor-

mative features distracted the model, causing it to learn incorrect patterns and ultimately reducing

accuracy. In the final test, we selected only the most informative and uncorrelated features. Due to

the strong correlation between current RMS and both active and apparent power, only current RMS

was retained. Similarly, among the minimum power values, only one was selected, and all power

peak features were excluded due to their correlation with current peak values. This refined feature

selection led to strong model performance, achieving 85% accuracy and an F1 score of 78%. (Note:

Although strong correlations between harmonics and other features were observed, the correspond-

ing matrix is not included in this paper due to its large size; it is available on GitHub.)

Compared to the COOLL dataset, the model’s performance decreased when trained on the most

uncorrelated features in this case. This decline can be attributed to the increased number and diver-

sity of appliances in the dataset. As the number of appliance types increases, power features become
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more effective and informative for distinguishing between appliances.

Table 3.6: Appliance-wise comparison for PLAID. The first 3 models (Logistic Reg, RF, Neural
Net) are from De Baets et al. (2017). RF = Random Forest, CFL = compact fluorescent lamp, AC =
air conditioner, ILB = incandescent light bulb, C = Correct predictions, I = Incorrect predictions

Appliance Logistic Reg RF Neural Net KAN RF
C I C I C I C I C I

Heater 1 34 0 35 0 35 27 8 20 8
Washing Machine 14 12 15 11 14 12 20 6 14 7
Laptop 158 14 155 17 162 10 156 16 137 1
CFL 160 15 163 12 161 14 170 5 137 3
Microwave 116 23 130 9 129 10 130 9 109 2
Fridge 7 31 14 24 12 26 24 14 13 17
Fan 43 72 62 53 60 55 108 7 90 2
Vacuum 36 2 31 7 38 0 38 0 30 0
AC 14 52 21 45 19 47 55 11 43 10
Hairdryer 141 15 137 19 143 13 150 6 121 4
ILB 97 17 103 11 108 6 105 9 85 6

Accuracy (%) 73 77 79 92 93

For PLAID dataset, we have conducted a comparative appliance-wise evaluation with De Baets

et al. (2017). A valuable feature for appliance classification is the voltage-current (V-I) trajectory.

In this study, the V-I trajectory is transformed into a binary image, and the contours within these

images are extracted. From these contours, elliptic Fourier descriptors are computed and used as

input features for classification models De Baets et al. (2017). To evaluate the effectiveness of

features, experiments were conducted using Logistic Regression, Random Forest, and a Neural

Network that shares the same structure as the KAN, but with a different number of neurons.

Figure 3.2 shows the confusion matrix for the best performing test on the PLAID dataset, while

Table 3.6 summarizes the results from each classification model, including those from KAN and

Random Forest tested on the features extracted in this study. For the heater, all three baseline

models from De Baets et al. (2017) show difficulty in classification, frequently misidentifying it as

a hairdryer. This confusion arises because both devices use heating coils. However, KAN reduces

this error, with only 8 instances of heater misclassified as hairdryer. In the case of the washing

machine, performance has also improved, with only 6 misclassifications. This improvement can be
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attributed to PLAID’s inclusion of samples from multiple operation cycles, except for the startup

phase. For appliances such as microwave, compact fluorescent lamp (CFL), vacuum, incandescent

light bulb (ILB), hairdryer, and laptop, all models demonstrate similar classification behavior. A

small number of laptop instances are misclassified as CFL, likely due to the laptop’s low power

consumption. A significant improvement is observed in classifying the fridge. While traditional

machine learning models struggled with this appliance, KAN successfully classifies twice as many

instances correctly. Nonetheless, the fridge remains the most frequently misclassified appliance

overall, which highlights the complexity of its power signature.

Table 3.7: KAN’s parameters, hyperparameters, and performance on different types and combina-
tions of features for WHITED dataset. The best results are highlighted in bold.

Type Combinations
Accuracy

(%)
F1

(%)
Network

Individual i cf, v cf 20 3 2, G10, K=3
Individual i RMS, v RMS 21 4 2, G10, K=3
Individual i ff, v ff 10 2 2, G10, K=3
Individual i peak, v peak 16 2 2, G10, K=3
Individual i kurtosis, v kurtosis 20 13 2, G10, K=3
Individual i std, v std 18 3 2, G10, K=3
Individual i skew, v skew 24 6 2, G10, K=3
Individual i mean, v mean 7 1 2, G10, K=3

Selective i Harmonics i harmonics (1–6) 53 44 2, G10, K=3
i Harmonics All i Harmonics 61 55 2, G10, K=3
All Power Power Features (RMS, Peak, Min) 85 85 2, G10, K=3
i Statistical i (cf, ff, kurtosis, mean, skew, std, peak, RMS) 68 53 2, G10, K=3

Power & i Harmonics
All Power Features (RMS, Peak, Min),

i harmonics (1–6)
78 69 2, G10, K=3

All All 50 features 68 53 2, G10, K=3

Table 3.7 presents the results of the KAN on different feature combinations from WHITED

dataset. It follows the same structure as Table 3.5. The same experimental strategy used for the

PLAID dataset was applied to the WHITED dataset. Similar combinations of features were selected

to evaluate the model’s performance and identify the most contributing features.

The main difference between the PLAID and WHITED datasets lies in the diversity of appliance
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types; WHITED includes over three times more appliance types than PLAID, but with limited

instances per type. Due to this increase in data complexity caused by a larger number of appliance

types with fewer examples each, the parameter K was set to 3 for all tests on the WHITED dataset.

K refers to the number of internal grid points used in the learnable function of each neuron in the

KAN Z. Liu et al. (2025). When the complexity of the problem increases, a higher K is required

to capture the complex patterns. However, a larger K increases computational cost and the risk of

overfitting.

Figure 3.5: The correlation matrix of features (excluding harmonic features) extracted from the
WHITED dataset appliances shows that most of the features are strongly uncorrelated to each other.

Due to the diversity and limited number of instances in WHITED, we ran multiple tests on

each feature combination with different hyperparameters and reported the average accuracy and F1

score in Table 3.7. The limited data per appliance type makes it difficult for the model to learn

meaningful patterns. Increasing Grid and K values to improve learning under such diversity often

leads to overfitting.

Initially, we tested different combinations of statistical features. No combination of statistical
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features achieved more than 24% accuracy or 13% F1 score. The highest accuracy (24%) was ob-

tained using skewness values of current and voltage, while the highest F1 score (13%) came from

using the kurtosis values of current and voltage. All other statistical combinations showed simi-

lar performance. The average accuracy across 8 statistical feature combinations was 17%, and the

average F1 score was 4.25%. Using all statistical current features slightly improved the results,

approximately 51% higher than the average accuracy and F1 score of combined current and voltage

statistical features. The underperformance of statistical features on the WHITED dataset can be at-

tributed to several factors. First, statistical features typically require a substantial number of signal

samples with sufficient temporal variation to capture the signal’s characteristics reliably. However,

the WHITED dataset contains a limited number of samples per appliance, which results in statisti-

cal features that are unstable and unrepresentative. Furthermore, the dataset comprises appliances

from 47 distinct classes, with each class having only 1 to 9 samples (as shown in Table 3). This

imbalance increases the likelihood of feature overlap, where multiple appliances exhibit similar or

identical values for features such as mean, standard deviation, or RMS, thereby diminishing the

discriminative power of these features.

Harmonics in the WHITED dataset were found to be slightly less correlated compared to those

in PLAID (see Figure 3.6). An initial test using only the first 6 harmonics yielded 53% accuracy and

44% F1, which is higher than the statistical feature combinations. When all harmonics were used,

the model achieved 61% accuracy and 55% F1, highlighting the importance of harmonic features in

handling diverse data. Testing the model with all power features resulted in 85% accuracy and 84%

F1. Based on these results, we combined both harmonic and power features for training, achieving

the average performance of 78% accuracy and 69% F1 (averaged across models with varying pa-

rameters). The last 6 harmonics were also included since their correlation is approximately the same

as the first 6 harmonics (as shown in Figure 3.6). A final test using all available features resulted in

only 68% accuracy and 53% F1.

Figure 3.7 presents the confusion matrix for the best test case on the WHITED dataset from

Table 3.7. Similar to the patterns observed in the PLAID and COOLL datasets, hairdryer remains

a commonly misclassified appliance. In WHITED, appliances such as hairdryer, iron, and kettle

are often confused with one another due to their use of heating coils. For the same reason, stove is
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Figure 3.6: The correlation matrix for current harmonics extracted from the WHITED dataset.

frequently misclassified as a kettle, and the kettle is also confused with the toaster and water heater.

Additionally, low power-consuming appliances like LEDs, lightbulbs, and power supplies are mis-

classified as other devices with similar consumption. Lastly, the water heater is often confused for

a fan heater, likely due to their similar operational mechanisms. Aside from these cases, most other

appliances in the WHITED dataset show minimal misclassification.
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Figure 3.7: Confusion matrix of WHITED dataset for the best test from Table 3.7

Table 3.8 presents the comparative results of different benchmark approaches along with KAN

and Random Forest. In De Baets et al. (2018), a weighted pixel-based image representation of the

V–I trajectory is employed as input to a convolutional neural network (CNN). The model was tested

on PLAID and WHITED datasets, resulting in F1 of 78% and 75% respectively. Our proposed

models, KAN and Random Forest, demonstrated improved performance in terms of F1 score. In

Le et al. (2021), the authors introduce a novel approach called HT-LSTM (Hilbert Transform Long

Short-Term Memory). The proposed method has two main components: (i) it extracts a new tran-

sient feature using the Hilbert Transform, referred to as APF (Amplitude-Phase-Frequency), which
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captures sequential information; and (ii) it utilizes a Sequence-to-Sequence Long Short-Term Mem-

ory (Seq2Seq LSTM) model to classify appliances based on the extracted APF features. The model

was evaluated on PLAID dataset, achieving an F1 of 95% and accuracy of 90%. In contrast, our pro-

posed methods KAN and Random Forest outperform in terms of accuracy. They showed relatively

lower F1 scores, indicating room for improvement in class-wise prediction consistency.

Table 3.8: Comparison of different models across datasets with accuracy, F1-score, and number of
classes.

Model Dataset Accuracy (%) F1-score (%) Number of classes
CNN PLAID – 78 All
De Baets et al. (2018) WHITED – 75 All
HT-LSTM PLAID 90 95 All
Le et al. (2021)
Neural Net PLAID 77 – 6
Dimbiniaina et al. (2023) COOLL 96 – 5

WHITED 96 – 7
CNN PLAID – 88 All
De Baets et al. (2018)
kNN COOLL 96 – All
Mulinari et al. (2019)
Ensemble COOLL 99 – All
Mulinari et al. (2019)
SVM COOLL 96 – All
Mulinari et al. (2019)
KAN PLAID 92 88 All

WHITED 85 85 All
COOLL 96 96 All

RF PLAID 93 93 All
WHITED 96 96 All
COOLL 99.40 99.40 All

In Dimbiniaina et al. (2023), Mel power spectrogram is for the feature extraction from voltage

and current signals. This study explores the possibility of approximating the Mel power spectrogram

using compact neural networks. The proposed method enables the construction of an end-to-end,

multitask deep learning pipeline. The approach was evaluated on COOLL, PLAID, and WHITED

datasets, resulting in the accuracy of 77%, 96%, and 96% respectively, on each dataset. But only

6 classes from PLAID, 5 classes from COOLL, and 7 classes from WHITED have been selected
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for the tests, which justifies the high accuracy of the proposed approach. In all the tests for our

proposed models, all the classes (shown in Table 3.3) have been selected, and the accuracy is still

very close to the benchmark model’s accuracy. In De Baets et al. (2018), the authors proposed 2

models. A random forest with elliptical Fourier descriptors for VI trajectories of appliances and a

CNN with VI images of appliance signals. The models were evaluated on PLAID, achieving the

highest F1 of 88. In contrast, KAN results in the same F1; meanwhile, Random Forest outperforms

by 93% of F1.

In Mulinari et al. (2019), the authors proposed an extended feature extraction technique based on

VI trajectories, introducing new steady-state and transient features. They evaluated their approach

using three classifiers: K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and an en-

semble method on the COOLL dataset, achieving accuracies of 96%, 96%, and 99% respectively.

Our proposed KAN model achieved comparable accuracy to KNN and SVM, while slightly under-

performing compared to the ensemble. On the other hand, the Random Forest classifier surpassed

both KNN and SVM, matching the ensemble’s top performance with an accuracy of 99%.

Figure 3.8: Effect of KAN’s hyperparameters (G, lamb) on overfitting and generalization.

Figure 3.8 shows the effect of different values of hyperparameters Grid (G) and lamb on gen-

eralization and overfitting in KAN. On the left side, the bar chart illustrates the impact of different

values of the regularization parameter λ on overfitting. The x-axis represents the values of λ. On

the right side, the bar chart highlights two key aspects: (i) how the grid size parameter G influences

overfitting, and (ii) the gap between training and testing loss. The x-axis indicates the values of

G, and the y-axis represents the model accuracy. When G is set between 1 and 3, KAN exhibits

52



underfitting, with an accuracy of approximately 20% and a train-test loss gap of about 3%. As G in-

creases to values between 7 and 10, the model begins to overfit, resulting in a widened train-test loss

gap of nearly 13%, achieving an accuracy of around 90%. For intermediate G values, the model

demonstrates better generalization, with an accuracy of roughly 50%. However, when a regular-

ization term of λ = 0.01 is applied alongside higher G values (7–10), overfitting is substantially

suppressed, and the train-test loss gap is reduced back to approximately 3%, while maintaining a

high accuracy of 90%. While this does not eliminate overfitting completely, it helps suppress it to a

significant extent.
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Chapter 4

Conclusion

This thesis presents machine learning models for NILM and appliance identification, incor-

porating various techniques for feature selection, amplification, and engineering. The models are

evaluated using different evaluation metrics across multiple datasets collected from different geo-

graphical regions.

In chapter 2, an FFNN model is enhanced through oversampling and feature amplification to

improve energy disaggregation performance. For better pattern recognition, we employed oversam-

pling for training data. Most energy datasets contain two main power lines, with some appliances

connected to only one line and others to both. Instead of combining them, both aggregated power

features have been used for training the model. Experiments were conducted on the RAE, REDD,

and REFIT datasets, assessing both noisy and noise-free scenarios for the REFIT data. For sim-

plicity, only a single household was selected for evaluation. In the noisy REFIT scenario, model

performance deteriorates due to combined aggregate profiles and a high number of activation cycles

per appliance, which requires undersampling. For the RAE and REDD datasets, model performance

is benchmarked against the DAE model, proposed in Bonfigli et al. (2018). For the RAE and REDD

datasets, based on F1 and NEP, the FFNN model outperforms the DAE model in general perfor-

mance. The primary objective of this model is to provide a computationally efficient solution for

energy disaggregation. Lastly, an appliance-wise comparison has been conducted for washers on

the datasets from the three different regions. It shows that appliances from different regions, non-

uniform patterns in the appliance activations, aggregated mains, and a small number of activation
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cycles can affect the models performance negatively. The appliance-wise comparison has been lim-

ited to the washer across three datasets from three distinct regions. The idea of using lighter models

combined with techniques like oversampling and a greater number of aggregate features proves that

the energy disaggregation performance can be improved even with limited computational resources.

In chapter 3, Kolmogorov–Arnold Networks (KAN) and Random Forest models have been

employed to identify appliances. Both models were evaluated using 75 extracted features across

three datasets COOLL, PLAID, and WHITED. KAN was tested with various feature combina-

tions. By using correlation matrices and conducting multiple experiments, the most informative and

uncorrelated features were identified for effective appliance classification. Furthermore, the best-

performing experiments were validated using 5-fold cross-validation, with train-test splits stratified

by appliance type. Compared to the WHITED and PLAID dataset, the KAN performed better on

the COOLL dataset. This demonstrates that as the number of appliance types in a dataset increases,

making it more diverse, the model’s performance tends to decline. Another contributing factor to

this decline is that although the WHITED and PLAID datasets include more appliance types and

appliances, its overall size remains approximately the same as COOLL dataset. This results in

fewer samples per appliance type, providing insufficient data for the model to learn each pattern

effectively. The model’s behavior varied significantly across the two datasets. Additionally, statis-

tical features played an important role in appliance identification for the COOLL dataset but were

ineffective for the PLAID and WHITED datasets due to the high degree of uncorrelated features.

As a result, these features contributed little to performance in more diverse datasets. In contrast,

harmonic and power features were valuable for all the datasets. Lastly, to overcome the overfitting

in KAN, hyperparameter tuning was introduced. KAN is a highly efficient model, especially for

simpler problems. For complex problems, the model requires higher K and Grid values to learn

intricate patterns. As noted earlier, increasing these values often leads to overfitting. To reduce

overfitting, regularization has been used. This challenge can also be addressed in two ways: (1)

increasing the amount of labeled data, and (2) increasing the number of hidden layers while de-

creasing K and Grid, which significantly raises computational requirements. By using KAN and

Random Forest shows the need for advancements in the deep learning techniques as compared to
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traditional machine learning models. Furthermore, as the number and variety of appliances is con-

tinuously increasing in modern households, supervised models need more labeled or augmented

data for each appliance for better identification.

Future research can address the challenge of data scarcity by employing data augmentation

techniques based on existing labeled data. The Incorporation of additional features could further

enhance disaggregation accuracy, such as the average activation duration and the use of dual aggre-

gate profiles, considering that many regions supply power through two main lines per building. The

integration of more informative features for appliance recognition can also be beneficial. These fea-

tures may include Total Harmonic Distortion (THD), Zero Crossing Rate (ZCR), Autocorrelation

Function (ACF), Power Factor (PF), Fundamental Frequency (f1), Dominant Harmonic Compo-

nent, Spectral Entropy, Bandwidth (BW), and waveform Slope. These features may enhance the

discriminative capacity of models and should be considered in future investigations. Additionally,

exploring new categories of appliances for disaggregation could further broaden the scope and ef-

fectiveness of NILM systems. Lastly, in regards to the KAN architecture, it is recommended to

explore methods to mitigate the overfitting issue and improve its generalizability.
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