
Machine Learning based Memory Load
Approximation

Alain Aoun

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Electrical and Computer Engineering) at

Concordia University

Montréal, Québec, Canada

July 2025

© Alain Aoun, 2025

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Mr. Alain Aoun

Entitled: Machine Learning based Memory Load Approximation

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Name of the Chair

External Examiner
Dr. Jean Pierre David

Examiner
Dr. Otmane Ait Mohamed

Examiner
Dr. Sebastien Lebeux

Examiner
Dr. Joey Paquet

Supervisor
Dr. Sofiène Tahar

Approved by
Abdelwahab Hamou-Lhadj, Chair
Department of Electrical and Computer Engineering

July 2025
Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Machine Learning based Memory Load Approximation

Alain Aoun, Ph.D.

Concordia University, 2025

Modern computing applications demand ever-increasing performance and energy

efficiency. However, conventional processor architectures frequently stall while waiting

for data retrieval from memory, creating a bottleneck known as the memory wall.

Over the past decades, various approaches such as speculative prefetching, load value

prediction, and hardware caching have been proposed to mitigate this limitation.

While these techniques yield moderate gains, they often rely on rigid hardware logic

or simple pattern matching, which struggle with the irregular, data-driven workloads

typical of contemporary multimedia and machine learning applications.

This thesis propose to use Machine Learning (ML) to speculate load values and

reduce memory accesses. The proposed method is grounded in the principles of

Approximate Computing (AC), where minor inaccuracies are accepted in exchange for

improvements in performance or efficiency. To this end, we introduce an ML-based

Load Value Approximation (ML-LVA) approach, which predicts the values of memory

loads to reduce access latency. The ML-LVA is trained offline to generate a compact

predictor that captures patterns in image and audio data, enabling accurate value

prediction during runtime without the need for continual retraining. By learning

iii

spatial correlations among adjacent data values, the proposed ML-LVA effectively

anticipates memory contents, thereby reducing stalls and improving overall system

performance in online deployment.

We have implemented the proposed ML-LVA framework both in software and

hardware. The software variant targets existing processors lacking reconfigurability,

as well as systems with tight area or power constraints that prohibit adding custom

hardware. It operates as a callable subroutine designed for seamless integration

without modifying the processor architecture. The software implementation was tested

on an x86 processor in the GEM5 simulator. On the other hand, the hardware-based

implementation integrates the proposed ML-LVA as a dedicated accelerator accessed

via a custom instruction, offering tighter pipeline integration, lower latency, and

enhanced efficiency for newly designed systems. The hardware-based ML-LVA was

implemented in CVA6, which is an open source RISC-V processor. The synthesis results

conducted in Cadence Innovus showed that the overhead of the added accelerator is

marginal.

Experimental results conducted on audio and image processing workloads

demonstrate that the proposed ML-LVA accelerates memory access by over 6×,

resulting in application speedups up to 2.45×. Additionally, even when predicting up

to 95% of loads, the output fidelity remains within perceptual thresholds. Subsequently,

the proposed ML-LVA outperforms state-of-the-art LVAs in terms of performance and

quality. The ML-LVA achieves these results with only a 5% area overhead and less

than 1% power increase in silicon.

iv

In loving memory of my grandmother, who passed away during my PhD,

and my Godfather, my guardian angels,

To my father, my mother, my sister and brothers.

v

Acknowledgments

First, I would like to thank my supervisor, Prof. Sofiène Tahar, for his valuable

feedback, support, and encouragement throughout my PhD thesis. He was always

available to share his experience and knowledge. His continuous belief and push

through the proposed PhD project was a great essence in delivering the final output

we present in this thesis. Moreover, during my study under his supervision, I learned

a lot about research which helped me improving my abilities in this field. Also, I

am grateful for the valuable feedback that I received from a colleague who became a

dear friend, Dr. Mahmoud Masadeh. The priceless brainstorming sessions, the long

meetings and sharing of his experience throughout my research were corner stones of

my work. I am extremely grateful and forever beholden for his continuous availability

and encouragement throughout my PhD journey.

I am also deeply grateful for Prof. Abdallah Kassem who was my supervisor at

Notre Dame University for my undergraduate studies. Through his endless support

and feedback, I acquired a lot of knowledge that was the essence for my graduate

studies.

I would also like to express my gratitude for Dr. Jean Pierre David, Dr. Joey

Paquet, Dr. Otmane Ait Mohamed, and Dr Sebastian Lebeux for serving on my

advisory thesis committee and taking the time from their busy schedules to read and

evaluate my thesis.

vi

I am deeply thankful to my friends and colleagues at HVG, Elif, Kübra, and

Oumaima, whose support made the PhD journey significantly more manageable.

Thank you for listening patiently, thinking out loud with me, offering valuable advice,

and always making the lab feel like home with a warm cup of tea and cookies at just

the right time.

Finally, with all my love and gratitude, I want to thank my dearest family, Farid,

Mona, Georges, Youssef and Lamia. Your unconditional love, endless patience, and

unwavering support have been my anchor throughout this journey and every stage of

my life. There were moments of doubt, exhaustion, and frustration, but your constant

presence reminded me of my strength and my purpose. You believed in me when

I struggled to believe in myself, and that made all the difference. Your sacrifices,

encouragement, and quiet resilience have shaped who I am today. This PhD is not

just my achievement—it is ours. I am forever grateful to you, and I carry your love

with me always.

Last but by no mean the least, I would like to thank Michêle for the endless love,

support and patient throughout my PhD study. Her constant encouragement made

even the hardest days feel lighter, and I am truly grateful to have had her by my side.

vii

Table of Contents

List of Figures xii

List of Tables xv

List of Abbreviations xvi

1 Introduction 1

1.1 Motivation . 1

1.2 State-of-the-Art . 6

1.2.1 Approximate Memory . 7

1.2.2 ML-based Prefetching . 8

1.2.3 Load Value Speculation . 9

1.2.4 Load Value Approximation . 10

1.3 Problem Statement . 12

1.4 Proposed Methodology . 13

1.5 Thesis Contributions . 19

1.6 Thesis Organization . 21

2 Preliminary 23

2.1 Introduction . 23

viii

2.2 Evaluating Approximate Computing 24

2.3 Multimedia Applications . 28

3 ML-based Load Value Predictor 34

3.1 Introduction . 34

3.2 Training Method . 36

3.3 Dataset Selection and ML Training 39

3.3.1 Dataset Selection . 39

3.3.2 ML Training . 42

3.4 Quality Assessment . 46

3.4.1 Image Processing . 46

3.4.1.1 Image Blending . 46

3.4.1.2 Image Inversion . 51

3.4.1.3 Image Binarization 53

3.4.2 Audio Processing . 55

3.4.2.1 Audio Blending . 56

3.4.2.2 Audio Inversion . 58

3.4.2.3 Audio Binarization 60

3.4.3 Comparison with Related Work 61

3.5 Summary . 64

4 Software Implementation of the ML-LVA 66

4.1 Introduction . 66

4.2 Proposed Methodology . 68

4.3 Implementation of the Predictor . 70

4.4 Testing Environment . 72

ix

4.5 Performance Analysis . 76

4.6 Experimental Results . 78

4.6.1 Image Processing . 79

4.6.1.1 Image Blending . 79

4.6.1.2 Image Inversion . 82

4.6.1.3 Image Binarization 83

4.6.2 Audio Processing . 86

4.6.2.1 Audio Blending . 87

4.6.2.2 Audio Inversion . 89

4.6.2.3 Audio Binarization 91

4.6.3 Comparison with Related Work 93

4.7 Summary . 94

5 Hardware Implementation of the ML-LVA 97

5.1 Introduction . 97

5.2 Proposed Methodology . 99

5.3 Hardware Implementation . 103

5.3.1 CVA6 Processor . 104

5.3.2 AXI Last Level Cache . 107

5.3.3 Micron DDR4 Model . 110

5.4 Experimental Results . 112

5.4.1 Image Processing . 113

5.4.1.1 Image Blending . 113

5.4.1.2 Image Inversion . 115

5.4.2 Audio Processing . 117

5.4.2.1 Audio Blending . 118

x

5.4.2.2 Audio Inversion . 119

5.4.3 Comparison with Related Work 121

5.4.4 Overhead Measures . 122

5.5 Summary . 122

6 Conclusion and Future Work 125

6.1 Conclusion . 125

6.2 Future Work . 128

References 133

Biography 143

xi

List of Figures

1.1 Normalized Performance over the Years [3] 2

1.2 Memory Bandwidth when Increasing the Number of Thread versus the

Ideal Scalability [13] . 4

1.3 Methodology of the Proposed ML-LVA 15

1.4 Deployment Framework for the Proposed Methodology 17

3.1 Training Method of the Proposed ML-LVA 38

3.2 Prediction Sequence . 39

3.3 Image Blending: (a) Exact and (b) ML-LVA Model with Poor Training 40

3.4 (a) PSNR, (b) NMAE, and (c) NRMSE for Various Image Blending Sets 48

3.5 Image Blending Example 1: (a) Exact, (b) 50% Approximation (n=1),

(c) 80% Approximation (n=5), and (d) 90% Approximation (n=9) . . 49

3.6 Image Blending Example 2: (a) Exact, (b) 50% Approximation (n=1),

(c) 80% Approximation (n=5), and (d) 90% Approximation (n=9) . . 50

3.7 (a) PSNR, (b) NMAE, and (c) NRMSE for Various Image Inversion Sets 52

3.8 Image Inversion Example: (a) Exact, (b) 50% Approximation (n=1),

(c) 80% Approximation (n=4), and (d) 90% Approximation (n=9) . . 53

3.9 (a) Accuracy, and (b) Precision for Various Image Binarization Sets . 54

3.10 Image Binarization Example: (a) Exact, (b) 50% Approximation (n=1),

(c) 80% Approximation (n=4), and (d) 90% Approximation (n=9) . 55

xii

3.11 (a) PSNR, (b) NMAE, and (c) NRMSE for Various Approximate Levels

of Audio Blending . 57

3.12 (a) PSNR, (b) NMAE, and (c) NRMSE for Various Approximate Levels

of Audio Inversion . 59

3.13 (a) Accuracy, and (b) Precision for Various Approximate Levels Audio

Binarization . 61

4.1 Methodology to Implement the Proposed LVA in Software 69

4.2 Average Speedup in Memory Access when varying (a) Cache, (b) DRAM,

and (c) CPU Frequency Settings . 77

4.3 Average Speedups for Image Blending: (a) Overall, and (b) Memory

Loads . 81

4.4 Average Speedups for Image Inversion: (a) Overall, and (b) Memory

Loads . 84

4.5 Average Speedups for Image Binarization: (a) Overall, and (b) Memory

Loads . 85

4.6 Average Speedups for Audio Blending: (a) Overall, and (b) Memory

Loads . 88

4.7 Average Speedups for Audio Inversion: (a) Overall, and (b) Memory

Loads . 90

4.8 Average Speedups for Audio Binarization: (a) Overall, and (b) Memory

Loads . 92

5.1 Methodology to Implement the Proposed LVA in Hardware 100

5.2 Hardware Implementation Environment 104

5.3 Architecture of the CVA6 [27] . 105

xiii

5.4 Average Speedups for Image Blending: (a) Overall, and (b) Memory

Loads . 115

5.5 Average Speedups for Image Inversion: (a) Overall, and (b) Memory

Loads . 116

5.6 Average Speedups for Audio Blending: (a) Overall, and (b) Memory

Loads . 118

5.7 Average Speedups for Audio Inversion: (a) Overall, and (b) Memory

Loads . 120

xiv

List of Tables

3.1 Mapping of the Trained ML Model Developed using Images 43

3.2 Mapping of the Trained ML Model Developed using Audio Data . . . 44

3.3 Comparison of NMAE of the Proposed ML-LVA with [19] 62

3.4 Comparison of NMAE of the Proposed ML-LVA with [19] when using

the simlarge Dataset . 63

3.5 Comparison of NRMSE of the Proposed ML-LVA with [24] 64

4.1 Cache Settings of the Intel Processor [62] 74

4.2 Cache Configurations used to Test the Proposed LVA 75

4.3 Speedup Comparison of the Proposed Software-based ML-LVA with [19] 94

5.1 Speedup Comparison of the Proposed Hardware-based ML-LVA with [19]121

5.2 Synthesis Results of the CVA6 . 122

xv

List of Abbreviations

AC Approximate Computing

AMBA Advanced Microcontroller Bus Architecture

ANC Active Noise Cancellation

ASIC Application-Specific Integrated Circuit

AXI Advanced eXtensible Interface

BER Bit-Error Rate

BW Bandwidth

CAS Column Address Strobe

CPU Central Processing Unit

DDR Double Data Rate

DRAM Dynamic Random-Access Memory

ECC Error-Correcting Code

ED Error Distance

EDP Energy-Delay Product

EEPROM Electrically Erasable Programmable Read-Only Memory

FLOPS Floating Point Operations per Second

xvi

FN False Negative

FP False Positive

FPGA Field-Programmable Gate Array

GHB Global History Buffer

GPDK Cadence Generic Process Design Kit

GPU Graphics Processing Unit

HD High Definition

HPC High-Performance Computing

ID Instruction Decode

IoT Internet of Things

ISA Instruction Set Architecture

LHB Local History Buffer

LLC Last-Level Cache

LSB Least Significant Bit

LVA Load Value Approximation

LVS Load Value Speculation

MAE Mean Absolute Error

ML Machine Learning

ML-LVA Machine Learning-based Load Value Approximator

MSB Most Significant Bit

MSE Mean Squared Root

xvii

MSHR Miss Status Holding Registers

NMAE Normalized Mean Absolute Error

NRMSE Normalized Root Mean Squared Error

OCR Optical Character Recognition

PADP Power-Area-Delay Product

PARSEC Princeton Application Repository for Shared-Memory Computers

PC Program Counter

PIM Processing-in-Memory

PSNR Peak Signal-to-Noise Ratio

PULP Parallel Ultra Low Power

RAM Random-Access Memory

RED Relative Error Distance

RFVP Rollback-Free Value Prediction

RISC-V Reduced Instruction Set Computer Version 5

RM Ring Modulation

RMSE Root Mean Squared Error

ROB Reorder Buffer

ROM Read-Only Memory

SD Standard Definition

SoC System-on-Chip

SRAM Static Random-Access Memory

xviii

tCK Clock Cycle Time

TLB Translation Lookaside Buffer

TN True Negative

TP True Positive

tRCD Row to Column Delay

tRP Row Precharge Time

VLSI Very Large-Scale Integration

xix

Chapter 1

Introduction

1.1 Motivation

The relentless pursuit of performance in computer architecture has always been linked

to the challenge of memory latency, and the critical delay between a processor’s

demand for data and its eventual retrieval. This latency is not just a technical obstacle

but a fundamental consequence of the von Neumann architecture [1], conceived in the

mid-20th century, which tightly couples computation and memory. Early systems,

such as the IBM 704 (1954), delivered a delicate equilibrium between processor speed

and memory access times. However, the advent of Moore’s Law in 1965 disrupted this

balance, where the transistor densities began doubling roughly every 18–24 months

leading to exponential gains in clock frequencies and instruction throughput. On the

other hand, memory subsystems—constrained by the analog physics of charge storage

and the resistive-capacitive delays of interconnects—could not keep pace. This gap in

performance of memory led to slowing down computers. For instance, early processors

when faced with a single cache miss or data dependency could halt the entire processor

for dozens of cycles. For example, the Intel 8086’s 6-stage pipeline, running at 5

1

MHz, could stall for more than 20 cycles (approximately 4 µs) on a memory access

miss, a stark contrast to its average instruction throughput of roughly 200 ns. By the

1990s, this growing gap had been crystallized into what Wulf and McKee famously

termed the “memory wall” [2]. This gap is a result of Central Processing Unit (CPU)

performance improvements that far outstripped reductions in memory latency, leaving

even the most advanced processors chronically starved for data. This phenomenon

of memory wall still holds in the modern days. Figure 1.1 shows the performance

improvement of the computational units, i.e., processors, Dynamic Random-Access

Memory (DRAM) memory and processor-memory interlink bandwidth since the mid-

90s. The improvement of Floating Point Operations per Second (FLOPS) of the

computations units have increased at rate of 6000× in the last 20 years compared to

a much smaller 100× in DRAM Bandwidth (BW). Subsequently, we can conclude an

increasingly widening gap between performance improvement of the computational

units and the one of the memory.

Figure 1.1: Normalized Performance over the Years [3]

2

To overcome the widening gap in performance, architects have redirected their

interest to advancements in microarchitecture of computers to mitigate the memory

wall. For instance, out-of-order execution aims at reordering instructions on the fly to

hide the latency of long instructions. Architectures such as the Intel P6 [4] and AMD’s

K7 [5] further advanced this concept by integrating larger Reorder Buffers (ROBs)

and employing register renaming to eliminate false dependencies, namely, write-

after-read and read-after-write hazards. For instance, the AMD K7 utilized a 72-

entry ROB along with multiple reservation stations, enabling dynamic reordering of

loads, stores, and arithmetic operations. Modern CPUs offer more than 500 ROBs,

however, on Last-Level Cache (LLC) misses, the ROBs can easily get saturated

causing the CPU to stall [6]. Speculative techniques [7] further extend the benefits

of these microarchitectural innovations. Hardware prefetchers, such as the stride-

based mechanism in AMD’s Zen 3 microarchitecture [8], work to anticipate sequential

memory accesses. Additionally, Machine Learning (ML) [9] driven prefetchers such as

DeepPrefetcher [10], leverage ML techniques to improve prefetching. For instance, the

authors of [10] used deep neural networks to predict memory access patterns more

accurately. However, over-aggressive prefetching can yield to cache pollution and

increased miss rates yielding to overall performance degradation [11]. In a different

approach to improve memory performance, AMD’s 3D V-Cache [12] demonstrated

that vertically stacking cache layers can effectively increase capacity and reduce the

apparent access latency.

Nevertheless, even with all these advancements in microarchitecture, modern

processors cannot fully address the memory wall. For instance, the developer of

Blosc [13], a high performance data compressor, studied the performance improvement

when the number of threads increases [13]. Figure 1.2 shows the memory bandwidth

3

Figure 1.2: Memory Bandwidth when Increasing the Number of Thread versus the
Ideal Scalability [13]

usage when increasing the number of threads used on the Intel Xeon E3-1245 v5

4-Core processor [14]. It highlights that when using uncompressed data, the bandwidth

scalability does not scale linearly, i.e., ideal scalability. Consequently, the threads do

not achieve maximum throughput, resulting in idle periods caused by data starvation.

On the other hand, when the data is compressed with LZ4HC-9 compressor [15], a

single thread requires less bandwidth, improving scalability as more threads are used.

However, when operating with eight threads, the CPU receives 35% (12GB/s) less

bandwidth than expected under ideal scalability, where no memory wall exists. Thus,

even software techniques that aim to complement the advanced microarchitectural

techniques do not fully address the memory wall. In the face of these persistent

challenges, emerging paradigms such as Processing-In-Memory (PIM) [16] have been

proposed to bridge the gap between processor speed and memory performance. PIM

shifts repetitive computations, e.g., multiply and accumulate operations, from the CPU

to memory or its vicinity to reduce data movement [17]. Although PIM minimizes

processor-memory traffic, its computational speed is hindered by the slow access time

4

in a Random Access Memory (RAM). This fundamental limitation makes PIM a

relatively slow process. In a different approach, researchers have explored the concept

of load value speculation (LVS) [7] which involves adding a unit to the processor that

predicts the value to be loaded from the memory, with minimal modifications to the

Von Neumann architecture. Similar to branch prediction, if the LVS is wrong, the

CPU reverts to its state before the prediction and flushes the pipeline. However,

all LVS techniques aim to hide memory access delays while requiring a check to the

correctness of the predictions. Thus, the bandwidth usage is not reduced but rather

the latency is hidden. Another disadvantage of the LVS is the costly roll-back on a

wrong speculation.

In a different approach, Approximate Computing (AC) [18] has reemerged as a

pragmatic technique to further improve the performance of computers. Recognizing

that many modern applications can tolerate minor inaccuracies, e.g., multimedia

processing, machine learning and video games, AC intentionally relaxes precision

requirements in order to reduce computational overhead, lower latency, and conserve

energy. AC represents a paradigm shift from traditional exact computation by

deliberately introducing controlled inaccuracies to boost energy efficiency, throughput,

and overall system performance. AC is tailored for applications that can tolerate small

deviations without significantly affecting perceived output quality. The underlying

principle is to define error margins through rigorous analysis and quality-of-service

guarantees so that performance gains outweight the slight loss in accuracy. For example,

the work in [19] exploits the principle of AC to relax LVS. The costly roll-back in LVS

can be avoided in error-tolerant applications by accepting the wrong (approximate)

value predicted. The approximate version of the LVS is commonly referred to as Load

Value Approximation (LVA). A drawback of existing LVA is the hardware overhead,

5

e.g., lookup table, in addition to the computation needed to compute indexing/hash

values used by the predictor. Additionally, the existing LVA requires continuous access

to the memory in order to maintain good quality.

Given that existing methods have failed to fully address the memory wall, in this

thesis we aim to address this challenge by using ML and AC. The solution we propose

can be a software- or hardware-based implementation. The predictor used in the

proposed LVA is static and hence reduces the overhead of operating the predictor.

In the rest of this chapter, we will present the evaluation techniques of AC designs.

Thereafter, we present the state-of-the-art that is most relevant to our work, followed

by a discussion on the limitations of existing methods. We then introduce the proposed

methodology followed by the thesis contributions and the thesis organization.

1.2 State-of-the-Art

Various studies in the literature have investigated methods to address memory

bottlenecks. Prior to approximate computing gaining popularity in recent years,

researchers have focused on exploiting the localities in order to address this challenge.

In the sequel, we will restrict the discussion of related work to those methods that are

most relevant to the proposed solution in this thesis. We will present the approximate

memory that aims to improve memory latency and energy consumption. We will

also cover the Machine Learning (ML) based prefetcher which aims to predict the

subsequent load value and hence improving the hit rate in the cache. Thereafter we

present Load Value Speculation (LVS), a technique that aims to predict the load value

and hence hide the latency. We conclude this section with the presentation of Load

Value Approximation (LVA), a technique that improves the performance of LVS by

tolerating error.

6

1.2.1 Approximate Memory

Approximate Memory consists of modifying the conventional exact memory where data

can be stored approximately. For instance, the work in [20] explores an implementation

of approximate DRAM. The authors of [20] propose the storage of data in a transposed

fashion. Furthermore, they investigate the implementation of variable refresh rate

where rows storing Least Significant Bits (LSBs) are refreshed less frequently compared

to the rows storing the Most Significant Bits (MSBs). The variable refresh rate results

in energy saving. In order to address the memory bottlenecks, the authors of [20]

propose the load of a limited number of rows. When deploying this approach, the

MSBs of multiple data elements are retrieved concurrently. Hence, more elements are

retrieved faster. Furthermore, if only 16 rows out of 32 are loaded, i.e., loading the 16

MSBs and truncating the other 16 LSBs, the bandwidth would be reduced by 50%.

Another approach of approximate memory in [21] proposes the compression of error-

tolerant data in DRAMs. Compression and decompression in distinct memory regions

define varying accuracy levels, that are controlled by a software-hardware integration.

While both methods present compelling strategies for leveraging approximation in

memory to reduce energy consumption and improve bandwidth efficiency, they also

introduce notable limitations. For instance, in [20], the use of transposed storage and

variable refresh rates is applied at the region level, allowing critical data to reside in safe,

fully refreshed regions. This mitigates the risk of corruption and side channel attacks in

precision-sensitive applications. However, the selective loading of only MSBs and the

reduced refresh of the LSB regions may still affect the data quality in regions marked as

approximate, and the complexity of managing transposed access patterns and refresh

schedules introduces additional hardware overhead. Additionally, the introduction of

approximate regions opens potential security vulnerabilities. However, malicious code

7

could exploit relaxed refresh policies or compressed representations to manipulate data

silently by inducing bit flips in approximate regions. Similarly, the compression-based

approach in [21] imposes latency and control challenges due to the need for dynamic

decompression and region management. Its reliance on software-hardware coordination

for setting approximation levels requires accurate workload characterization and tight

system integration, which may limit portability and scalability. Both methods would

benefit from more adaptive, runtime-aware control mechanisms that can fine-tune

approximation levels based on observed application behavior and quality constraints.

1.2.2 ML-based Prefetching

Memory prefetching is a technique that predicts and loads data into the cache before it

is needed, reducing access latency and improving processor performance. The authors

of [10] developed DeepPrefetcher, a method that leverages ML to enhance memory

access efficiency by intelligently predicting future data requests. DeepPrefetcher

harnesses deep learning to identify complex correlations within memory access

sequences. By analyzing execution traces, it learns nuanced dependencies that

conventional prefetchers often overlook, allowing it to anticipate future accesses

more effectively. This approach involves training a deep learning model on program

memory traces, capturing both short-term and long-term relationships between memory

accesses. DeepPrefetcher continuously refines its predictions by updating the model

with new data, adapting dynamically to evolving workloads. This adaptability makes

it particularly effective in scenarios where memory access patterns are irregular,

non-repetitive, or workload-dependent. By leveraging its learned understanding of

execution behavior, DeepPrefetcher reduces cache misses and improves data availability,

leading to enhanced overall system performance. It is especially beneficial for modern

8

applications with complex memory access patterns, where conventional prefetching

strategies struggle to keep pace. However, a common challenge among prefetchers

is their potentially incorrect predictions, which can lead to cache pollution, i.e., the

eviction of useful data by unnecessary prefetched data, and ultimately increase miss

rates [11]. As a result, prefetchers can sometimes be counterproductive, as a higher

number of incorrect prefetches may degrade the performance rather than improve it.

Another drawback of DeepPrefetcher is its reliance on online learning, where the model

must be continuously trained in real-time to maintain accurate predictions. This

process requires dedicated computational resources, leading to additional hardware

overhead and increased energy consumption.

1.2.3 Load Value Speculation

Load Value Speculation (LVS) aims to hide the memory latency by predicting the

value to be loaded. In one of the earliest work in this area, the authors of [7] introduced

the idea of value locality. The authors suggest that values stored in adjacent memory

addresses are comparable in magnitude. For instance, the adjacent pixels of an image

stored in memory are alike in value. Subsequently, the authors present a dynamic

lookup table that speculates the value of a load with the aim of hiding the memory

access latency. In case of wrong speculation, the processor rolls back and flushes the

pipeline. Moreover, the lookup table is updated after every memory access. This

concept was widely investigated by implementing other speculation techniques such

as the work in [22] and [23]. Among the common techniques used in LVS are i) last

value prediction, ii) stride-based prediction, iii) context-based prediction, iv) hybrid

prediction, and v) perfect confidence [23]. Last value prediction assumes that a memory

load instruction will retrieve the same value as in its most recent execution. On the

9

other hand, stride-based prediction estimates the next load value by identifying a

consistent difference (stride) between successive values of a particular load instruction.

Additionally, context-based prediction relies on the past four observed values of a load

instruction to determine the most likely next value. Hybrid prediction dynamically

selects the most accurate predictor between context-based and stride-based methods.

Finally, perfect confidence utilizes the hybrid predictor but only applies the predicted

value when it is certain to be correct, simulating an ideal confidence mechanism.

All LVS techniques access the memory to confirm the correctness of the speculation

and roll-back in case of wrong speculation.

1.2.4 Load Value Approximation

Since roll-backs in LVS are expensive in terms of hardware requirement and loss in clock

cycles, some researchers have proposed the idea of Load Value Approximation (LVA).

These techniques speculate a value without a roll-back in case of a wrong prediction

which results in approximation. For instance, the work in [19] proposed a load value

approximation which relies on a dynamic predictor. The accuracy of the predictor can

be improved by providing the value of the recent loads, which saves in bandwidth and

energy for a cost in quality. The authors of [19] use a predictor with a Global History

Buffer (GHB) to record recent load values and an approximator table indexed by a

hash derived from the GHB along with the load instruction address to generate an

estimated value on a cache miss. Additionally, the predictor includes a Local History

Buffer (LHB), which records the sequence of recent values following patterns detected

in the Global History Buffer (GHB). The approximator then estimates a value by

averaging entries in the LHB, and thus allowing the processor to continue execution

while the actual value is fetched in the background to train the predictor future

10

estimations. Unlike traditional value predictors that require an exact match and trigger

rollbacks if even a slight discrepancy occurs, this approach uses a relaxed confidence

window to tolerate minor differences, thereby eliminating rollbacks and enhancing

energy efficiency. Furthermore, the design incorporates an approximation degree, which

determines how many subsequent load misses can reuse the same predicted value

before the actual data is fetched for retraining, thus effectively balancing accuracy with

reduced memory fetches even when value delays occur. Although the LVA proposed

in [19] introduces a solution that aims to address the memory wall, however it has the

drawback of using a complex hardware to predict the load value. For instance the

work in [19] requires the calculation of complex indexes and keeping track of LHB and

GHB. Furthermore, it uses a dynamic predictor that requires a continuous memory

access to maintain an acceptable low quality.

Rollback-Free Value Prediction (RFVP) [24] is an LVA technique designed for

Graphics Processing Units (GPUs). RFVP reduces memory latency by predicting

values for cache misses and selectively discarding some predictions. When a load is

not discarded, the actual value retrieved from the memory updates the predictor used

in the RFVP, improving its accuracy. The predictor relies on a value history table

indexed using a hash derived from the program counter of the load instruction. Each

entry stores three key elements, namely, the most recent value loaded from memory

and two stride values that capture how the load value has changed over time. RFVP

predicts a new load value by adding the last loaded value to one of the observed

strides. To enhance stability, the predictor updates the stride entry only when the

new stride is consistent with past patterns. Because GPU threads within a warp may

not execute simultaneously, some threads can be inactive during a cache miss but

may later request the same data. RFVP anticipates these accesses by precomputing

11

predictions for inactive threads, ensuring they receive meaningful approximations

rather than outdated or random values. This approach maintains consistency and

prevents errors due to unpredictable data. Similar to the LVA proposed in [19],

RFVP uses of a dynamic predictor that updates through memory access to sustain

an acceptable output quality. Furthermore, the RFVP predictor has a computation

overhead, e.g., computation of a hash index, to approximate the load value while also

requiring a lookup table that uses a complex updating method.

1.3 Problem Statement

Researchers have long investigated options to improve the performance of computers,

e.g., out-of-order execution. However, most modern computers face a significant

challenge in gaining speedup due to the memory wall. A limited number of

researchers have explored approximation or prediction-based solutions to address

memory bottlenecks. The most prominent techniques in approximating the load value

are the work in [19, 24]. Existing LVA techniques rely heavily on memory access to

update the predictor and hence maintain an acceptable quality. Moreover, existing

methods of LVA require complex hardware that has substantial resource usage and/or

require the computation of values needed to index/guide the predictor.

Alternatively, some researchers have shifted their focus towards exploring

approximate memory to address the memory wall, e.g., the work in [20]. However, the

approximate memory could potentially disrupt the functionality of the error correction

code (ECC) in the memory. Additionally, an approximate memory has an increased

complexity of the memory controller, which could yield in a significant overhead and

a delay.

Given these limitations, we believe that an approach approach with minimal

12

overhead is better suited to achieve meaningful speedups while preserving a small

hardware footprint. A key enabler for this is the use of a static predictor, which

would avoid the need for continuous updates and complex runtime mechanisms. A

statically designed model significantly reduces implementation complexity and allows

for faster predictions, thereby decreasing latency and energy consumption. With the

recent progress in ML algorithms and the increasing availability of high-performance

computation resources, ML-based LVA solutions would offer a compelling alternative.

Lightweight ML models, such as small neural networks or decision trees, can be trained

offline to learn patterns in memory load value, enabling accurate approximations that

do not require dynamic adaptation or rollbacks.

An advanced ML model can be trained once using representative workloads and a

statically trained predictor used solely for runtime prediction that operates efficiently

during execution. This approach eliminates the need for re-training at runtime and

ensures consistent prediction performance. Such models can generalize across various

applications, offering broader adaptability than traditional heuristic-based predictors.

However, ML models are inherently resource-intensive, often requiring significant

memory and computation. If not carefully designed, their demands can further burden

the already strained memory system, thereby worsening the memory wall problem.

To fully realize the benefits of ML in this context, it is essential to develop compact,

statically trained models tailored for hardware efficiency, enabling low-overhead with

minimal performance trade-offs.

1.4 Proposed Methodology

The objective of this thesis is to address the memory wall by using Machine

Learning (ML) and Approximate Computing (AC). We argue that this challenge can

13

be addressed with a solution that satisfies three key criteria: i) improve performance,

ii) maintain an acceptable quality, and iii) efficient usage of resources. Towards this

goal, an ML model is trained to learn the patterns in the load values while recognizing

that perfect accuracy is unfeasible. Thereafter, the trained ML model is used to

predict the load value. Given the inherent inaccuracy of ML models, we accept the

predicted value as-is resulting in an approximately computed load value. Subsequently,

the ML model is trained to achieve a controlled quality that is deemed acceptable.

We propose to develop a static predictor, where the ML model undergoes a single

training phase and then is reused indefinitely. The proposed ML-based Load Value

Approximator (ML-LVA) can be integrated into existing off-the-shelf hardware through

a software implementation, or implemented as a dedicated unit in newly designed

hardware. The proposed ML-LVA can be applied to any domain in which the principle

of value locality holds. In this thesis, we focus on its implementation in multimedia

applications, as these applications naturally exhibit value locality. For example, in an

image, a given pixel typically has neighboring pixels with similar values. Subsequently,

the proposed model in this thesis can be deployed in video games, augmented and

virtual reality systems where performance is a key necessity while a slight loss due to

approximation is tolerable. The details of the proposed methodology for developing

and using a ML-LVA are depicted in Figure 1.3. The methodology consists of Offline

and Online phases. The Offline phase is used to build the LVA predictor, while the

Online phase represents the application’s execution stage. The Offline phase requires

three inputs: i) an Error Tolerant Application, ii) a Training Multimedia Dataset,

and iii) an Approximation Level (n). Using these three inputs, the Offline stage

produces an approximated error tolerant application as an output, which will be

used by the Online phase to generate as an output the approximated multimedia

14

Figure 1.3: Methodology of the Proposed ML-LVA

result. The Offline phase consists of four main steps. In Step 1 the error tolerant

application is profiled to determine the “safe-to-approximate” load instructions. This

is a critical step in the process since approximating load values that do not tolerate

error could lead to catastrophic scenarios. For instance, loading a loop boundary or

memory addresses cannot be approximated. On the other hand, loading multimedia

data, e.g., pixel of an image, is error-tolerant and thus can be determined as “safe-

to-approximate”. The identification of safe-to-approximate load instructions can be

performed at either the high-level programming or low-level (assembly) code. For

applications written in a high-level language, the programming language must provide

a mechanism to explicitly declare variables as safe-to-approximate, and the compiler

must be extended to recognize these declarations and generate the corresponding

approximations. Alternatively, when the application is provided as assembly code, the

analysis can be performed directly at the instruction level. Although in this thesis

15

the identification of safe-to-approximate load instructions is performed manually,

this process could be automated in the future using, for example, some machine

learning technique, which can evaluate the impact of approximation and automatically

determine the safe-to-approximate instructions. In parallel, in Step 2 we perform a

data preprocessing on the training multimedia dataset. This step is crucial as raw

data cannot be fed to an ML model to perform training. Additionally, in this step, we

split the data into training and testing data in order to validate the quality of the

ML model. Thereafter, we perform the ML training in Step 3 . The trained model

will serve as the load value predictor, i.e., the ML-LVA. In Step 4 , we integrate the

ML-LVA into the error-tolerant application, where a portion of the safe-to-approximate

load instructions is replaced. The ratio of replacement is defined by the approximation

level (n), meaning that we retain 1 out of n + 1 instructions as exact while the others

are approximated. Every approximated instruction becomes a call to a subroutine,

invoking a custom instruction that can be implemented in software or in hardware.

In the software-based approach, this custom instruction is realized as a conventional

function call to a software routine that performs load value prediction using the trained

ML model. This solution is intended for deployment in existing off-the-shelf hardware

platforms, where hardware modifications are either impractical or impossible. As

such, it enables the integration of approximate load value prediction without requiring

architectural changes. To evaluate this method, the software-based implementation of

the ML-LVA was deployed in GEM5 [25], simulating an x86-based architecture. In this

evaluation, the “Timing Simple CPU” [26] was used, and various CPU frequencies,

cache settings and DRAM configurations were tested to assess the impact of the memory

hierarchy on performance gains. In contrast, in the hardware-based implementation,

the custom instruction is backed by a dedicated hardware accelerator that executes the

16

Figure 1.4: Deployment Framework for the Proposed Methodology

ML prediction logic directly in silicon. This accelerator acts as a coprocessor integrated

into a newly designed processor pipeline. In this thesis, the hardware ML-LVA was

implemented within the CVA6 design [27], a RISC-V processor [28], extending its

instruction set architecture (ISA) to include a custom opcode. When the approximated

instruction is encountered during execution, it triggers the custom instruction, which

routes the request to the ML-LVA accelerator. This tightly coupled design eliminates

software overhead and significantly reduces latency, making it suitable for high-

performance systems where hardware design flexibility is available. By supporting

both software and hardware realizations, the ML-LVA framework offers flexibility

for deployment across a wide spectrum of systems—from commodity platforms to

next-generation processor designs. In both the software and hardware implementations,

we investigate the ML-LVA framework for 8-bit applications. Nonetheless, certain

design choices have been made to ensure that the methodology can scale effectively to

larger designs, such as 16-bit or 32-bit applications.

The proposed methodology can be deployed by a user as shown in Figure 1.4. First,

17

the back end developer creates multiple versions of the same approximated application

with each version corresponding to a specific approximate level (n). Subsequently, in

the front end, the user selects the desired quality from an option menu, similar to how

a user selects video quality, such as Standard Definition (SD), High Definition (HD),

or 4K, in a streaming service. Additionally, the user provides the input multimedia to

the application. A selector function in the back end then picks the application variant

from the library that best matches the user’s chosen quality level. For instance, the

user might select SD to prioritize performance at the cost of reduced output quality.

Internally, the developer maps this SD setting to, for example, an approximation level

of 4, i.e., n = 4, which corresponds to an 80% approximation. Finally, the selected

application processes the input multimedia to produce the output. The deployment,

shown in Figure 1.4, could be further improved by compiling a single version of the

application into an executable file –commonly referred to as the binary or binary code–

and then passing the approximate level (n) dynamically. For example, instead of

compiling a separate binary for each approximation level, a single application binary

code can be compiled to accept the approximation level (n) as a runtime argument.

This value can be passed via the argument vector, i.e., argv, when launching the

application. At runtime, the program retrieves this argument to determine how

aggressively to approximate. The mechanism for accessing the argument may vary

depending on the underlying architecture. For instance, on x86 it may be fetched

from the stack, while on RISC-V it may be accessed through a register.

To validate the quality and effectiveness of the proposed ML-LVA methodology

we evaluate it using a diverse set of multimedia applications. These include image

processing, i.e., image blending, image inversion, and image binarization, as well as

audio processing tasks such as audio blending, audio inversion, and audio binarization.

18

These applications were selected due to their error-tolerant nature and their dependence

on memory-intensive operations, making them ideal benchmarks for assessing the

impact of approximate load value prediction. Experimental results indicate that

the trained ML-LVA was able to achieve a quality that outperforms state-of-the-art.

Similarly, both the software- and hardware-based implementations of proposed ML-

LVA outperform existing LVA techniques where substantial speedups both application

overall as well as in memory loads were measured.

1.5 Thesis Contributions
The main contribution of this thesis is overcoming the memory wall by leveraging

Machine Learning (ML) and Approximate Computing (AC) for memory load value

approximation. The proposed methodology addresses this challenge by reducing the

memory bandwidth needed by a given application and approximating (predicting)

the values that were not loaded from the memory. The predictor used in thesis is

generated by training an ML model. The key contributions of this work are outlined

below, with references to relevant publications included in the Biography section at

the end of the thesis:

• A methodology for machine learning-based load value approximator (ML-LVA)

which presents a complete design and deployment framework that includes

identifying “safe-to-approximate” load instructions, performing offline training

of an ML model to predict these values, and integrating the predictor into

error-tolerant applications. The output quality is controlled via a tunable

approximation level. The methodology supports both software- and hardware-

based realizations and enables quality-performance trade-offs through user-

configurable settings [Bio-Cf4].

19

• A static machine learning model that predicts unfetched memory load values to

reduce access latency. By adopting a static approach, the proposed ML-LVA

eliminates the deployment overhead of a dynamic predictor. The proposed

ML-LVA consistently produced high-quality results across six multimedia

applications, with output errors typically below 10%. In some cases, the output

was indistinguishable from the original. For classification based-applications,

accuracy and precision exceeded 98% at 50% approximation and remained above

80% even at 95% approximation [Bio-Cf1, Bio-Cf5].

• A software-based implementation of the proposed methodology deploying the ML-

LVA as a callable subroutine on commercial hardware. Safe-to-approximate load

instructions are replaced with subroutine calls to enable approximate execution

via the trained ML model. We evaluate this solution on six diverse multimedia

applications using the GEM5 simulator configured for an x86 architecture. The

implementation delivered overall application speedups of up to 1.23×, and more

than 6× faster value loading in multiple cases [Bio-Jr1].

• A hardware-based implementation integrating the ML-LVA predictor as an

accelerator within the CVA6 RISC-V processor [27] using a custom instruction.

Implemented in the form of a lightweight ROM, this design enables fast, low-

overhead inference without complex logic operations. We evaluate this approach

on four multimedia applications, achieving overall speedups up to 1.21× and

memory load gains of 1.47×. Synthesis results show that incorporating ML-

LVA into CVA6 incurs modest overheads: area increases by 5.09% and power

consumption rises by only 0.79% [Bio-Jr3].

20

1.6 Thesis Organization

The rest of this thesis is organized as follows: in Chapter 2, we introduce the preliminary

notions needed to ease the understanding the remainder of this thesis. This chapter

focuses on defining the key evaluation metrics used throughout the work, including

quality metrics for assessing the effectiveness of the ML-LVA, and performance metrics

for analyzing its impact on resource usage. Additionally, we present the mathematical

background underlying the target applications, along with an explanation of how the

ML-LVA influences their behavior.

In Chapter 3, we present the dataset used along with the training process and the

quality of the proposed ML-LVA. We also provide the details of the input needed by

the ML-LVA to predict the load value along with the prediction method. Furthermore,

we evaluate the quality of the ML-LVA when simulated in audio and image blending

applications. Thus, in Chapter 3 we will expand and present Steps 2 and 3 of the

proposed methodology shown in Figure 1.3.

In Chapter 4, we present Steps 1 and 4 of the proposed methodology, namely,

the software-based implementation of the proposed ML-LVA. We present in details how

we determine a safe-to-approximate instructions. Furthermore, we expand the work

in Step 4 by outlining the process of transforming the ML model into an optimized

software solution. Furthermore, we present the measuring environment used to evaluate

the efficiency of the software-based implementation which consists of simulating an

x86 processor in GEM5 with various cache and DRAM configurations. Thereafter, we

present the speedup achieved in memory access operations as well as the application

when the software-based implementation is deployed. The performance analysis was

performed using six multimedia applications, namely, image blending, image inversion,

image binarization, audio blending, audio inversion and audio binarization.

21

Chapter 5 describes how Step 4 of the proposed methodology shown in Figure 1.3

can be adopted for a hardware-based implementation. In this chapter, we present the

RISC-V CPU used and the modifications performed in order to integrate the ML-LVA.

We present the custom assembly instructions that were added to the Instruction Set

Architecture (ISA) permitting the usage of the ML-LVA. Furthermore, we evaluate

the benefits of these new instructions in terms of speedup in memory access and

application performance using multimedia applications. We provide experimental

results on multimedia applications, including image blending, image inversion, audio

blending and audio inversion.

We conclude this thesis in Chapter 6, where we provide closing remarks and future

directions.

22

Chapter 2

Preliminary

2.1 Introduction

This chapter describes the metrics used to evaluate the proposed Load Value

Approximation (LVA) techniques. Rather than presenting empirical results, the

chapter focuses on defining the evaluation methodology and contextualizing the

approximation within practical application domains. The aim is to lay the foundation

for the detailed analysis that follows in the subsequent chapters.

We first introduce the mathematical formulations of the metrics used to assess

the impact of LVA. These include measures related to performance, accuracy, and

resource efficiency. By formalizing these concepts, the section ensures a consistent

and precise basis for analyzing the effectiveness of the proposed LVA across various

implementation contexts, whether hardware or software. We then present the

six multimedia applications selected as representative case studies for applying

LVA. This chapter describes the structure of each application and highlights the

specific mathematical operations that are suitable candidates for approximation.

Understanding the underlying operations permits the reader to understand how they

23

tolerate imprecision and how their approximation can be leveraged by the ML-LVA to

enhance performance. Together, these preliminaries provide the necessary background

for interpreting the evaluation results presented in later chapters.

2.2 Evaluating Approximate Computing

The proposed ML-LVA relies on Approximate Computing (AC). Therefore, it is

important to understand the assessment methods used to identify the quality and gains

of an AC design. In this section, we will delve into the evaluating techniques of AC.

The usability of an AC design can be determined if the delivered quality falls within

an acceptable range of tolerable error. The generated quality of an AC design can be

measured using different metrics that can broadly be classified into two categories:

i) arithmetic error metrics that quantify the numerical deviation, and ii) classification

metrics that assess correctness in binary decisions. Some of these metrics include [29]:

• Error Distance (ED) is the arithmetic distance between the exact value (Ev)

and the approximate value (Av) by a given set of inputs. Hence the ED can be

written as:
ED = Ev − Av (1)

• Relative Error Distance (RED) is the ratio of the relative ED with respect

to the exact value (Ev):
RED = ED

Ev

(2)

• Mean Absolute Error (MAE) is the average of the absolute values of all

ED in space, i.e., n number of instances:

MAE =
(︄∑︁ |ED|

n

)︄
(3)

24

• Normalized Mean Absolute Error (NMAE) is measured to have a better

analysis for the worst-case scenario error. NMAE is normalized using EDmax,

the maximum ED in space, e.g., EDmax = 255 for 8-bit applications, and

computed as:

NMAE = MAE

EDmax

(4)

• Mean Squared Error (MSE) is the average of the ED squared:

MSE =
∑︁

ED2

n
(5)

• Root Mean Squared Error (RMSE) is the square root of MSE:

RMSE =
√

MSE (6)

• Normalized Root Mean Squared Error (NRMSE) is computed in a similar

fashion to NMAE:

NRMSE = RMSE

EDmax

(7)

• Peak Signal-to-Noise Ratio (PSNR) evaluates the quality of an image or

video by comparing the original signal to the noise introduced by the new design.

For 8-bit applications, the PSNR is computed as [30]:

PSNR = 20 log10

(︃ 255
RMSE

)︃
(8)

• Bit-Error Rate (BER) is the percentage of faulty bits in the output. The

BER is different from all previously discussed error metrics since it disregards

the arithmetic error. The BER can be expressed in terms of False Negative (FN),

25

False Positive (FP), True Negative (TN) and True Positive (TP) as:

BER = FN + FP

FN + FP + TN + TP
(9)

• Accuracy is the overall proportion of correct predictions made out of all

predictions. Similar to BER, the accuracy also does not measure arithmetic

error. Accuracy can be computed as:

Accuracy = 1 − BER = TN + TP

FN + FP + TN + TP
(10)

• Precision is the fraction of predicted positive instances that are indeed correct,

emphasizing the accuracy in making positive predictions. Similar to BER and

the accuracy metrics, precision does not measure arithmetic error. Precision is

computed as:

Precision = TP

TP + FP
(11)

The selection criterion of the error metric is driven by the type of application. For

instance, in a system that generates a true or false response, the classification metrics

are the suitable ones.

In addition to error metrics, physical design metrics are essential when evaluating

the practicality and efficiency of an AC design. These metrics capture the tangible

costs of implementing a design in hardware and are typically expressed in terms of

area (A), delay (D), and power (P). While an approximate design may tolerate some

degradation in output quality, it must still offer meaningful gains in one or more

physical dimensions, otherwise, the trade-off is unjustified.

To assess the overall hardware efficiency and compare different designs fairly,

26

composite metrics are often employed. These metrics combine multiple resource

constraints into a single value, helping designers analyze trade-offs and identify

optimal points along the performance-cost spectrum [31]:

• Power-Area-Delay Product (PADP): This metric captures the overall

hardware cost by multiplying the three primary physical factors. It is particularly

useful when all three resources—power (P), area (A), and delay (D)—are equally

important in the target application.

PADP = P × A × D (12)

• Energy-Delay Product (EDP): This metric evaluates the trade-off between

energy consumption (E) and performance. It is especially relevant in battery-

powered and energy-sensitive systems, where reducing both energy and execution

time is critical. Since energy is the product of power and time (E = P × D),

EDP can be rewritten as:

EDP = E × D = P × D2 (13)

The choice between PADP, EDP, or other derived metrics often depends on the

specific goals and constraints of the system being designed. For instance, in mobile

and embedded devices, minimizing energy and latency is often prioritized, making

EDP a suitable metric. In contrast, for high-performance computing systems where

throughput is more critical, delay (execution time) or PADP might be emphasized

more. Moreover, when approximation is applied at the software level, execution

time becomes an even more significant factor. Faster execution not only improves

27

responsiveness but can also indirectly reduce total energy consumption, especially

in systems where power scales with utilization. Therefore, speedup, defined as the

ratio of execution time between the exact and approximate versions, is a key metric

in these contexts. It provides a direct measure of how much computational efficiency

is gained through approximation.

Ultimately, the effectiveness of an AC design must be evaluated in terms of

both quality loss using error metrics and resource savings by analyzing the physical

metrics. A good approximation strikes the right balance between these two aspects,

delivering meaningful hardware and performance benefits while keeping the output

within acceptable quality bounds.

2.3 Multimedia Applications

To evaluate the applicability of LVA in practical scenarios, six multimedia applications

have been selected as representative case studies in this thesis. These applications

span both image and audio processing tasks, relying on simple yet computationally

relevant operations. Each is well-suited to approximate computing due to the inherent

error tolerance in human perception. Multimedia workloads often tolerate minor

deviations in data values without significantly degrading the perceived quality of the

output, making them ideal for exploring trade-offs between performance and accuracy.

Moreover, multimedia applications frequently process large volumes of data in parallel,

which amplifies the performance benefits of techniques like LVA that reduce memory

latency and computational effort. By covering a diverse set of operations—ranging

from arithmetic-heavy blending to memory-bound thresholding and inversion—this

selection offers a comprehensive and realistic benchmark for assessing the effectiveness

28

of LVA in real-world, error-resilient domains. In the sequel, we outline the applications

and their corresponding mathematical operations. The multimedia applications used

in this thesis are:

1. Image Blending [32]

Image blending combines two images by multiplying their corresponding pixel

values, optionally scaled by a blending factor. This operation is common in

graphics design and visual effects. For example, for 8-bit images, the blending

operation is defined as:

Iblend(x, y) = α ·
√︂

I1(x, y) · I2(x, y) (14)

where I1 and I2 are the input images, (x, y) denotes the spatial coordinates

of a pixel in the image, and α ∈ [0, 1] is a blending coefficient. The square

root operation ensures that the resulting values remain within the 8-bit range.

Since this operation requires the calculation of the square root –a computation

intensive operation– the overall speedup in the application is expected to be

significantly less compared to the one in the memory access since a smaller

portion is spent on the memory load.

2. Ring Modulation (Audio Blending) [33]

Ring modulation blends two audio signals by pointwise multiplication of their

8-bit unsigned sample values that ranges from 0 to 255. The formula for this

operation, similar to image blending, is:

smod(t) = α ·
√︂

s1(t) · s2(t) (15)

29

where s1 and s2 are the two audio streams, t denotes the discrete time index,

and α is the scaling factor applied to control the intensity of the effect. Similar

to image blending, this operation involves two back-to-back loads, one for each

audio signal. The approximation could help accelerate the processing of long

audio signals by reducing the cost of these loads, leading to a reduced execution

time. However, similar to the image blending, as the operation includes the

calculation of the square root, the speedup achieved in the application due to

the LVA is expected to be significantly less than the one observed in the memory

access.

3. Image Thresholding (Image Binarization) [34]

Image thresholding simplifies a grayscale image by converting it to a binary

image using a fixed intensity threshold:

Ithresh(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
255, I(x, y) > T

0, I(x, y) ≤ T

(16)

where I is the input image, (x, y) denotes the spatial coordinates of a pixel in

the image, and T is the selected threshold. This operation only requires a single

load per sample followed by a simple comparison, making it more dependent on

memory access compared to image blending or ring modulation. Thus, while

approximating, a higher speedup in the memory access will have a higher impact

on the performance improvement observed at the application level.

4. Infinite Clipping (Audio Binarization) [35]

Infinite clipping transforms an audio signal by reducing each sample to a binary

representation of its polarity. Given that the samples are 8-bit unsigned, they

30

are first centered around zero. The operation is defined as:

sclip(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
255, s(t) > T

0, s(t) ≤ T

(17)

where s is the audio stream t denotes the discrete time index, and T is the

threshold. The resulting values are either 0 or 255, depending on the comparison.

Similar to image thresholding, this operation involves a single load and simple

computation. Thus, the benefit of the LVA reverberates more at the application

level.

5. Image Negatives (Image Inversion) [36]

Image negatives transform an image into its negative by subtracting each pixel

value from the maximum intensity:

Ineg(x, y) = 255 − I(x, y) (18)

where I is the input image, and (x, y) denotes the spatial coordinates of a

pixel in the image. This operation is visually intuitive and widely employed

in photographic effects and preprocessing. Its reliance on a straightforward

subtraction operation makes it another potential candidate to test the proposed

LVA. Similar to thresholding, image negatives involve a single load followed

by a straightforward subtraction. Consequently, the potential speedup from

LVA is higher, contributing to a larger reduction in the overall execution time,

i.e., higher speedup.

31

6. Audio Polarity Inversion [37]

Polarity inversion flips the audio waveform around its midpoint. In the 8-bit

unsigned format, this is implemented by inverting the sample around 128:

sinv(t) = 255 − s(t) (19)

where s is the audio stream and t denotes the discrete time index. This

operation generates an inverted waveform, which is perceptually indistinguishable

in numerous playback environments, rendering it suitable for evaluating

approximation in subtraction or data loading. Similar to image inversion, polarity

inversion entails a single load and a straightforward subtraction. Consequently,

the speedup observed at the application level will be substantial.

In this thesis, specific parameters were set for each application to align with practical

use cases. For instance, for the blending tasks, the blending factor α was set to 1,

reflecting typical settings in image editing [32] and audio mixing tools [38]. For image

thresholding, the threshold was selected using Otsu’s method [39], a standard approach

in optical character recognition (OCR) to eliminate noise in scanned images [40].

Simple inversion operations, such as image negatives and polarity inversion, also

benefit significantly from LVA due to their minimal arithmetic requirements and

single-load nature. In particular, audio polarity inversion is commonly used in active

noise cancellation (ANC) systems, where inverting the polarity of noise allows it to

destructively interfere with the original signal, thus canceling it out [41].

These applications were selected to represent a broad range of image and audio

processing tasks with varying computational complexity and inherent error tolerance.

Together, they provide a meaningful and practical basis for evaluating the effectiveness

32

of the proposed LVA methodology. By covering diverse operations, from simple

inversions to more complex thresholding and blending tasks, the evaluation reflects

the practical implications of LVA on both quality and performance across real-world

scenarios.

33

Chapter 3

ML-based Load Value Predictor

3.1 Introduction

This chapter describes the Machine Learning (ML) techniques used to enhance the

predictive capabilities of the Load Value Approximator (LVA) developed in this thesis.

The focus is on a static, pre-trained model designed to operate efficiently during runtime

without requiring continual updates or retraining. The primary role of this model

is to provide load value accurate predictions based on historical patterns, enabling

the system to make informed decisions in real time. Although handcrafted statistical

models may be employed to predict load values, such methods do not scale effectively

to larger design spaces, e.g., 16-bit data widths, due to their inability to generalize for

unforeseen data patterns. In contrast, the ML-based model presented in this thesis

provides a generic methodology that can be applied across different systems, offering

greater adaptability and predictive robustness across diverse application domains.

In many conventional approaches, prediction mechanisms rely on hand-crafted rules

or actively trained models that update dynamically based on new data. While these

methods can adapt to changes over time, they also introduce a number of practical

limitations. Online learning systems require additional computational resources,

34

complex hardware and mechanisms to deliver a good quality. Furthermore, due to the

heuristic nature of the online trained system, the prediction of load values can have a

substantial delay. These issues make active online learning methods unsuitable for

systems that must operate under strict latency or energy constraints.

To address these challenges, this work adopts a static machine learning model—a

model trained offline using a carefully curated dataset, then deployed in a fixed form at

runtime. This approach offers several key advantages. First, it decouples the training

process from the system’s operation, allowing the use of powerful offline tools and

computing resources during model development. Second, it ensures consistency and

predictability in the model’s behavior, which is especially valuable in embedded or

real-time environments. Finally, by avoiding runtime training, the system’s complexity

is significantly reduced, making it easier to maintain, verify, and integrate with other

components.

The decision to use a static model is further supported by the nature of the problem

space. In this scenario, the input data patterns exhibit a degree of regularity and

stability, making it possible to train a model that generalizes well across future scenarios.

Extensive profiling and benchmarking during the design phase allowed for the creation

of a representative training dataset that captures the essential characteristics needed

for accurate predictions. As a result, the deployed model maintains high performance

without the need for adaptation or retraining.

In the sequel, we will present the training methodology for the proposed ML-

based LVA, followed by the dataset selection, then the quality assessment of the

trained ML-LVA.

35

3.2 Training Method

Existing methods in developing LVA techniques primarily rely on the history of

previously observed values, the program counter (PC), and hash functions, such as

XOR-based schemes, to aid in forming accurate predictions. In [42], we explored

this design space by training a machine learning model based on these principles.

Specifically, the model was provided with the load memory address, the program

counter, and separately computed hash values corresponding to the load memory

address, the program counter, the store values, and the store addresses. Each of these

hash values was supplied as a distinct feature to the model to capture a rich context

for prediction. However, despite the extensive feature set, the model consistently

failed to deliver satisfactory prediction quality across a range of applications. For

instance, when applied to the Canneal benchmark from the Princeton Application

Repository for Shared-Memory Computers (PARSEC) suite [43], the classification

accuracy reached only 36.57%, while the regression-based trained model resulted in

a root mean square error (RMSE) of 59.41. These metrics clearly indicate that the

model was not able to approximate load values effectively. Furthermore, the approach

incurred substantial runtime overhead, largely due to the necessity of computing and

maintaining multiple separate hash values at every load and store operation, adding

complexity and cost to the system.

In light of these limitations, we concluded that an effective LVA prediction

technique should prioritize two fundamental goals: i) minimize prediction overhead,

and ii) achieve acceptable prediction quality across a wide range of applications

without excessive feature engineering. To this end, we developed a more lightweight

and targeted approach, wherein the current load value is predicted solely based on

the previous load value produced by the same instruction. This design choice entirely

36

eliminates the need for computing hash values, significantly streamlining the prediction

mechanism and reducing the computational burden at runtime.

To train and evaluate the ML-based LVA we chose to use a multimedia dataset.

The rationale behind this selection lies in the inherent properties of multimedia

applications, where they often exhibit strong value locality, meaning that adjacent

or sequential memory values tend to follow similar patterns or trends. For example,

image processing tasks, such as blending, filtering, or inversion, pixel values that are

spatially or temporally close, typically have correlated magnitudes. By leveraging

this property, we ensure that the predictor is exposed to realistic scenarios, where

value locality is prevalent. Successfully approximating load values in such a context

would indicate that the predictor is capable of handling a broad class of multimedia,

e.g., image and audio applications, and could potentially extend to other domains

with similar locality patterns.

The methodology to generate the ML-LVA is illustrated in Figure 3.1. The

overall process is divided into two primary steps conducted within a simulated

environment. In Step 2 , we instrument the load behavior by simulating the execution

of load instructions, capturing the dynamic sequence of load values generated by each

instruction instance. This sequence forms the training dataset, effectively encoding

the load context in terms of past observed values. The output of Step 2 is thus a

structured dataset mapping historical load values to the subsequent target value.

In Step 3 , we train the machine learning model using the Extra Trees

algorithm [44]. Extra Trees was selected based on its favorable characteristics for our

task as it offers fast training times, robustness to noisy inputs, and strong predictive

accuracy when using only simple features, such as the previous load value, as input.

Our previous exploration in [45] corroborated the effectiveness of Extra Trees for

37

Figure 3.1: Training Method of the Proposed ML-LVA

this prediction setting. The output of Step 3 is a trained ML-LVA. In Step 4 ,

the application is modified to predict the load value as shown in Figure 3.2. The

example in the figure depicts how the prediction is applied in our proposed LVA where

a square and a circle represent an exact and approximate load value, respectively. The

approximation (prediction) is based on the preceding value regardless of whether it is

exact or approximate. For instance, the first approximate value (A1) predicted by the

LVA is based on the exact value (E) loaded from the memory. Thereafter, the second

approximate value (A2) is based on its preceding value A1 which is predicted/generated

by the proposed LVA. This prediction sequence is repeated n times, i.e., A1 to An. After

predicting n approximate values, an exact value (E) is loaded again from the memory

and the sequence is repeated. In this chapter, we test the quality of the proposed

ML-LVA by simulating its behavior in predicting the value of load instructions, without

integrating it into a full application. On the other hand, the details of determining

38

E A1 A2 An−1 An E A1 A2 An−1 An

Figure 3.2: Prediction Sequence

the safe-to-approximate load instructions are discussed in Chapter 4. Furthermore,

specifics of the deployment of Step 4 are addressed in Chapter 4 and Chapter 5 for

the software- and hardware-based implementation, respectively.

3.3 Dataset Selection and ML Training

The selection of appropriate datasets plays a critical role in training and evaluating

the ML-LVA developed in this work. Given the objective to design a predictor that

can effectively approximate load values in multimedia applications, it was essential to

choose datasets that not only represent diverse multimedia content but also exhibit

strong value locality characteristics, which is an important property for effective load

value approximation. In this section, we describe the datasets used for training and

evaluation, along with the rationale behind their selection and their relevance to the

predictor’s design goals.

3.3.1 Dataset Selection

Multimedia applications, such as image and audio processing tasks, typically

demonstrate high value locality. That is, adjacent data elements, such as neighboring

pixels in an image or successive audio samples in a sound file, tend to have related or

correlated values. This phenomenon emerges naturally from the physical properties of

the underlying content. For instance, colors in an object or continuous sound waves in

an audio stream change gradually rather than abruptly. Leveraging this observation,

39

(a) (b)

Figure 3.3: Image Blending: (a) Exact and (b) ML-LVA Model with Poor Training

the dataset selection focused on sourcing multimedia datasets where value locality

is naturally present. This ensures that the training process of the load predictor,

i.e., the ML-LVA, is exposed to realistic patterns commonly encountered in practical

applications and thus improving its generalization to real-world multimedia workloads.

In ML, the choice of the training dataset is a decisive factor in determining the

quality of the resulting model. A dataset that lacks sufficient diversity or representative

features can severely restrict the model’s ability to generalize, leading to degraded

predictions. Figure 3.3 illustrates this effect by comparing an exact image blending

output with the result produced by an ML-LVA model trained on a poorly chosen

dataset. In this example, the benchmark images known as “Set5” (with 5 images) and

“Set14” (with 14 images) [46] are used. The ML-LVA is trained using Set14 and the

testing was performed using Set5. From this example, we can notice that the absence

of representative training data results in noticeable quality loss, underscoring the

importance of careful dataset selection. To ensure robust training, a combination of

three publicly available datasets was selected for the image, namely, the Flowers [47],

40

the Cars [48], and the Places [49] datasets. Each dataset was chosen to introduce

different types of images, thus promoting a broad exposure to diverse patterns. The

Flowers dataset consists of 8,189 images of flowers across multiple species, captured

under varying lighting conditions, backgrounds, and compositions. This dataset is

particularly suitable for training purposes because it contains a rich variety of textures

and colors while still maintaining consistent value locality properties at the pixel level.

From this dataset, 4,094 images were used for training the ML model, referred to as

the “Training Multimedia” as depicted in Figure 3.1, while the remaining 4,095 images

were reserved for evaluation as “Input Multimedia” during the predictor deployment

and testing. This evenly distributed dataset ensures a balanced evaluation, enabling

an assessment of the predictor’s ability to generalize beyond the training set.

To further diversify the “Input Multimedia” during evaluation, two additional

datasets were incorporated. The Cars dataset provides 8,041 images featuring various

types of vehicles captured from different angles and environments. Car images

introduce distinct object contours, color distributions, and background variations

compared to flower images, enabling the evaluation of the predictor’s robustness across

heterogeneous visual patterns. In addition, 16 images were included from the Places

dataset, a large dataset composed of images depicting various indoor and outdoor

scenes. Although only a small subset of the Places dataset was used, these images

introduce further variability in textures, lighting conditions, and spatial arrangements.

This added diversity challenges the predictor to maintain prediction quality when

faced with less predictable or more complex visual structures. By combining these

three datasets, the “Input Multimedia” set spans a wide range of natural imagery,

enhancing the comprehensiveness of the predictor evaluation.

In addition to image datasets, an audio dataset was incorporated to introduce a

41

different modality of multimedia content into the training and evaluation pipeline.

Audio streams, like images, exhibit strong value locality, where neighboring audio

samples typically have correlated amplitude values, especially in continuous speech,

background music, or ambient sounds. For this purpose, the Babylon 5 audio

dataset [50] was selected. This dataset consist of 614.45 minutes distributed over 2,436

recordings from the television series “Babylon 5” encompassing a variety of audio

types such as dialogues, ambient effects, and music tracks, thus providing a diverse

set of audio patterns for training and evaluation. From this dataset, 1,255 audio files

were used as “Training Multimedia” (Figure 3.1) to generate load value sequences for

the model training. The remaining 1,181 audio files were used as “Input Multimedia”

for evaluating the predictor. The audio files were split according to the file size to

ensure an even distribution between the training and the application datasets. We

chose this method instead of dividing by the number of audio files, as the lengths of

the audio vary between the files.

3.3.2 ML Training

Separate ML-LVAs were trained for image and audio data, respectively, in order to

specialize the predictor behavior for each type of multimedia content. To clarify the

structure of these models, Tables 3.1 and 3.2 show the mapping of the trained ML

models for image and audio models, respectively, detailing the input features, output

responses, and the delta between input and output values. This mapping highlights

the specific data characteristics each model processes, emphasizing the specialized

nature of the predictors for image and audio workloads. From these tables, we can

notice that the predicted value in an image is close in range compared to the input. On

the other hand, the model trained on audio shows a larger difference in values between

42

Table 3.1: Mapping of the Trained ML Model Developed using Images

F§ R‡ ∆∗ F§ R‡ ∆∗ F§ R‡ ∆∗ F§ R‡ ∆∗
0 1 1 64 64 0 128 128 0 192 191 -1
1 2 1 65 65 0 129 129 0 193 192 -1
2 3 1 66 66 0 130 130 0 194 193 -1
3 4 1 67 67 0 131 131 0 195 194 -1
4 5 1 68 68 0 132 132 0 196 195 -1
5 5 0 69 69 0 133 133 0 197 196 -1
6 6 0 70 70 0 134 134 0 198 197 -1
7 7 0 71 71 0 135 135 0 199 198 -1
8 8 0 72 72 0 136 136 0 200 199 -1
9 9 0 73 73 0 137 137 0 201 200 -1

10 10 0 74 74 0 138 138 0 202 201 -1
11 11 0 75 75 0 139 139 0 203 202 -1
12 12 0 76 76 0 140 140 0 204 203 -1
13 13 0 77 77 0 141 141 0 205 204 -1
14 14 0 78 78 0 142 142 0 206 205 -1
15 15 0 79 79 0 143 143 0 207 206 -1
16 16 0 80 80 0 144 144 0 208 207 -1
17 17 0 81 81 0 145 145 0 209 208 -1
18 18 0 82 82 0 146 146 0 210 209 -1
19 19 0 83 83 0 147 147 0 211 210 -1
20 20 0 84 84 0 148 148 0 212 211 -1
21 21 0 85 85 0 149 149 0 213 212 -1
22 22 0 86 86 0 150 150 0 214 213 -1
23 23 0 87 87 0 151 150 -1 215 214 -1
24 24 0 88 88 0 152 151 -1 216 215 -1
25 25 0 89 89 0 153 152 -1 217 216 -1
26 26 0 90 90 0 154 153 -1 218 217 -1
27 27 0 91 91 0 155 154 -1 219 218 -1
28 28 0 92 92 0 156 155 -1 220 219 -1
29 29 0 93 93 0 157 156 -1 221 220 -1
30 30 0 94 94 0 158 157 -1 222 221 -1
31 31 0 95 95 0 159 158 -1 223 222 -1
32 32 0 96 96 0 160 159 -1 224 223 -1
33 33 0 97 97 0 161 160 -1 225 224 -1
34 34 0 98 98 0 162 161 -1 226 225 -1
35 35 0 99 99 0 163 162 -1 227 226 -1
36 36 0 100 100 0 164 163 -1 228 227 -1
37 37 0 101 101 0 165 164 -1 229 228 -1
38 38 0 102 102 0 166 165 -1 230 229 -1
39 39 0 103 103 0 167 166 -1 231 230 -1
40 40 0 104 104 0 168 167 -1 232 231 -1
41 41 0 105 105 0 169 168 -1 233 232 -1
42 42 0 106 106 0 170 169 -1 234 233 -1
43 43 0 107 107 0 171 170 -1 235 234 -1
44 44 0 108 108 0 172 171 -1 236 235 -1
45 45 0 109 109 0 173 172 -1 237 236 -1
46 46 0 110 110 0 174 173 -1 238 237 -1
47 47 0 111 111 0 175 174 -1 239 238 -1
48 48 0 112 112 0 176 175 -1 240 239 -1
49 49 0 113 113 0 177 176 -1 241 240 -1
50 50 0 114 114 0 178 177 -1 242 241 -1
51 51 0 115 115 0 179 178 -1 243 242 -1
52 52 0 116 116 0 180 179 -1 244 243 -1
53 53 0 117 117 0 181 180 -1 245 244 -1
54 54 0 118 118 0 182 181 -1 246 245 -1
55 55 0 119 119 0 183 182 -1 247 246 -1
56 56 0 120 120 0 184 183 -1 248 247 -1
57 57 0 121 121 0 185 184 -1 249 248 -1
58 58 0 122 122 0 186 185 -1 250 249 -1
59 59 0 123 123 0 187 186 -1 251 250 -1
60 60 0 124 124 0 188 187 -1 252 251 -1
61 61 0 125 125 0 189 188 -1 253 252 -1
62 62 0 126 126 0 190 189 -1 254 253 -1
63 63 0 127 127 0 191 190 -1 255 253 -2
§Input Feature
‡Output Response
∗Delta between Input and Output

43

Table 3.2: Mapping of the Trained ML Model Developed using Audio Data

F§ R‡ ∆∗ F§ R‡ ∆∗ F§ R‡ ∆∗ F§ R‡ ∆∗
0 0 0 64 73 9 128 128 0 192 183 -9
1 2 1 65 73 8 129 129 0 193 184 -9
2 20 18 66 75 9 130 129 -1 194 184 -10
3 26 23 67 75 8 131 130 -1 195 186 -9
4 21 17 68 76 8 132 131 -1 196 185 -11
5 24 19 69 77 8 133 132 -1 197 188 -9
6 22 16 70 78 8 134 133 -1 198 187 -11
7 25 18 71 79 8 135 134 -1 199 189 -10
8 23 15 72 80 8 136 135 -1 200 189 -11
9 27 18 73 80 7 137 136 -1 201 191 -10

10 25 15 74 81 7 138 136 -2 202 191 -11
11 29 18 75 82 7 139 137 -2 203 192 -11
12 27 15 76 83 7 140 138 -2 204 194 -10
13 29 16 77 84 7 141 139 -2 205 194 -11
14 28 14 78 85 7 142 140 -2 206 194 -12
15 33 18 79 85 6 143 141 -2 207 196 -11
16 30 14 80 86 6 144 142 -2 208 196 -12
17 33 16 81 87 6 145 143 -2 209 198 -11
18 32 14 82 88 6 146 143 -3 210 198 -12
19 36 17 83 89 6 147 144 -3 211 199 -12
20 34 14 84 90 6 148 145 -3 212 200 -12
21 38 17 85 91 6 149 146 -3 213 202 -11
22 36 14 86 92 6 150 147 -3 214 202 -12
23 39 16 87 92 5 151 148 -3 215 203 -12
24 37 13 88 93 5 152 149 -3 216 202 -14
25 41 16 89 94 5 153 149 -4 217 206 -11
26 38 12 90 95 5 154 150 -4 218 205 -13
27 42 15 91 96 5 155 151 -4 219 207 -12
28 42 14 92 97 5 156 152 -4 220 207 -13
29 41 12 93 98 5 157 153 -4 221 208 -13
30 44 14 94 98 4 158 154 -4 222 209 -13
31 44 13 95 99 4 159 154 -5 223 210 -13
32 46 14 96 100 4 160 155 -5 224 210 -14
33 45 12 97 101 4 161 156 -5 225 212 -13
34 47 13 98 102 4 162 157 -5 226 212 -14
35 49 14 99 103 4 163 158 -5 227 214 -13
36 49 13 100 104 4 164 159 -5 228 214 -14
37 49 12 101 104 3 165 160 -5 229 215 -14
38 51 13 102 105 3 166 161 -5 230 217 -13
39 50 11 103 106 3 167 161 -6 231 215 -16
40 53 13 104 107 3 168 162 -6 232 219 -13
41 53 12 105 108 3 169 163 -6 233 217 -16
42 54 12 106 109 3 170 164 -6 234 220 -14
43 55 12 107 109 2 171 165 -6 235 218 -17
44 56 12 108 110 2 172 166 -6 236 222 -14
45 57 12 109 111 2 173 167 -6 237 221 -16
46 58 12 110 112 2 174 167 -7 238 224 -14
47 58 11 111 113 2 175 168 -7 239 222 -17
48 59 11 112 114 2 176 169 -7 240 226 -14
49 59 10 113 115 2 177 170 -7 241 224 -17
50 61 11 114 116 2 178 170 -8 242 229 -13
51 61 10 115 116 1 179 172 -7 243 226 -17
52 62 10 116 117 1 180 172 -8 244 230 -14
53 64 11 117 118 1 181 173 -8 245 230 -15
54 65 11 118 119 1 182 174 -8 246 233 -13
55 65 10 119 120 1 183 175 -8 247 234 -13
56 66 10 120 121 1 184 176 -8 248 236 -12
57 67 10 121 122 1 185 177 -8 249 235 -14
58 68 10 122 123 1 186 177 -9 250 238 -12
59 68 9 123 123 0 187 179 -8 251 238 -13
60 70 10 124 124 0 188 179 -9 252 238 -14
61 70 9 125 125 0 189 181 -8 253 231 -22
62 71 9 126 126 0 190 181 -9 254 238 -16
63 72 9 127 127 0 191 182 -9 255 244 -11
§Input Feature
‡Output Response
∗Delta between Input and Output

44

the input feature and output response where the largest difference is 23. By training

distinct models, each predictor is exposed to the unique data characteristics within

its corresponding domain. For the image predictor, the training data exhibits trends,

such as smooth color gradients, and repetitive textures, all of which demonstrate

strong spatial value locality. For the audio predictor, the training data contains

features such as gradual amplitude changes, periodic waveforms, and occasional sharp

transitions, reflecting strong temporal locality. Thus, all selected datasets maintain

the intrinsic value locality necessary for effective load value approximation. By

maintaining separate predictors, the evaluation can more precisely assess the model’s

ability to learn and exploit domain-specific locality patterns. Furthermore, the usage

of dedicated predictors allows for a more focused optimization for each modality,

ensuring that the design and performance tuning of the predictor align with the

distinct requirements of image and audio processing tasks. The datasets used reflect

realistic multimedia application scenarios, where processing tasks often involve either

image or audio content independently. Consequently, the evaluation of these separately

trained predictors provides meaningful insights into the practical deployment of load

value approximation techniques in diverse multimedia workloads.

In summary, the dataset selection strategy was carefully designed to align with the

goals of minimizing prediction overhead while maintaining high-quality approximations

across diverse multimedia applications. By utilizing a mix of image and audio datasets,

partitioning the datasets systematically for training and evaluation, and focusing on

sources with strong value locality, the ML-LVA is trained and evaluated under realistic

and challenging conditions. This strategy forms the foundation for the subsequent

quality analysis discussed in the rest of this chapter and the deployment of the ML-LVA

in software or hardware in the subsequent chapters.

45

3.4 Quality Assessment

In this section, we simulate the output quality when using ML-LVA on six multimedia

applications, namely, multiplication-based image blending [32], multiplication-based

audio blending known as Ring Modulation (RM) [33], audio binarization known as

infinite clipping [35], image binarization known as image thresholding [34], polarity

inversion of audio [37], and image inversion known as image negatives [36]. This

section is divided into subsections for each multimedia application, where we analyze

the quality of the results in terms of common quality metrics, including PSNR,

NMAE, NRMSE, accuracy, and precision. Additionally, we discuss how approximation

affects each application differently, considering their specific nature and requirements.

3.4.1 Image Processing
The first set of experiments focuses on image processing applications, which are

fundamental in many areas, such as photography, medical imaging, and computer

vision. These applications often involve operations that manipulate pixel values, such

as blending, inversion, and binarization. In the context of approximation, the goal is

to test the impact of reduced computational load through LVA on image quality.

Each image processing experiment is evaluated across a range of approximation

levels, from n = 1 to n = 19, where n corresponds to an approximation percentage

of load value ranging from 50% to 95%. The experiments involve different types of

image transformations, each of which has different computational requirements and

quality impacts.

3.4.1.1 Image Blending

The quality metrics observed when experimenting with the multiplication based image

blending are shown in Figure 3.4. From Figure 3.4(a), we can notice that the PSNR

46

ranges from 16.13 dB to 33.08 dB where for a smaller n, i.e., less approximation, a

higher PSNR was achieved. Researches evaluated human perception of quality in

relation to PSNR values. They categorized the quality as Excellent when the PSNR

exceeds 37 dB, Good between 31 dB and 37 dB, Fair from 25 dB to 31 dB, and Poor

when PSNR falls between 20 dB and 25 dB. Any value below 20 dB is classified as Bad

quality [51, 52]. Based on this classification, the PSNR results obtained across the

three image datasets remain within acceptable quality levels, particularly within the

Fair to Good range, for the initial approximation levels. As the approximation level

increases from 1 to 19, the PSNR values show a gradual decline. Nevertheless, when

the ML is tested on the Flowers dataset, the PSNR delivered an acceptable quality

even when the approximate level reached 15. On the other hand, when blending Cars

or Cars with Places, up to an approximate level of 4 or 5, i.e., 80% approximation,

the PSNR consistently stays above 20 dB, indicating that the visual quality remains

within acceptable bounds. This suggests that modest levels of approximation can be

safely applied without significantly degrading perceptual quality. Subsequently, as n

increases, the PSNR decreases, but still maintains acceptable quality for most use

cases. The NMAE and NRMSE follow a similar trend, with increasing errors at higher

approximation levels. From Figure 3.4(b), we can notice that the NMAE was as low

as 1.8% and slightly surpassed 10% in few cases only. Furthermore, from Figure 3.4(c),

we can notice that the NRMSE ranged from 4% to 15.6%.

When comparing the quality of the blending images from the Cars dataset with

the blending of the one with the Flowers, we can notice the blending quality slightly

differs. From Figure 3.4, we notice that the quality when applied to images from the

Flowers dataset, the measured metrics had a linear trend while the one with the Cars

had a logarithmic trend. Moreover, we can notice that for a lower approximate level,

47

(a)

(b)

(c)

Figure 3.4: (a) PSNR, (b) NMAE, and (c) NRMSE for Various Image Blending Sets

48

i.e., less approximation, the quality of blending images from the Cars dataset was

better compared to the one from the Flowers dataset. This can be attributed to the

distinct nature of the images in the Cars dataset, which might have different contrast

and texture compared to the Flowers dataset. Additionally, since the ML-LVA was

trained using a portion of the Flowers dataset while achieving on average a better

quality with the Cars dataset, this demonstrates the extensibility of the trained model

to any image, even if they do not resemble the one used in the training phase.

To further investigate the quality of the trained model, we test 16 images from

(a) (b)

(c) (d)

Figure 3.5: Image Blending Example 1: (a) Exact, (b) 50% Approximation (n=1),
(c) 80% Approximation (n=5), and (d) 90% Approximation (n=9)

49

(a) (b)

(c) (d)

Figure 3.6: Image Blending Example 2: (a) Exact, (b) 50% Approximation (n=1),
(c) 80% Approximation (n=5), and (d) 90% Approximation (n=9)

the Places dataset and 129 images from the Cars dataset, where the quality is shown

in Figure 3.4, i.e., Places & Cars. The results demonstrate that even when mixing

contexts of images, the quality was similar to the one of blending Cars only.

Analyzing the quality objectively, we can notice from Figures 3.5 and 3.6 that

for various approximate levels, the pixels are in general predicted accurately, i.e., the

color of the pixels are predicted accurately. Additionally, we can notice that for a

higher approximation, sharp edges that consist of significant color changes could

be less accurately approximated, whereas less sharp edges and shapes are predicted

50

accurately. Finally, we notice that for a 50% approximation, the quality loss is barely

noticeable. At 80% approximation, the reduction in quality can still be deemed

acceptable in scenarios where systems operate under limited memory bandwidth. In

such cases, the additional performance gains achieved through approximation outweigh

the minor perceptual loss, providing a favorable trade-off between efficiency and output

fidelity. However, at 90% approximation the quality loss becomes more visible yet still

consumable if the performance gain is the ultimate goal.

3.4.1.2 Image Inversion

The quality analysis of image inversion is shown in Figure 3.7. Compared to image

blending, image inversion is more resilient to approximation, as demonstrated by the

consistently higher PSNR values across all approximation levels where the quality is

in the Fair to Excellent ranges. Moreover, we can notice that the inversion of images

from the Flowers dataset attained a better quality compared to the other datasets.

Nonetheless, the resulting quality is comparable among the various sets.

From Figure 3.7(a), PSNR values range from 29.07 dB to 39.85 dB. This suggests

that image inversion, being a less complex operation, is less sensitive to approximation

and retains a high quality even with a large reduction in computational load. On

the other hand, the NMAE and NRMSE values for image inversion are also lower

than those for image blending, as shown in Figures 3.7(b) and 3.7(c), respectively.

The NMAE ranged from 0.5 to 6.0 and the NRMSE from 1.1 to 3.5, where a lower

approximation level achieved a lower error. Subsequently, compared to image blending,

the image inversion delivered superior results in terms of PSNR, NMAE and NRMSE.

Finally, when analyzing the quality subjectively, we can notice from Figure 3.8 that

similar to image blending, at 50% the quality loss is barely noticeable and at 80%

51

(a)

(b)

(c)

Figure 3.7: (a) PSNR, (b) NMAE, and (c) NRMSE for Various Image Inversion Sets

52

(a) (b)

(c) (d)

Figure 3.8: Image Inversion Example: (a) Exact, (b) 50% Approximation (n=1),
(c) 80% Approximation (n=4), and (d) 90% Approximation (n=9)

the quality can be considered acceptable. For a 90% approximation the quality is

drastically reduced, however the output is still consumable.

3.4.1.3 Image Binarization

In the context of image binarization, where the output is a binary value consisting solely

of two possible pixel values, the usage error-rate based error metrics, i.e., accuracy

and precision, as evaluation metrics is more appropriate than magnitude-based error

metrics such as PSNR, NMAE, or NRMSE. The accuracy and precision of the binarized

images are shown in Figure 3.9. The accuracy drops to 84.8% and precision drops to

80.8% for an approximation of 95%, i.e., n = 19, as shown in Figures 3.9(a) and 3.9(b),

respectively. However, at the 50% approximation, i.e., n = 1, both accuracy and

53

precision are high at 98.8% and 98.3%, respectively. Subsequently, with a quality

loss of less than 2% with a 50% approximation, the trade-off in quality is deemed

acceptable. Furthermore, since for a 95% approximation, i.e., n = 19, the quality loss

was less than 20%, which can be also deemed acceptable.

From the example of image binarization shown in Figure 3.10, we can notice a

similar trend in quality to the previous applications. Finally, we can suggest from all the

examples presented throughout the various applications, that a higher approximation

level, e.g., more than 80% approximation, can be used if the performance is the

(a)

(b)

Figure 3.9: (a) Accuracy, and (b) Precision for Various Image Binarization Sets

54

(a) (b)

(c) (d)

Figure 3.10: Image Binarization Example: (a) Exact, (b) 50% Approximation (n=1),
(c) 80% Approximation (n=4), and (d) 90% Approximation (n=9)

ultimate goal, given that at high approximation, the human perception can easily

identify the quality loss.

3.4.2 Audio Processing

The second set of experiments involves audio processing applications, which are integral

in fields like music production, speech recognition and headphones design. Audio

processing typically requires operations that manipulate sound waves, such as blending,

inversion, and binarization. The impact of deploying the proposed ML-LVA on these

operations is investigated in this section, using the same range of n values as in the

image processing experiments.

55

3.4.2.1 Audio Blending

In this experiment, a Ring Modulation (RM) was employed to blend two audio signals

under varying levels of approximation. The results are presented in Figure 3.11.

The corresponding PSNR values range from 34.67 dB at the lowest approximation

level (n = 1), i.e., 50% of load values are approximated, to 25.97 dB at the highest

level (n = 19), where approximately 95% of the load values were predicted, as

shown in Figure 3.11(a). Notably, even under substantial approximation, e.g., 95%

approximation of load values, the PSNR consistently remains above the 25 dB threshold,

which is typically considered indicative of acceptable quality [53]. This demonstrates

that similar to image blending, the audio blending has a significant tolerance to high

levels of approximation without significant perceptual degradation when using the

proposed ML-LVA.

The change in NMAE and NRMSE for the various approximation levels is depicted

in Figures 3.11(b) and 3.11(c), respectively. Both metrics exhibit a gradual increase

with rising approximation, with NMAE varying from 0.7% to 3.0% and NRMSE

increasing from 1.6% to 4.6%. Despite this growth, since the error values remain

less than 5%, this further supports the observation that the perceived audio quality

remains largely unaffected even at elevated approximation levels.

When compared to image blending, audio blending appears marginally more

resilient to approximation. This may be due to the inherent characteristics of audio

signals, which exhibit greater nuance and better value locality, enabling more accurate

prediction with the trained ML-LVA. The temporal continuity and smoother transitions

in audio data also help maintain prediction accuracy, reducing the impact of using

the ML-LVA and allowing for improved performance with minimal degradation.

56

(a)

(b)

(c)

Figure 3.11: (a) PSNR, (b) NMAE, and (c) NRMSE for Various Approximate Levels
of Audio Blending

57

3.4.2.2 Audio Inversion

The results of applying the proposed ML-LVA to audio inversion are presented in

Figure 3.12. As the approximate level (n) increases, a gradual reduction in PSNR

and an increase in NMAE and NRMSE is observed. Nevertheless, the performance

remains within acceptable bounds across all the tested approximate levels. As shown

in Figure 3.12(a), the PSNR declines from 40.10 dB at minimal approximation,

i.e., n = 1, to 33.11 dB at the highest approximation level, i.e., n = 19, reflecting

a controlled deterioration of signal fidelity under approximation. Importantly, the

PSNR consistently remains well above the 31 dB threshold (Good quality), indicating

that the core structure of the binarized signal is preserved even under a significant

approximate level, e.g., 95% approximation.

On the other hand, the NMAE and NRMSE, exhibit a modest increase with

higher approximation levels. The NMAE rises from 0.5% to 1.8%, while the NRMSE

varies from 1.1% to 2.3% as shown in Figures 3.12(b) and 3.12(c), respectively. These

increments are gradual and relatively minor, further confirming that the approximation

introduces limited distortion into the binarized audio representation. Notably, with

90% approximation of load values, i.e., n = 19, both NMAE and NRMSE remain

low, i.e., less than 3%, highlighting the robustness of the inversion process against

intermediate levels of approximation.

Overall, the results of this experiment demonstrate that the ML-LVA can effectively

predict the load values in the audio inversion task. While increasing the approximation

level introduces a slight increase in approximation errors, the overall quality of the

inverted audio signal remains high across all levels. These findings validate that

the proposed ML-LVA is a viable technique for reducing the resources needed when

performing an audio inversion, ensuring minimal degradation in signal quality even

58

(a)

(b)

(c)

Figure 3.12: (a) PSNR, (b) NMAE, and (c) NRMSE for Various Approximate Levels
of Audio Inversion

59

at higher approximation levels. Thus, the experiment successfully highlights the

practical applicability of ML-LVA in audio processing tasks requiring accurate load

value prediction.

3.4.2.3 Audio Binarization

For audio binarization, where the output signal is reduced to just two discrete amplitude

levels, it is more meaningful to assess performance using error-rate based metrics such

as accuracy and precision rather than relying on magnitude-based error measures used

in the previous audio applications, i.e., PSNR, NMAE, or NRMSE. The results of the

audio binarization are depicted in Figure 3.13. These results reflect the performance of

the binarization process across varying levels of approximation, from n = 1 to n = 19.

As the approximation level increases, both accuracy and precision gradually decrease,

which is expected due to the introduction of approximation errors. For the least

approximation level (n = 1), i.e., 50% approximation, the accuracy is 97.3%, and the

precision is 97.9%, indicating a high level of fidelity between the original and binarized

signals. As the approximation level increases, we observe a steady decline in both

metrics. At n = 2, the accuracy diminishes to 95.4%, and precision decreases to 96.4%,

indicating that even at elevated approximation level, i.e., 66.67% approximation, a

noticeable reduction in quality is observed. Nonetheless, the accuracy and precision

indicate that the error in the output is still tolerable. As the approximation level

continues to increase, the accuracy reaches 89.3% and the precision 89.8% for n = 19.

Despite this decrease in both accuracy and precision as the approximation level

approaches its maximum, the performance remains within an acceptable range. The

accuracy and precision metrics exhibit a clear, consistent trend of degradation as

the approximation level increases, but the values do not drop to levels that would

60

(a)

(b)

Figure 3.13: (a) Accuracy, and (b) Precision for Various Approximate Levels Audio
Binarization

undermine the overall quality of the binarized output. This behavior suggests that

the audio binarization method remains robust and can tolerate higher levels of

approximation without significant loss in quality and hence suitable for usage with

the proposed ML-LVA.

3.4.3 Comparison with Related Work

We compare the proposed ML-LVA to the state-of-the-art LVA proposed in [19, 24].

Since these related work use different error metrics, we will compare to each of

61

these work separately. For instance, the authors of [19] used the NMAE as an

error metric when analyzing the effect of their LVA when applied to the PARSEC

benchmark [43]. We compare the average prediction quality of the proposed ML-LVA

across all applications and datasets evaluated in the previous section with the average

quality reported for the applications studied in [19]. The comparison is summarized

in Table 3.3. We can notice that the NMAE of the work in [19] is more than double

for the various approximate levels. Since the proposed LVA delivers a better quality

than the LVA proposed in [19] for the various approximate levels, we can conclude

that the LVA we propose is superior.

Table 3.3: Comparison of NMAE of the Proposed ML-LVA with [19]

Approximate Level (n) LVA [19] Proposed ML-LVA
1 5.81% 1.98%
3 7.25% 3.17%
5 8.97% 3.98%
9 11.06% 5.01%

17 13.78% 6.30%

To further establish a common reference, we evaluate the quality of the proposed

ML-LVA using the same input data as the PARSEC multimedia applications,

specifically the simlarge dataset [43]. Subsequently, the simlarge input data for

three PARSEC multimedia applications, namely BodyTrack, Ferret and x264, are

used as input to the applications chosen in this thesis, i.e., Blending, Binarization

and Inversion of images. BodyTrack and Ferret operate on image inputs, whereas

x264 processes video streams. Since the applications used in this thesis do not directly

handle video content, we extracted individual frames from the x264 input and applied

them as image data to our workloads. This adaptation ensures that our evaluation

remains consistent with the datasets used in related work while staying aligned with

62

Table 3.4: Comparison of NMAE of the Proposed ML-LVA with [19] when using the
simlarge Dataset

Approximate Level (n) LVA [19] Proposed ML-LVA
1 10.52% 1.81%
3 10.90% 3.32%
5 11.87% 4.42%
9 12.64% 6.02%

17 13.79% 7.75%

the scope of the chosen applications. This allows for a direct comparison under

identical data conditions. Table 3.4 compares the average quality obtained for the

three PARSEC multimedia applications evaluated in [19] with the prediction quality

achieved by the proposed ML-LVA when applied to the simlarge input using the

chosen multimedia applications in this thesis. From Tables 3.3 and 3.4 it becomes

clear that the prediction accuracy of the proposed ML-LVA remains stable across

datasets, with no significant fluctuations between different inputs. This deterministic

behavior contrasts with the variability reported in [19], where prediction quality could

vary considerably from one application set to another. Thus, beyond providing higher

accuracy, our proposed ML-LVA ensures predictable performance regardless of the

input dataset.

The authors of [24] proposed the Rollback Free Value Predictor (RFVP) and used

the NRMSE as an error metric when evaluating their method on selected applications

from the Rodina [54], Mars [55] and Nvidia SDK [56] benchmarks. The comparison

with the proposed LVA is summarized in Table 3.5. Even though the authors of [24]

targeted GPU architectures with different approximate levels, we can fairly compare

the quality results of their proposed model and the LVA we propose. In fact, the

quality will only vary based on the percentage of instances that are approximated,

e.g., if 50% of load values are approximated sequentially on a CPU or in parallel on a

GPU the proposed LVA will yield the same quality. Table 3.5 shows the normalized

63

Table 3.5: Comparison of NRMSE of the Proposed ML-LVA with [24]

Approximate Level (n) RFVP [24] Proposed ML-LVA
1 12.21% 4.00%
3 18.65% 5.81%
4 23.46% 6.45%
9 31.25% 8.21%

root mean squared error (NRMSE) for the various approximate levels. From Table 3.5

we can notice that for any approximate level, our model provides at least 3.75× better

quality and hence outperforms the work in [24].

3.5 Summary

In this chapter, we presented a comprehensive framework for the ML-LVA tailored

to multimedia applications, with a focus on image and audio data. The design and

evaluation of the proposed LVA were structured around two main objectives: ensuring

efficient load value approximation, i.e., a predictor that requires minimal overhead

to operate, while maintaining high-quality performance across a diverse range of

multimedia content. To support this, we curated a dataset suite comprising three

image datasets—Flowers, Cars, and Places, and one audio dataset, Babylon 5. These

datasets were chosen for their strong value locality, enabling effective model training

and robust predictor performance tailored to the characteristics of image and audio

domains. This diversity helped ensure that the LVA generalized well to real-world

workloads.

In our quality evaluation, the ML-LVA was applied to six multimedia tasks, namely,

image blending, audio blending, image inversion, audio inversion, image binarization

and audio binarization. Across all tasks, we assessed the output quality using metrics

such as PSNR, NMAE, NRMSE, accuracy, and precision. The results demonstrated

64

that even at high approximation levels, our LVA preserves an acceptable quality. Image

tasks showed minimal degradation at moderate levels, while audio tasks were especially

resilient, maintaining perceptual quality under more aggressive approximation. The

experiments also revealed varying tolerance across applications. For instance, image

inversion was more robust to approximation than image blending, and audio blending

tolerated approximation with very little quality loss. Despite a predictable decline in

accuracy with higher approximation, the multimedia applications remained usable,

validating the practical effectiveness of ML-LVA.

Overall, the ML-LVA achieves a strong balance between computational efficiency

and output quality. This efficiency is achieved through the use of a lightweight

history-based prediction mechanism, which avoids the added complexity and hardware

overhead used in prior work. Its adaptability to both image and audio domains,

combined with its performance under approximation, makes it a compelling solution

for real-time or resource-constrained multimedia systems. While these results are

more conceptual for the quality of the trained model and generated predictor, an

integration of this load predictor with the target application is mandatory to assess

the impact on the performance.

In the subsequent chapters, we will therefore explore in detail how the proposed ML-

LVA can be integrated into both software- and hardware-based systems. In particular,

the next chapter will provide an in-depth examination of the ML-LVA implementation

within a software runtime environment. Understanding the deployment details of the

ML-LVA is crucial for assessing its real-world compatibility, overhead, and scalability.

While this chapter focused on prediction accuracy, the next chapter will provide a

comprehensive performance analysis, including speedup effects and workload behavior

under actual execution conditions.

65

Chapter 4

Software Implementation of the

ML-LVA

4.1 Introduction

Following the development of the machine learning (ML) model that is capable of

predicting the load value and testing its accuracy through simulation, this chapter

presents its practical realization through a software-based implementation. The

objective of this phase is to transform the conceptual design of the ML-LVA into

a fully operational system capable of functioning within real-world environments.

The software implementation integrates the key components of the ML-LVA into a

cohesive framework, designed to meet the requirements of efficiency, scalability, and

adaptability.

A software-based implementation offers several important advantages. Foremost

among them is the ability to deploy the proposed ML-LVA model onto existing

hardware platforms, e.g., off-the-shelf processors, without necessitating modifications

to the underlying hardware. In this work, we evaluate the ML-LVA on an x86

66

platform using the GEM5 simulator [25]. The x86 architecture was chosen due to

its widespread adoption, its compatibility with GEM5, and its use in previously

proposed LVA [19]. Furthermore, x86 provides a stable and well-documented ISA,

making it a suitable baseline for evaluating new design concepts such as the ML-

LVA. Additionally, the GEM5 simulator was selected for its cycle-accurate modeling

capabilities, extensive configurability, and widespread use in academic research,

allowing for detailed architectural analysis and reproducible experimentation.

In addition to its relevance for general-purpose platforms, a software-based

deployment is also highly beneficial in the context of application-specific integrated

circuits (ASIC) or other custom hardware environments, where available silicon area

is often constrained, and the addition of new dedicated hardware units is either

impractical or impossible, the integration of the ML-LVA through software provides a

viable and efficient solution. This approach ensures that the benefits of the ML-LVA

can be realized with minimal disruption to existing system architectures, thereby

enhancing system flexibility and reducing development time and cost.

The rest of this chapter is structured as follows. First, we present the methodology

employed to achieve the software-based implementation, with an emphasis on the

translation process of the ML model into a modular and integrable software structure.

Additionally, we present in details how the “safe-to-approximate” load instructions

are identified giving its importance in achieving a software-based implementation of

the proposed ML-LVA. Subsequently, we present the testing environment, highlighting

the configurations used to evaluate the impact of the software integration on system

behavior. Thereafter, we present a comprehensive performance analysis, examining

the operational efficiency, resulting from the software-based implementation of the

ML-LVA when deployed in six multimedia applications.

67

4.2 Proposed Methodology

This section describes the methodology used to integrate the ML-LVA model discussed

in the previous chapter into software. Building on the training and design details

previously presented, we focus here on translating the trained model into a form

suitable for implementation within the system’s software stack. Key considerations

include model representation, and the mapping of decision logic to software constructs

for efficient execution. Additionally, we explain how the set of load instructions that are

safe-to-approximate is determined, forming the basis for applying LVA selectively and

effectively. With both the determination of safe-to-approximate instructions and the

translation from high-level model to optimized software, a complete implementation

of the application can be generated. Thus, in this section, we present Steps 1 and 4

of the methodology shown in Figure 1.3.

Figure 4.1 depicts the process of determining the safe-to-approximate load

instructions and how we integrate in software the trained model within the error

tolerant application. In Step 1 , we perform the first step towards determining the safe-

to-approximate load instructions by profiling the load instructions and determining

the effect on the program. Thereafter, in Step 2 , we determine the control flow

independent load instructions. This is a crucial step since if the control flow is

affected by the approximation, e.g., approximating (predicting) the loop boundary

read from the memory, could result in crashes, such as segmentation faults, infinite

loops, execution of unintended code, stack corruption and/or breaking the logic of

the program. Thus, based on Step 2 , we determine the safe-to-approximate load

instructions by determining those that are not part of the control flow.

Furthermore, as shown in Figure 4.1, in Step 5 , we compile the high level

description of the ML model into an optimized assembly code. Optimizing the

68

Figure 4.1: Methodology to Implement the Proposed LVA in Software

implementation of an ML-model in assembly is not a straightforward task. For instance,

in a tree-based prediction, the tree will consist of if-else conditions that translate to

conditional branching in assembly. However, branching can consume a large number of

cycles and cause the predictor to require a substantial number of clock cycles to predict.

On the other hand, since in this thesis the proposed LVA targets a 1-byte load, the

predicted value can be from 0 to 255, i.e., 256 unique values. Subsequently, we choose

to implement the predictor in a subroutine that uses an unconditional branch. Since

the predictor is static, for a given history value, i.e., preceding value, the predicted

value will always be the same. Subsequently, we extract the 256 possible predictions

from the ML model in order to implement it in assembly. The implementation in

assembly consists of using the history value, i.e., preceding value, as a multiplier

for the jump address. Although the predictor could be implemented as a lookup

array, we adopt a subroutine-based implementation since it scales more effectively for

69

applications that operate on larger data widths, e.g., 16-bit and 32-bit inputs. For

instance, in a 16-bit application, an array-based design may introduce conflict misses

in the data cache, which would undermine the purpose of the ML-LVA, as its objective

is to alleviate memory bottlenecks. In contrast, a subroutine resides in the instruction

cache, which is read-only and therefore experiences lower traffic and simpler access

patterns compared to the data cache, which must handle both reads and writes. As a

result, the subroutine-based approach reduces the likelihood of cache conflicts allowing

the scalability to larger data width. It is noteworthy that the extension of the proposed

implementation will lead to a larger size of the code since the instances that need

to be covered by the subroutine are much larger. Finally, in Step 6 we replace the

safe-to-approximate load instructions with a call to the subroutine. The replacement

is done by hand since a new program has to be generated where its flow requires an

attentive modifications. In the future, compilers could be adapted to accept the list of

safe-to-approximate load instructions, allowing this process to be fully automated.

4.3 Implementation of the Predictor

To evaluate the practical feasibility of the proposed ML-LVA, we implement and test

it on an x86-based platform. The choice of x86 is motivated by several factors. First,

x86 remains one of the most widely adopted ISA, making it highly relevant for both

academic research and industry applications. Its mature ecosystem and widespread

use across desktop, server, and embedded domains allow for results that are more

broadly applicable. Second, x86 is fully supported by the GEM5 simulator, which we

use in this work to conduct detailed cycle-accurate simulation and gain system-level

insight into predictor behavior. Although the proposed ML-LVA could be implemented

on alternative ISAs such as ARM or RISC-V, in this work we limit our scope to x86

70

Listing 4.1: Assembly Subroutine of the ML-based Predictor for x86 Architecture

1 ; ECX contains the history value, i.e.,~the preceding value.
2 ; Multiply ECX~(history value) by 6 since MOV and RET are 6 bytes
3 ; Jump to Base Address~(vals) + ECX
4 ; Move the predicted value to ECX and exit the subroutine
5 predictor:
6 imul ecx , ecx, 6
7 lea ecx , [vals + ecx]
8 jmp ecx
9 vals:

10 mov ecx , 41 ; if history value = 0
11 ret
12 mov ecx , 18 ; if history value = 1
13 ret
14 mov ecx , 108 ; if history value = 2
15 ret
16

17 . . .
18 # < skipped portion of the code>
19 . . .
20

21 mov ecx , 238 ; if history value = 253
22 ret
23 mov ecx , 240 ; if history value = 254
24 ret
25 mov ecx , 220 ; if history value = 255
26 ret

due to its widespread popularity, its extensive support in GEM5, and its prior use

in related work on load value prediction [19]. By targeting x86, we ensure that the

ML-LVA can be realistically evaluated in a widely recognized and practical computing

context, thereby enhancing the relevance and comparability of our results.

The implementation of the predictor subroutine in x86 assembly is shown in

Listing 4.1. In this snippet it is assumed that the history value, i.e., preceding value,

to be used for the prediction is available in the ecx register. In this snippet, if the

history value is 0, we must execute the instructions on lines #10 and #11 to predict a

value of 41 and exit the subroutine. Alternatively, if the history value is 254, we must

71

execute the code shown on lines #21 and #22 to predict a value of 240 and exit the

subroutine. Since the instruction mov ecx,#Pred_Val and ret are 5 and 1 byte(s),

respectively, we must skip 6 bytes multiplied by the history value, i.e., 6 × ecx, to

branch to the targeted portion of the code and predict the load value. Subsequently,

the history value in ecx is multiplied by 6 and the resulting value is stored in ecx.

Thereafter, we add the address of the label vals to the value in ecx, i.e., which is 6×

history value, where the resulting value is used as a jump address in jmp ecx.

Subsequently, we use the optimized compilation of the ML-based predictor in

Step 5 as shown in Figure 4.1 to integrate the predictor in the application by

replacing the safe-to-approximate load instructions with a call to the optimized

subroutine. This will generate an application that can be utilized in the online phase

where it will perform a partial memory read, i.e., reading 1 out of n + 1 element, where

the rest is predicted using the incorporated predictor. Subsequently, this application

will generate the approximated output multimedia.

4.4 Testing Environment

To evaluate the performance impact of the proposed ML-LVA when deployed in

software, we use the GEM5 simulator [25] a widely adopted, open-source platform that

offers detailed cycle-accurate simulation of processor microarchitectures. By running

the assembly codes in GEM5, we ensure that measurements are isolated and unaffected

by any background processes or system-level disturbances that could otherwise interfere

with timing accuracy. This level of fidelity is essential for our analysis, as it allows

us to precisely measure changes in execution timing and microarchitectural behavior

resulting from the integration of the proposed ML-LVA—particularly at the memory

and application levels, where small variations in load latency can significantly affect the

72

overall speedup. Although several alternatives exist for simulating processor behavior

they generally lack features or does not provide cycle-accurate analysis. One commonly

used alternative is QEMU [57], a high-performance functional emulator capable of

running full system software stacks. However, QEMU focuses primarily on functional

correctness and emulation speed rather than timing accuracy. It does not model

pipeline behavior, cache hierarchies, or memory access latency at a cycle-accurate

level, making it unsuitable for evaluating fine-grained architectural modifications or

microarchitectural optimizations such as the ML-LVA. Other lightweight simulators

or instruction set emulators fall into a similar category as they can validate program

behavior but lack the timing detail required for precise performance analysis.

Another option is hardware prototyping using platforms such as FPGAs or

dedicated emulation systems. While these can provide very high fidelity and even

cycle-accurate execution, they often require significant design effort, time, and access to

sophisticated commercial platforms such as Cadence Protium [58] and Palladium [59].

These systems offer advanced capabilities for hardware emulation but come with

high costs and complex setup procedures, making them less accessible for early-stage

architectural exploration. Additionally, implementing a full out-of-order processor

pipeline and memory hierarchy on FPGAs or emulators can be challenging, potentially

limiting the scope or realism of the simulation.

In contrast, GEM5 strikes an effective balance between accuracy and flexibility. It

supports a range of CPU models, including detailed in-order and out-of-order pipelines,

and allows full control over cache configurations, memory types, e.g., DDR3 [60] and

DDR4 [61], and CPU frequency settings. These capabilities are critical for our study,

as they enable us to simulate a range of system configurations that reflect current

commercial processor trends. In this thesis the CPU configuration used in GEM5

73

is based on the most recent trends in commercially available computers. We apply

the proposed LVA when varying the cache settings, the type of DRAM, e.g., DDR3

and DDR4, and the frequency of the CPU. For instance, the latest generation of

Intel processors [62] has mainly two cache configurations, where low to medium-

end processors have the same cache settings while high-end models differentiate in

their cache settings [62]. Furthermore, all Intel processors have efficient (E) and

performance (P) cores where the cache hierarchy is also different. The cache settings

of the various Intel processors and cores are summarized in Table 4.1 [62].

In this thesis, we use an acronym to reference the cache configuration of the E

cores of the Low-end Intel processor as LE cache. We apply a similar format to all

three other configurations, namely, LP, HE and HP. On the other hand, GEM5

only accepts cache sizes and associativity that are of the power of two. Subsequently,

the LP and HP caches cannot be modeled in GEM5. For this purpose, we created

variations based on the Intel cache configurations, which sizes are power of two. The

various cache settings used in this thesis are summarized in Table 4.2. For instance,

we created LP0 and LP1 which are variations of the LP where the 10-way set

associativity is modified to 8-way and the 1.25MB L2 cache is transformed to 1MB.

Furthermore, since the L1 Data cache is 48KB which is a middle value between two

Table 4.1: Cache Settings of the Intel Processor [62]

Description L1 Data L1 Instruction L2

Low/Medium-End Intel Processor – E Cores (LE) 32KB
8-way

64KB
8-way

2MB
16-way

High-End Intel Processor – E Cores (HE) 32KB
8-way

64KB
8-way

4MB
16-way

Low/Medium-End Intel Processor – P Cores (LP) 48KB
12-way

32KB
12-way

1.25MB
10-way

High-End Intel Processor – P Cores (HP) 48KB
12-way

32KB
12-way

2MB
16-way

74

Table 4.2: Cache Configurations used to Test the Proposed LVA

Description L1 Data L1 Instruction L2

LE 32KB
8-way

64KB
8-way

2MB
16-way

HE 32KB
8-way

64KB
8-way

4MB
16-way

LP0 32KB
16-way

32KB
16-way

1MB
8-way

LP1 64KB
16-way

32KB
16-way

1MB
8-way

HP0 32KB
16-way

32KB
16-way

2MB
16-way

HP1 64KB
16-way

32KB
16-way

2MB
16-way

powers of two values, i.e., 32KB and 64KB, the two variations LP0 and LP1 are

chosen accordingly to avoid biased configuration. Similarly, we created variations

based on the HP cache configuration named HP0 and HP1. In addition to the

variations in cache configurations, we tested the proposed LVA while varying the

frequency of the CPU from 1 GHz to 4 GHz. These values are chosen based on

the base frequencies of the latest generation of Intel processors. Finally, we add a

layer of variations in our CPU configuration in GEM5 where we select two types of

DRAM, namely, “DDR3_1600_8x8” and “DDR4_2400_8x8”. Subsequently, with six

cache configurations, four frequencies and two DRAM types, we were able to generate

48 hardware configurations that cover all possible combinations. Furthermore, the

configurations used in GEM5 use the “x86 Timing Simple CPU”[26], where we opt for

an architecture that has L1 (separate) and L2 (unified) caches only.

75

4.5 Performance Analysis

For the various multimedia application, the 48 hardware configurations are tested

at two levels, the application level, where we measure the overall speedup as well

as at the level of the memory load operations only. For the performance analysis,

we tested the six multimedia applications using 16 and 129 images from the Places

and Cars dataset, respectively. Additionally, we selected 65 audio files to analyze the

performance of the audio processing applications when implementing the proposed

ML-LVA. With 19 different levels of approximation, 48 hardware configurations and

the image and audio combinations, we base our analysis in the sequel on 4,381,440

experiments that were conducted on a machine with two 32-cores AMD EPYC 7001

series CPUs and 200GB of RAM.

The simulation process in GEM5 is inherently time-consuming due to its detailed,

cycle-accurate modeling of hardware components. This level of precision significantly

increases the runtime for each individual simulation. Given the extensive parameter

space in our study, the total number of potential simulation combinations is enormous.

Even with High-Performance Computing (HPC) resources capable of large-scale

parallelization, a full sweep of all combinations would be computationally excessive.

Consequently, the need to balance comprehensive performance analysis with available

computational resources motivated the decision to limit our experiments to a

representative subset of 4,381,440 simulation instances. This subset was carefully

selected to provide meaningful insights into system behavior while keeping the total

runtime feasible.

Figure 4.2 depicts the average speedup in the memory operation achieved when

varying one hardware configuration at a time. From Figures 4.2(a) and 4.2(b), we

can notice that the variations in the cache and DRAM configurations result in a

76

(a)

(b)

(c)

Figure 4.2: Average Speedup in Memory Access when varying (a) Cache, (b) DRAM,
and (c) CPU Frequency Settings

77

minimal impact on the speedup achieved. On the other hand, we can notice in

Figure 4.2(c) that for a higher frequency, the proposed LVA achieves a higher speedup.

The various cache and DRAM configurations achieved a similar trend in speedup as

these variations affect the execution of the exact and approximate models in the same

ratio. Alternatively, a higher frequency achieved a higher speedup since the proposed

LVA runs at CPU speed while conventional loads are limited by the memory wall.

Subsequently, the proposed LVA achieves a higher performance gain at higher CPU

frequencies.

4.6 Experimental Results

In this section, we will present a detailed analysis of the performance characteristics of

the proposed LVA technique when applied to six representative multimedia applications,

namely, multiplication-based image blending [32], multiplication-based audio blending

known as Ring Modulation (RM) [33], audio binarization known as infinite clipping [35],

image binarization known as image thresholding [34], polarity inversion of audio [37],

and image inversion known as image negatives [36] when varying the frequency and the

approximate level (n). The aim of this section is to evaluate how ML-LVA influences

computational performance, specifically execution time across both image and audio

processing domains. To this end, we measure and compare the execution speedup

on two levels, namely, the application and the memory. Performance is analyzed by

computing the speedup factor achieved when using the proposed ML-LVA as opposed

to the baseline execution without the ML-LVA, across varying system frequencies and

approximate levels (n). Due to the large number of simulation instances, we will limit

the presentation to the average speedups achieved when varying the frequency.

The remainder of this section is organized into two main categories: image

78

processing, and audio processing, which are further broken down into three core

operations: blending, inversion, and binarization. For each application, we examine the

average, the best- and worst-case scenarios, i.e., minimum and maximum, speedup and

how performance is impacted by changes in processor frequency and the approximate

level (n).

4.6.1 Image Processing

We analyze the performance of image processing tasks when executed on the memory

processor using the proposed ML-LVA, compared to their execution on a conventional

execution. The evaluated tasks include image blending, image inversion, and image

binarization, each representing a distinct class of operations with varying computational

complexity and memory access patterns.

4.6.1.1 Image Blending

The performance results for image blending are shown in Figure 4.3 and reveal

clear trends in both application overall and memory load speedups as the operating

frequency increases from 1 GHz to 4 GHz. A detailed examination shows that while

both speedup types generally benefit from increased frequency, the gains are more

pronounced in the memory speedup domain, particularly under higher approximate

levels.

At 1 GHz, as shown in Figure 4.3(a), we notice that the application overall speedups

for image blending range from a minimum of 1.23× to a maximum of 1.46×, with

an average speedup across all approximate levels of 1.41×. In contrast, we notice

from Figure 4.3(b) that the speedup in memory load operations at this frequency

demonstrate a slightly wider variation, with minimum values around 1.45×, peaking

79

at 3.58×, and averaging close to 2.95×. These initial results highlight that even at

the lowest frequency tested, the memory speedup is substantially higher compared to

the one achieved at the application level.

As the frequency increases to 2 GHz, the overall speedups show a modest

improvement, with values ranging from 1.27× to 1.62×, and an average speedup of

1.54× as shown in Figure 4.3(a). Memory speedups, however, scale more aggressively,

reaching up to 4.56×, with a minimum near 1.56×, and averaging 3.63×. The

increasing advantage of memory load speedup suggests that, as the system clock

rate increases, the memory access patterns and cache behavior become increasingly a

significant performance factors in image blending workloads.

At 3 GHz, the trend continues with overall speedups fluctuating between 1.31×

and 1.77×, producing an average of 1.67×. The memory speedups at this frequency

are even more notable, ranging from 1.65× to 5.51×, and averaging 4.21×. Finally,

at the highest tested frequency, i.e., 4 GHz, the overall speedups reach their peak

range for image blending, from 1.35× to 1.89×, yielding an average of 1.76×. Memory

speedups also peak at this level, with values spanning from 1.70× to 6.25×, and an

average speedup of 4.68×. These figures confirm the cumulative benefit of frequency

scaling when deploying the proposed ML-LVA in software.

Finally, as illustrated in Figure 4.3(a), we observe that the speedup curve

begins to exhibit a flattening trend once the approximation level exceeds n = 10.

This behavior can be attributed to the mathematical nature of the approximation

scheme employed in the ML-LVA, where the fraction of load instructions subject to

approximation is given by n
n+1 . As n increases, the incremental change in this fraction

diminishes, asymptotically approaching an upper bound of 1, i.e., 100% approximation.

Consequently, the proportion of approximated loads increases rapidly at lower values

80

(a)

(b)

Figure 4.3: Average Speedups for Image Blending: (a) Overall, and (b) Memory Loads

of n, but the rate of increase slows significantly as n continues to grow. This saturation

effect limits the additional performance gains achievable at higher approximation

levels, resulting in the observed plateau in the speedup curve. Thus, while smaller

values of n yield noticeable improvements, the marginal benefits become progressively

smaller beyond n = 10, highlighting a point of diminishing returns in terms of speedup.

In summary, the results for image blending indicate a consistent, frequency-

dependent improvement both overall and memory load speedup However, the rate of

improvement is greater on the memory side, with the gap widening as frequency

81

increases. This suggests that for high-performance image blending operations,

especially on systems operating at or above 3 GHz, memory load optimization

techniques offer more substantial performance gains compared to application level

techniques alone.

4.6.1.2 Image Inversion

The performance results shown in Figure 4.4 for image inversion exhibit clear trends

in both application overall and memory load speedups as the operating frequency

increases from 1 GHz to 4 GHz. Similar to the other image blending tasks, memory

load speedups outperform overall speedups, particularly as the frequency rises. This

suggests that image inversion, while computationally intensive, benefits greatly from

improvements in memory access and cache management.

At 1 GHz, we notice from Figure 4.4(a) that the overall speedups for image

inversion range from a minimum of 1.25× to a maximum of 1.81×, with an average

speedup of around 1.68×. In comparison, memory load speedups show a slightly wider

variation, ranging from 1.54× to 4.17×, and averaging 3.36× as shown in Figure 4.4(b).

These results suggest that at the lowest frequency tested, speedups in the memory

operation are significantly higher than the overall speedups when tested in the image

inversion tasks.

When the frequency is increased to 2 GHz, the overall speedups improve slightly,

ranging from 1.33× to 2.06×, with an average speedup of 1.88×. Memory load

speedups also improve, ranging from 1.64× to 5.17×, with an average of 4.02×. The

widening gap between memory loads and overall speedups at this frequency emphasizes

the growing influence of memory access patterns and cache behaviors on the overall

performance of image inversion, especially as the clock rate increases.

82

At 3 GHz, the overall speedups range from 1.37× to 2.25×, yielding an average

of 2.03×. Memory load speedups continue to show a more pronounced improvement,

ranging from 1.70× to 6.70×, with an average of 4.57×. This further confirms the trend

that memory load optimizations are the key driver of performance gains as frequency

increases, especially for operations that involve intensive pixel-level manipulation,

such as image inversion.

At the highest frequency of 4 GHz, the overall speedups reach their peak range,

from 1.41× to 2.43×, with an average speedup of 2.16×. Memory load speedups

also peak at this frequency, ranging from 1.75× to 6.77×, with an average of 5.01×.

These results clearly demonstrate the cumulative benefits of frequency scaling when

deploying the proposed ML-LVA.

Similar to the behavior observed in the image blending task, Figure 4.4(a) shows

that for all four frequencies the overall speedup in image inversion begins to exhibit a

flattening trend beyond approximation level n = 10. This pattern arises from the

approximation ratio which approaches 1 as n increases, leading to reduced performance

gains at higher as n increases. However, unlike image blending, image inversion

continues to show a modest increase in speedup even beyond this point, indicating

that the performance benefits of further approximation, are still present.

4.6.1.3 Image Binarization

Figure 4.5 depicts the performance results of the image binarization when deploying

the proposed ML-LVA and varying the frequency from 1 to 4 GHz. The performance

results for image binarization also illustrate a clear trend in both application overall

and memory load speedups as the operating frequency increases from 1 GHz to 4 GHz.

Notably, similar to the other image processing tasks, the memory load speedup show

83

more substantial improvements than application overall speedups, particularly at

higher frequencies. This indicates that binarization, being a memory-bound operation,

benefits significantly from improvements in memory access patterns and caching

efficiency.

From Figure 4.5(a), we notice that at 1 GHz, the overall speedups for image

binarization range from a minimum of 1.26× to a maximum of 1.85×, with an average

of 1.71× across all approximate levels. Furthermore, from Figure 4.5(b), we notice

the memory load speedups at this frequency show a wider range, with a minimum

(a)

(b)

Figure 4.4: Average Speedups for Image Inversion: (a) Overall, and (b) Memory Loads

84

value of 1.54×, peaking at 4.17×, and an average of 3.36×. When the frequency is

raised to 2 GHz, the overall speedups show a moderate increase, ranging from 1.32×

to 2.08×, with an average of 1.89×. In contrast, the memory load speedups expand

further, with values ranging from 1.64× to 5.17× and averaging 4.02×.

At 3 GHz, the overall speedups range from 1.36× to 2.29×, yielding an average

of 2.04×. Meanwhile, the memory load speedups continue to scale more aggressively,

ranging from 1.70× to 6.07×, with an average of 4.56×. At 4 GHz, the overall speedups

(a)

(b)

Figure 4.5: Average Speedups for Image Binarization: (a) Overall, and (b) Memory
Loads

85

reach a peak range of 1.41× to 2.45×, with an average of 2.17×. Furthermore, the

memory load speedups achieve the highest values, ranging from 1.75× to 6.77×, with

a mean of 5.00×. The clear separation between the overall and the memory speedups

reinforces the view that image binarization, much like other pixel-based operations,

is increasingly bottlenecked by memory access as the frequency increases, making it

highly sensitive to memory load optimization techniques.

The flattening trend observed in image binarization closely resembles that of image

inversion across the four tested frequencies, as shown in Figure 4.5(a). Although higher

approximation levels continue to yield performance improvements, the rate of increase

becomes less significant. This behavior is attributed to the approximation ratio n
n+1

approaching 1, which has a reduced impact on the percentage of load instructions

approximation as n increases.

In summary, the results for image binarization reinforce the benefit of deploying the

proposed ML-LVA to reduce the execution time of image binarization. The performance

gains from the application overall speedups are steady but limited, while memory load

improvements lead to more significant and consistent performance improvements. As

frequency increases, the gap between application and memory speedups widens.

4.6.2 Audio Processing
We now present the performance evaluation of audio processing tasks executed on the

processor, where the input data is fetched from memory through load operations. The

objective is to assess the performance benefits of using the proposed ML-LVA. Unlike

image processing, audio processing involves continuous-time data that is typically

processed in frames or windows, making latency and throughput critical metrics.

These tasks also vary in their degree of arithmetic and branching complexity, which

directly impacts how well they benefit from near-memory execution. As with the

86

image processing tasks, we evaluate performance at multiple operating frequencies,

namely, 1 GHz, 2 GHz, 3 GHz and 4 GHz.

The performance results are analyzed in terms of average speedup, as well as

minimum and maximum observed values, to capture both the overall effectiveness

and the consistency of the proposed architecture. Additionally, we discuss how the

processor frequency influences performance scaling in each task and examine which

types of operations yield the most substantial gains under LVA-enabled memory

execution. This analysis helps to identify trends in audio processing workloads that

are best suited when deploying the proposed ML-LVA in software.

4.6.2.1 Audio Blending

The performance results for audio blending, shown in Figure 4.6, depict a similar

trend to those observed in image processing tasks, with clear improvements in both

application overall and memory load speedups as the operating frequency increases

from 1 GHz to 4 GHz. However, audio blending, being an audio-specific operation,

exhibits more variability in performance based on the frequency and optimization

level.

Figure 4.6(a) depicts the application overall speedups. We notice from this figure

a flattening pattern as n surpasses 10. This trend closely mirrors the one observed

in the image blending task. Additionally, we can notice from Figure 4.6(a) that at a

frequency of 1 GHz, the overall speedups for audio blending range from a minimum

of 1.24× to a maximum of 1.47×, with an average of 1.42×. From Figure 4.6(b), we

notice that the memory load speedups show a broader range, from 1.45× to 3.57×,

averaging 2.94×. As the frequency increases to 2 GHz, the overall speedups show a

slight improvement, ranging from 1.28× to 1.63×, with an average of 1.55×. The

87

(a)

(b)

Figure 4.6: Average Speedups for Audio Blending: (a) Overall, and (b) Memory Loads

memory load speedups also scale up, ranging from 1.56× to 4.55×, with an average of

3.62×.

At 3 GHz, the overall speedups range from 1.31× to 1.78×, with an average of

1.67×. The memory load speedups show further scaling, with values ranging from

1.65× to 5.51×, and an average of 4.21×. The consistent growth in memory load

speedups with higher frequencies suggests that optimized memory access plays a larger

role in performance. This trend reflects the intensive memory and processing needs of

audio blending.

88

At the highest tested frequency of 4 GHz, the overall speedups range from 1.35×

to 1.90×, with an average speedup of 1.77×. The memory load speedups continue

to increase at a higher pace, reaching values from 1.70× to 6.25×, with an average

of 4.67×. Overall, the results for audio blending show a consistent trend, where

increasing the frequency leads to a higher performance when deploying the proposed

ML-LVA in software.

Similar to the previously presented applications, increasing the approximation

level leads to a saturation in speedup, shown by a flattening curve. At the memory

level, this flattening occurs in fewer patterns and affects lower CPU frequencies more,

while higher frequencies are less impacted.

4.6.2.2 Audio Inversion

Figure 4.7 depicts the speedup in the memory load operation and the application

for the audio inversion task. The performance results for audio inversion show clear

improvements in both application overall and memory load speedups as the operating

frequency increases from 1 GHz to 4 GHz. However, similar to other computationally

intensive tasks, the speedup at the level of memory loads is substantially higher

compared to the one at the application level, particularly as the frequency rises. This

suggests that audio inversion, a process involving transformation of signal amplitudes,

is also highly sensitive to memory access speeds and cache efficiency.

At 1 GHz, the overall speedups for audio inversion range from a minimum of 1.25×

to a maximum of 1.81×, with an average speedup of 1.68× as shown in Figure 4.7(a).

In comparison, from Figure 4.7(b), we notice a wider range of speedups in the memory

load operation, with minimum values 1.54×, peaking at 4.17×, and averaging 3.36×.

When the CPU operates at 2 GHz, the overall speedups show a modest improvement,

89

ranging from 1.33× to 2.06×, with an average speedup of 1.88×. Memory load

speedups also scale up, ranging from 1.64× to 5.17×, with an average of 4.02×.

At 3 GHz, the overall speedups range from 1.37× to 2.25×, with an average of

2.03×. Memory load speedups continue to improve significantly, ranging from 1.70× to

6.07×, with an average of 4.56×. When increasing the CPU frequency to the highest

tested setting, i.e., 4 GHz, the overall speedups reach a range of 1.41× to 2.43×, with

an average speedup of 2.16×. The memory load speedups peak at this frequency,

ranging from 1.75× to 6.66×, with an average of 5.00×. These results emphasize the

(a)

(b)

Figure 4.7: Average Speedups for Audio Inversion: (a) Overall, and (b) Memory Loads

90

importance of memory subsystem performance in audio inversion tasks, especially at

higher frequencies, where memory load optimizations provide significant improvements

over application level optimizations. In summary, similar to the other applications,

the results for audio inversion demonstrate a consistent trend where memory load

speedups are more significant than application level improvements, particularly at

higher frequencies.

The speedup trend at the application level for audio inversion depicted in

Figure 4.7(a), is consistent across all four tested frequencies and closely resembles the

patterns observed in image inversion and binarization. In all cases, the speedup curve

shows a gradual flattening as the approximation level increases, reflecting the reduced

marginal gains at higher levels of approximation.

4.6.2.3 Audio Binarization

The performance results for audio binarization reveal notable trends in both application

overall and at the level of memory loads speedups as the operating frequency increases

from 1 GHz to 4 GHz. The speedup results are shown in Figure 4.8. As with other

audio and image processing tasks, speedup in the memory load operation continue

to provide larger speedup compared to the overall application, particularly. From

the overall speedups shown in Figure 4.8(a), we observe a strong resemblance to the

trends seen in image inversion, image binarization, and audio inversion. Across all four

frequencies, the speedup curves gradually flatten as the approximation level increases.

Nonetheless a slight and steady increase in speedup is still maintained.

When testing with the slowest frequency, i.e., 1 GHz, we notice from Figure 4.8(a)

that the overall speedups for audio binarization range from a minimum of 1.26× to a

maximum of 1.85×, with an average speedup of 1.71×. The memory load speedups at

91

this frequency show a broader range, from 1.54× to 4.17×, with an average of 3.36×

as shown in Figure 4.8(b). At 2 GHz, the overall speedups improve slightly, ranging

from 1.33× to 2.08×, with an average of 1.89×. The memory load speedups also

show a more substantial increase, ranging from 1.64× to 5.17×, with an average of

4.02×. At 3 GHz, the overall speedups range from 1.36× to 2.27×, with an average of

2.04×. The memory load speedups continue to scale, ranging from 1.70× to 6.07×,

with an average of 4.56×. When the frequency is increased to 4 GHz, the overall

(a)

(b)

Figure 4.8: Average Speedups for Audio Binarization: (a) Overall, and (b) Memory
Loads

92

speedups ranges from 1.41× to 2.45×, with an average of 2.17×. The memory load

speedups peak at this frequency, ranging from 1.75× to 6.77×, with an average of

5.01×. Similar to the earlier applications, a rise in approximation level results in

speedup saturation, which is reflected by the flattening of the curve in Figure 4.8.

In conclusion, the results for audio binarization reflect a consistent pattern of

greater performance gains from memory load optimizations, particularly as frequency

increases.

4.6.3 Comparison with Related Work

Evaluating new techniques against existing solutions is essential to understand their

relative strengths and weaknesses. In this section, we present a detailed comparison

between the software-based implementation of the ML-LVA and the LVA proposed

in [19], focusing on performance improvements and practical applicability within

memory-centric architectures. By benchmarking against prior work, we aim to highlight

the advantages offered by ML-LVA in accelerating multimedia processing workloads

on CPU-based systems, thus providing a clear perspective on its potential impact and

feasibility for real-world deployment.

We limit the comparison to this work since the authors of [24] targeted GPU

architectures while the proposed ML-LVA targets CPU architectures. From Table 4.3,

we can notice that the proposed LVA provides a much higher speedup for each of

the approximate levels when compared to the one proposed in [19]. For instance, for

n = 17, the LVA proposed in [19] achieved an average speedup of 1.08 over all the

experiments conducted. In contrast, for the same approximate level, our proposed

LVA achieved a speedup of 1.98 over all the experiments, i.e., average of all hardware

configurations and all audio and image applications. This trend can be noticed

93

throughout all approximate levels where the proposed ML-LVA outperforms the LVA

proposed in [19]. Since the proposed LVA delivers a better quality and a higher

speedup than the LVA proposed in [19] for the various approximate levels, we can

conclude that the LVA we propose is superior.

Table 4.3: Speedup Comparison of the Proposed Software-based ML-LVA with [19]

Approximate Level (n) LVA [19] Proposed ML-LVA
1 1.08 1.29
3 1.07 1.49
5 1.08 1.57
9 1.08 1.62

17 1.08 1.68

4.7 Summary

This chapter detailed the software-based implementation of the ML-LVA, transitioning

the conceptual framework into a practical system suitable for deployment on off-

the-shelf existing hardware hardware. The implementation was tested using the x86

architecture, leveraging its widespread adoption, compatibility, and stable ISA. All

experiments are conducted through cycle-accurate simulation in GEM5. We presented

the methodology which involves a careful profiling of load instructions with the aim

of identifying those that are “safe-to-approximation, ensuring no disruption to control

flow. We presented how the trained machine learning model is translated into highly

optimized x86 assembly code, designed to minimize branching overhead. This is

achieved through a branchless, jump-table-based predictor subroutine, which enables

fast and efficient predictions during execution.

The presented testing environment is comprehensive as we evaluated the

implementation across 48 different hardware configurations varying cache sizes, DRAM

94

bandwidth, and CPU frequencies. GEM5 was chosen for its balanced combination

of simulation accuracy and flexibility, offering advantages over alternatives such as

QEMU or FPGA emulation. Performance analysis includes a vast experimental set of

over 4.3 million runs covering six multimedia applications involving image and audio

processing tasks such as blending, inversion, and binarization. The results revealed

that increasing CPU frequency significantly improves speedup, as ML-LVA benefits

primarily from CPU speed, whereas conventional load instructions remain bound by

memory access latency. In contrast, variations in cache and DRAM configurations

showed minimal influence on speedup, which scales predominantly with frequency.

Furthermore, the analysis identified reduced gain in speedup at high approximation

level of ten, reflecting an asymptotic trend in the approximation ratio.

Speedup measurements demonstrated substantial gains, with application overall

speedups reaching up to 2.45 times in audio binarization at 4 GHz, and

memory load speedups peaking at 6.77 times in image inversion at the same

frequency. When compared to prior state-of-the-art LVA, the proposed ML-LVA

implementation outperforms significantly, achieving an average speedup of 1.98× at

an approximation level of 17, compared to 1.08×. These findings confirm that the

software implementation of ML-LVA is both feasible and efficient, delivering superior

performance particularly in memory-intensive multimedia workloads. The results

underscore the potential for real-world adoption in both general-purpose processors

and resource-constrained environments such as ASICs, notably without requiring any

hardware modifications.

Following the comprehensive discussion of the software-based implementation of

the proposed ML-LVA in this chapter, it is important to acknowledge the inherent

limitations of the software solution. While effective in demonstrating feasibility and

95

based on existing off-the-shelf hardware, the software implementation suffers from

higher latency and limited throughput, which may constrain performance improvements

in data-intensive and latency-sensitive applications. These constraints highlight the

necessity to explore a hardware-based implementation that can better meet the

demands of modern computing systems and provide more accurate evaluation of the

proposed ML-LVA.

The primary objective of transitioning to a hardware solution is to translate the

predictive capabilities of the ML-LVA into a more computationally efficient form

that can be tightly integrated within newly developed computer architectures. This

shift is motivated by the growing need for low-latency, high-throughput systems

capable of mitigating the memory access bottlenecks that often limit performance

in contemporary workloads. A hardware-centric approach offers several advantages,

including the potential to exploit parallelism, ensure pipeline compatibility, and

leverage architectural specialization to accelerate load value prediction. Furthermore,

hardware implementation can more effectively support aggressive speculative execution

strategies widely adopted in current microarchitectural designs. In the next chapter, we

thoroughly evaluate the hardware-based ML-LVA to assess its feasibility, performance

gains, cost-effectiveness, and practical viability.

96

Chapter 5

Hardware Implementation of the

ML-LVA

5.1 Introduction

A hardware-centric approach offers the potential to deliver significantly higher

performance through parallelism, pipeline compatibility, and architectural

specialization. Moreover, such an implementation is better suited to support

aggressive speculative execution strategies commonly employed in contemporary

microarchitectural designs. Therefore, evaluating the ML-LVA in hardware is essential

for thoroughly assessing its feasibility, performance, cost-effectiveness, and overall

viability when deployed in real-world hardware platforms. The deployment of the

ML-LVA in a hardware implementation arises a variety of technical challenges that are

distinct from those encountered in the software development. A critical consideration

is the need to maintain a delicate balance between the hardware resource overhead

incurred by the predictor and the efficiency gains it is expected to provide. The

design has to conform to constraints such as limited logic gates, finite memory block

97

availability and stringent timing requirements imposed by clock frequency ceilings.

These constraints necessitate a deliberate process of simplification, optimization, and

architectural tailoring to ensure that the implementation remains both lightweight and

effective. Furthermore, the hardware-based ML-LVA is required to integrate smoothly

with existing processor infrastructure, particularly with the processor pipeline where

timing and latency considerations are prominent. In this context, it is imperative

that the predictor produces outputs within a constrained number of clock cycles to

avoid introducing pipeline stalls, which would undermine the intended performance

improvements. These requirements, in conjunction with the need for generalizability

across various computer architectures, play a pivotal role in shaping the hardware

architecture described in the subsequent sections of this chapter.

We propose to implement the hardware-based ML-LVA as an accelerator of the

CVA6 architecture, which is a RISC-V processor. This choice is motivated by

several factors relevant to achieving an efficient hardware implementation. Primarily,

the CVA6 is an open-source, industry-grade RISC-V core that offers complete

architectural transparency, enabling extensive customization and seamless integration

of novel hardware modules such as the ML-LVA. Its open-source nature permits

thorough examination and modification of the processor pipeline, which is essential

for incorporating the ML-LVA as a custom accelerator with minimal integration

overhead. Furthermore, the widespread adoption of the RISC-V instruction set and

the modular design principles of the CVA6 make it a suitable platform to demonstrate

the generalizability and scalability of the proposed hardware-based implementation.

The CVA6 includes separate Level 1 instruction and data caches connected via an

AXI4 bus to a shared Level 2 cache and external DDR4 memory, providing a realistic

environment to evaluate the impact of the hardware implementation of the proposed

98

ML-LVA. Using this setup, we observed application overall speedups above 1.08×

and memory operation speedups up to 1.73×, confirming the effectiveness of the

hardware-based ML-LVA.

In the sequel, we will first introduce the methodology to realize a hardware

implementation of the proposed ML-LVA, outlining the design process and rationale

behind key architectural decisions. We then describe how the machine learning model,

originally trained in a software environment, was systematically translated into a

modular, synthesizable hardware block and integrated into the CVA6 general-purpose

processor as a custom accelerator. Following the integration, we detail the construction

of the complete testbench environment used to enable both functional validation

and performance evaluation. This includes a comprehensive explanation of the

experimental setup, as well as the tools and testing infrastructure employed throughout

the assessment process. Thereafter, we present a comprehensive performance analysis,

evaluating the effectiveness of the hardware-deployed ML-LVA across a range of

multimedia workloads. These include four representative applications that vary in

computational characteristics and memory behavior, thereby offering a robust basis

for assessment.

5.2 Proposed Methodology

This section outlines the approach taken to integrate the ML-LVA model, introduced

in Chapter 3, into a hardware implementation. Rather than focusing on software

translation, the discussion here centers on adapting the trained model for synthesis

and deployment within a hardware design flow. Particular attention is given to how

the ML-LVA is integrated in a processor and how the applications will make use of

the new hardware. Accordingly, this section elaborates on Step 4 of the methodology

99

illustrated in Figure 1.3 when integrated in a hardware environment.

For the hardware-based solution of the proposed ML-LVA, we propose the

methodology shown in Figure 5.1. Steps 1 to 4 shown in this figure remain the same

as in the software implementation. For instance, a load instruction that was determined

to be “safe-to-approximate” would still be considered as such in a hardware-based

implementation. Similarly, an ML predictor that delivers an acceptable quality would

uphold the same quality when deployed in a hardware solution. Subsequently, the key

differences in delivering the hardware-based implementation are the tasks highlighted

in Steps 5 and 6 . Thus, we limit the explanation in this section to the key elements

that have not been previously discussed, i.e., Steps 5 and 6 shown in Figure 5.1.

In Step 5 , we implement the ML-based Load Predictor within the hardware

domain. A pragmatic and computationally efficient solution is achieved through the

use of a lookup table. This approach is particularly suitable for the ML-LVA model

Figure 5.1: Methodology to Implement the Proposed LVA in Hardware

100

developed in this thesis, as it is designed to predict one byte per load operation.

Accordingly, the complete predictor can be encapsulated in a lookup structure

comprising 256 entries, with each entry occupying a single byte. Thus, the total

memory footprint required for the predictor is merely 256 bytes. To store this table,

a Read-Only Memory (ROM) structure is selected due to its minimal area and

power overhead relative to more complex alternatives such as Static Random Access

Memory (SRAM). Furthermore, the immutable nature of ROM enhances security by

safeguarding against unauthorized modifications, such as those introduced by malware

aiming to manipulate prediction outcomes for malicious purposes. Nonetheless, a

ROM presents a significant limitation: its contents are fixed post-fabrication, thereby

precluding updates or reprogramming. To address this constraint, an Electrically

Erasable Programmable Read-Only Memory (EEPROM) can be utilized as a more

flexible alternative. EEPROM offers a favorable trade-off between hardware simplicity,

resilience to tampering, and the ability to update the predictor post-deployment,

thereby extending the hardware’s applicability to a broader range of workloads and

future enhancements.

Following the integration of the predictor into hardware via a lookup table, Step 6

involves modifying the processor microarchitecture to enable a seamless communication

between the software layer and the newly instantiated hardware predictor. This

necessitates augmenting the processor’s Instruction Set Architecture (ISA) to include

custom instructions capable of invoking the ML-LVA functionality. Such modifications

are feasible in many processor designs, particularly those based on extensible ISAs.

A notable example is the RISC-V architecture [28], which explicitly reserves certain

opcode spaces—specifically the Custom-0 and Custom-1 instruction groups—for user-

defined extensions [63]. This architectural feature permits the addition of bespoke

101

instructions without interfering with existing ISA semantics. Once these custom

instructions have been integrated into the ISA, the application code is revised such

that load instructions previously marked as “safe-to-approximate” are substituted

with the newly added load value prediction instructions. During the application

runtime, these instructions trigger the predictor to estimate load values using the

precomputed lookup table, thereby eliminating the need for conventional memory

access and reducing memory latency. This marks a fundamental shift in execution

behavior, with the processor relying on predictive computation in place of deterministic

memory retrieval for selected operations.

To enable a seamless interaction with the hardware-embedded ML-LVA predictor,

two new R-type custom instructions have been introduced: AxAU (Approximate Audio

Load) and AxIM (Approximate Image Load). These instructions are specifically crafted

to invoke the ML-LVA predictor directly within the processor pipeline, facilitating

efficient prediction of load values without engaging in conventional memory access.

Although the R-type instruction format traditionally requires two source operands

along with a destination register, the semantics of these new instructions diverge

intentionally from this norm to better suit the operational characteristics of the

ML-LVA. In both AxAU and AxIM, only the first source operand is meaningful which

represents the “history value” or previously loaded data. This value serves as the

index into a dedicated ROM. Notably, AxAU and AxIM access separate ROMs, one

specifically allocated for audio prediction data and the other for image prediction

data, in order to deploy the two ML-LVA developed in Chapter 3. Additionally, the

second source operand, while still encoded in the instruction to preserve structural

compatibility with the R-type format, is effectively ignored during execution and does

not influence the instruction’s behavior.

102

When executed, the instruction uses the first operand to access the corresponding

entry in the appropriate ROM, retrieving the predicted approximation generated by

the ML-LVA model. This predicted value is then written directly into the destination

register, effectively substituting the traditional load operation. By leveraging a

low-latency ROM lookup instead of accessing the main memory, these instructions

substantially reduce load latency and improve execution throughput. By adhering

to the RISC-V custom instruction specification, particularly leveraging the reserved

opcode spaces for user-defined extensions, these instructions maintain broad portability

across RISC-V-based cores that support ISA customization. This strategic alignment

enhances the scalability and applicability of the ML-LVA accelerator, allowing future

designs to incorporate these instructions with minimal modification while preserving

the benefits of load value approximation in latency-critical workloads such as real-time

image and audio processing.

5.3 Hardware Implementation

To accurately evaluate the performance impact of the hardware implementation of

the ML-LVA, a detailed integration and a realistic hardware simulation environment

were required. This section outlines the processor core into which the ML-LVA was

integrated, as well as the testing infrastructure used for performance analysis, including

the surrounding memory hierarchy and external DRAM model that enabled realistic

system-level evaluation. Each component was selected or developed to reflect practical

design constraints and to enable cycle-accurate simulation of the full system. In

this thesis, the hardware in which the ML-LVA was integrated consists of a RISC-V

processor called CVA6 [27] which has L1 cache, an L2 cache and a DRAM as shown

in Figure 5.2. All components are connected via the Advanced Microcontroller Bus

103

Architecture (AMBA) Advanced eXtensible Interface version 4 (AXI4) protocol [64].

In the rest of this section, we will present the details of each of these components and

the reasoning for their selection.

CVA6 L2
Cache

AXI4 AXI4
DRAM

Figure 5.2: Hardware Implementation Environment

5.3.1 CVA6 Processor

At the core of the testing environment is the CVA6 processor, a 64-bit in-

order RISC-V core [27]. The CVA6 features a six-stage pipeline architecture,

as illustrated in Figure 5.3. The CVA6 supports in-order instruction issue,

out-of-order execution and write-back, and an in-order commit stage, and thus

preserving the original execution order of the program. The core of the

CVA6 implements the Integer (I), Multiplication/Division (M), Atomic (A), and

Compressed (C) extensions, as defined in [63], along with [65]. Additionally,

the CVA6 supports three privilege levels—Machine (M), Supervisor (S), and

User (U)—enabling compatibility with Unix-based operating systems. It incorporates

several advanced features, including a configurable microarchitecture, dedicated

translation lookaside buffers (TLBs), a hardware page table walker, and branch

prediction mechanisms such as a branch target buffer and a branch history table.

A notable architectural feature of the CVA6 is its decoupled frontend pipeline.

In this design, the instruction fetch and decode stages operate independently of the

backend execution stages. This decoupling allows the frontend to continue fetching and

decoding instructions even when the backend is stalled, thereby improving instruction

104

Figure 5.3: Architecture of the CVA6 [27]

throughput and overall pipeline efficiency. By buffering instructions between the

frontend and backend, this architecture helps mitigate memory latency and enhances

the performance of branch prediction and instruction prefetching.

The CVA6 also includes separate Level-1 (L1) instruction and data caches, both

of which offer configurable associativity and replacement policies. Furthermore, it

supports the AXI4 protocol [64] for memory and peripheral interfacing, enabling

seamless integration with second-level (L2) caches. The processor also provides

infrastructure for integrating tightly coupled accelerators via custom instruction

support. This feature permits the definition of new opcodes that directly interface

with user-defined hardware modules. We chose the CVA6 in this thesis due to its

105

modular and extensible architecture, open-source availability, and robust support for

custom instructions. These characteristics make it an ideal platform for integrating

hardware accelerators. Additionally, its support for modern microarchitectural features,

such as out-of-order execution and advanced branch prediction, further enhances

its suitability for architectural exploration and the implementation of cutting-edge

processor techniques. The primary reason for selecting the CVA6 processor is its open-

source nature, which ensures that its design and implementation are publicly accessible.

This transparency allows unrestricted access to the core’s architectural details, enabling

comprehensive study and use without licensing constraints. In contrast, widely used

architectures such as ARM and x86 are proprietary and closed-source. Their designs

are not made publicly available, limiting the ability to examine or modify them freely.

Therefore, in the hardware-based implementation we switch from the x86 architecture

to the CVA6 RISC-V processor.

To preserve a conventional execution model, the custom instruction implementing

the ML-LVA was integrated into the CVA6 using its accelerator extension interface.

In this integration, the accelerator does not operate as an independent co-processor

with a separate fetch mechanism, private registers, or parallel data-management

capabilities. Instead, it is tightly coupled within the Execute stage of the pipeline,

reusing existing datapath resources of CVA6. This design results in a simpler datapath

with fewer conflicts between parallel paths, while also reducing the verification

complexity. By avoiding the need for advanced features such as dual-fetch mechanisms

or cache-coherence protocols typically required for external accelerators, the proposed

integration maintains consistency with the baseline processor pipeline [66]. Accordingly,

we modified the source codes of “cva6_accel_first_pass_decoder_stub” [67] and

“acc_dispatcher” [68] blocks. Subsequently, the modified codes affect the Instruction

106

Decode (ID) and Execute stages shown in Figure 5.3. Furthermore, the decoder is

updated to support two new custom instructions for predicting load values in audio and

image applications, respectively. These instructions are encoded as R-type instructions

using the “ACCEL” opcode as defined in the ariane package [69], with the funct3 field

set to 3’b000 for audio and 3’b001 for image predictions. Subsequently, the code of

the “cva6_accel_first_pass_decoder_stub” is extended to decode these newly added

instructions. In parallel, the logic for the predictor (ML-LVA ROM and its indexing

mechanism) was added to the “acc_dispatcher” block, where the predicted values are

produced in a single clock cycle. Additionally, we set the parameters of L1 caches to:

i) 4-way set associative organization, ii) cache lines of 64 bytes each, and iii) total size

of 65,536 Bytes. This cache configuration was chosen to simulate the L1 cache of the

ARM Cortex-A720 [70]. The data cache was configured as an OpenPiton cache [71]

with a write through policy. Finally, the simulation environment for the modified

CVA6 was developed in SystemVerilog [72] to run the custom chip at 3 GHz, providing

a robust framework for functional validation and waveform inspection during the

design and integration of the ML-LVA accelerator.

5.3.2 AXI Last Level Cache

To complement the memory hierarchy of the CVA6-based testing platform, the AXI

Last Level Cache (LLC) [73] is employed as a unified Level-2 (L2) cache. The AXI LLC

is a configurable, open-source developed within the Parallel Ultra-Low Power (PULP)

platform [74]. It is designed to interface seamlessly with AXI4-compliant masters

and slaves, making it highly suitable for integration into RISC-V-based architectures,

specifically, the CVA6 adopted in this thesis.

The AXI LLC functions as a shared L2 cache that sits between the private L1 data

107

and instruction caches of the CVA6 and the off-chip memory system. By providing a

high-bandwidth, low-latency intermediary, the LLC significantly reduces the frequency

of expensive memory accesses to external DRAM, thereby improving both application

level performance and energy efficiency. The cache supports multiple configurable

parameters, including cache size and associativity, allowing for tailored optimization

depending on system-level requirements and workload characteristics.

Architecturally, the AXI LLC is designed to operate under a write-back cache

policy, meaning that modified cache lines are only written back to main memory

when they are evicted from the cache. This approach reduces the frequency of write

operations to memory, thereby minimizing memory traffic and enhancing overall

system bandwidth. Such a policy is well-suited to systems where reducing latency and

conserving memory bandwidth are critical performance goals.

In our hardware implementation, the LLC is integrated into a CVA6-based and

configured with specific parameters tailored to balance capacity, associativity, and

access granularity. The LLC is configured to replicate the L2 of a recent ARM Cortex

A720 processor [70]. We chose to adopt this approach as ARM is a popular RISC

architecture that is widely used in the industry and thus serves as a representative

reference point for modern RISC-based designs. In alignment with the Cortex-A720,

the LLC is implemented as an 8-way set-associative cache. The data width of the LLC,

denoted as DataWidthFull, is determined by the AXI interface and set to 64 bits.

Since the Cortex-A720 uses a 64-byte cache line, the number of data blocks (NDB) per

line is calculated as NDB = 64 bytes
64 bits = 8. To maximize the number of cache lines (NCL),

we adhere to a constraint imposed by the AXI LLC design [73], which requires that

log2(NDB) does not exceed the width of the AXI len_t signal. Given that len_t is 8

bits wide, this constraint leads us to select NCL = 256. Based on this configuration,

108

the total size of the LLC can be calculated using the following formula:

Size_LLC = SetAssociativity × NCL × NDB × DataWidthFull

8 (20)

Substituting the appropriate values, we compute the cache size as:

Size_LLC = 8 × 256 × 8 × 64
8 = 131, 072 (21)

This results in a total cache size of 131,072 bytes, or 128 KB. The size of this L2

aligns with one of the possible L2 configuration of the ARM Cortex-A720. Such a

configuration yields a relatively large and highly associative L2 cache, well-suited for

workloads with strong spatial and temporal locality. The high associativity reduces

the likelihood of conflict misses, while the presence of multiple blocks per line enhances

data reuse across sequential accesses, improving overall cache efficiency. The L2 cache

further employs an aggressive prefetch mechanism that anticipates sequential memory

accesses, proactively fetching data before it is explicitly requested.On a single miss,

the L2 is able to perform a sequential prefetch in burst mode, fetching up to 256

consecutive cache lines, each consisting of 64 bytes, for a total of 16 KB of data.

By exploiting spatial locality, this mechanism reduces the number of individual miss

penalties and sustains high bandwidth utilization. With the 4-way set associativity

of the cache, up to 64 KB of memory can be mapped without conflicts, thereby

mitigating contention and improving throughput. Such a configuration is particularly

advantageous for multimedia and signal-processing workloads, where spatial locality

is of paramount importance and large contiguous memory regions must be accessed

efficiently.

From a system integration perspective, the AXI LLC is instantiated as a standalone,

109

modular component that connects directly to the AXI interconnect without requiring

changes to the internal pipeline or memory interface of the CVA6 core. Its

parameterizable structure allows for easy adaptation to different performance, area,

and power constraints. In the context of PULP-based systems, the LLC offers a scalable

and efficient method to extend the memory hierarchy, supporting high-throughput

and bandwidth-sensitive applications with minimal design effort.

5.3.3 Micron DDR4 Model

To complete the memory hierarchy of the testing platform, a DRAM memory based

on the publicly available DDR4 Verilog simulation model [75], provided by Micron

Inc, is connected to the AXI LLC. This memory model serves as the off-chip main

memory and provides a realistic behavioral representation of DDR4 memory timing

and operation. It supports a configurable range of data rates, spanning from 1066 to

4000 mega transfers per second (MT/s), where each transfer represents the movement

of data on both the rising and falling edges of the clock signal, as is characteristic of

double data rate (DDR) memory. For the purpose of this evaluation, a data rate of

3200 MT/s—corresponding to a clock cycle time (tCK) of 0.625 nanoseconds—was

selected to reflect a high-performance memory configuration. In order to facilitate

seamless communication with the rest of the AXI-based system, an AXI-compatible

memory interface and DRAM controller were developed and integrated into the testing

platform.

The DRAM model itself, obtained from Micron, offers cycle-accurate behavioral

modeling of DDR4 memory, including command timing, burst access behavior, bank

management, and timing constraint such as Row to Column Delay (tRCD), Row

Precharge Time (tRP), and Column Address Strobe (CAS) latency, as defined by

110

the DDR4 standard [61]. However, the original model is not directly compatible

with the AXI protocol, which is used throughout the testing platform developed to

test the proposed ML-LVA. To bridge this gap, we design a custom AXI-to-DRAM

controller to translate AXI4 memory transactions into appropriate DDR4 command

sequences, while adhering to the timing and ordering constraints imposed by the

DRAM specification.

The AXI interface operates as a slave connected to the AXI interconnect fabric,

accepting read and write transactions from the AXI LLC. Upon receiving a request, the

controller schedules and issues the corresponding DDR4 commands, such as activate,

read, write, and precharge to the DRAM model. It also handles address translation

and manages multiple open row policies across banks to improve memory throughput.

This setup ensures accurate timing emulation and provides a representative evaluation

of how real DRAM would behave under the memory access patterns generated by the

CVA6 processor and its attached accelerators.

From a system-level perspective, the inclusion of the DRAM model allows the

testing platform to approximate the latency and bandwidth characteristics of real

hardware deployments more closely. It introduces realistic memory delays and access

contention scenarios that would not be captured by idealized memory models. This

is particularly valuable when evaluating the performance impact of the ML-LVA

accelerator, as it provides insights into how memory traffic interacts with cache

behavior and custom instruction execution under realistic memory access patterns.

The integration of the DRAM controller and AXI interface was carried out without

modifying the existing AXI LLC or CVA6 processor design, thus preserving the

modular architecture of the system. This decoupled approach facilitates independent

development, testing, and reuse of each subsystem. Overall, the external DRAM

111

model serves as a critical component to validate the end-to-end memory hierarchy

of the platform and supports comprehensive functional and performance evaluation

under realistic memory access conditions.

5.4 Experimental Results

This section presents a detailed performance evaluation of the proposed ML-LVA

technique using a full-system simulation environment composed of the CVA6 processor,

the AXI LLC acting as a L2 cache, and an external DDR4 DRAM model based on

Micron’s Verilog simulation package. The objective of this analysis is to assess the

impact of the proposed ML-LVA on execution performance when integrated into a

realistic hardware memory hierarchy.

To explore the applicability of ML-LVA in multimedia processing, four

representative applications were selected from both the image and audio domains,

namely, image blending [32], image inversion [36], audio blending [33], and audio

inversion [37]. These applications were chosen to cover a spectrum of memory access

behaviors and computational patterns, providing a meaningful evaluation of ML-LVA’s

effectiveness across different workloads.

Performance measurements are carried out by quantifying the speedup achieved

when employing the ML-LVA compared to a baseline execution without approximation.

The evaluation considers two distinct performance levels: overall application speedup,

which captures the end-to-end impact on total execution time, and memory load

speedup, which focuses specifically on the duration of memory load operations. The

analysis spans multiple operating frequencies and approximation levels (n), where

each level controls the aggressiveness of value approximation in load instructions. The

performance analysis was performed using Siemens Questasim 2024.1 [76].

112

The structure of this section follows a task-specific organization, grouped into

two categories based on processing modality: image and audio. Each category is

further divided into two application subtypes: blending and inversion. For each

individual application, we analyze the effect of varying the approximate level (n) on

the performance. By employing a cycle-accurate simulation platform with realistic

memory modeling, this evaluation provides practical insights into the trade-offs

introduced by the ML-LVA mechanism. The results underscore the performance

benefits and limitations of using ML-based value approximation in a memory-

centric architecture and demonstrate the potential of such techniques in accelerating

multimedia workloads under modern processor-memory system designs. Thereafter, we

compare the performance of the design proposed in this thesis with the state-of-the-art,

followed by an analysis of the synthesis results to assess the overhead of the proposed

ML-LVA when implemented in hardware.

5.4.1 Image Processing

This subsection presents a performance analysis of image processing tasks executed on

the memory processor enhanced with the proposed ML-LVA, in comparison to their

execution using a conventional baseline. The tasks under evaluation, i.e., image

blending and image inversion, represent distinct categories of operations, each

characterized by different levels of computational complexity and memory access

behavior.

5.4.1.1 Image Blending

The image blending application, which merges two input images by computing a per-

pixel weighted average, benefits substantially from ML-LVA-based approximation due

113

to its consistent memory access patterns. The performance improvements measured at

both memory and application levels show a robust upward trend as the approximation

aggressiveness increases, i.e., increasing n. The application overall and memory level

speedups are shown in Figure 5.4.

From Figure 5.4(a), we notice that for the overall application, the performance

trends are more subdued but still meaningful. At the lowest setting of approximate

level, i.e., n = 1, the speedup is slightly under 1 at 0.992×, indicating a minor overhead,

possibly due to hardware instruction routing. When the approximate level increases,

the overall speedup rises to 1.013× and reaches 1.029× when n = 3. The trend

continues with incremental gains, hitting 1.057× and 1.065× for n = 10 and n = 15,

respectively. The highest recorded speedup is 1.068×, i.e., 6.8% speedup, for the

highest tested approximate level, i.e., n = 19. This relatively slower improvement is

expected since memory access acceleration translates into broader application speedup

only partially, especially in workloads that are not fully memory-bound. Nonetheless,

the positive correlation, across all levels, demonstrates that the ML-LVA leads to

a stable and scalable performance advantage even when used as a tightly coupled

accelerator within a general-purpose processor.

From Figure 5.4(b), we notice that at the memory level, the speedup begins at

a baseline of 1.00× for n = 1. Nonetheless, as the approximate level increases to

n = 2, the average speedup rises to 1.14×. This early gain signals that even limited

prediction of load values can significantly reduce memory latency in such structured

workloads. As the approximation level increases, this improvement continues almost

linearly up to approximate level 10, where the speedup reaches 1.58×. Beyond n = 10,

the curve begins to flatten, though the gains do not vanish. The speedup continues

to rise in a slower pace, reaching 1.66× at approximate level 15 and culminating in

114

(a)

(b)

Figure 5.4: Average Speedups for Image Blending: (a) Overall, and (b) Memory Loads

a peak of 1.69× at the highest approximate level, i.e., n = 19. The marginal gains

beyond n = 15, i.e., increase from 66% to 69%, indicate that most of the exploitable

redundancy is captured by this point, as the percentage of load that are approximated

is calculate as n
n+1 which has a flattening pattern as it increases.

5.4.1.2 Image Inversion

The speedups achieved in the image inversion are given in Figure 5.5. For the

application overall speedup, we notice from Figure 5.5(a) that the effect of ML-LVA is

115

(a)

(b)

Figure 5.5: Average Speedups for Image Inversion: (a) Overall, and (b) Memory Loads

also strong. Similar to the image blending, the speedup at approximate level 1 is below

1 and was measured to be 0.999×. As the approximation increases, the performance

quickly improves, where we measured a speedup of 1.08×, 1.19× and 1.24× for n = 2,

n = 4 and n = 6, respectively. When the approximate level is increased to 10, the

speedup reaches 1.30×, with further increments taking it to 1.34× at n = 16 and

peaking at 1.348× for the highest approximate level.

From the results shown in Figure 5.5(b), we notice that at the memory level the

gains are both steep and sustained. Starting from a speedup of 1.00× for n = 1 and

116

rises to 1.14× for n = 2. The growth in speedup continues with: 1.27×, 1.43× and

1.56× for the approximate levels 3, 5 and 8, respectively. This consistent acceleration

shows that prediction remains effective even as more speculative loads are deployed.

Unlike image blending, where speedup gains tapered off around approximate level 15,

image inversion continues to benefit across all tested levels. At approximation level 14,

the speedup reaches 1.67×, and achieves a maximum speedup of 1.73× for n = 19.

Interestingly, while the image blending’s overall speedup flattens early, image

inversion continues to show small but steady gains well into the higher approximation

levels. This sustained growth suggests that image inversion is more tightly bound

by memory latency, and therefore more responsive to approximative memory load

acceleration. This trend of deviation in the flattening of the overall speedup

results between blending and inversion tasks was also observed in software-based

implementation of the ML-LVA.

5.4.2 Audio Processing

This subsection presents the performance evaluation of audio processing tasks executed

on the hardware platform integrating the proposed ML-LVA accelerator. In contrast

to image processing, which operates on spatial data, audio processing deals with

time-continuous signals typically handled in discrete frames or windows. This framing

makes throughput and latency especially critical for maintaining real-time performance.

Furthermore, audio workloads differ in their computational characteristics, with

varying levels of arithmetic intensity and control flow complexity, which influences

how effectively they benefit from acceleration near memory. The evaluation focuses on

the observed speedups measured when executing audio tasks with the ML-LVA. We

analyze how different classes of audio operations respond to hardware-level load value

117

approximation and identify the greatest performance gains. These results provide

insight into the suitability of the adapted CVA6 to integrate the ML-LVA in its

architecture when accelerating audio tasks.

5.4.2.1 Audio Blending

The speedup results of the audio blending, depicted in Figure 5.6, show an increased

gain as the approximate level n increases. From Figure 5.6(a), we notice that for the

overall application, the improvements are more modest, reflecting the fact that not all

(a)

(b)

Figure 5.6: Average Speedups for Audio Blending: (a) Overall, and (b) Memory Loads

118

parts of the audio blending process are equally memory-bound. Starting from 1.0005×

at approximate level of 1, the speedup reaches 1.050× when n = 4 and continues

upward in small but consistent steps. By the approximate level 10, the overall speedup

is 1.073×, and it gradually climbs to 1.0799× when the approximate level reaches

15. The final speedup at level 19 is 1.0819×. The tight clustering of these values in

the later stages demonstrates the onset of saturation, where memory latency is no

longer the principal bottleneck. Still, the gain of over 8% in execution time at high

approximation levels is significant for embedded or real-time systems, where energy or

throughput constraints are tight. The results confirm that audio blending is a strong

candidate for approximate memory techniques, delivering high memory load gains

and consistent application level improvements.

At the memory level, we notice from Figure 5.6(b) that the benefits of

approximation are immediate and substantial. The speedup grows from the baseline

of 1.00× for n = 1 to 1.14× when n = 2 and reaches 1.34× when n is increased

to 4. The steepness of this growth continues through approximate levels 5 to 10,

reaching a speedup of 1.56×. Beyond level 10, the growth becomes more incremental,

yet it remains steady. The maximum speedup achieved is 1.66× at level 18, with

level 19 maintaining this value. This consistency suggests that even at aggressive

approximation levels, the ML-LVA performs reliably.

5.4.2.2 Audio Inversion

The ML-LVA delivers solid gains when tested in audio inversion as shown in Figure 5.7.

The results of application overall speedup shown in Figure 5.7(a), reflects a more

striking improvements. Beginning from a near-unity value of 1.0003× at approximate

level 1, the speedup surges to 1.15× and 1.22× for the approximate levels 3 and 5,

119

respectively. This rapid climb indicates a high dependence on memory performance.

The growth continues with 30% and 33%, i.e., 1.30× and 1.33×, at levels 10 and

15, respectively. At level 19, the maximum overall speedup is 1.34×. With a 34%

improvement in the overall performance, the hardware-based implementation of the

ML-LVA achieved a notable result demonstrating its practicality. These results are

among the best observed in the study, suggesting that the ML-LVA not only accelerates

memory operations but also significantly reduces the execution time of the entire

application. The monotonic increase across all approximation levels indicates that the

(a)

(b)

Figure 5.7: Average Speedups for Audio Inversion: (a) Overall, and (b) Memory Loads

120

load values in audio inversion, remain within a predictably learnable range for the

model.

From Figure 5.7(b), we notice that at the memory level, the speedup begins at

1.00×, rising to 1.26× at level 3 and 1.41× at level 5. The increase continues smoothly

with speedups of 1.56× and 1.63× for approximate levels of 9 and 13, respectively. By

approximation level 19, the memory speedup peaks at 1.69×. The absence of slowed

gain at extreme approximation levels suggests that the ML-LVA manages to maintain

improved performance when deployed in image inversion for the various approximate

levels tested.

5.4.3 Comparison with Related Work

We compare the hardware implementation of the ML-LVA with the state-of-the-art

LVA proposed in [19]. We omit the comparison with the LVA proposed in [24] since

their work targets a GPU while the one we propose in this thesis aim to approximate

the load value in a CPU. Table 5.1 shows the average speedup achieved for the various

approximate levels among the various applications. From Table 5.1, we can notice that

the LVA proposed in [19] deliver a higher speedup for a 50% approximation, i.e., n = 1.

However, at approximate level 3 and higher, i.e., more than 75% approximation, the

proposed LVA outperforms the state-of-the-art, where our model delivered an increased

Table 5.1: Speedup Comparison of the Proposed Hardware-based ML-LVA with [19]

Approximate Level (n) LVA [19] Proposed ML-LVA
1 1.08 1.00
3 1.07 1.09
5 1.08 1.14
9 1.08 1.18

17 1.08 1.21

121

speedup when n increases, while the one proposed in [19] delivered a constant speedup.

Subsequently, we conclude that the hardware-based ML-LVA also outperforms the

LVA proposed in [19].

5.4.4 Overhead Measures

In order to analyze the resource usage overhead of incorporating the ML-LVA in the

CVA6, we synthesized the original CVA6 and the version with the ML-LVA using

Cadence Innovus [77]. The synthesis is performed using a Cadence Generic Process

Design Kit (GPDK) based on the 45nm CMOS technology node. The results of the

synthesis are summarized in Table 5.2. From these results, we can notice that the

area and power increases in rate of 5.09% and 0.79%, respectively, when the ML-LVA

is added to the CVA6. Nonetheless, this is expected since an additional hardware was

added to the processor. However, with a speedup in memory load value surpassing

70% in multiple cases, the measured overhead can be deemed acceptable.

Table 5.2: Synthesis Results of the CVA6

Metric CVA6 CVA6 w/ ML-LVA Increase
Area (µm2) 167,986.64 176,529.11 5.09%

Power (mW) 344.15 346.87 0.79%

5.5 Summary

This chapter presented the hardware implementation and evaluation of the ML-LVA

within the CVA6, a RISC-V processor. The ML-LVA was integrated into the processor

pipeline as an accelerator. The resulting hardware was synthesized using Cadence

Innovus with a 45nm GPDK CMOS process. To ensure realism, the implementation

122

was tested under practical execution conditions using a CPU clocked at 3GHz and

paired with a 3200MT/s DDR4 memory subsystem. The focus was on media processing

workloads involving image and audio applications.

The implementation tackled several key challenges, including minimizing resource

overhead, maintaining timing closure, and integrating seamlessly with the processor’s

out-of-order pipeline. CVA6 was selected as the host platform due to its modular,

open-source architecture, which facilitated straightforward hardware augmentation.

The ML-LVA employed a lightweight predictor realized as a lookup table, stored in

ROM. To enable efficient invocation of the ML-LVA, two custom RISC-V R-type

instructions called AxAU and AxIM were introduced, specifically tailored to image and

audio load prediction. Support for these custom instructions required modifications to

the instruction decoder and execution pipeline of the CVA6. Each instruction accesses

a dedicated ROM storing prediction tables for its respective data type.

The memory subsystem used to analyze the performance of the proposed

implementation featured a configurable hierarchy with L1 and L2 caches which

are modeled after an ARM Cortex-A720 design to mirror modern embedded

processors. Additionally, the memory subsystem was complemented with a DDR4

DRAM to provide a complete memory hierarchy. An AXI-to-DDR4 to bride the

connection between the Micron DDR4 DRAM and the L2 cache. Subsequently, the

hardware implementation was tested in a cycle-accurate simulation environment using

SystemVerilog and Questasim.

The performance evaluation demonstrated that the ML-LVA delivers notable

speedups across a range of media applications. Speedup values reached up to 1.08× at

the application level and up to 1.73× in memory operations, confirming the ability of

the implemented ML-LVA to alleviate memory bottlenecks. The most significant gains

123

were observed in the audio inversion workload. Importantly, the ML-LVA maintained

and even increased its performance benefits as approximation levels rose. This marks

a significant improvement over the existing LVA such proposed in [19], which tend to

plateau even at modest levels of approximation.

The synthesis results confirm that these benefits come at an acceptable cost. The

ML-LVA introduced just 5.09% area and 0.79% power overhead. Given the substantial

improvements in memory latency—exceeding 70% in certain cases—these overheads

are a justified trade-off. The hardware prototype thus validates the practicality of

integrating machine learning-based speculative approximation into modern processors.

In summary, the ML-LVA offers a robust, efficient, and scalable approach to

load value approximation near memory. Its strong performance, especially at high

approximation levels, and modest resource footprint position it as a compelling

enhancement for future processors aiming to reduce memory access latency and

improve throughput in energy-constrained environments.

124

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The widening disparity between processor speeds and memory latency, commonly

referred to as the memory wall, continues to constrain the performance of modern

computing systems. In this thesis, we have addressed this fundamental bottleneck

by proposing a Machine Learning-based Load Value Approximator (ML-LVA), a

novel approach that leverages the principles of approximate computing to intelligently

speculate memory load values with minimal overhead. By shifting from conventional

memory-bound execution models to speculative, error-tolerant alternatives, the ML-

LVA presents a compelling solution for accelerating data-intensive applications without

sacrificing output quality.

The proposed methodology to develop the ML-LVA comprises two main phases:

an Offline phase and an Online phase. During the Offline phase, the target application

is profiled to identify load instructions that can tolerate approximation without

compromising correctness. Concurrently, training data is preprocessed and partitioned

to train and validate an ML model, which is subsequently integrated into the

125

application. The approximation level, defined by a user-specified parameter, determines

the proportion of load instructions replaced by approximate predictions. The Online

phase corresponds to the runtime execution of the approximated application producing

outputs. The ML-LVA framework supports both software- and hardware-based

implementations. The software approach realizes load value prediction as a function

call to a subroutine, enabling deployment on existing hardware platforms without

architectural modifications. Conversely, the hardware implementation incorporates a

dedicated accelerator within the processor pipeline, triggered via a custom instruction,

to minimize latency and overhead. This dual-mode design ensures flexibility for

deployment across a wide range of systems, from commodity hardware to custom

processor architectures.

A detailed analysis of quality of the proposed ML-LVA was performed across six

representative audio and image processing tasks. These tasks include multiplication-

based blending, inversion, and binarization operations. Quality evaluation employed

established metrics including Peak Signal-to-Noise Ratio (PSNR), Normalized Mean

Absolute Error (NMAE), Normalized Root Mean Squared Error (NRMSE), as well

as accuracy and precision for classification-oriented tasks. Across six real-world

multimedia applications, namely, image and audio blending, inversion, and binarization,

the ML-LVA consistently demonstrated adaptability, robustness, and performance

scalability. Notably, applications exhibiting temporal or spatial locality, such as audio

inversion, maintained PSNR values above 33.11 dB even at high speculation rates,

affirming their resilience to approximation delivered by the trained ML-LVA. The

static nature of the predictor, where runtime training is eliminated, makes it attractive

for both general-purpose and resource-constrained platforms. When compared to

existing techniques such as dynamic value predictors and rollback-free speculation,

126

the ML-LVA offered compelling advantages, delivering up to 3.75× lower normalized

root mean squared error (NRMSE) and 1.98× higher performance, thereby achieving

a well-calibrated balance between speed and quality.

The proposed technique was comprehensively validated through both software and

hardware implementations. On the software side, the ML-LVA was integrated into

conventional CPU-based workflows as a subroutine, yielding substantial performance

enhancements across a suite of multimedia benchmarks. In tasks such as image

inversion and audio binarization, speedups in memory operations reached up to 6.77×,

while the speedup in the application peaked at 2.45× under high approximation levels.

Crucially, these gains were achieved with minimal quality degradation, as evidenced by

PSNR values consistently exceeding 86 dB at 95% approximation. The performance

benefits scaled with processor frequency, highlighting the relevance of the ML-LVA in

latency-bound environments.

In the hardware implementation, the ML-LVA was deployed as an accelerator

in the form of a static ROM-based predictor within a RISC-V processor, CVA6.

Despite its minimal hardware footprint requiring just 256 bytes of storage and

completing predictions within a single cycle, the accelerator delivered up to 1.73×

reduction in memory access latency and 1.34× increase in application throughput in

representative workloads such as audio inversion. This integration not only underscores

the practicality of the ML-LVA in modern out-of-order processor pipelines, but also

demonstrates its compatibility with emerging microarchitectures.

The proposed Machine Learning-based Load Value Approximator (ML-LVA)

demonstrates clear superiority over state-of-the-art LVAs from [19] and [24]. Compared

to the LVA in [19], the proposed ML-LVA achieves more than a twofold reduction in

error across various approximation levels, while delivering substantially higher speedups

127

on CPU-based systems—for instance, an average speedup of 1.98× at approximation

level n = 17 compared to 1.08× reported in [19]. Although [24] targets GPUs while

the proposed ML-LVA targets CPU architectures, we are able to fairly compare the

quality of the two models since the quality is irrelevant of the underlying architecture.

The proposed ML-LVA attained at least 3.75× better prediction quality across all

approximation levels, confirming its effectiveness.

Hardware synthesis on a 45nm CMOS node using Cadence Innovus reveals only

modest overheads—5.09% area and 0.79% power increase—when integrating ML-

LVA into the CVA6 processor, which are justified by memory load value prediction

speedups exceeding 70% in several cases. Overall, these results establish ML-LVA as a

high-quality, efficient load value predictor with practical applicability for accelerating

CPU-centric workloads.

6.2 Future Work

While this thesis has demonstrated the viability and benefits of the ML-LVA in

multimedia processing pipelines, its broader implications extend to a wide spectrum

of approximate computing use cases. Future research can build upon this foundation

in several directions. A promising extension involves applying the ML-LVA framework

to domains where value locality hold such as wireless sensor networks and edge

AI—contexts where controlled approximation is both acceptable and advantageous. For

example, speculative reads in Internet of Things (IoT) environments could significantly

reduce memory bottlenecks and power consumption without impairing application

correctness.

Another rich area for exploration involves increasing the adaptability of the ML-

LVA. Although the current predictor benefits from its static, low-overhead design,

128

incorporating elements of runtime adaptivity, such as periodic retraining, online fine-

tuning, or lightweight reinforcement learning, could make the system more responsive

to non-stationary workloads. Hybrid prediction schemes that blend static learning

with dynamic calibration may yield better performance-quality trade-offs in real-world

deployments. Furthermore, closer integration with the memory hierarchy via coupling

with prefetchers, compression algorithms, Approximate Memory or Processing-in-

Memory (PIM) subsystems could enable more synergistic optimizations, effectively

creating a layered approximation stack that addresses latency, bandwidth, and energy

constraints in concert.

Since the ML-LVA loads one value and subsequently predicts the following n values,

a prefetcher could be made approximation-aware by recognizing the approximation

level (n). This would allow the cache to selectively fetch only the values that are

explicitly required, while omitting those that are to be predicted by the ML-LVA.

Such an approach would reduce unnecessary cache line fills, lower memory bandwidth

consumption and improve energy efficiency. Moreover, a cooperative design between

the ML-LVA and the prefetcher could provide a more fine-grained control of memory

traffic, ensuring that approximation not only accelerates execution but also optimizes

the utilization of the memory hierarchy, while also providing higher speedup when the

two techniques are combined.

Integrating ML-LVA with Approximate Memory enables a layered approximation

approach, where the predictor and memory-level approximation can work together

to optimize system behavior. Among the key advantages, this combination can

amplify performance and energy benefits by reducing memory access latency, lowering

bandwidth usage, and decreasing energy consumption. Additionally, it allows for fine-

tuning of approximation: the ML-LVA can selectively avoid predictions in cases where

129

the Approximate Memory has already provided sufficiently accurate results, thereby

preserving the best quality from either mechanism. At the same time, this integration

introduces several challenges. The system becomes more delicate, as errors in one layer

can influence the other, requiring careful calibration and monitoring. Approximation

errors may also compound across layers, potentially degrading computational accuracy

if not controlled. Moreover, integrating the two approaches increases the complexity

of the system, as additional hardware or logic may be needed to track quality, limit

cumulative errors, and ensure that multiple approximation layers do not lead to

excessive degradation of application-level correctness.

Exploring the proposed software-based implementation of the ML-LVA on RISC-V

and ARM architectures rather x86 architecture developed in this thesis, presents a

compelling opportunity for several reasons. Both RISC-V and ARM architectures are

increasingly prominent in embedded, mobile, and edge computing domains, where

power efficiency and customized hardware-software co-design are critical. Investigating

ML-LVA on these platforms could reveal unique interactions between the LVA and

the more streamlined, energy-aware instruction sets. Exploring ML-LVA on RISC-V

and ARM architectures could unlock new avenues for performance and efficiency gains

that are not as readily accessible on traditional x86 platforms, ultimately broadening

the applicability and impact of the proposed ML-LVA.

Extending the ML-LVA to support larger data widths could enable its

deployment across a broader range of application domains. From a hardware

perspective, the primary challenge lies in the exponential growth of the

lookup table, which significantly increases storage requirements and access

complexity. To mitigate this overhead, techniques such as pipelined ROM

130

lookups [78] combined with approximate arithmetic can be employed, reducing imple-

mentation complexity while preserving overall performance.

The identification of safe-to-approximate load instructions is performed manually

in this thesis. While effective, this approach is time-consuming and does not scale

well to complex applications. An artificial intelligence-based method could automate

this process by analyzing program behavior and memory access patterns to identify

instructions that can be safely approximated. This detection could be further improved

if applied in real time, dynamically selecting load instructions that both create memory

bottlenecks and tolerate approximation. However, integrating artificial intelligence

has drawbacks. The accuracy depends on training data and model quality, and

misclassification of critical instructions could cause fatal errors. Safeguards are

therefore necessary, such as maintaining fallbacks to exact execution. Additionally

the model has to be lightweight so its overhead does not outweigh performance gains

achieved by the usage of the proposed ML-LVA.

In addition, the development of runtime control mechanisms to dynamically

modulate the approximation level n in response to workload characteristics or user-

defined quality thresholds offers another valuable avenue. In this thesis, we specifically

explored a scheme in which one exact load is followed by n approximated loads. An

alternative direction would be to investigate different ratios of exact to approximated

values fetched from memory, e.g., two exact load followed by n approximation. Such

systems could, for instance, escalate speculation during high-memory-pressure phases

or reduce it when critical computations demand higher fidelity, thereby ensuring

optimal trade-offs at runtime. Nevertheless, these techniques must be designed with

care, as an imprudent choice of the number of exact loads or approximation level

could diminish the bandwidth savings that approximation is meant to achieve.

131

Lastly, as with all approximation-based methods, security and reliability warrant

careful attention. While the static, deterministic nature of ML-LVA provides some

resistance to adversarial manipulation, future iterations should incorporate advanced

verification techniques to prevent error propagation and ensure robust behavior in

safety-critical contexts. Extending the ML-LVA to embedded real-time systems—such

as automotive controllers or medical devices—will necessitate guarantees around

worst-case latency, bounded error rates, and fault tolerance, all of which represent

meaningful future work.

132

References

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A quantitative

approach. Morgan Kaufmann Publishers, 2019.

[2] W. A. Wulf and S. McKee, “Hitting the memory wall: Implications of the obvious,”

ACM Computer Architecture News, 1995.

[3] A. Gholami, Z. Yao, S. Kim, C. Hooper, M. W. Mahoney, and K. Keutzer, “ AI

and Memory Wall ,” IEEE Micro, vol. 44, no. 03, pp. 33–39, 2024.

[4] Intel, P6 Family of Processors: Hardware Developer’s Manual, 1998.

[5] K. Diefendorff, “K7 Challenges Intel: New AMD Processor Could Beat Intel’s

Katmai,” Microprocessor Report, vol. 12, no. 14, pp. 1–7, 1998.

[6] S. Eyerman and L. Eeckhout, “Probabilistic modeling for job symbiosis scheduling

on SMT processors,” ACM Transactions on Architecture and Code Optimization,

vol. 9, no. 2, pp. 1–27, 2012.

[7] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality and load value

prediction,” SIGPLAN Notices, vol. 31, no. 9, p. 138–147, September 1996.

[8] AMD, “AMD Launches AMD Ryzen 5000 Series Desktop

Processors: The Fastest Gaming CPUs in the World,” 2020.

133

[Online]. Available: https://www.amd.com/en/newsroom/press-releases/

2020-10-8-amd-launches-amd-ryzen-5000-series-desktop-process.html

[9] E. Alpaydin, Introduction to Machine Learning. MIT Press, 2020.

[10] G. O. Ganfure, C.-F. Wu, Y.-H. Chang, and W.-K. Shih, “Deepprefetcher: A

deep learning framework for data prefetching in flash storage devices,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 39, no. 11, pp. 3311–3322, 2020.

[11] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and

T. C. Mowry, “Mitigating prefetcher-caused pollution using informed caching

policies for prefetched blocks,” ACM Transactions on Architecture and Code

Optimization, vol. 11, no. 4, 2015.

[12] AMD, “AMD 3D V-Cache™ Technology,” 2025. [Online]. Available:

https://www.amd.com/en/products/processors/technologies/3d-v-cache.html

[13] F. Alted, “Breaking down memory walls,” 2018. [Online]. Available:

https://www.blosc.org/posts/breaking-memory-walls/

[14] Intel, “Intel® Xeon® Processor E3-1245 v5 8M Cache, 3.50 GHz,” 2025.

[Online]. Available: https://www.intel.com/content/www/us/en/products/sku/

88173/intel-xeon-processor-e31245-v5-8m-cache-3-50-ghz/specifications.html

[15] LZ4, “LZ4 - Extremely fast compression,” 2025. [Online]. Available:

https://lz4.org

[16] Samsung, “PIM Technologies - Samsung Semiconductor Global,” 2025. [Online].

Available: https://semiconductor.samsung.com/technologies/memory/pim/

134

https://www.amd.com/en/newsroom/press-releases/2020-10-8-amd-launches-amd-ryzen-5000-series-desktop-process.html
https://www.amd.com/en/newsroom/press-releases/2020-10-8-amd-launches-amd-ryzen-5000-series-desktop-process.html
https://www.amd.com/en/products/processors/technologies/3d-v-cache.html
https://www.blosc.org/posts/breaking-memory-walls/
https://www.intel.com/content/www/us/en/products/sku/88173/intel-xeon-processor-e31245-v5-8m-cache-3-50-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/88173/intel-xeon-processor-e31245-v5-8m-cache-3-50-ghz/specifications.html
https://lz4.org
https://semiconductor.samsung.com/technologies/memory/pim/

[17] D.-I. Jeon, K.-B. Park, and K.-S. Chung, “HMC-MAC: processing-in memory

architecture for multiply-accumulate operations with hybrid memory cube,” IEEE

Computer Architecture Letters, vol. 17, no. 1, pp. 5–8, May 2017.

[18] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for

energy-efficient design,” in IEEE European Test Symposium, 2013, pp. 1–6.

[19] J. San Miguel, M. Badr, and N. E. Jerger, “Load value approximation,” in

International Symposium on Microarchitecture. IEEE, 2014, pp. 127–139.

[20] D. T. Nguyen, N. H. Hung, H. Kim, and H.-J. Lee, “An approximate memory

architecture for energy saving in deep learning applications,” IEEE Transactions

on Circuits and Systems I: Regular Papers, vol. 67, no. 5, pp. 1588–1601, 2020.

[21] A. Ranjan, A. Raha, V. Raghunathan, and A. Raghunathan, “Approximate

memory compression for energy-efficiency,” in International Symposium on Low

Power Electronics and Design. IEEE, 2017, pp. 1–6.

[22] L. Ceze, K. Strauss, J. Tuck, J. Torrellas, and J. Renau, “CAVA: Using checkpoint-

assisted value prediction to hide l2 misses,” ACM Transactions on Architecture

and Code Optimization, vol. 3, no. 2, pp. 182–208, June 2006.

[23] G. Reinman and B. Calder, “Predictive techniques for aggressive load speculation,”

in International Symposium on Microarchitecture. IEEE, 1998, pp. 127–137.

[24] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh, O. Mutlu, and

T. C. Mowry, “RFVP: Rollback-free value prediction with safe-to-approximate

loads,” ACM Transactions on Architecture and Code Optimization, vol. 12, no. 4,

pp. 1–26, 2016.

135

[25] GEM5, “The gem5 Simulator System,” 2025. [Online]. Available: https:

//www.gem5.org

[26] GEM5, “gem5::TimingSimpleCPU Class Reference,” 2025.

[Online]. Available: https://doxygen.gem5.org/release/current/classgem5_

1_1TimingSimpleCPU.html

[27] Open Hardware Group, “CVA6 RISC-V CPU,” 2025. [Online]. Available:

https://github.com/openhwgroup/cva6

[28] RISC-V, “RISC-V international,” 2025. [Online]. Available: https://riscv.org

[29] M. Masadeh, O. Hasan, and S. Tahar, Adaptive Approximate Accelerators with

Controlled Quality Using Machine Learning. Springer Nature, 2024, pp. 501–529.

[30] S. Annadurai, “Image compression,” in Fundamentals of digital image processing.

Pearson Education India, 2007, ch. 5, pp. 131–226.

[31] S. Birla, S. K. Dargar, N. Singh, and P. Sivakumar, Low Power Designs in

Nanodevices and Circuits for Emerging Applications. CRC Press, 2023.

[32] S. Valentine, “List of blend modes,” in Hidden Power

of Blend Modes in Adobe Photoshop. Adobe Press, 2012,

ch. 7, p. 150. [Online]. Available: https://www.peachpit.com/store/

hidden-power-of-blend-modes-in-adobe-photoshop-9780321823762

[33] J. Hass, “Synthesis,” in Introduction to Computer Music. Indiana University,

USA, 2021, ch. 4. [Online]. Available: https://cmtext.indiana.edu/synthesis/

chapter4_am_rm.php

136

https://www.gem5.org
https://www.gem5.org
https://doxygen.gem5.org/release/current/classgem5_1_1TimingSimpleCPU.html
https://doxygen.gem5.org/release/current/classgem5_1_1TimingSimpleCPU.html
https://github.com/openhwgroup/cva6
https://riscv.org
https://www.peachpit.com/store/hidden-power-of-blend-modes-in-adobe-photoshop-9780321823762
https://www.peachpit.com/store/hidden-power-of-blend-modes-in-adobe-photoshop-9780321823762
https://cmtext.indiana.edu/synthesis/chapter4_am_rm.php
https://cmtext.indiana.edu/synthesis/chapter4_am_rm.php

[34] R. Gonzalez and R. Woods, “Image segmentation,” in

Digital Image Processing. Pearson, 2017, ch. 10, pp. 699–

810. [Online]. Available: https://www.pearson.com/subject-catalog/p/

digital-image-processing-global-edition/P200000004313/9781292223070

[35] E. Tarr, “Distortion, saturation, and clipping element-wise processing: Nonlinear

effects,” in Hack Audio: An Introduction to Computer Programming and Digital

Signal Processing in MATLAB. Taylor & Francis, 2018, ch. 10, pp. 147–182.

[Online]. Available: https://doi.org/10.4324/9781351018463

[36] R. Gonzalez and R. Woods, “Intensity transformations and spatial,”

in Digital Image Processing. Pearson, 2017, ch. 3, pp. 119–

202. [Online]. Available: https://www.pearson.com/subject-catalog/p/

digital-image-processing-global-edition/P200000004313/9781292223070

[37] E. Tarr, “Signal gain and dc offset,” in Hack Audio: An Introduction to Computer

Programming and Digital Signal Processing in MATLAB. Taylor & Francis, 2018,

ch. 6, pp. 57–78. [Online]. Available: https://doi.org/10.4324/9781351018463

[38] Apple, “Use ES2 ring modulation in Logic Pro for Mac,” 2025. [Online]. Available:

https://support.apple.com/en-ca/guide/logicpro/lgsia1273a3/11.1/mac/14.6

[39] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[40] J. M. White and G. D. Rohrer, “Image thresholding for optical character

recognition and other applications requiring character image extraction,” IBM

Journal of Research and Development, vol. 27, no. 4, pp. 400–411, 1983.

137

https://www.pearson.com/subject-catalog/p/digital-image-processing-global-edition/P200000004313/9781292223070
https://www.pearson.com/subject-catalog/p/digital-image-processing-global-edition/P200000004313/9781292223070
https://doi.org/10.4324/9781351018463
https://www.pearson.com/subject-catalog/p/digital-image-processing-global-edition/P200000004313/9781292223070
https://www.pearson.com/subject-catalog/p/digital-image-processing-global-edition/P200000004313/9781292223070
https://doi.org/10.4324/9781351018463
https://support.apple.com/en-ca/guide/logicpro/lgsia1273a3/11.1/mac/14.6

[41] Dyson, “The difference between active noise cancellation

and passive noise cancellation,” 2024. [Online]. Avail-

able: https://www.dyson.com/discover/insights/audio/noise-canceling/

the-difference-between-active-noise-cancellation-and-passive-noise-cancellation

[42] A. Aoun, M. Masadeh, and S. Tahar, “A machine learning based load value

approximator guided by the tightened value locality,” in Great Lakes Symposium

on VLSI. ACM, 2023, pp. 679–684.

[43] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,

Princeton University, USA, 2011. [Online]. Available: https://www.cs.princeton.

edu/techreports/2010/890.pdf

[44] Scikit-Learn, “Sklearn Ensemble Extra Trees Regressor,” 2024. [Online].

Available: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

ExtraTreesRegressor.html

[45] A. Aoun, M. Masadeh, and S. Tahar, “Machine learning based memory load

value predictor for multimedia applications,” in International Conference on

Microelectronics, 2024, pp. 1–6.

[46] R. Timofte, V. De Smet, and L. Van Gool, “Anchored neighborhood regression for

fast example-based super-resolution,” in International Conference on Computer

Vision. IEEE, 2013, pp. 1920–1927.

[47] M.-E. Nilsback and A. Zisserman, “Automated flower classification over

a large number of classes,” in Indian Conference on Computer Vision,

Graphics & Image Processing. IEEE, 2008, pp. 722–729. [Online]. Available:

https://paperswithcode.com/dataset/oxford-102-flower

138

https://www.dyson.com/discover/insights/audio/noise-canceling/the-difference-between-active-noise-cancellation-and-passive-noise-cancellation
https://www.dyson.com/discover/insights/audio/noise-canceling/the-difference-between-active-noise-cancellation-and-passive-noise-cancellation
https://www.cs.princeton.edu/techreports/2010/890.pdf
https://www.cs.princeton.edu/techreports/2010/890.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html
https://paperswithcode.com/dataset/oxford-102-flower

[48] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3D Object Representations

for Fine-Grained Categorization,” in International Conference on Computer

Vision Workshops. IEEE, 2013, pp. 554–561. [Online]. Available: https:

//paperswithcode.com/dataset/stanford-cars

[49] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning deep

features for scene recognition using places database,” in International Conference

on Neural Information Processing Systems, vol. 1. MIT Press, 2014, p. 487–495.

[Online]. Available: https://dl.acm.org/doi/10.5555/2968826.2968881

[50] J. Ward, “Sound Archive for Babylon 5,” 2014. [Online]. Available:

http://b5.cs.uwyo.edu/bab5/

[51] J.-R. Ohm, “Bildsignalverarbeitung fuer multimedia-systeme,” Skript, vol. 1, p. 2,

1999.

[52] J. Klaue, B. Rathke, and A. Wolisz, “EvalVid – a framework for video

transmission and quality evaluation,” in Computer Performance Evaluation

Modelling Techniques and Tools, vol. 2794 of Lecture Notes in Computer Science.

Springer, 2003, pp. 255–272.

[53] J. Gross, J. Klaue, H. Karl, and A. Wolisz, “Cross-layer optimization of OFDM

transmission systems for MPEG-4 video streaming,” Science Direct Computer

Communications, vol. 27, no. 11, pp. 1044–1055, 2004.

[54] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,

“Rodinia: A benchmark suite for heterogeneous computing,” in International

Symposium on Workload Characterization. IEEE, 2009, pp. 44–54. [Online].

Available: https://doi.org/10.1109/iiswc.2009.5306797

139

https://paperswithcode.com/dataset/stanford-cars
https://paperswithcode.com/dataset/stanford-cars
https://dl.acm.org/doi/10.5555/2968826.2968881
http://b5.cs.uwyo.edu/bab5/
https://doi.org/10.1109/iiswc.2009.5306797

[55] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: a mapreduce

framework on graphics processors,” in International Conference on Parallel

Architectures and Compilation Techniques. ACM, 2008, p. 260–269. [Online].

Available: https://doi.org/10.1145/1454115.1454152

[56] Nvidia, “CUDA Samples,” 2018. [Online]. Available: https://docs.nvidia.com/

cuda/archive/10.0/cuda-samples/index.html

[57] QEMU, “A generic and open source machine emulator and virtualizer,” 2025.

[Online]. Available: https://www.qemu.org

[58] Cadence, “Protium enterprise prototyping,” 2025. [On-

line]. Available: https://www.cadence.com/en_US/home/tools/

system-design-and-verification/emulation-and-prototyping/protium.html

[59] Cadence, “Palladium emulation,” 2025. [Online]. Available:

https://www.cadence.com/en_US/home/tools/system-design-and-verification/

emulation-and-prototyping/palladium.html

[60] JEDEC, “DDR3 SDRAM Standard,” 2012. [Online]. Available: https:

//www.jedec.org/standards-documents/docs/jesd-79-3d

[61] JEDEC, “DDR4 SDRAM Standard,” 2021. [Online]. Available: https:

//www.jedec.org/standards-documents/docs/jesd79-4a

[62] Intel, “13th Generation Intel® Core™ and Intel® Core™ 14th Generation

Processors – Datasheet, Volume 1 of 2,” 2024. [Online]. Available:

https://edc.intel.com/content/www/us/en/design/products/platforms/details/

raptor-lake-s/13th-generation-core-processors-datasheet-volume-1-of-2/

ia-cores-level-1-and-level-2-caches/

140

https://doi.org/10.1145/1454115.1454152
https://docs.nvidia.com/cuda/archive/10.0/cuda-samples/index.html
https://docs.nvidia.com/cuda/archive/10.0/cuda-samples/index.html
https://www.qemu.org
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/protium.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/protium.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/palladium.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/palladium.html
https://www.jedec.org/standards-documents/docs/jesd-79-3d
https://www.jedec.org/standards-documents/docs/jesd-79-3d
https://www.jedec.org/standards-documents/docs/jesd79-4a
https://www.jedec.org/standards-documents/docs/jesd79-4a
https://edc.intel.com/content/www/us/en/design/products/platforms/details/raptor-lake-s/13th-generation-core-processors-datasheet-volume-1-of-2/ia-cores-level-1-and-level-2-caches/
https://edc.intel.com/content/www/us/en/design/products/platforms/details/raptor-lake-s/13th-generation-core-processors-datasheet-volume-1-of-2/ia-cores-level-1-and-level-2-caches/
https://edc.intel.com/content/www/us/en/design/products/platforms/details/raptor-lake-s/13th-generation-core-processors-datasheet-volume-1-of-2/ia-cores-level-1-and-level-2-caches/

[63] A. Waterman, Y. Lee, D. Patterson, and K. Asanović, “Chapter 9 - RV32/64G

Instruction Set Listings,” in The RISC-V Instruction Set Manual, Volume I:

User- Level ISA, Version 2.1. Electrical Engineering and Computer Sciences,

University of California at Berkeley, USA, 2016, pp. 53–57.

[64] ARM, “AMBA AXI protocol specification,” 2025. [Online]. Available:

https://developer.arm.com/documentation/ihi0022/latest

[65] A. Waterman, K. Asanović, and J. Hauser, The RISC-V Instruction Set Manual,

Volume II: Privileged Architecture, RISC-V International, Dec. 2021.

[66] I. Sarno, S. Di Matteo, E. Valea, and C. Chavet, “RISC-V-based acceleration

strategies for post-quantum cryptography,” in RISC-V Summit Europe, 2025, pp.

1–2.

[67] N. Wistoff, “cva6_accel_first_pass_decoder_stub.sv,” 2023. [Online].

Available: https://github.com/openhwgroup/cva6/blob/master/core/cva6_

accel_first_pass_decoder_stub.sv

[68] M. Cavalcante and N. Wistoff, “acc_dispatcher.sv,” 2020. [Online]. Available:

https://github.com/openhwgroup/cva6/blob/master/core/acc_dispatcher.sv

[69] F. Zaruba, “ariane_pkg.sv,” 2017. [Online]. Available: https://github.com/

openhwgroup/cva6/blob/master/core/include/ariane_pkg.sv

[70] ARM, “Arm® Cortex-A720 Core Technical Reference Manual - Revision: r0p2,”

2023. [Online]. Available: https://developer.arm.com/documentation/102530/

0002

[71] Printcton Parallel Group, “OpenPiton open source research processor,” 2017.

[Online]. Available: https://www.openpiton.org

141

https://developer.arm.com/documentation/ihi0022/latest
https://github.com/openhwgroup/cva6/blob/master/core/cva6_accel_first_pass_decoder_stub.sv
https://github.com/openhwgroup/cva6/blob/master/core/cva6_accel_first_pass_decoder_stub.sv
https://github.com/openhwgroup/cva6/blob/master/core/acc_dispatcher.sv
https://github.com/openhwgroup/cva6/blob/master/core/include/ariane_pkg.sv
https://github.com/openhwgroup/cva6/blob/master/core/include/ariane_pkg.sv
https://developer.arm.com/documentation/102530/0002
https://developer.arm.com/documentation/102530/0002
https://www.openpiton.org

[72] IEEE, “IEEE Standard for SystemVerilog–Unified Hardware Design, Specification,

and Verification Language,” IEEE Std 1800-2023 (Revision of IEEE Std 1800-

2017), pp. 1–1354, 2024.

[73] PULP Platform, “AXI4-compliant last-level cache (LLC),” 2025. [Online].

Available: https://github.com/pulp-platform/axi_llc

[74] PULP Platform, “PULP Platform: Open hardware, the way it should be!” 2025.

[Online]. Available: https://pulp-platform.org

[75] Micron Technology Inc., Simulation Model: DDR4 SDRAM Verilog Model,

2018. [Online]. Available: https://www.micron.com/content/dam/micron/global/

secure/products/sim-model/dram/ddr4/ddr4-verilog-models.zip

[76] Siemens Digital Industries Software, “Questa advanced simulator,” 2025.

[Online]. Available: https://eda.sw.siemens.com/en-US/ic/questa/simulation/

advanced-simulator/

[77] Cadence, “Innovus Implementation System,” 2025. [Online]. Avail-

able: https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/

soc-implementation-and-floorplanning/innovus-implementation-system.html

[78] AMD, “Pipelining the RAM,” 2025. [Online]. Available: https://docs.amd.com/

r/en-US/ug901-vivado-synthesis/Pipelining-the-RAM

142

https://github.com/pulp-platform/axi_llc
https://pulp-platform.org
https://www.micron.com/content/dam/micron/global/secure/products/sim-model/dram/ddr4/ddr4-verilog-models.zip
https://www.micron.com/content/dam/micron/global/secure/products/sim-model/dram/ddr4/ddr4-verilog-models.zip
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://docs.amd.com/r/en-US/ug901-vivado-synthesis/Pipelining-the-RAM
https://docs.amd.com/r/en-US/ug901-vivado-synthesis/Pipelining-the-RAM

Biography

Education

• Concordia University: Montreal, Quebec, Canada.

Ph.D., Electrical & Computer Engineering – 2021-2025

• Concordia University: Montreal, Quebec, Canada.

M.A.Sc., Electrical & Computer Engineering – 2019-2021

• Notre Dame University: Zouk-Mosbeh, Lebanon.

B.E., Electrical Engineering – 2013-2018

Awards

• Concordia University Conference and Exposition Award (PhD) - 2023

• Concordia University Merit Scholarship (PhD) – 2021

• Concordia University International Tuition Award of Excellence (PhD) – 2021-2024

• Concordia University International Tuition Award of Excellence (MASc) – 2019-2021

• Notre Dame University Academic Honors: Dean’s List – 2014-2018

143

Work History

• Research Assistant, Hardware Verification Group, Department of

Electrical and Computer Engineering, Concordia University, Montreal,

Quebec, Canada – 2019-2025

• Teaching Assistant, Department of Electrical and Computer Engineering,

Concordia University, Montreal, Quebec, Canada – 2021-2024

• Webmaster, Hardware Verification Group, Department of Electrical and

Computer Engineering, Concordia University, Montreal, Quebec, Canada –

2019-2025

• IT Admin, Hardware Verification Group, Department of Electrical and

Computer Engineering, Concordia University, Montreal, Quebec, Canada –

2020-2025

Publications

Journal Papers

[Bio-Jr1] A. Aoun, M. Masadeh and S. Tahar: ML-based Load Value Approximator

for Efficient Multimedia Processing; ACM Transactions on Multimedia

Computing Communications and Applications, Vol. 21, No. 7, July 2025,

pp. 210:1-210:18.

[Bio-Jr2] M. Masadeh, A. Aoun and S. Tahar: Design Space Exploration of Array-

based Approximate Squaring Unit for Error-tolerant Computing; Analog

Integrated Circuits and Signal Processing, Vol. 124, No. 53, July 2025, pp.

1-17.

144

[Bio-Jr3] A. Aoun, M. Masadeh and S. Tahar: A RISC-V based Load Value

Approximator Accelerator for Efficient Multimedia Processing; IEEE

Transactions on Emerging Topics in Computing, July 2025, pp. 1-11.

[Under Review]

[Bio-Jr4] A. Aoun, M. Masadeh, O. Hasan and S. Tahar: Design Space Exploration

for Approximate Circuits Based on Arithmetic Calculus Modeling; Journal

of Circuits, Systems and Computers, World Scientific, May 2025, pp. 1-30.

[Under Review]

[Bio-Jr5] A. Aoun, M. Masadeh and S. Tahar: Design Space Exploration for Energy-

Efficient Approximate Sobel Filter; International Journal of Electronics and

Communications, Elsevier, Vol. 172, 154887, December 2023, pp. 1-9.

Conference Papers

[Bio-Cf1] A. Aoun, M. Masadeh and S. Tahar: Machine Learning Based

Memory Load Value Predictor for Multimedia Applications; Proc. IEEE

International Conference on Microelectronics (ICM’24), Doha, Qatar,

December 2024, pp. 1-6.

[Bio-Cf2] A. Aoun, M. Masadeh, O. Hasan and S. Tahar: Arithmetic Calculus

Modeling for Approximate Circuits; Proc. IEEE International Conference

on Microelectronics (ICM’24), Doha, Qatar, December 2024, pp. 1-6.

[Bio-Cf3] M. Masadeh, A. Aoun and S. Tahar: Energy-Efficient Approximate

Squaring Unit; Proc. IEEE International Conference on Microelectronics

(ICM’24), Doha, Qatar, December 2024, pp. 1-5.

145

[Bio-Cf4] A. Aoun, M. Masadeh and S. Tahar: On the Implementation of

Approximate Load Value using Machine Learning; Design Automation

Conference (DAC’23), San Francisco, California, USA, July 2023. [Poster

Presentation]

[Bio-Cf5] A. Aoun, M. Masadeh and S. Tahar: A Machine Learning based Load

Value Approximator guided by the Tightened Value Locality; Proc. ACM

Great Lakes Symposium on VLSI (GLS-VLSI’23), Knoxville, Tennessee,

USA, June 2023, ACM Publications, pp. 679-684.

[Bio-Cf6] A. Aoun, M. Masadeh and S. Tahar: On the Design of Approximate Sobel

Filter; Proc. IEEE International Conference on Microelectronics (ICM’22),

Casablanca, Morocco, December 2022, pp. 1-5. [BEST PAPER]

[Bio-Cf7] M. Masadeh, A. Aoun, O. Hasan and S. Tahar: Highly-Reliable

Approximate Quadruple Modular Redundancy with Approximation-Aware

Voting; Proc. IEEE International Conference on Microelectronics (ICM’20),

Irbid, Jordan, December 2020, pp. 1-4.

[Bio-Cf8] M. Masadeh, A. Aoun, O. Hasan and S. Tahar: Decision Tree-based

Adaptive Approximate Accelerators for Enhanced Quality; Proc. IEEE

International Systems Conference (SysCon’20), Montreal, Quebec, Canada,

August 2020, pp. 1-5.

[Bio-Cf9] A. Aoun, A. Iliovits, A. Kassem, P. Sakr and N. Metni: Arthro-Glove

a Hybrid Bionic Glove for patients diagnosed with Arthritis, ALS and/or

Dysmorphia; Proc. IEEE Cairo International Biomedical Engineering

Conference (CIBEC’18), Cairo, Egypt, 2018, pp. 106-109.

146

[Bio-Cf10]E.J. Maalouf, N. Marina, J. B. Abdo, A. Aoun, M. Hamad and A. Kassem:

Asthma Irritant Monitoring; Proc. IEEE International Conference on

Microelectronics (ICM’18), Sousse, Tunisia, 2018, pp. 120-123.

[Bio-Cf11]A. Aoun, A. Kassem and M. Hamad: Sun Stimulator for Daylight System;

Proc. IEEE International Arab Conference on Information Technology

(ACIT’18), Werdanye, Lebanon, 2018, pp. 1-4.

[Bio-Cf12]A. Kassem, M. Hamad, C. El Moucary, E. Nawfal and A. Aoun: MedBed:

Smart medical bed; Proc. IEEE International Conference on Advances in

Biomedical Engineering (ICABME’17), Beirut, Lebanon, 2017, pp. 1-4.

147

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	State-of-the-Art
	Approximate Memory
	ML-based Prefetching
	Load Value Speculation
	Load Value Approximation

	Problem Statement
	Proposed Methodology
	Thesis Contributions
	Thesis Organization

	Preliminary
	Introduction
	Evaluating Approximate Computing
	Multimedia Applications

	ML-based Load Value Predictor
	Introduction
	Training Method
	Dataset Selection and ML Training
	Dataset Selection
	ML Training

	Quality Assessment
	Image Processing
	Image Blending
	Image Inversion
	Image Binarization

	Audio Processing
	Audio Blending
	Audio Inversion
	Audio Binarization

	Comparison with Related Work

	Summary

	Software Implementation of the ML-LVA
	Introduction
	Proposed Methodology
	Implementation of the Predictor
	Testing Environment
	Performance Analysis
	Experimental Results
	Image Processing
	Image Blending
	Image Inversion
	Image Binarization

	Audio Processing
	Audio Blending
	Audio Inversion
	Audio Binarization

	Comparison with Related Work

	Summary

	Hardware Implementation of the ML-LVA
	Introduction
	Proposed Methodology
	Hardware Implementation
	CVA6 Processor
	AXI Last Level Cache
	Micron DDR4 Model

	Experimental Results
	Image Processing
	Image Blending
	Image Inversion

	Audio Processing
	Audio Blending
	Audio Inversion

	Comparison with Related Work
	Overhead Measures

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	Biography

