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Abstract

Maritime Autonomous Surface Ships (MASS) and Energy Management System

Harriet Laryea, Ph. D.

Concordia University, 2025

The research and development of Maritime Autonomous Surface Ships (MASS) is underway in
several countries, with operations either remotely controlled from a Shore Control Center (SCC)
or fully autonomous, without the need for Officer of the Watch (OOW) supervision. This study
focuses on integrating renewable energy systems, alternative fuels, and energy management
strategies (EMS) to enhance the efficiency and sustainability of both conventional and fully
autonomous vessels. In response to rising fuel costs and stringent International Maritime
Organization (IMO) regulations, the research aims to optimize vessel performance, reduce

emissions, and improve energy efficiency across various ship types.

The study begins by assessing conventional vessels before transitioning to fully autonomous
operations. The research then examines the optimization of a hybrid renewable energy system
(HRES) that incorporates photovoltaic (PV) arrays, vertical axis wind turbines (VAWTs), and
battery storage into the existing ship power system. A comparative analysis is conducted between
conventional and fully autonomous vessels using an artificial bee colony (ABC) algorithm. The
optimal configuration for both vessel types is identified as Genset/PV/VAWT/Battery, minimizing
the annualized cost of the system (ACS), while maximizing the renewable energy fraction and
reducing carbon emissions. Notably, autonomous vessels demonstrate superior performance in

terms of cost and emissions when compared to conventional vessels.

Further, the study investigates optimal marine alternative fuels for short-sea shipping, including
hydrogen, LNG, and traditional fuels. Mathematical modeling in Python is used to evaluate key
performance indicators (KPIs), with LNG proving to deliver the highest Net Present Value (NPV),
especially for autonomous vessels. This provides insights for optimizing fuel selection and

ensuring compliance with environmental regulations.

Finally, a multi-objective predictive energy management system is developed using nonlinear
model predictive control (NMPC) combined with grey wolf optimization (GWO) to optimize

energy distribution in autonomous vessels under dynamic wave conditions. The NMPC-GWO
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algorithm demonstrates robustness and adaptability, ensuring reliable performance in varying

environmental and operational conditions.

In summary, this research offers a comprehensive framework for optimizing energy systems and
fuel selection, driving improvements in operational efficiency and environmental sustainability in

the maritime industry.
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CHAPTER 1. INTRODUCTION

The evolution of ships has spanned over many years, driven by the commissioning and
decommissioning of vessels that once relied on natural wind and tidal forces. However, the advent
of steamships in the early 19th century revolutionized maritime navigation. The transportation of
goods and passengers via sea became a significant force in global commerce and travel. Currently,
there are over 7,000 conventional ships (CS) and more than 2,500 active seaports and inland ports

worldwide [1].

During the Industrial Revolution, steam propulsion in marine vessels was gradually replaced by
more efficient fuels such as diesel, fossil fuels, liquefied natural gas (LNG), and electric or battery
power. Conventional ships are now predominantly powered by diesel engines, marine gas turbines,
or Low-Pressure Dual Fuel (LPDF) engines. These vessels typically operate using heavy fuel oil,
marine-grade diesel, or LNG. Unfortunately, the incomplete combustion of these fuels results in
the emission of greenhouse gases (GHGs), including Sulphur Oxides (SOx), Nitrogen Oxides
(NOx), and Carbon Dioxide (CO3). A recent study indicates that air pollution from conventional
ships accounts for more than 18% of global pollutants, with the maritime industry contributing
13% of the global sulfur oxide emissions [2]. These pollutants are primarily emitted during harbor
maneuvering and operations at sea. In response, the International Maritime Organization (IMO)
has implemented a regulation requiring a maximum sulfur content of 0.50% m/m (mass by mass)

in fuel oil to mitigate sulfur emissions [3].

The growing concern over greenhouse gas emissions and fuel consumption in conventional ships
has highlighted several contributing factors, including fuel composition, machinery (such as
auxiliary engines), charter planning, vessel category, ship condition (for example, coating and
servicing), and operational factors. As a result, the IMO's Maritime Environment Protection
Committee (MEPC) has established mandatory guidelines for energy efficiency in ships,
encapsulated in the Energy Efficiency Design Index (EEDI). The EEDI monitors greenhouse gas
emissions and promotes improvements in "hull design and machinery operations." It serves as a
critical technical measure governing new ships and the implementation of the Ship Energy
Efficiency Management Plan (SEEMP) [4], [5]. Additionally, the SEEMP encourages the use of
the Energy Efficiency Operational Indicator (EEOI) to assess the energy efficiency of existing
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ships, considering environmental factors such as sea state, waves, currents, speed, draught,
distance, and the condition of the hull and machinery [6], [7]. These regulations significantly

impact both existing conventional ships and new vessels using the aforementioned fuels.

Technological advancements have also spurred interest in autonomous ships (AS), with research
in this area drawing from unmanned vehicles in sectors such as space transportation, commercial
rail, aerospace, and automotive industries [8]. The knowledge gained from these autonomous
systems has led to the development of human-machine interfaces (HMIs) for fully unmanned and
remotely controlled ships [9]. However, the implementation of autonomous ships presents
challenges similar to those encountered in other autonomous transportation sectors, including
cybersecurity, ship maintenance, grounding, environmental disasters, passenger safety, and system
reliability and efficiency. While the full realization of autonomous ships may take years, the
potential advantages outweigh the challenges [8]. Furthermore, with the integration of EEDI and
SEEMP for autonomous ships, the IMO's goals can be more readily achieved, as these vessels are

equipped with more environmentally friendly engines and technologies.

1.1 Research Problem Statement or Motivation

The International Maritime Organization (IMO) aims to decarbonize international shipping,
actively supporting the integration of technology to help achieve the targets set by the Paris
Agreement. As part of its commitment to addressing climate change, the IMO plays a key role in
advancing the United Nations' Sustainable Development Goal 13 [10], [11]. A notable advantage
of Maritime Autonomous Surface Ships (MASS) is their potential to enhance energy efficiency
and reduce emissions by utilizing renewable energy sources, electricity, or hybrid systems. The
IMO has set ambitious goals to lower CO2-equivalent emissions from international shipping, with
the target for 2050 being a 50% reduction in CO> emissions compared to 2008 levels [10], [11].
These objectives have increased the demand for advanced technologies in ship design and

construction to achieve automation that optimizes energy efficiency.

This ambitious target has posed significant challenges for naval architects worldwide in designing
vessels that meet the required levels of energy efficiency. At the MEPC 76 [12] several measures

to improve ship energy efficiency were identified, but implementing these solutions has proven
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difficult. Therefore, further measures need to be explored to meet the IMO's long-term goals. This
research is motivated by the need to examine the energy management systems of MASS, focusing

on emissions and their associated environmental costs.

1.2 Research Justification

The automobile industry has brought significant changes to our roads with the induction of
autonomous vehicles, and similar innovation are currently being implemented in the marine
industry. The deployment of MASS on the open sea clearly indicates that they are likely to be
more successful than self-driving cars navigating the congested streets of our cities [13]. Therefore,
the increasing urgency to reduce carbon emissions and improve the sustainability of maritime
operations underscores the importance of integrating renewable energy systems (RES) and
alternative fuels into ship power systems. However, research on the application of these
technologies, especially in the context of autonomous vessels, remains sparse. Autonomous ships
introduce unique challenges due to their reliance on renewable energy sources like PV, wind
turbines, and battery bank, their operational dynamics, which differ significantly from
conventional manned vessels. This research is therefore justified by the necessity to fill the gap in
knowledge regarding the integration of hybrid renewable energy systems (HRES) in autonomous
ships. By developing advanced energy management strategies and optimization frameworks, this
study aims to enhance the operational efficiency and environmental performance of both
conventional and autonomous vessels. The findings will not only provide practical solutions for
integrating renewable energy into maritime transport but also contribute to achieving operational
strategies in marine transportation and offer valuable guidance for decision-making and investment

in the marine sector, ensuring regulatory compliance and environmental sustainability.

1.3 Research Objectives

The objectives of this research work are as follows:

e To perform a comprehensive techno-economic analysis on both conventional and fully

autonomous vessels, evaluating various HRES configurations in terms of cost, energy
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efficiency, and environmental impact. This involves the application of metaheuristic
optimization algorithms to identify the most cost-effective and efficient configurations.

e To identify optimal marine fuels for short-sea shipping vessels by employing a proposed
global warming potential (GWP) approach in conjunction with bottom-up methodology to
examine key performance indicators (KPIs) for marine alternative fuels.

e To employ advanced predictive-metaheuristic algorithms such as Nonlinear Model
Predictive Control (NMPC) via Grey Wolf Optimization (GWO), and Genetic Algorithm
(GA), to optimize power distribution and energy management. This study also assesses the
impact of irregular wave disturbances on the propeller load torque while minimizing fuel

consumption and emissions.

1.4 Research Scope

This study focuses on the energy management of fully autonomous short-sea shipping vessels,
particularly tugboats, high speed passenger ferries operating along the California coast, with the
Port of Los Angeles serving as the primary operational region. Additional navigational routes
include surrounding terminals such as Dana Point, Long Beach, Avalon, and Two Harbors. The
research encompasses three main components. First, it conducts a comparative analysis of
metaheuristic optimization algorithms—namely artificial bee colony (ABC), genetic algorithm
(GA), and particle swarm optimization (PSO)—to determine the optimal HRES configurations for
both conventional and autonomous tugboats. Furthermore, it presents a detailed environmental and
cost evaluation of various marine alternative fuels for autonomous short-sea shipping vessels using
a global warming potential (GWP) methodology integrated with a bottom-up emissions approach.
In addition, the study develops a comprehensive nonlinear model predictive control (NMPC)
framework for the energy management system (EMS) of autonomous vessels, utilizing
optimization techniques such as the grey wolf optimizer (GWO) and GA. The model incorporates
vessel dynamics, including the impact of irregular sea states and environmental interactions. The
study utilizes automatic identification System (AIS) data collected over a one-year period, vessel
logbooks, equipment technical datasheets, renewable energy technical datasheets, and regional
meteorological profiles, with simulations conducted within MATLAB, Python, and hybrid

optimization of multiple energy resources (HOMER) Pro environments. Lastly, the key analytical
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tools include sensitivity analysis, Monte Carlo simulation, and rule-based strategies to evaluate
optimal energy dispatch, emission reduction, fuel consumption, operational cost, and emission-

associated costs.

1.5 Dissertation Qutline

This dissertation is organized into six chapters. The structure of this dissertation is as follows:
Chapter 2 provides an overview on marine autonomous surface ships, marine propulsion systems,
and relevant metaheuristic and control algorithms. This is followed by Chapter 3, an article that
discusses and performs a techno-economic assessment on standalone hybrid renewable energy
system onboard conventional and autonomous tugboats. Chapter 4 presents an article proposing
environmental and cost assessments of marine alternative fuels for fully autonomous short-sea
shipping vessels, based on the global warming potential approach. Additionally, Chapter 5
develops a predictive model and performs mathematical simulations on an energy management
system for fully autonomous vessels with hybrid renewable energy systems, using NMPC via the
GWO algorithm. Finally, Chapter 6 concludes the dissertation and outlines directions for future

work.
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CHAPTER 2. OVERVIEW OF MARINE
HYBRID SYSTEM AND CONTROL
APPROACHES

This chapter provides a comprehensive review of existing research and developments related to
marine autonomous systems, energy sources for ship propulsion, hybrid power systems, and
control strategies. It begins with an exploration of MASS, discussing their operational modes,
levels of autonomy, and the classification of MASS. Additionally, the chapter concludes with a
literature review of case studies on unmanned and autonomous surface vessels utilizing hybrid and

renewable power sources.

2.1 Marine Autonomous Surface Ship (MASS)

The autonomous vessel operates with its autopilot set to tracking mode, enabling the ship to follow
a pre-determined route without intervention from the Officer of the Watch (OOW). The autopilot
system is integrated with HMI, allowing the MASS to navigate and detect both stationary and
moving obstacles, even in uncharted waters. The operation of the vessel can be either remote or
fully autonomous, with different levels of autonomy defined by various maritime regulations under

the IMO. Figure 1 is an illustration of the communication structure for the MASS.

Additionally, remote control and watchkeeping are managed from the shore control center (SCC)
through the vessel's sensors and communication systems. The SCC can control the vessel remotely,
but only when access to the autopilot is granted by the Officer of the Watch (OOW). The MASS
automation is pre-programmed to facilitate communication and interaction with other vessels.
However, the MASS may still have crew members onboard for maintenance purposes [5], [9].
Furthermore, the management of the MASS involves supervision and control from fleet
management, as well as coordination and implementation from the port and fleet forwarding

services. The operational zones are illustrated in Figure 2.
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Figure 1: Communication structure for the autonomous ship [8].
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Figure 2: Fleet Management for autonomous maritime systems [9].

2.1.1 Degree of Autonomy for MASS

The levels of autonomy are determined by the extent to which a MASS operates with or without
human intervention. Additionally, the variation in autonomy levels is influenced by the operating
environment of the vessel. During the 100th Session of the Regulatory Scoping Exercise on
MASS, the International Maritime Organization’s (IMO) Maritime Safety Committee (MSC)
defined four levels of autonomy [9], each representing a different degree of human involvement

in ship operations. These four levels of manning are briefly described as follows [2], [10], [11]:

i.  Degree one (On board decision support): The ship is equipped with automated
processes and decision support systems. While many operations are automated, all
actions are still controlled by the onboard crew.

ii. Degree two (On and off board): Decisions and support actions are performed at both
onboard and remote locations by qualified seafarers.

iii.  Degree three (Fully Remotely): All decisions and actions are executed remotely from
different location (SCC), with no crew onboard the vessel.

iv.  Degree four (Fully Autonomous): The ship's operating system autonomously makes
decisions for the entire mission, without human supervision, and the vessel remains

unmanned.

8|Page



Furthermore, the MSC 2018 Regulatory Scoping Exercise for Maritime autonomous Surface Ship,
distinguishes between technical autonomy and operational control. Technical autonomy, as
defined by the MSC working group, refers to a closed concept that includes two states with a
manned crew and two states without a crew onboard. Operational control provides flexibility and
additional options for MASS execution. The technical autonomy and operational control levels are

outlined as follows [2]:

a. Technical Levels:

e A0 (Manual): The ship's operations are entirely controlled manually by the crew.

o Al (Delegated): The operator requires permission from a qualified operator before
executing functions, decisions, or actions, although the operator can abort the operation
at any stage.

o A2 (Supervised): The system makes decisions without the qualified operator's
permission, but the operator can intervene and override the system at any time.

e A3 (Autonomous): The system executes functions, decisions, and actions without
requiring the qualified operator’s approval. The operator is only informed if the ship
operates outside predefined parameters, at which point they can override the system if

necessary.

b. Operational Control:
e B0: There are no qualified operators on the ship but there are qualified operations at
the SCC (remote location).

e BI: Qualified operators manned the ship.

According to the Norwegian Forum of Autonomous Ship (NFAS), the autonomous ships (AS) are
classified based on the area of operation, mode of controls, and the levels of manning as illustrated
in Figure 3 [7]. Furthermore, the combination of any technical autonomy and operational control
levels offers both strengths and challenges. However, the integration of these two concepts is
expected to result in improved economic benefits, particularly through enhanced safety and
reliability. Therefore, the interaction between these levels is governed by existing international
maritime regulations, including the Safety of Life at Sea (SOLAS) and the Standards of Training,
Certification, and Watchkeeping for Seafarers (STCW).
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2.1.2 Benefits and Challenges of MASS in the Marine

Sector

The implementation of MASS offers significant potential to not only improve environmental

conditions but also positively impact the social, economic, and political aspects of the maritime

industry. Below are the advantages associated with the adoption of MASS [9]:

a. Benefits for Stakeholders: The introduction of MASS would provide various benefits to

key stakeholders in the maritime industry, including maritime administrations, industry

players, research and development organizations, ship owners, classification societies, and

insurance companies [2]. For instance, the incorporation of new technologies would

enhance profitability within the marine industry. Additionally, as illustrated in Figure 4,

ship owners would achieve reductions personnel and equipment costs. The research and

development sector would see increased job opportunities due to the growing demand for

cognitive advancements. Insurance companies would benefit from reduced risks and fewer

incidents, leading to lower premiums and higher economic returns. Moreover, maritime

administrations would find it easier to supervise and manage the various entities involved,
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facilitating the transition to an “as low as reasonably practicable” (ALARP) approach to

risk management [2].

(2 (b)

Figure 4: Five group of entities involved in the life cycle of MASS: (a) present (b) expected [9].

b. Reduction of Human Error and Risk: Human error, which is a leading cause of accidents
in conventional ships (CS), often arises from crew workload and fatigue. The integration
of autonomy in the maritime industry would significantly reduce human error, lowering
the costs associated with accidents and insurance premiums [6]. According to the 2017
Global Claims Review report by Allianz Global Corporate & Specialty, between 75% and
96% of maritime accidents are attributed to human error as shown in Figure 5 [12]. High-
profile examples, such as the Costa Concordia and MV Rena disasters, demonstrate the
catastrophic consequences of human error. These types of collisions could be prevented on
MASS, as their human-machine interfaces (HMIs) are integrated with the International
Regulations for Preventing Collisions at Sea (COLREGS), enabling autonomous vessels to

detect and avoid collisions without human intervention [2].
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Figure 5: Main causes of liability in the marine sector [13].

c. Cost reduction or Elimination: Operating an AS would be more cost-effective than a
conventional ship. The reduction or elimination of crew members onboard would lead to
lower salary and employee benefit costs. Additionally, operating costs would decrease due
to reduced maintenance needs and more efficient operation [2], [6], [9]. For example,

unmanned autonomous cargo vessels operating at 12 knots would consume 22% less fuel

compared to conventional cargo vessels as shown in Figure 6 [13].

2.50

2.00

1.50

1.00

0.50

Cost [ent / ton * nm]

0.00

Figure 6: Rolls Royce internal study for 20, 000 dwt general cargo vessel for oil consumption [15]
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d. Increased Ship Efficiency: The removal of crew accommodations, such as cabins and
bridges, would optimize the design and structural integrity of the ship. This redesign would
create additional space for cargo, making the loading process more efficient and enhancing
overall vessel capacity [6].

e. Promotion of Greenhouse Gas Emission Reduction: Autonomous ships powered by
fully electric or hybrid systems would reduce overall energy consumption. The elimination
of onboard facilities such as galleys, heads, and messes would further reduce energy

demand, resulting in up to a 60% reduction in greenhouse gas emissions [16], [17].

The implementation of MASS presents certain safety concerns, similar to the challenges faced by
any emerging technology. These concerns could potentially lead to legal complications or

accidents. Below are some of the disadvantages associated with MASS [9], [16], [18]:

a. Underdeveloped Technology: As a relatively new innovation, AS technology is still
evolving, with several uncertainties and aspects that have not yet been fully developed or
reviewed by the IMO.

b. Susceptibility to Cyber Attack: Fully autonomous vessels are connected through land and
satellite networks, which exposes the ship’s control systems to potential cyberattacks,
jeopardizing the security and integrity of the vessel.

c. Job Losses: The transition from CS to AS could result in significant job displacement.
This shift may impact individuals in the workforce, particularly those without higher
education qualifications, both on board and at the shipyard.

d. Limited Capability to Perform Diverse Transport Tasks: Concerns exist regarding the
ability of AS to perform the range of tasks typically carried out by crew members during
various stages of transportation. These tasks often require human intervention before and

after loading and unloading goods or passengers, which may not be fully automated.

Despite these challenges, the widespread implementation of MASS could offer numerous societal
benefits, as there are several technological solutions available to convert conventional ships into
autonomous ones or to design new autonomous vessels from the ground up. As a result, many
shipping companies are embracing this innovation. For example, the Norwegian Shipowners’
Association and 50% of global shipping companies are expected to incorporate autonomous

operations into their fleets by 2050 [14]. For example, Table 1 presents a snapshot of some of the
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notable autonomous ships that have been tested or are currently in operation, developed by various

sectors within the maritime industry. The findings from these sea trials are being incorporated into

the company’s Advanced Autonomous Waterborne Applications (AAWA) research project for

further study [19], [20].

Table 1: List of tested and operational autonomous ships.

Vessel Name Type of Ship Powered by Reference(s)
MF Folgefonn Cargo Ferry Hybrid [21]
Ferry Falco Car Ferry Hybrid [22]
Suomenlinna II Ice-breaking Passenger Fully- electric [23]
Ferry

Zhi Fei Container Vessel Fully- electric [24]
ReVolt Container Vessel Fully- electric [25]

NTNU Autoferry Passenger Ferry Fully- electric [26], [27]

Soleil High- Ro-Pax Ferry Fully electric [28], [29]
Mayftlower 400 Research vessel Hybrid [24]

Yara Birkeland Cargo Ship Fully- electric [24], [30]
ASKO Seadrones Cargo Vessel Fully- electric [31]
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2.2 Literature Review

The integration of advanced energy systems in autonomous surface vessels (ASVs) and unmanned
surface vehicles (USVs) has been a focal point for improving endurance, power efficiency, and
operational autonomy. Multiple studies have explored hybrid and renewable-based propulsion
systems. Tu et al.[32] addressed the inherent limitations of lithium batteries for long-endurance
missions by incorporating a proton exchange membrane fuel cell (PEMFC) system augmented
with a supercapacitor on USV. This configuration substantially increased cruising range from 8
km to 38 km and enhanced hydrogen utilization, suggesting a robust solution for prolonged
deployments. Similarly, Renau et al. [33] investigated PEMFC-battery hybrid systems, comparing
active and passive power plant configurations. The results show that the active configuration with
DC-DC converters significantly enhances energy management, extending the USV's autonomy to
over 12 hours in calm waters, while maintaining constant fuel cell power and improving overall
performance. Complementarily, advanced energy management algorithms also played a pivotal
role. Li et al. [34] implemented a rule-based fuzzy control and equivalent consumption
minimization strategy (ECMS) on a hybrid power system of battery-capacitor-PEMFC for a
traditional vessel within MATLAB/Simulink. The results show that, the EMCS with frequency
decoupling effectively reduces hydrogen consumption, while stabilizing output power, and
enhancing the system's robustness, economy, and endurance. Similarly, Fu et al. [35] designed a
hybrid electric USV powered by hydrogen, integrating a fuel cell and energy storage cell. The
proposed power distribution algorithm, based on Pontriagin's minimum principle, effectively
reduced fuel cell output fluctuations, enhancing fuel cell longevity and demonstrating the
feasibility of a lightweight and high-endurance hybrid power system for small power USVs.
Equally, Zaman et al. [36] developed a comprehensive EMS integrating photovoltaics (PV),
PEMFC, battery, and hydro generators for an eco-robotic ASV via MATLAB/ Simulink. The
system maintained zero-emission operation under extreme environmental conditions, while

meeting vessel's power demands for sensors, navigation, control, and propulsion.

Subsequently, research into vessel architecture, control systems, and mission capability continues
to define the operational boundaries of ASVs. To illustrate, Rynne et al. [37] pioneered the design
of'a wind and solar powered autonomous surface vehicle (WASP-ASV), focusing on aerodynamic,

hydrodynamic, and systems integration aspects. The results demonstrated that the rigid wing sail

15|Page



outperforms conventional cloth sails, with the control approach allowing for efficient speed and
heading control, while initial field trials confirm the accuracy of predicted performance and vessel
behavior. Furthermore, Kristensen et al. [38] examined the research vessel (AutoNaut)—a PV-
battery powered and wave-propelled USV—highlighting the importance of assessing safety and
security risks in green-powered autonomous systems. The findings emphasized that environmental
factors and autonomous functionalities can impact mission performance; and the study provides
insights for integrating alternative energy sources into MASS, with implications for risk
management and operational safety. Similarly, Eide et al. [39] reported the successful deployment
and testing of the fully electric autonomous urban passenger ferry (milliAmpere2), which
demonstrated feasibility of using ASVs for passenger transport, while identifying key challenges
related to human-autonomy interaction, fleet management, and integration with urban traffic.
Likewise, Wolfe et al. [40] study addressed the challenge of real-time, extended-duration water
quality monitoring using ASVs, specifically solar-battery powered ASVs like the SeaTrac SP-48,
which serve as mobile monitoring stations. The results show that while the SP-48’s energy
production and consumption were balanced over a 29-days mission, energy consumption slightly
exceeded production due to varying solar energy availability, highlighting the need for effective
energy budget management and optimization for future extended-duration missions. In another
case, Riccobono et al. [41] proposed a multi-source hybrid energy system—combining PV
modules, PEMFCs, and batteries for a research vessel (SWAMP Vehicle). The results demonstrated
that the proposed energy system, validated by MATLAB/Simulink simulations, significantly
improves SWAMP Vehicle endurance, doubling it to 12 hours on the most favorable day, while
adhering to the SWAMP Vehicle 's weight, size, and payload constraints. Similarly, Zhang et al.
[42] analyzed wind-assisted propulsion systems, employing wind sails and rotor sails on ASVs .
The results show that an autonomous control strategy based on a nonlinear mathematical model
and backstepping technique achieves a 13% energy optimization ratio in a rotor sail-assisted
vessel, demonstrating significant potential for energy savings and lower emissions in real-world
maritime operations. Equally, Chen et al. [43] introduced a distributed MPC algorithm for Eco-
Vessel Train Formations (VTF) using diesel-electric hybrid propulsion in MATLAB environment.
The results showed that the Eco-VTF algorithm leads to significantly lower fuel consumption

compared to standard V'TF control, particularly for vessels with higher engine power. Although
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Eco-VTF results in longer travel times due to lower consensus speeds, and the reduction in fuel

usage is substantial.

Thereafter, addressing the environmental footprint of maritime operations is a central theme in
autonomous vessel research. To exemplify, Makhsoos et al. [44] addressed the environmental
challenges posed by fossil fuel reliance and explores the integration of solar power in the energy
system of an unmanned surface vehicle (USV) designed for autonomous bathymetry tasks. The
results showed that the proposed hybrid power system, with PV-battery, optimizes energy usage,
enabling the USV to operate for up to 7 hours daily on cloudy days without charging,
demonstrating the feasibility and efficiency of solar-powered autonomous marine vehicles.
Additionally, Sornek et al. [45] explored similar research where a solar-powered ASV research
boat used for water quality monitoring, highlighting the vehicle's capability to measure various
water parameters. The results show that the vessel's optimized design, including a high-efficiency
PV panel, significantly improves power generation, and simulations indicate that its operation can
lead to substantial primary energy savings, with potential to replace existing water quality
monitoring systems. Furthermore, in larger-scale applications, Ait Allal et al. [46] assessed
autonomous container and cargo ships powered by liquefied natural gas (LNG) and fuel oil, in
improving the sustainability of the maritime industry by reducing energy consumption and
environmental pollution. The study affirmed that the elimination of crew and associated facilities
on AS leads to significant energy savings, lower greenhouse gas emissions, and enhanced
environmental protection, with case studies on container and general cargo ships demonstrating
substantial fuel savings compared to conventional ships (CS). Similarly, Laryea and Schiffauerova
[47] explored various alternative fuel options, including hydrogen and fully electric configurations,
for fully autonomous short-sea shipping vessels, focusing on energy efficiency and regulatory
compliance. The results show that hydrogen and electric fuels offer zero emissions, while LNG
provides the highest net present value (NPV) for autonomous vessels, demonstrating both
economic and environmental advantages compared to traditional fuels like heavy fuel oil (HFO)
and marine diesel oil (MDO). Also, the same authors [48] proposed an optimized HRES using
solar panels, wind turbines, batteries, and diesel gensets for autonomous tugboats. Employing
metaheuristic algorithms (Artificial Bee Colony Algorithm (ABC), Particle Swarm Optimization
(PSO), Genetic Algorithm (GA)) and Hybrid Optimization of Multiple Energy Resources
(HOMER) Pro, the study demonstrated that ABC outperformed others in minimizing costs and
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emissions, reinforcing the model's robustness for marine applications under variable operating
conditions. Lastly, in a broader framework, Dantas and Theotokatos [49] addressed the lack of
decision-support systems for MASS. Through a case study using a short-sea cargo vessel operating
in Norwegian waters, both retrofitting of existing vessels into Transition Autonomous Ship (TAS)
and the design of Next Generation of Autonomous Ship (NGAS) were evaluated. The results
suggested that TAS could reduce lifetime costs by 1-12% and CO2 emissions by 4%, while NGAS
can achieve additional reductions of 3 —4% in cost and 4 —7% in emissions. Furthermore, additional
cost savings of 6 —7% could be realized by minimizing idle port time, made possible through

reduced crew requirements.

In brief, the reviewed literature underscores the growing capability and environmental potential of
autonomous surface vessels in the marine engineering domain. Innovations in renewable energy
integration, hybrid system optimization, and advanced control strategies not only enhance
operational endurance but also significantly contribute to the decarbonization of the maritime
sector. The convergence of system-level simulation, experimental validation, and control
engineering lays a robust foundation for the deployment of next-generation autonomous vessels

across a broad range of applications—from scientific surveying to commercial transport.

Despite extensive studies on hybrid energy systems in microgrids and land-based applications,
current literature lacks holistic, techno-economic, and operational frameworks specifically tailored
for maritime applications—particularly for the integration of hybrid renewable energy systems
(HRES) into conventional and fully autonomous ships. Existing models often neglect the
spatiotemporal variability in shipboard power demands, constrained onboard space, dynamic sea-
state conditions, and real-time operational uncertainties. Furthermore, energy management
strategies for autonomous ships frequently omit ship dynamics, emissions beyond CO2 and NOx,
and predictive control under uncertain environmental conditions. There is also a critical gap in
comparative assessments of alternative marine fuels based on real operational profiles, emission
dispersion, and environmental-economic trade-offs. Most notably, limited attention has been paid
to developing predictive, multi-objective EMS frameworks capable of optimizing power flows
under variable marine conditions while adhering to IMO regulations and addressing performance

indicators such as fuel consumption, emission cost, mass emission rate (MER), and EEOI. This
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calls for a new class of marine-specific energy systems modeling that integrates weather-
dependent RES performance, ship dynamics, regulatory constraints, and cost-environmental trade-

offs into a unified decision-support framework for autonomous and short-sea shipping vessels.

In this dissertation, we seek to fill that gap by systematically addressing the techno-economic,
environmental, and operational challenges associated with hybrid renewable energy systems and

alternative fuels in autonomous and conventional maritime applications.

To begin with, Chapter 3, we present a detailed techno-economic analysis of standalone hybrid
renewable energy systems onboard both conventional and autonomous tugboats. The analysis
applies advanced metaheuristic algorithms to determine optimal system configurations that
minimize cost and environmental impact, thereby providing a baseline for comparative

performance assessment.

Subsequently, Chapter 4, we evaluate the environmental and cost implications of integrating
marine alternative fuels into the propulsion systems of fully autonomous short-sea vessels. Using
a bottom-up emissions framework and global warming potential (GWP) methodology, we quantify
the trade-offs in fuel selection across various operational scenarios, with particular attention to

emission factors, fuel pricing, and propulsion loads.

Following this, Chapter 5, we develop and validate a predictive energy management model for
autonomous vessels employing nonlinear model predictive control (NMPC) optimized via Grey
Wolf Optimization (GWO). For the first time, we incorporate real-world environmental
disturbances—including irregular wave impacts—into the propeller load torque model, and show
that predictive-metaheuristic strategies can significantly reduce fuel consumption, emissions, and

battery degradation while maintaining optimal energy dispatch.

Finally, Chapter 6 synthesizes the findings and outlines future research directions, particularly the
development of onboard real-time adaptive control frameworks and further investigation into

maritime regulatory compliance under autonomous operational conditions.
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CHAPTER3. A NOVEL STANDALONE
HYBRID RENEWABLE ENERGY SYSTEMS
ONBOARD COVENTIONAL AND
AUTONOMOUS TUGBOATS

In this chapter, we focus on the computation, simulation, and optimization of a hybrid renewable
energy system (HRES) to ensure continuous power supply for auxiliary loads and critical systems
on both conventional and fully autonomous tugboats. The primary aim is to design an optimal
HRES with minimal annualized cost of system (ACS) and a higher proportion of renewable energy
while using an artificial bee colony (ABC) algorithm. Validation of optimization outcomes is
conducted using particle swarm optimization (PSO), genetic algorithm (GA), and Hybrid
Optimization of Multiple Energy Resources (HOMER) Pro. The HRES incorporates diesel
generators (Gensets), photovoltaic (PV) arrays, vertical axis wind turbines (VAWT), and battery
banks. The optimal HRES configuration for both conventional and fully autonomous tugboats is
found to be Genset/PV/VAWT/Battery. We observe that the ABC algorithm exhibits superior
convergence, reliability, cost-effectiveness, renewable energy fraction, and reduced carbon
emissions compared to alternative algorithms. Results of robustness tests suggest that the shipload
variation, fuel prices, temperature fluctuations, wind speed and solar irradiance along the
navigation route have significant impact on the optimal HRES configuration. Ultimately, we
conclude that the fully autonomous tugboat demonstrates superior performance in terms of costs,

carbon dioxide emissions, and renewable energy fraction compared to its conventional counterpart.

This chapter is based on the following publication: H. Laryea and A. Schiffauerova, “A novel
standalone hybrid renewable energy systems onboard conventional and autonomous tugboats,”
Energy, vol. 303, D 131948, 2024. [Online]. Available

chttps://doi.org/10.1016/j.energy.2024.131948
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3.1 Introduction

Maritime transport is considered pivotal in global trade, with nearly 80% of global commerce
conducted through seaborne trade [50]. It relies heavily on conventional ships and ports
worldwide, with over 50,000 conventional ships (CS) [51], and more than 835 active seaports and
inland ports in the world [52]. The generation of power on ships plays a crucial role in the maritime
industry, as it provides the necessary electrical energy for propelling vessels between ports. Over
time, marine engines have transitioned from using coal to utilizing marine diesel oil (MDO) and
heavy fuel oil (HFO). According to the International Maritime Organization (IMO), global fuel
consumption in the maritime sector ranges from 250 to 350 million tons annually, contributing to
approximately 2.8% of global greenhouse gas (GHG) emissions and resulting in a yearly carbon
dioxide (CO.) emission rate of 3.1%. It has been suggested [53], [54] that the emissions rate could
triple by 2050 if left unchecked. As a result, the International Convention for the Prevention of
Pollution from Ships (MARPOL) has established four mandatory requirements for both new and
existing vessels to mitigate air pollution. These requirements include the utilization of cleaner fuel
with reduced carbon content, adoption of renewable energies, implementation of emission
reduction technologies, and enhancement of energy efficiency [54], [55]. Utilizing an emerging
type of vessel known as maritime autonomous surface ships (MASS) offers a means to mitigate
environmental impact. MASS operates autonomously, employing artificial intelligence (Al) for
steering and decision-making without intervention from seafarers. In fully autonomous fleets, the
absence of onboard ship crews contributes to energy conservation and pollution reduction [56],
[57]. For instance, a fully autonomous container vessel achieves a 74.5% reduction in energy
consumption compared to a conventional counterpart, primarily due to the elimination of crew
facilities and equipment [46]. Thus, integrating autonomous MASS with renewable energy sources
presents an effective strategy for reducing greenhouse gas (GHG) emissions within the maritime

sector.

The primary challenges associated with integrating renewable resources into power systems
include their initially high costs and the variability of wind and solar energy generation.
Nevertheless, there has been a decrease in the cost of renewable energy sources [58], and numerous
studies have investigated the integration of renewable energy systems into existing energy

infrastructures. For example, Ma et al. [59] employed a commercially available microgrid
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software, Hybrid Optimization of Multiple Energy Resources (HOMER Pro), to identify an
optimal PV/Wind/Battery hybrid system to replace the existing diesel generator on a remote island
while minimizing costs. They conducted sensitivity analyses to assess the impact of various inputs
on their proposed models. Additionally, several researchers utilized a genetic algorithm (GA) to
construct models integrating wind turbines and photovoltaic (PV) systems with Genset/battery
configurations for stand-alone HRES in remote communities. For example, Ogunjuyigbe et al.
[60] devised a model replacing a large Genset with a smaller split Genset in HRES, capable of
adapting to varying inputs with low emissions, dump energy, and lifecycle costs. In another study,
Farahmand et al. [61] examined the optimal configuration of an HRES aiming for minimal
electricity expenses for consumers, considering PV efficiency and the quantity of PV modules.
Similarly, in order to reduce both lifecycle costs and greenhouse gas emissions in an island

microgrid, Zhao et al. [62] investigated a novel operational approach and sizing strategy.

The existing literature primarily focuses on optimizing the distribution of electrical power from
hybrid generation systems aboard ships, particularly emphasizing capacity optimization for small
systems, predominantly involving photovoltaic power production systems and energy storage
systems. While some studies have delved into transient assessments of power systems [63], [64],
multi-energy integration for energy management [65]-[67], and hybrid energy storage solutions
[68], [69] in conjunction with actual ship navigation, research on the utilization of renewable
energy sources on ships remains scarce compared to land-based microgrid systems [70], [71].
Some of these discoveries from land-based HRES contribute to advancing research in the maritime
industry [72]. There is limited literature on the integration of PV and wind turbines for shipboard
power systems [73]-[76]. For example, Wen et al. [73] assessed an optimal energy storage system
for PV/Genset on an oil tanker ship. To minimize the net present cost of the power system and
greenhouse gas (GHG) emissions, the authors utilized discrete Fourier transform (DFT) along with
the particle swarm optimization (PSO) algorithm, while considering the sea states and rolling
effect of the vessel. Similarly, Yang et al. [74] employed the PSO algorithm in a similar model,
albeit aboard a RoRo ship, demonstrating an improvement in the ship's energy management
strategy under varying electrical loads. Additionally, several researchers have explored the
implementation of PV/Genset/Wind/Battery hybrid power systems on ships. For instance,
Bouhouta et al. [75] utilized HOMER Pro to optimize PV and wind turbine integration with the

harbor tugboat's emergency power system, aiming to minimize its annualized cost of system and
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COs emissions particularly during blackout. Also, Wen et al. [76] employed a multi-objective PSO
(MOPSO) algorithm to conduct techno-economic analysis for a large oil tanker. The results of the
simulations indicate that the optimized hybrid system effectively reduces CO; emissions and the

system cost of HRES, considering both vessel speed and course as inputs.

However, while the existing literature makes valuable contributions to the optimization of HRES,
there are several areas that require further enhancement. For instance, there has been no
comprehensive study comparing optimization methodologies for both conventional and
autonomous ships. For example, Bouhouta et al. [75] conducted an optimization methodology on
HRES during standby, focusing solely on nighttime operations rather than encompassing the entire
day. Additionally, sensitivity analysis was not conducted on the proposed model, potentially
limiting its robustness and practical applicability. Furthermore, while several authors [73], [77]
utilized multiple algorithms to optimize HRES for shipboard power systems, neither robustness
tests on the optimal HRES concerning variable inputs nor post-hoc tests on the metaheuristic
algorithms were performed [73], [74], [76]. Table 2 offers a comparison among various studies

implementing HRES.

Even though existing literatures offer optimal configurations for integrating renewable energy
sources (RES) and battery energy storage (BES) in microgrid systems, there are numerous
opportunities for improvements and further research. For example, techno-economic evaluation of
incorporating hybrid renewable energy systems (HRES) into the power systems of both
conventional and autonomous ships is missing in the literature. Furthermore, a comprehensive
decision-making model for energy management strategy integrated into HRES for both existing
conventional ships and fully autonomous ships has also not been much explored, especially in
recent literature, to the best of the authors' knowledge. Additionally, unlike land-based HRES for
buildings, ships' HRES are standalone and mobile, thus weather profiles are influenced by both
environmental conditions and ship dynamics. As a result, power generation from RES is sporadic,
necessitating rapid and continuous decision-making by the energy management system. Moreover,
the quantity of PV modules, wind turbines, and batteries to be installed onboard is constrained by
space availability (on the weather deck, pilotage area, and in battery compartments), weight limits,
and the structural integrity of the ship. This underscores the necessity for further research in order

to develop appropriate models facilitating the integration of HRES into the power systems of both
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autonomous and existing ships. This study introduces a novel integrated multi-energy supply
system designed for ships, incorporating PV, wind, battery, and genset technologies, with a
specific focus on providing uninterrupted clean electrical power. The uniqueness of this approach
lies in its adaptation from land to both conventional and fully autonomous ships, while
simultaneously addressing to the distinct requirements of energy management systems onboard

ships.
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Table 2 : A tabulated comparison of HRES implementation in both building and transportation sectors.

Ref Objective Country Application Algorithm Remarks
[59] Design, optimize hybrid system, to replace China Remote HOMER Pro | Sensitivity analysis is done base on variation of load
current diesel. Island demand and rated power of components.
[60] Minimize life cycle costs, reduce pollutants, and Nigeria Remote GA The reliability of the system is not considered.
minimize dump energy. Building

[61] Optimize HRES for building to minimize the Iran Urban GA Emission analysis, system reliability, and sensitivity

overall system cost. Building analysis not considered.
[62] Optimize HRES for remote microgrids. China Remote GA The reliability of the system is not considered.

Island
[65] minimize economic costs while considering China Cruise Unspecified The variability of energy storage based on specific
energy balance and constraints Ship* load profile is not considered.
[67] Emission reduction and ensuring continuous, Unspecified Ships* MPC, GA, Comprehensive review on configuration and
reliable power for ships MOPSO characteristics of HRES for ships.
[68] Examine hybrid energy storage system (HESS) Unspecified Ships* Unspecified Examine multiple energy storage integration on
to improve shipboard power systems ships.
[69] Reduce ship hybrid power plant fuel Unspecified Naval MPC Study lacks ship particulars, emission and sensitivity
consumption, considering battery constraints. Vessel* analyses.
[72] Enhancing shipboard microgrid efficiency, Unspecified Ships* PSO, GA Metaheuristic algorithms
reliability, and cost-effectiveness for safe are effective for multi-objective optimization.
operation.
[73] Utilize diverse HESS to stabilize solar energy China - Oil Tanker PSO, DFT Battery degradation and energy management strategy
fluctuations. Yemen Ship* overlooked.
[74] Create multi-objective model for ship fuel Unspecified | RoRo Ship* PSO Irradiance variability not addressed
consumption and Genset efficiency.
[75] Utilize renewables for tug safety during Algeria Tugboat* HOMER Pro | Optimized HRES for short-term emergency use lacks
blackout. sensitivity analysis.
[76] Optimize HRES to minimize cost and emissions. | From China Oil Tanker MOPSO Sole reliance on load variation sensitivity; no system
to Yemen Ship* reliability consideration.
[77] Optimize clean energy for load, while From China | Bulk Carrier | ABC, QABC, Sensitivity analysis and post hoc tests omitted.
minimizing costs. to Yemen Ship* PSO, QPSO,
SQP
MPC: Model predictive control, SQP: Sequential Quadratic Programming, QABC: Quantum Artificial bee colony, QPSO: Quantum Particle Swarm Optimization.

* The marine vessels utilized by the authors are conventional ships.
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To address these challenges emphasis is placed on prioritizing a standalone HRES system, while
employing objective function alongside three metaheuristic algorithms to size and optimize
multiple HRES configurations. These configurations encompass economic analysis, carbon
emissions, loss of power supply probability, energy management strategy, and weather data along
navigation routes. The goal is to identify the optimal HRES that enhances energy efficiency while
simultaneously minimizing ACS and carbon emissions, all within the confines of predefined

constraints.

This research brings notable contributions to the existing literature. Firstly, To the best of our
knowledge, this study marks the inaugural exploration of HRES optimization tailored specifically
for autonomous ships. Moreover, the method outlined in this study simultaneously explores and
compares diverse HRES configurations for both conventional and fully autonomous ships,
enabling a comprehensive assessment. Secondly, in our HRES optimization, we employ a
predetermined set of scenarios, each characterized by its specific level of uncertainty. This
approach enables us to account for fluctuations in ship loads and other input parameters, including
temperature and wind speed variations, while also depicting scenarios incorporating VAWT and
PV systems along the navigation route. Notably, prior literature lacks consideration of scenario
analysis for the variability of input factors. Thirdly, in our pursuit of optimal HRES configurations,
we utilize and compare three algorithms—PSO, ABC, and GA. Additionally, we introduce
integrated energy management strategies that encompass economic and renewable considerations.
While prior studies have typically employed one or two of these algorithms for ship optimization,
our simultaneous application and comparative analysis of all three algorithms represent a novel
approach. Lastly, this study underscores the advancement of two optimization strategies—design
and energy management—while proposing multi-objective algorithms that factor in component
costs, project duration, lifespan, weather conditions, and power system reliability. This

comprehensive framework represents a unique contribution to the field.

The remaining sections of the paper are structured as follows: Section 3.2 details the modeling and
simulation process of a standalone hybrid renewable energy system onboard a tugboat. Section 3.3
provides an analysis of the results and discussions, and Section 3.4 offers concluding remarks

along with insights into potential future research directions.
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3.2 Modeling of Hybrid Renewable Energy
Models Onboard Tugboat

This section outlines the modeling of components within the HRES installed on both existing
conventional and proposed fully autonomous tugboats. The schematic representation of the
proposed hybrid model is depicted in Figure 7. The marine HRES operates by harnessing power
generated from PV panels, vertical axis wind turbines (VAWT), and a diesel generators (Genset).
Excess energy is stored in a battery bank, and the generated power is managed through
bidirectional converters to transfer power to and from the buses. Subsection 3.2.6 provides a
detailed description of the HRES models, including the number of components, cost metrics, loss
of power supply probability (LPSP), and renewable fraction, all of which are utilized to define the
objective function for determining an optimal HRES configuration for each ship type.

Additionally, discussions on ship particulars, weather data, and simulation analysis are included.

- —

Battery Bank
Diesel Generator

ACBUS DC BUS

Bidirectional Converter

M
ST
[ ]
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Load

Vertical Axis Wind Turbine

Figure 7: Proposed standalone hybrid renewable energy system (HRES) configuration onboard
conventional and autonomous tugboat
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3.2.1. Modelling of Marine Diesel Generator (Genset)

The marine diesel generator commonly serves as a backup power source on ships, supplying
electrical power for the ship's propulsion and other electrical systems onboard. However, in this
study, Gensets serve as the primary energy sources in the HRES to meet the ship's load
requirements for both conventional and fully autonomous tugboats. The Genset operates by
converting the chemical energy in diesel fuel into mechanical energy through the combustion
process, which drives the rotating shaft. This mechanical energy is subsequently converted into
electrical energy by the rotation of the alternator's main rotor. Thus, the generation of electrical

energy by the diesel generator is described as follows [78]:

Pgenset,total(t) = Pyensetnom * Mbteff * Ngenset,eff * Ngenset (D

where Pgenset total (t) 18 the total output power by Genset at time t (kWh), Pgenset nom 18 the nominal
power for the diesel generator (kW), Ny efr denotes the brake thermal efficiency which is in the
range of 35% - 40% [79], Ngensetefr 15 the diesel Genset efficiency (%) and Ngepset is the number
of diesel generators fitted on the tugboat (unitless). In this paper, the rated power of the genset
aboard the traditional tugboat is 125 kW. The amount of fuel consumed by the Genset depends on

its overall output power, which is expressed as [80], [81]:

Fconsum,total (t) = Qgenset * PGenset,total(t) + bGenset * PGenset,nom (2)

where Fionsum totar(t) is total amount of diesel fuel consumption at time t (L/h), genser is the
coefficient of the consumption curve (0.0845 L/kWh) and bg.pser denotes the coefficient of the
consumption curve (0.246 L/kWh). Lastly, the tonnage of CO; emitted by the diesel generator

during the ship’s operation is estimated as [82] :

Fconsum,total(t)* Efactor* chactor (3)
1000

COZ,emission (t) =

where COy emission (t) is the amount of CO; emission by the diesel Genset at time t (tons), Efqctor
is the emission factor for the diesel fuel (69.5 kg /GJ), ECg,cror denotes the energy content factor
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of the diesel fuel (38.6 GJ/KL), and Fonsum,totar(t) is the total amount of diesel fuel consumption
at time t (kL/h).

3.2.2. Modelling of Photovoltaic (PV) Panel

The daily solar energy generated by the absorption of solar radiation through PV cells within the
PV panel under standard testing conditions (STC) is articulated as follows [83]-[86]:

Iamb (t)
PPV,total(t) = PPV,nom * NPV,modules *Nwireeff * Npv—celleff * T
T
* ll - APV,temp (4)
NOCT - 20
3 Tamp () + Lamp () x (| ——— ) = Tpys1¢
PV,cell

where Ppy ¢0¢q:(t) is the total power generated by the PV panels at time t [kWh], Ppy om is the
nominal or rating power of the PV cells (kW), Npy 1moquies 1 the number of PV panels, Npy_cely eff
is the efficiency of the PV panel (%), Nwireefr denotes the efficiency of the wire (%), Iymp (t) 1s
the ambient radiation intensity at time t (kW/m?), Igrc is the radiation intensity at the standard test
conditions (1 kW/m?), Apy temp 18 the temperature coefficient of the PV modules and it falls in the
range of (% / °C), Tymp 1s the ambient temperature at the study area (°C), NOCT is the nominal
operating cell temperature (°C), Ipy c¢y; is the radiation intensity on cell surface (0.8 kW/m?), and
Tpy src 1s the PV cell nominal temperature at the standard test conditions (25°C). The technical
specifications for the selected PV panels used in this research are shown in Table 3. Similarly as
in the study of Bouhouta et al. [75], the PV modules are to be mounted on the starboard and port

side of the vessel.
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Table 3: Technical specifications for the PV modules.

Temp
Nominal Coefficient | Efficiency | NOCT
Component | Power (kW) (% / °C) (%) (°O)
PV Module 0.370 —0.29 22.7 41.5

3.2.3. Modelling of Vertical Axis Wind Turbines (VAWT)

The vertical axis wind turbines (VAWT) are proposed for this research due to their quieter
operation, simpler maintenance [87], ability to generate wind energy at low cut-in speed, and the
potential for clustering turbines closely together [88]. In addition, the energy generation is
primarily affected by the hub height of the VAWT and the wind speed in the study region. Thus,
in using the wind profile power law, the speed of the VAWT at the turbine height can be expressed
as [86]:

Hy awT hub ]a (5)

Vawr,hub = Vanemo * [HVAWT,anemo
where Vi 4w nup 15 the wind speed at the hub height Hy 4y 1 pup [M/s], Vanemo 1s the known wind
speed (or anemometer speed) at a reference height Hy ayr anemo (M/S) , Hyawr pup 1s the hub
height of the VAWT (m), Hy a1 anemo 1 the height of the anemometer or reference height (m),

and a is the friction coefficient for the wind turbine which equals 0.143.

As stated above, the output power of the VAWT is related to the wind speed and this can be

expressed as [86]:

Py ayr(t) =
Vz(t)—Vci2 (6)
Nyawt * Nvawt * Pvawrnom * VEv. Ve <V() <V,
Nyawr * Mvawt * Prawrnom V. <V(t) <V,
0 V() <V, orV(t) <V,

where Py 47 (t) is the power generated by the fitted VAWT onboard ship (kW), nyapr is the
number of VAWTSs [unitless], 7y 4w denotes the efficiency of the VAWT [%], Pyawr nom 18 the
nominal power of the VAWT [kW], V (t) is the wind speed at time t (m/s), V,; is the VAWT cut-
in wind speed (m/s), V., is the VAWT cut-off speed (m/s), and V; is the rated wind speed for
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VAWT (m/s). Table 4 shows the technical specifications for the proposed VAWT. For this
research, the use of two VAWT is proposed, thus one turbine mounted on starboard mast and the
other on the port mast. Furthermore, each VAWT is equipped with a permanent magnet
synchronous generator tasked with converting the mechanical energy generated by the rotating

blades into electrical energy.

Table 4: Technical specifications for the vertical axis wind turbine (VAWT)

Survival Cut-in Cut-out
Wind Wind Wind
Nominal Power | Hub Height Efficiency Rate Wind Speed Speed Speed
(kW) (m) (%) Speed (m/s) (m/s) (m/s) (m/s)

5 4.8 29.8 11 52.2 1.5 15

3.2.4. Modelling of Battery Energy Storage System
(BESS)

The battery bank serves to store surplus energy produced by the diesel generator and/or renewable
sources during periods of low demand. Consequently, when the demand for power is lower than
the combined output from the Genset, PV, and VAWT, the excess energy is used to charge the
battery bank. The capacity of the battery bank during charging is determined by [78], [81]:
Epate () = Epare(t — 1) * (1 ZAGIond (6 (7)
bart\t) = Lpgee(t — —0)+[XE () - N iveter 1#7M batt,cn
During the high peak demand, the total generated power from PV and/or VAWT is insufficient to
meet the ship’s load requirement. Therefore, power from the battery bank is discharged to fulfill
the load demand. The available capacity of the battery bank during discharge is determined as

follows [78], [81]:

E oa
Epatt(t) = Epqee(t — 1) x (1 —0) — [ _Z E;(t) + (M>] * 1 patt disch ®

N inveter

where Epa(t) is the available battery bank capacity during charging and discharging at time t
(kWh), Epare(t — 1) is the available battery bank capacity at time (t-1) (kWh), o is the self-
discharge rate of the battery bank, E;(t) is total energy generated by the PV and VAWT (kWh),
Eacioaa vy denotes the AC load demand at time t (kWh), 1 jppeter 18 AC-DC inverter efficiency
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(90%), N pate,cn 1s battery efficiency during charging process, and 17 pq¢r qiscn 18 battery efficiency
during discharging process. Consequently, the minimum energy of the charged battery bank at

time t is estimated as follows [80], [89], [90]:
Ebatt,min(t) = Ebatt,max (t) * (1 - DOD) )

where Epgermax(t) is the maximum energy of the charged battery bank (kWh), and DOD is the
battery depth of discharge which is equal to 0.80.

In addition, lithium-ion (Li-ion) battery is considered for this research over the lead acid battery
[91], nickel metal hybrid battery [92], silver—zinc battery, and open water-powered battery [93],
due to its optimal chemical composition or battery chemistry [93]-[95]. Table 5 shows the technical

specifications of the Li-ion battery used in this study.

Table 5: Technical specifications for the Lithium-ion battery

Maximum Maximum Minimum Charging
Nominal Charging | State of charge State of Efficiency Discharge
Voltage (V) Current (A) (%) Charge (%) (%) Efficiency (%)
12 100 100 20 80 100

3.2.5. Modelling of the Bidirectional Converter

The DC power generated by the VAWT and PV modules, along with the stored power from the
battery bank, is converted into AC energy by the DC/AC inverter to meet the AC load demand.

Hence, the expression for the output power from the inverter is as follows [86]:

PDC—AC,convert = nDC—AC,eff * (Pbatt,total * PVAWT,total * PPV,total) (10)

where Ppc_ac convert 15 the generated power for the DC-AC converter (kW), Npc—acefr 15 the DC-
AC converter which is equal to 90%, Pyatt total 15 the total power from the battery bank (kW), and

Ppy total 18 the total power from the PV modules (kW).
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3.2.6. Proposed HRES Model and Energy Management
Strategy (EMYS)

The proposed HRES for this research consists of Genset(s), batteries, PV, and VAWTs. In order

to meet the objectives of the onboard power system, the following HRES models are proposed:

o Case 1 (Genset/PV/VAWT/Battery): This configuration utilizes Gensets, PV panels, and
VAWTs as primary power sources, with excess energy stored in the battery bank.

e Case 2 (Genset/PV/Battery): This setup relies on Gensets and PV panels for power
generation, with surplus energy stored in batteries.

o Case 3 (Genset/VAWT/Battery): This configuration utilizes Gensets and VAWTs as main
power sources, with excess power stored in the battery bank.

e Case 4 (Genset/Battery): This basic setup comprises Gensets and a battery bank for storing
extra power.

e Case 5 (Genset): This case represents the fundamental model with Gensets as the sole

power source.

In addition, the power balance (Py41ance) for the proposed HRES setup on both conventional and
fully autonomous tugboat is the difference between the power generated by the renewable energy
sources (PV and VAWT) and the required ship power, Pgaqship [KW]. This is expressed as

follows:

Ppatance < 0 : Unmet (11)
PPV(t) + PVAWT(t) - Pload,ship (t) = Pbalance = 0 : Balance

Ppaiance > 0 : Excess
Moreover, the energy management strategy entails a controlled and systematic monitoring
procedure employed to guarantee the economic feasibility and reliability of the proposed HRES in
meeting the shipload. The research employs three operational scenarios for the energy

management strategy, as illustrated in Figure 8, with detailed descriptions provided below:

® Ppaance = 0 (Meet): This indicates that the power generated by the onboard energy
components matches the shipload precisely. Consequently, neither the batteries nor the

Gensets are utilized by the power system.
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e Puaance > 0 (Excess): During periods of low ship demand or favorable weather
conditions, the total power generated by renewable energy exceeds the shipload and battery
requirements. In such cases, the surplus power is either diverted to deferred loads or
dumped.

¢ Ppaance <0 (Unmet): This occurs during peak loading times or high seasons when
the power generated by renewable energy is insufficient to meet the shipload. In such
scenarios, one of the following strategies is implemented:

a. Battery bank at maximum utilization: In this scenario, energy stored in the
battery bank is combined with renewable energy to meet the shipload.
b. Battery bank at minimum utilization: Here, the Gensets are activated alongside

renewable energy to fulfill the shipload demand and recharge the battery bank.

3.2.7. Loss of Power Supply Probability (LPSP)

The loss of power supply probability (LPSP) is a statistical metric indicating the likelihood of the
generated power from the onboard HRES to meet the ship's load. The LPSP for the hybrid power
system is calculated as follows [90], [96], [97]:

2%;513760 Pload,ship(t) - PGeneration (t) (12)

g?%o Pload,ship (t)

LPSP(t) =

where Pgeoneration(t) is the total power generated by the components in the hybrid power (kW) at
time t. The LPSP ranges from O to 1, where a value of 1 designates unmet load demand, and 0
signifies fulfilled load demand [90]. Thus, the reliability of the HRES is determined as 1 -
LPSP(t).
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Figure 8: Energy management strategy (EMS) for the proposed HRES configuration.

35|Page



3.2.8. Economic Analysis for the Proposed Hybrid Power

Systems

The economic analysis is employed to analyze the proposed models and derive the objective
function. The cost metrics utilized in the computation are capital cost (Cgc), operating &
maintenance cost (Cognm) replacement cost (Crc), salvage cost (Cgc), cost of fuel (F¢), annualized
cost of system (ACS), net present cost, and levelized cost of energy (LCOE) during the project
life. These calculations encompass the following components: Genset, diesel fuel, PV panels,
VAWTs, bidirectional converter, and battery bank. The costs associated with the components are

delineated in Table 6.

3.2.8.1. Objective Function

The goal of the objective function in the proposed HRES models is to minimize the annualized

cost of the system (ACS) while ensuring that all constraints are met. The ACS is expressed as

follows:
min ACS = min{CSenset + CPV, + CYAWT 4 CBAT  CBICON 4 CFUEL (13)
where c§enset cPV - cYAWT " cBAT 'CBICON “and CEVEL are the annualized cost of the diesel

generator, PV, VAWT, batteries, bidirectional converter, and fuel cost for the hybrid model. Thus

the annualized costs for the components are expressed as [89]:

GRS = Ngansee = (CEE™ + CEER + CEE™ = Cem>)  (14)
Cann = Npy * (CE + Cogm + Cid — C¢) (15)
L™= Ny = (CET + CEBT + CHT — ™) (6)
Comm= Npar * (CET + ngl\j;l +CreT = CsET) (17)
Cann’M=" Npicon * (C(?CICON + Cogar " + Cre™N — CSB(,!CON) (18)
Chml= XPI80F¢ = consum,totat (£ (19)
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Table 6: Costs for the hybrid power components.

0O &M Cost
Capital | Replacement | (USS per Lifetime
Component Capacity | Cost (USS) | Cost (USS) Year) (Year)
Diesel Genset 125 kW 24,500.00 24,500.00 20.00? 15,0007
PV Module 0.370 kW 0.45* 0.30* 25.00 15
VAWT 5 kW 3,400.00 1,000.00 50.00 15
Battery 12V, 290Ah | 1,695.95 1,000.00 100.00 15
AC/DC Converter 105 kW 1,600.00 1,000.00 100.00 20
Inflation rate (%) 1.75
Discount rate (%) 4.3
Project Life (yrs.) 25

I. Fuel price 1s USD per liter
2. O&M cost is USS$ per operation hour(s)
3. Lifetime is based on hours of operation

4. PV price is $US per Watt

3.2.8.2. Net Present Cost (NPC)

The net present cost encompasses all expenses associated with the installation and operation of the
hybrid components over their lifespan, and it is represented as follows:

ACS (20)

NPC = —
fotal T CRF (1, My )

where recovery cost CRF(i, n,.;) for the project over the project lifecycle (nyro;) at rate r, is

expressed as:

r* (1 + r)"proj (21)

(1 + r)"roj~1

CRFL (T, nproj) =
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3.2.8.3. Levelized cost of energy (LCOE)

The levelized cost of energy represents the total present cost of electricity production for the HRES
throughout its project lifecycle. It calculates the average cost per kWh of the total electrical energy

generated by each model as follows [83]:

ACS (22)

Z?Z?O Pship,load (t)

LCOE =

3.2.9. Constraints

The constraints governing the proposed onboard hybrid power system pertain to the power
generation sources, backup power sources, and the cost of each component. The constraints for the

power components are expressed as:

0 < Ngenset = Ngensetmax (23)
0 < Npy < Npy max 24)

0 < Nvawr < Nvawr,max (25)

0 < Npatt < Npatt;max (26)
Epattmin < Epatt < Epatt;max (27)
Rf 2Ry (28)

LPSP < LPSP,qx (29)

where Npy maxis the maximum number of PV modules that can be installed onboard based on
available space [unitless], Nyt max 18 the maximum number of VAWTs that can be installed
onboard based on available space [unitless], Npattmax 1S the maximum number of batteries
[unitless], R¢, . is the lower bound or minimum energy produced by renewable sources [98] as
compared to energy produced by Genset which is set to 10%, and LPSP,,,, is the maximum or
upper bound for the LPSP and is equal to 5%. These values are set low to effectively minimize the

financial redundancy for proposed HRES [99].
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3.2.10. Artificial Bee Colony (ABC) Algorithm

The artificial bee colony (ABC) algorithm draws inspiration from the foraging behavior of honey
bees. Introduced by Karaboga [100], this metaheuristic has proven effective in solving various
engineering problems and optimization tasks. It employs three types of bee agents: employee bees,
onlooker (follower) bees, and scout bees. Employee bees search for nectar and communicate their
findings to onlooker bees through a waggle dance, allowing the onlookers to exploit the food
source. Meanwhile, scout bees seek out new food sources. The number of food sources
corresponds to the number of employee bees. ABC offers several advantages over other
evolutionary algorithms, including efficiency, minimal reliance on preset parameters, and fast
convergence in solving optimization problems within reasonable time frames [101]-[106]. The

main steps of the ABC algorithm are depicted in Figure 9 and elaborated below [107]:

1. Initialization Phase: During this phase, parameters such as problem dimension, colony
size, number of food sources, maximum number of iterations, and limits are established.

Furthermore, the initial population of food sources (SN) is randomly generated as follows:

= Xj ., T rand[0,1](X

Jmax

— X

Xi jmin) (30)

j
where i=1,2... SN, j= 1, 2, ...D, D is the number of optimization parameters, X; andX; . are
the upper and lower limits of the jth component. Similarly, the fitness value of each agent in the
population is determined using the following equation:

1 31

>0
fitness; =4 14+ f; fi =
1+ |fi| otherwise

where f; is the cost function of the solution X;;.

ii. Employee Bee Phase: During this phase, each employee bee forages around the
allocated nectar (X;) to find the food sources within the neighborhood (Xj**") in Equation (32).
The newly discovered food source is then compared to the previous one using a greedy selection
approach to identify the nectar source with the highest fitness value. Additionally, information
about the location, fitness value, and distance of the new food source is communicated to the

onlooker bees through the waggle dance.
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Xinjew — Xiojld + Q)ij(Xiojld _ij) (32)

where @;; is a random number in the range of -1 to 1,k = 1,2...SN, and k # i.

?

Inputs: weather file, ship load, cost mefrics, parameters for the component, colony
size, cycle, maximum cycle, dimension, lower bounds, upper bounds, limut, etc.

|

Initialization: initialize the related inputs, randomly generate initial population
using Eq. (31), apply the EMS in Fig. 2 to determine number of components using
Eqgs.(1-8), calculate the objective function by Eq.(14), and determme the individual
fitness values using Eq. (32).

Employee Bee Phase: update location of the Bee colony by Eq. (33), constraints
Egs, (24 30), and determine the individual fitness values by Eq. (32),
determined the new position of nectar using Eq.(33), and evaluate the objective
function by Eq.(14).

|

Onlooker Bee Phase: update location of the Bee colony by Eq. (33), constraints
using Eqgs, (24— 30), compute the probability using Eq. (34) and determine the
individual fitness values by Eq. (32), and compute the objective function by Eq.
(14).

Scout Bee Phase: check the scout bee limit, generate randomly new position
using Eq.( 31), constraints using Eqs (24 30), compute the objective function
Eq.(14), and retain the solution

riteria No

Figure 9: Flowchart of the ABC algorithm for the HRES onboard conventional and fully
autonomous tugboat.

iii. Onlooker Bee Phase: The onlooker bees select their nectar based on the fitness values
provided by the employee bees. They choose the nectar with the highest fitness value according to
the probability equation below.
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fit; (33)

p. ==
' Z?Qlfltj

where p; is the probability value of the onlooker bee’s choice of nectar, and fit; is the fitness value
of i solution. Using the probability value obtained and the roulette wheel selection method, the
onlooker bees produce a new solution using Equation (32). They decide and select nectar from
neighboring food sources based on greedy selection criteria, aiming to choose the optimal solution
with the highest fitness. However, if the nectar source does not show improvement, the solution is

discarded, and the bees transition into scout bees at this stage.

iv. Scout Bee Phase: During the scout bee phase, the bees randomly generate new food
source locations using Equation (30). The best solution is remembered, and this process continues

until the cycle reaches the maximum number of cycles.

3.2.11. Ship Characteristics

For the purpose of this study, we have chosen a tugboat as our focus, aiming to enhance its energy
efficiency and management at a minimal cost. The conventional tugboat measures 25 meters in
overall length, 10 meters in extreme breadth, with a maximum draught of 5 meters, and a gross
tonnage of 298 tons. It boasts a top speed of 12 knots and is equipped with two diesel engines
primarily for propulsion, along with two diesel Gensets totaling 250 kW in power. These Gensets
serve various auxiliary loads onboard, including lighting, navigation equipment, communication
systems, hoteling amenities, and the operation of winch motors, pumps, and compressors.
Operational data retrieved from the ship log and the Automatic Identification System (AIS) via
MarineTraffic [108] indicate that the tugboat operates year-round, completing approximately two

to five assignments daily along the West Coast of the United States.

The dynamic load profile illustrating the power demand of auxiliary systems essential for the safe
operation of the tugboat is depicted in Figure 10. Additionally, the energy consumption of the
tugboat is calculated based on the electrical load factor and the duration of each operation, provided
by the tugboat operator. For the fully autonomous tugboat, we assume a similar operational profile

to that of the conventional tugboat. However, load profiles for the autonomous vessel are estimated
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by excluding power consumption from fitted equipment and personnel [109]. Consequently, the
average daily energy consumption of onboard auxiliary equipment for the conventional tugboat

and proposed fully autonomous tugboats are 260.28 kWh/day and 153.48 kWh/day, respectively.

3.2.12. Weather Data

Data regarding environmental conditions along the navigation route were sourced from the NASA
Prediction of Worldwide Energy Resource (POWER) database. Figure 11 illustrates the monthly
average solar radiation, wind speed, and temperature within the operational zone, which are

recorded as 5.14 kWh/m2 /day, 4.12 m/s, and 16.96°C, respectively.
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Figure 10: Auxiliary loads for the conventional and the proposed fully autonomous tugboat.
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Figure 11: Monthly average wind speed, solar radiation, and ambient temperature along the
navigation routes.

3.2.13. Simulation Analysis

For this study, the tugboat is simulated with renewable energy sources and a battery bank to store
surplus energy for critical loads as necessary. It is assumed that the available space for installing
PV modules and batteries on the autonomous tugboat is larger compared to the conventional
tugboat, owing to the absence of sailors and certain equipment. Ship and weather data were
imported into both HOMER Pro and MATLAB software. The nominal ratings, maximum
component numbers, and cost metrics were selected based on industry expert assessments and
recommendations. Subsequently these parameters were entered into the aforementioned
computational software. The optimized results obtained from the three metaheuristic optimization
algorithms were compared with those from HOMER Pro to assess efficiency and best fitness
values. Finally, robustness tests were conducted on the optimal HRES model and the three

metaheuristic algorithms.
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3.3 Results and Discussions

This section presents the simulated outcomes for the HRES models. Table 7 displays the feasible
results of the optimal sizing of the proposed HRES models for the conventional tugboat, as
determined by the metaheuristic algorithms and HOMER Pro. It is evident that the three
metaheuristic algorithms outperform HOMER Pro, achieving better results. Particularly, the ABC
algorithm yields the lowest ACS with the least TNPC and LCOE across all proposed cases
compared to PSO, GA, and HOMER Pro. Notably, the optimal model for the conventional tugboat
is the Genset/PV/VAWT/Battery (Case 1), exhibiting the lowest cost metrics. This is attributed to
the high penetration rate of renewable energy along the ship route. It can be inferred that the next
successive optimal models with minimum cost are Genset/PV/Battery (Case 2),
Genset/ VAWT/Battery (Case 3), Genset/Battery (Case 4), and Genset (Case 5) respectively;
suggesting that integrating renewable sources reduces HRES operating costs. Additionally, the
ABC algorithm generates the lowest ACS for Cases 1 to 4 due to its superior fitness values
compared to other algorithms. The optimized results for the metaheuristic algorithms are nearly
identical, except for Case 5 (Genset alone), where their cost values (that is ACS, TNPC and LCOE)
match those of HOMER Pro. The rationale behind this assertion lies in the foundational nature of
the model, which lacks both renewable energy sources and storage components, a premise also
corroborated by the findings of Maleki and Pourfayaz [81] . Moreover, the optimized results from
HOMER Pro are higher than those from the metaheuristics in Cases 1 to 4 due to the generation

of higher dump energy, as observed in previous study by Singh et al [89].

Figure 12 illustrates the convergence graph of the three metaheuristic algorithms for the
conventional tugboat. It is clear that the optimization results achieved by the ABC algorithm for
Case 1 surpass those of the other algorithms due to its remarkable convergence speed and
optimization performance. The computational time for the proposed cases using HOMER Pro
software is longer, whereas that of the metaheuristic algorithms takes only a few minutes. Table 8
provides a comprehensive summary of the techno-economic outcomes of the proposed HRES for
the conventional tugboat utilizing the ABC Algorithm. It can be deduced that Case 1 exhibits the
highest renewable fraction (Rf) due to the incorporation of both PV and VAWTS, resulting in the

lowest CO2 emissions compared to the other cases. Similarly, Case 2 follows as the next HRES
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model with lower CO, emissions, succeeded by Case 3. As anticipated, the base model (Case 5)

emits the highest CO; emissions compared to Case 4.

Table 7: Results of the optimization methods of the proposed HRES for the conventional tugboat

Genset PV VAWT | Battery ACS TNPC LCOE
Cases | Algorithms kW) | (kW) (kW) (units) (US$/yr.) (US$/yr.) (US$/kWh)

PSO 125 4.44 10 4 53.599.03 | 1,077,580.68 0.513

| ABC 125 4.44 10 4 53,592.33 | 1,077,446.31 0.513
GA 125 4.44 10 4 53,599.03 | 1,077,580.68 0.513

HOMER Pro | 125 4.44 10 12 73,818.03 | 1,488,741.25 0.706

PSO 125 4.44 N/A 4 58.601.35 | 1,178,171.14 0.560

2 ABC 125 4.44 N/A 4 58.585.85 | 1,177,859.36 0.506
GA 125 4.44 N/A 4 58.586.03 | 1,177,863.10 0.506

HOMER Pro | 125 4.44 N/A 8 63.377.76 | 2,921,696.00 0.606

PSO 125 N/A 10 8 58.922.12 | 1,184,333.69 0.563

3 ABC 125 N/A 10 8 58.920.17 | 1,184,294.45 0.563
GA 125 N/A 10 8 58.022.12 | 1,184,333.69 0.563

HOMER Pro | 125 N/A 10 12 74,485.98 | 1,497,167.03 0.713

PSO 125 N/A N/A 4 61,503.70 | 1,236,245.95 0.588

4 ABC 125 N/A N/A 4 61,491.73 | 1,236,005.43 0.588
GA 125 N/A N/A 4 61,503.70 | 1,236,245.95 0.588

HOMER Pro | 125 N/A N/A 4 61,536.25 | 1,236,900.22 0.589

PSO 125 N/A N/A N/A 83,700.81 | 1,682,761.86 0.801

5 ABC 125 N/A N/A N/A 83,700.81 | 1,682,761.86 0.801
GA 125 N/A N/A N/A 83,700.81 | 1,682,761.86 0.801

HOMER Pro | 125 N/A N/A N/A 83,700.81 | 1,682,761.86 0.801

Figure 13 depicts the monthly energy analysis for the optimal HRES (Case 1). It is evident that the

highest solar energy generation occurs during the summer months, with the majority of this energy

utilized to meet the shipload. Conversely, the maximum wind energy generation is observed in the

winter season. However, the usage of the Genset and battery bank remains consistent every month

throughout the year to fulfill the stable auxiliary load demand. Furthermore, it is observed that

there is either no surplus energy or minimal surplus energy, as the HRES is designed to minimize

dump energy.
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Figure 12: Comparison of convergence of the three metaheuristic algorithms for the Case 1
(Genset/PV/VAWT/Battery) HRES model for conventional tugboat.

Table 8: Detailed techno-economic results of proposed HRES for conventional tugboat using
ABC algorithm.

System
Component Parameters Case 1 Case 2 Case 3 Case 4 Case 5
Mono PV Solar Energy (kWh) 32,309.62 32247.47 - - -
Wind Wind Energy (kWh) 17,765.14 - 17,786.64 - -
Battery Battery Charge (kWh) 27,876.24 | 16,420.65 11,486.34 1,185.53 -
Battery Discharge (kWh) | 25,623.96 | 15,220.38 | 10,724.03 965.20 -
Genset .
Diesel Energy (kWh) 62,485.11 | 78,955.34 | 93,285.06 | 109,715.93 | 110,002.55
PV ($) 437.05 436.21 - - -
Annualized Cost VAWT (8) 471.96 - 472.53 - -
for components Battery ($) 847.93 851.57 861.10 848.59 -
Genset ($) 51,659.31 | 57,121.99 | 57,41046 | 60,467.06 | 83,700.81
Inverter ($) 176.08 176.08 176.08 176.08 -
Load Demand (kWh) 104,502.42 | 104,502.42 | 104,502.42 | 104,502.42 | 104,502.42
Other factors CO; Emission(tons) 73,741.05 | 93,178.20 | 110,89.25 | 129,479.94 | 129,818.19
Dump Energy(kWh.) 103.79 43.37 13.19 - -
Ren Fraction (%) 40.21 2445 10.73 - -
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Figure 13: Monthly energy analysis (kWh) for optimal Genset/PV/VAWT/Battery (Case 1)
HRES using ABC algorithm for Conventional tugboat.

Table 9 displays the optimized outcomes of the proposed hybrid power systems for the fully
autonomous tugboat. It is evident that Case 1 yields the lowest ACS, followed by Case 2, Case 3,
Case 4, and Case 5. The sequence of models with the lowest ACS mirrors that of the conventional
tugboat, attributed to the assumption that the autonomous tugboat shares the same navigation
routes and ship particulars as its conventional counterpart. However, the costs of the optimized
HRES models for the autonomous tugboat are lower than those of the conventional tugboat due to

reduced shipload.

The optimization results obtained from the ABC algorithm are favored for achieving optimal
HRES configurations compared to other algorithms and HOMER Pro. For instance, Figure 14
illustrates the convergence rate comparison between the ABC algorithm and the other two
algorithms for the Case 1 model of the fully autonomous tugboat. Notably, the ABC algorithm

demonstrates superior convergence speed compared to PSO and GA algorithms.
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Table 9: Results of the optimization methods of the proposed HRES for the fully autonomous
tugboat

Genset PV VAWT | Battery ACS TNPC LCOE
Case | Algorithm | (kW) | (kW) | (kW) | (units) | (USS/yr) (USS/yr.) (US$/kWh)
PSO 125 5.92 10 8 17,355.53 348.863.73 0.282
ABC 125 5.92 10 8 17,34582 | 348,670.03 0.282
GA 125 5.92 10 8 17357.14 | 348,896.25 0.281
HOMER Pro | 125 5.92 10 10 29297.97 589,020.06 0.476
PSO 125 5.92 N/A 4 41.254.76 829,448.11 0.670
ABC 125 5.92 N/A 4 4125475 829,262.63 0.670
GA 125 5.92 N/A 4 41,288.43 830,125.11 0.670
HOMER Pro | 125 5.92 N/A 8 61,196.43 | 1,230,322.84 0.994
PSO 125 N/A 2 4 50,022.32 1,005,369.52 0.812
ABC 125 N/A 10 4 50,021.78 1,005,358.69 0.812
GA 125 N/A 10 4 50,022.32 1,005,369.52 0.812
HOMER Pro 125 N/A 10 8 53,077.76 1,067,101.15 0.862
PSO 125 N/A N/A 4 55,643.89 1,118,412.47 0.903
ABC 125 N/A N/A 4 55,631.93 1,118,171.96 0.903
GA 125 N/A N/A 4 55,643.89 1,118,412.47 0.903
HOMER Pro 125 N/A N/A 4 59,205.36 1,190,293.40 0.962
PSO 125 N/A N/A N/A 77,218.91 1,552,446.59 1.255
ABC 125 N/A N/A N/A 77,218.91 1,552,446.59 1.255
GA 125 N/A N/A N/A 77,218.91 1,552,446.59 1.255
HOMER Pro 125 N/A N/A N/A 77,218.91 1,552,446.59 1.255

Table 10 provides a comprehensive breakdown of the proposed HRES outcomes for the fully
autonomous tugboat utilizing the ABC Algorithm. It is evident that Case 1, featuring
Genset/PV/VAWT/Battery configuration, exhibits the lowest diesel energy consumption and
highest Ry, leading to minimal CO: emissions compared to other models. This is attributed to the
significant contribution of energy generated by PV and VAWT. Sequentially, the subsequent
optimal HRES models in terms of techno-economic results for the fully autonomous tugboat are
as follows: Genset/PV/Battery (Case 2), Genset/VAWT/Battery (Case 3), Genset/Battery (Case
4), and Gensets (Case 5). These results mirror the trends observed in optimized HRES models for
the conventional tugboat. Consequently, models with limited or no integration of renewable energy
sources exhibit higher CO> emissions and ACS due to increased fuel consumption. Figure 15
illustrates the monthly energy balance of the optimal HRES (Genset/PV/VAWT/Battery) for the
fully autonomous tugboat. Similarly, the PV modules exhibit the highest monthly
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Figure 14: Comparison of convergence of the three metaheuristic algorithms for
Genset/PV/VAWT/Battery (Case 1) HRES Model on fully autonomous tugboat.

renewable energy generation compared to the VAWT. However, minimal energy from the Gensets
is required to supplement the renewable energy sources to meet the shipload. Additionally, the
battery bank is consistently utilized throughout the year, with surplus energy available in each
month, mirroring the scenario observed in a conventional tugboat. Nonetheless, the proposed
models for the fully autonomous tugboat show the highest generated renewable energy and Ry,

alongside minimal ACS, fuel consumption, and CO; emissions compared to models for the

conventional tugboat.

Finally, robustness tests are conducted on the optimal HRES onboard both the conventional and
fully autonomous tugboats. Since the primary power generation sources for this system (Case 1)

are Genset, PV, and VAWT, the test is performed on their respective key parameters.
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Table 10: Detailed techno-economic results of proposed HRES for fully autonomous tugboat

using ABC algorithm.
System
Component Parameters Case 1 Case 2 Case 3 Case 4 Case 5
Mono PV Solar Energy (kWh) 42,996.63 | 42,996.63 - - -
Wind Wind Energy (kWh) 17,765.26 - 17,765.26 - -
Batte Battery Charge (kWh) 33,514.60 | 21,950.31 | 11,472.54 1,203.22 -
Y Battery Discharge (kWh) | 31,088.12 | 20,245.73 | 10,711.29 689.61 -
Genset .
Diesel Energy (kWh) 7,013.76 | 23,569.21 | 48,163.72 | 64,574.65 | 64,861.27
. PV ($) 581.61 581.61 - - -
Agnui‘ltlzed VAWT (3) 471.96 - 471.96 : :
Confsongflts Battery ($) 1,834.23 845.79 860.54 849.29 _
P Genset ($) 14,291.65 | 39,651.27 | 48,513.20 | 54,606.56 | 77,218.91
Inverter ($) 176.08 176.08 176.08 176.08 -
Load Demand (kWh) 61,618.21 | 61,618.21 | 61,618.21 | 61,618.21 | 61,618.21
Other Factors CO; Emission(tons) 8,277.21 27,814.93 | 56,839.84 | 76,207.00 | 76,545.25
Dump Energy(kWh.) 319.73 113.37 123.06 - -
Ren Fraction (%) 88.61 61.75 21.84 - -
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Figure 15: Monthly energy analysis (kWh) for optimal Genset/PV/VAWT/Battery (Case 1)
HRES using ABC algorithm for fully autonomous tugboat.
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3.3.1. Robustness Test

The aim of conducting the robustness test is to confirm the efficacy of the optimal model (Case 1)
acquired using the ABC algorithm for both conventional and autonomous tugboats. This validation
is achieved by manipulating fundamental input data, including shipload, fuel price, solar
irradiance, wind speed, and ambient temperature along the navigation routes. Furthermore,
statistical analysis is carried out on the ACS results obtained by the three metaheuristic algorithms
for the optimal Case 1 model specifically for the fully autonomous tugboat. The findings of this

critical analysis are outlined in the subsequent subsections.

3.3.1.1. Robustness Test on the Optimal Hybrid Model by Variable
Load Fuel Price, Solar Irradiance, Wind Speed, and Ambient

Temperature

Tables 11 and12 present the robustness test results for both conventional and fully autonomous
tugboats across various variable parameters including loads, fuel prices, solar irradiance, wind

speeds, and temperature for the optimal model (Case 1). The findings indicate that a decrease in
shipload results in the lowest values of ACS, NPC, and CO> emissions, but in a higher Ry

Conversely, an increase in shipload leads to contrary outcome. Furthermore, the fluctuation in fuel

prices affected the objective function and related costs but had no influence on the CO2 emissions
and Ry, given that the HRES relied predominantly on generated renewable energy during both high

and low energy demand periods by the tugboat. Therefore, an increase in fuel prices generated
high system costs, while a decrease in fuel prices led to the opposite outcome. Likewise, it can be

confirmed that the reduction in solar irradiance resulted in higher ACS, TNPC, and CO; emissions,
but a lower R¢, whereas an increase in solar irradiance yielded the converse outcome. Similarly,
the reduction in wind speed led to high ACS, TNPC, and CO> emissions, and lower R¢, while an
increase in wind speed had the converse result. Lastly, decreasing ambient temperature resulted
in high ACS, TNPC, and CO> emissions, but low Ry, whereas increasing ambient temperature

generated the opposite outcomes.

51|Page



In summary, the change in fuel price, shipload, solar irradiance, ambient temperature, and wind
speed had significant impact on the proposed optimal HRES onboard both conventional and fully
autonomous tugboats. Nonetheless, the results obtained for the autonomous tugboat surpass those
obtained for the conventional tugboat.

Table 11: Robustness test results based on varying load, fuel price and solar irradiance on the
optimal Genset/PV/VAWT/Battery (Case 1) for conventional tugboat using ABC algorithm.

CO, Renewal
ACS TNPC LCOE Emission | Fraction
Parameters | Variation (US$/yr.) (USS$/yr.) | (8US/kWh) | (kg/yr.) (%)
-35% 38,041.93 764,813.69 0.560 28,388.22 64.59
Load (kW) +35% 60,546.42 1,217,254.79 0.429 119,182.14 28.41
Fuel Price -35% 50,763.23 1020568.80 0.486 73,741.05 40.21
(USD/L) +35% 56,405.28 1,133,999.29 0.540 73,741.05 40.21
Solar
irradiance -1.06 58,793.58 1,182,014.78 0.563 105,761.61 14.24
(kWh/m?/day) +1.06 53,328.32 1,072,138.58 0.510 72,967.93 40.83
W‘nfn/sl’eed 2.12 5842881 | 1,174.68126 | 0559 | 9122231 | 26.03
(m’s) +2.12 37,095.14 745,778.43 0.355 42,142.73 65.82
Temperature -6 52,897.98 1,063,486.68 0.506 71,621.40 41.93
O +6 54,212.14 1,089,907.28 0.519 76,170.83 38.23

Table 12: Robustness test results based on varying load, fuel price and solar irradiance on the
optimal Genset/PV/VAWT/Battery (Case 1) for fully autonomous tugboat using ABC algorithm.

CcO, Renewal

ACS TNPC LCOE Emission | Fraction
Parameters | Variation (USS/yr.) (USS$/yr.) | (SUS/kWh) (kg/yr.) (%)
-35% 4,517.39 90,819.82 0.113 0.00 100
Load (kW) +35% 39,087.12 785,826.56 0.470 35,249.54 64.09
Fuel Price -35% 17,001.13 341,799.08 0.276 8,277.21 88.56
(USD/L) +35% 17,677.15 355,390.06 0.287 8,277.21 88.56

Solar

irradiance -0.94 49,057.56 986,277.26 0.796 51,036.25 29.81
(kWh/m?/day) +1.06 53,328.32 1,072,138.58 0.258 7,208.52 90.08
Wmfn/Speed 2.12 38,952.64 783,122.83 0.632 25,086.19 | 65.50
(m/s) +2.12 4,775.54 96,009.86 0.078 0.00 100
Temperature -6 13,421.39 269,820.17 0.2178 4,829.24 93.36
O +6 20,947.88 421,146.30 0.340 11,512.95 84.16
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3.3.1.2. Statistical Analysis on Metaheuristic Algorithms of ACS
for Optimal Fully Autonomous Tugboat

We conducted an ANOVA test to evaluate potential statistically significant differences among the
means of multiple populations. Specifically, we applied the one-way ANOVA test to the
optimization ACS results generated by the ABC, PSO, and GA algorithms for the Case 1 model
of the fully autonomous tugboat to assess their effectiveness. This analysis was conducted using
Minitab software. Table 13 presents the sources of variance between groups (algorithms) and
within groups (error), along with their respective degrees of freedom (DF), adjustment sum of
squares (Adj SS), adjusted mean squares (Adj MS), F-statistic (or F-value), and associated P-value.
The adjusted mean square error (Adj MS) representing the variance within all groups was found
to be 45560163, indicating the variability of data points around the fitted values. Additionally, the
P-value was determined to be zero, which is less than the significance level (o) of 5%, signifying
the presence of statistically significant differences in the data groups. Consequently, the null
hypothesis is rejected, confirming the statistical significance of the results. It was concluded that
all three algorithms have distinct means, as indicated in Table 14. Moreover, the PSO algorithm
exhibited the highest mean, standard deviation, and confidence interval compared to the ABC and
GA algorithms, suggesting that the PSO algorithm produces higher ACS values than the other two
algorithms. Given the differences in means observed among the three metaheuristic algorithms in

Table 14, further analysis beyond ANOVA is warranted.

Table 13: Analysis of variance (significance level a =0.05) result for one-way ANOVA

Source DF Adj SS Adj MS F-Value | P-Value
Algorithm 2 10,116,204,280 | 5,058,102,140 | 111.02 0
Error 297 13,531,368,309 | 45,560,163
Total 299 23,647,572,589

Table 14: Mean and standard deviation result for one-way ANOVA

Standard
Algorithms Number Mean Deviation 95% CI
ABC 100 17,755 2,167 (16426, 19083)
GA 100 19,646 5,080 (18317,20974)
PSO 100 30,909 10,304 (29581, 32238)
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Hence, the post-hoc test (or multiple comparison) is conducted to determine whether differences
between pairs of groups hold statistical significance. Accordingly, the Tukey pairwise comparisons
test is applied to the three algorithms while maintaining a simultaneous confidence level of 95%.
In Figure 16, the confidence interval plot illustrates the disparity between the pairings. Notably,
the GA-ABC pairing exhibits the most favorable outcome, as the confidence interval encompasses
zero, indicating no significant difference between the compared groups. Conversely, the
confidence intervals for PSO-ABC and PSO-GA include entirely positive numbers, indicating
statistically significant differences between them. Table 15 delineates that Grouping A exclusively
comprises the PSO algorithm, while Grouping B encompasses both GA and ABC algorithms. This
suggests that the means for the ABC and GA algorithms do not differ significantly. However, the
PSO algorithm does not share a grouping letter, signifying its notable difference attributed to its
higher mean. Lastly, the optimal algorithm is identified based on the grouping with the smallest
mean; thus, the ABC algorithm emerges as the best choice, offering a significantly lowest mean
than both the PSO and GA algorithms. Subsequently, the GA algorithm follows as the next

successive optimal choice, exhibiting a lower mean than the PSO algorithm.

Table 15: Grouping information using the Tukey method and 95% confidence.

Algorithms | Number Mean Grouping
PSO 100 30,909 A
GA 100 19,646 B
ABC 100 17,755 B
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Figure 16: Tukey simultaneous tests for difference of means for the metaheuristic algorithms.
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3.4 Conclusion

This research paper introduces a standalone hybrid renewable energy system designed for an
existing tugboat operating along the West Coast of the United States. Techno-economic analyses
are conducted for both conventional and fully autonomous tugboats using mathematical models.
The developed HRES models consist of PV, VAWT, batteries, and Gensets. In addition, the
simulation and optimization processes are carried out using the ABC algorithm. The aim of the
modeling is to find the optimal HRES with a minimum ACS and emissions while adhering to

specified constraints.

We observe that the ABC algorithm outperforms PSO, GA, and HOMER Pro. Also, among the
five proposed reliable and sustainable configurations, Genset/PV/VAWT/Battery (Case 1)
emerges as the optimal standalone HRES for both conventional and fully autonomous tugboats.
Notably, the fully autonomous tugboat demonstrates superior outcomes in terms of cost, CO>
emissions, and renewable fraction compared to its conventional counterpart. In addition, the
robustness test reveals that variations in shipload, fuel price, solar irradiance, wind speed, and
ambient temperature significantly affect the proposed optimal HRES for both conventional and
fully autonomous tugboats. Consequently, comparing the results of the optimal HRES
(Genset/PV/VAWT/Battery) onboard the conventional tugboat with those of the fully autonomous
tugboat, we find that the latter records minimum ACS, TNPC, LCOE, CO: emissions, and
maximum percentage of renewable fraction. Moreover, the fully autonomous tugboat generates a
higher percentage of excess energy compared to the conventional tugboat, which generates less
excess energy. Additionally, a one-way ANOVA is applied to the ACS results of the Case 1 model
for the fully autonomous ship, confirming the statistical significance of the ACS results and
indicating that the ABC algorithm produces optimal outcomes. Furthermore, the application of the
Tukey pairing reveals that the GA-ABC pair is statistically similar, suggesting that there is no

difference between their means unlike the other pairings.

This study encountered significant constraints primarily stemming from the absence of reliable
data regarding the energy demands of autonomous tugboats. Consequently, the paper resorts to

mathematical simulation based on the energy requirements of conventional tugboats.
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In conclusion, future research endeavors should delve into implementing the proposed HRES
across a range of fully autonomous surface ships, encompassing diverse navigation routes, variable
ship speeds, and a variety of energy storage options. This is prompted by the scarcity of pertinent
research literature that could serve as comparative benchmark and by the need to broaden the
knowledge of HRES applications onboard fully autonomous ships. Furthermore, there is a
suggestion to explore alternative fuels as a means to reduce emissions and improve ship energy

systems.
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CHAPTER 4. ENVIRONMENTAL AND COST

ASSESSMENTS OF MARINE
ALTERNATIVE FUELS FOR FULLY
AUTONOMOUS SHORT-SEA SHIPPING
BASED ON THE GLOBAL WARMING
POTENTIAL APPROACH

In this chapter, we explore an effective approach to reducing marine pollution and costs by
determining the optimal marine alternative fuels framework for short-sea shipping vessels, with a
focus on energy efficiency. Employing mathematical models in a Python environment, the
analyses are tailored specifically for conventional and fully autonomous high-speed passenger
ferries (HSPFs) and tugboats, utilizing bottom-up methodologies, ship operating phases, and the
global warming potential approach. The study aims to identify the optimal marine fuel that offers
the highest Net Present Value (NPV) and minimal emissions, aligning with International Maritime
Organization (IMO) regulations and environmental objectives. Data from the ship’s Automatic
Identification System (AIS), along with specifications and port information, were integrated to
assess power, energy, and fuel consumption, incorporating parameters of proposed marine
alternative fuels. This study examines key performance indicators (KPIs) for marine alternative
fuels used in both conventional and autonomous vessels, specifically analyzing total mass emission
rate (TMER), total global warming potential (TGWP), total environmental impact (TEI), total
environmental damage cost (TEDC), and NPV. The results show that hydrogen (H2-Ren, H2-F)
fuels and electric options produce zero emissions, while traditional fuels like HFO and MDO
exhibit the highest TMER. Sensitivity and stochastic analyses identify critical input variables
affecting NPV, such as fuel costs, emission costs, and vessel speed. Findings indicate that LNG
consistently yields the highest NPV, particularly for autonomous vessels, suggesting economic
advantages and reduced emissions. These insights are crucial for optimizing fuel selection and
operational strategies in marine transportation and offer valuable guidance for decision-making
and investment in the marine sector, ensuring regulatory compliance and environmental

sustainability.
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This chapter is based on the following publication: H. Laryea and A. Schiffauerova,
“Environmental and cost assessments of marine alternative fuels for fully autonomous short-sea
shipping vessels based on the global warming potential approach,” J. Mar. Sci. Eng., vol. 12, no.
11, p. 2026, 2024. [Online]. Available: https://doi.org/10.3390/jmsel 2112026
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4.1. Introduction

The shipping industry, responsible for transporting over 80% of international trade, is the most
energy-efficient mode of goods transport. However, despite the relatively low total carbon dioxide
(CO2) emissions from shipping, the industry cannot ignore its role in addressing global warming.
The fourth International Maritime Organization (IMO) GHG report indicates that shipping emitted
approximately 1,056 million tonnes of CO in 2018, accounting for 2.89% of global CO> emissions
[110]. Ship energy management significantly influences both cost efficiency and environmental
impact, primarily due to the considerable CO> emissions stemming from ship operations.
Decreasing energy consumption not only directly mitigates emissions, but also reduces the
environmental footprint and operational expenditures [111]. Therefore, the IMO has endorsed a
proposed amendment requiring the adoption of a Ship Energy Efficiency Management Plan
(SEEMP) and an Energy Efficiency Design Index (EEDI) for newly constructed vessels. This
regulatory measure aims to curtail greenhouse gas (GHG) emissions within the maritime domain
[112]. The proposed net zero target for 2050 by the IMO [113] can be achieved through the
changes of ship design, including weight reduction, the use of advanced coatings on the hull [114],
the optimization of the ship’s hull dimensions and bow thrusters, just to mention a few [115].
Similarly, energy efficiency and sustainability can be achieved by using alternative fuels with
minimal or zero emissions onboard vessels. The best marine alternative fuels are biofuels
(biodiesel, biomethane, bioethanol), E-fuels (green hydrogen, E-diesel, green ammonia, E-
methane), blue fuels (blue hydrogen, blue ammonia), electricity (grid, renewable energy sources),
and fossil fuels (mixture of fossil fuel and advanced biofuels) [116]. However, the application of
some of the aforementioned alternative fuels is not mature in terms of production processes and
bunkering infrastructure [115], [117]. The choice of energy source or fuel type for a vessel [53] is

contingent upon both the vessel's classification and the specific route it navigates on [118], [119].

Short-sea shipping vessels [120] facilitate the transportation of goods and passengers over
relatively short distances [119], within port waters and between deep sea terminals [121]. As
evidenced in Europe and other North American regions [122], [123], short-sea shipping presents
opportunities to improve efficiency and address environmental impacts associated with goods and
passenger transport [124]. Moreover, short-sea shipping vessels operating in inland waterways

play a pivotal role in regional and national transportation networks, offering benefits such as
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reduced energy consumption, lower emissions, and maintaining a high safety standard compared

to road transport [125]-[127].

International Convention for the Prevention of Pollution from Ships (MARPOL) mandates four
key requirements for both new and existing vessels to address air pollution, emphasizing cleaner
fuels, renewable energies, emission reduction technologies, and enhanced energy efficiency [53],
[54]. The utilization of maritime autonomous surface ships (MASS) offers a promising approach
to mitigate environmental impact within the maritime sector, operating independently with
artificial intelligence (AI) driven navigation. Fully autonomous fleets, without onboard crews,
demonstrate significant conservation of energy and reduction of pollution [128], with a notable
decrease of 74.5% [46] in energy consumption in autonomous container vessels compared to
traditional counterparts [129]. Integrating MASS with marine alternative fuels emerges as a robust

strategy for reducing GHG emissions in maritime operations [130], [131].

In the quest to identify the most suitable alternative fuel for vessels, two principal methodologies
are used to measure ship fuel consumption and predict emissions: the top-down and bottom-up
approaches [132]. The top-down approach, used in several existing studies, focuses on the
utilization and analysis of marine fuel sales data [133], [134]. Conversely, an increasing number
of studies 1s adopting the bottom-up approach [132], [133], [135], which involves analyzing fuel
consumption in relation to specific shipping activities [136]. The latter method offers a more
accurate representation of actual emission levels. To predict fuel usage in maritime vessels, the
bottom-up methodology uses a cubic correlation between fuel consumption and vessel speed [133].
Table 16 presents comparative analyses conducted by previous researchers that were aimed at

identifying the optimal marine fuel.

A recent review by Chen and Yang [137] explored the application of automatic identification
system (AIS)-based methods for estimating ship emissions. This study encompassed data
acquisition via AIS, analysis of ship characteristics, calculation of engine loads, and determination
of emission factors. In contrast, Aarskog et al. [ 138] evaluated the economic feasibility of fuel cell
(FC) propulsion for high-speed crafts (HSC) using an energy analysis method, juxtaposing it with
traditional diesel and biodiesel alternatives. Their findings indicate potential cost competitiveness
of FC-equipped HSCs compared to diesel propulsion by 2025 —2030. Similarly, Jafarzadeh and

Schjelberg [139] used cubic law of design and operational speed to examine optimal propulsion
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power utilization for enhancing electric or hybrid propulsion in suitable ship types. Ocean-going
reefers achieve peak efficiency at 0.6—0.7 of their capacity loads, whereas other vessels peak at
lower loads, limiting hybrid or electric integration benefits. Additionally, various studies [140]-
[145] have investigated the economic and emissions impacts of alternative marine fuels based on
ship-specific considerations. These studies hinge on intricate technical specifications and
operational data that are distinct to individual vessels. For instance, Kouzelis et al. [140] applied
simple multi-attribute rating technique (SMART) decision-making models to assess optimal
alternative fuel technologies for large container vessels, highlighting upgraded bio-oil (UBO),
Fischer-Tropsch diesel (FTD), and liquefied bio-methane (LBM) as promising future fuels.
Meanwhile, conventional fuels like heavy fuel oil (HFO) and liquefied natural gas (LNG) are likely
to maintain dominance without regulatory changes. Additionally, Kosmas and Acciaro [141] used
Cobweb Theorem to analyze the economic and environmental effects of bunker levies on shipping
fuels for cargo ships, showing potential reductions in speed and fuel consumption, akin to sector
energy efficiency improvements through regulatory measures. Similarly, Ammar and Seddiek
[142] explored selective catalytic reduction (SCR), seawater scrubbers (SWS), marine gas oil
(MGO), and LNG using eco-environmental analysis methods for reducing RoRo exhaust
emissions, with LNG emerging as the most effective option both economically and
environmentally. Furthermore, Helgason et al. [143] compared conventional methanol from
natural gas (NG), and renewable methanol (RN) with HFO using impact pathway analysis (IPA)
in Iceland's maritime sector, highlighting fossil methanol's current cost competitiveness and
projecting renewable methanol's future cost-effectiveness. On the contrary, there is limited
literature addressing simultaneous economic and emission analyses for both conventional and
autonomous MASS [144], [145]. For example, Jovanovi¢ et al. [144] used cubic law of design to
conduct environmental and economic evaluations of RoRo passenger ferries, identifying methanol
and electric propulsion as optimal choices across all routes. Autonomous shipping shows
substantial ecological and economic benefits across various propulsion options and vessel types,
except for renewable hydrogen-powered vessels on longer shipping routes. Similarly,
Kretschmann et al. [145] used cost-benefit analysis to perform a comprehensive cost analysis
comparing conventional and autonomous bulkers, emphasizing the economic advantages of

autonomous vessels, particularly with MDO despite higher voyage expenses.
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The complexities inherent in integrating alternative fuels into maritime operations underscore the
necessity for tailored solutions that consider vessel type and operational context. However, further
advancements are required in several key areas. Notably, there remains a gap in comprehensive
studies that compare the environmental and economic impacts of marine alternative fuels across
both conventional and autonomous vessels using AIS data and employing a global warming
potential approach. Previous studies conducted by previous authors by [138] [139] focused solely
on conventional vessels using AIS data. The sensitivity analysis performed by Aarskog et al. [138]
was restricted to fuel cells without consideration of other fuel types and lacked a stochastic
analysis. Additionally, Jafarzadeh and Schjelberg [139] exclusively calculated power consumption
for main engines, neglecting the significant contributions of auxiliary engines. Furthermore,
analyses conducted by some authors [144], [145] utilized ship-specific particulars rather than AIS-
based methods, limiting their ability to capture real-time operational dynamics effectively.
Moreover, previous assessments often omitted critical factors such as carbon monoxide emissions,
port costs, and hydrogen storage tank costs [144], [145]. Furthermore, the environmental impacts,
environmental cost assessments, and stochastic analysis were frequently overlooked across
studies. Neglecting these aspects can lead to inaccurate estimations of a fuel's ecological footprint
and economic implications, thereby hindering informed decision-making regarding sustainable
fuel selection. Incorporating comprehensive environmental and economic analyses, including
stochastic considerations, 1s essential for ensuring robust evaluations of marine alternative fuels.
Such an approach facilitates more informed decisions that balance environmental sustainability
with economic viability, crucial for advancing the adoption of sustainable marine fuels. For
instance, Table 16 provides a comparative analysis of research utilizing a bottom-up methodology,
which integrates AIS data and ship-particulars to evaluate the environmental and economic

impacts of alternative fuels in marine applications.
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Table 16: Comparative analysis of environmental and economic assessments for marine alternative fuels.

Objective Study Area Type of Ship Type of F.uel Data Source Comments Reference
Analysis
No stochastic analysis
Perform economic was performed, only
assessments contrasting sensitivity analysis on
fuel cell with diesel and | Norway HSC Hydrogen, diesel, AIS Data hydrogen FC
biodiesel. and biodiesel [138]
Tankers, bulk
carriers, general
cargo ships,
container ships, roll-
Analyze operational on/roll-off (Ro-Ro) No sensitivity or
profiles to select ships, reefers stochastic analysis was
suitable ships for (refrigerator/freezer), AIS Data performed.
electric/hybrid offshore ships and
propulsion. Norway passenger ships. FC, batteries, MGO [139]
Denmark to
Greece
Optimize fuel from Conduct sensitivity
technology for efficient | Denmark, analysis on SFOC?, fuel
freight across technical China, cost, vessel speed
and environmental Norway, Large container HFO, FTD, UBO Ship relative to required
standards. Greece vessel & LBM particulars freight rate (RFR). [140]
MBMs?* proposals No sensitivity,
improve shipping environmental, or
sector efficiency and Ship stochastic analysis was
reduce emissions N/A Cargo ships N/A particulars conducted. [141]

1. Both conventional and autonomous vessels are considered.

2. SFOC: specific fuel oil consumption 3. MBMs: Market-based measures

64|Page



Objective Study Area Type of Ship T)xsa(g:i:el S](?::ie Comments Reference
Hurghada Sensitivity analysis is
Analyze environmental, | port (Egypt) conducted based on
economic impacts of and Duba Medium RoRo variable emission
diverse ship fuel options | port (Saudi cargo ship SCR, SWS, Ship reduction percent &
for IMO compliance Arabia) MGO, LNG, | particulars interest rate. [142]
Performed sensitivity
Conducts analysis on years, price
comprehensive cost- NG, RN, & trajectories, and total
competitive analysis of HFO costs; no stochastic
three marine fuels. Iceland N/A N/A analysis conducted. [143]
Sensitivity analysis
focused on autonomous
Optimizing power for MDO, HFO, vessels' economic input
autonomous ro-ro ships RoRo passenger LNG, variations only;
considering Croatian ship! methanol, stochastic analysis
environmental and electricity, Ship excluded for optimal [144]
economic factors. and hydrogen | particulars fuel.
Sensitivity analysis on
RFR impact,
emphasizing fuel
Examines autonomous consumption and vessel
bulker costs vis-a-vis Australia to Ship costs; no stochastic
conventional vessel Europe Bulk Carrier! MDO, HFO | particulars analysis. [145]

1. Both conventional and autonomous vessels are considered.

2. SFOC: specific fuel oil consumption 3. MBMs: Market-based measures
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Despite considerable existing literature on alternative marine fuels, consensus remains elusive
regarding the optimal choice for future maritime operations. Moreover, few studies have
comprehensively addressed the environmental impacts and simultaneous variations in input
parameters, particularly concerning the application of marine alternative fuels across diverse short-
sea vessels with varying speeds and routes. Incorporating dynamic methodologies within bottom-
up calculations of ship pollutant emissions using geospatial inputs provides a precise depiction of
real-time fuel consumption and emission dispersion during vessel operations. Such insights are
crucial for stakeholders aiming to integrate alternative fuels effectively within the marine sector.
Therefore, this research aims to investigate how these alternative fuels could potentially influence

the design and operation of both conventional and autonomous surface ships

This study seeks to forecast fuel consumption for conventional and fully autonomous high-speed
short-sea shipping vessels based on their operational profiles using AIS data, employing a bottom-
up approach. Furthermore, it evaluates the environmental impact and associated costs of these
alternative marine fuels. The modeling considers key performance indicators (KPIs) and utilizes
annual AIS data alongside ship specifications and port data. Predictions of fuel consumption are
made using different marine fuels, employing a global warming potential approach in conjunction
with design specifications and operational speeds. Additionally, the study assesses emission
factors to determine environmental impacts and cost implications, integrating cost metrics for a
comprehensive economic analysis. Sensitivity analyses are performed to evaluate the impact of
variable inputs on the models, aiming to identify optimal marine alternative fuels that not only

comply with environmental policies but also offer high profitability.

This research makes significant contributions to the existing literature by introducing a novel
application of the global warming potential approach tailored specifically for conventional and
autonomous ships. This approach facilitates the assessment of mass emission rates, global
warming potential, environmental impact, real-time fuel consumption, and associated costs for
proposed alternative fuels. Moreover, the study introduces sensitivity and stochastic analyses that
explore the effects of varying load factors, vessel speeds, emissions, and nautical miles on the
selection of optimal marine alternative fuels. Prior literature has typically overlooked such detailed
sensitivity analyses. Additionally, this research leverages port data from Los Angeles and Long

Beach to develop a comprehensive mathematical model for environmental-economic assessments

66| Page



specific to the chosen vessels. This model serves as a valuable tool for marine stakeholders to
evaluate emission policies and identify feasible marine fuels that offer both environmental benefits

and economic viability for short-sea shipping operations.

The rest of the paper is organized as follows: Section 4.2 introduces the materials and methods,
which include data collection and the features for evaluating fuel consumption; environmental and
cost analyses for the proposed marine alternative fuels are detailed. The results and discussion are
presented in Section 4.3 and Section 4.4 respectively. Section 4.5 provides concluding remarks as

well as perspectives on potential future research directions.

4.2. Materials and Methods

The ship's AIS data, specifications, and port information are employed to determine power, energy,
and fuel consumption. Additionally, parameters of the proposed marine alternative fuels are
integrated with this data for environmental and cost analyses using the global warming potential
approach, with the aim of identifying KPIs. Sensitivity analyses are conducted for each alternative
fuel across both conventional and autonomous vessels to validate their test results. Furthermore, a
stochastic analysis is specifically conducted on the optimal alternative marine fuel for the chosen
vessel. All computations take place within a Python environment, and detailed explanations, along
with relevant equations used in the mathematical model, are provided in the subsequent sections.
Figure 17 depicts the analysis flowchart. All computations are performed in a Python 3.11.6
environment, with comprehensive explanations and relevant equations presented in subsequent
sections. This framework is specifically designed to evaluate fuel consumption and emissions

based on ship AIS data and particulars.

The program begins by importing essential libraries, including Pandas for data manipulation,
NumPy for numerical calculations, Matplotlib and Seaborn for visualizing fuel consumption,
emissions, KPIs, and NPV, as well as Statsmodels for advanced statistical modeling and SciPy for

statistical analysis and distributions.

Initially, the AIS dataset is loaded, and critical parameters such as ship particulars, engine power,
fuel properties, and emission factors (as outlined in tables in section 4.2.4), along with financial
data, are defined. The data undergoes preprocessing to ensure it is clean and properly formatted,

addressing any missing values and converting units as required.
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The core of the code includes functions that calculate fuel consumption based on ship speed and
engine power, estimate emissions based on the fuel consumed, and compute key performance
indicators to offer insights into fuel efficiency and operational costs. Additionally, NPV is

calculated to assess the financial viability of the vessel's operations over its service life.

Furthermore, the code incorporates sensitivity and stochastic analyses to evaluate how variability
in key parameters—such as fuel cost, distance, speed, emission cost, load factor, and rate—affects
the NPV results for fully autonomous vessels. The stochastic analyses model uncertainty in these
key parameters concerning the NPV. The findings are visualized through various plots, illustrating

trends in fuel consumption, emissions, NPV, and KPIs over the vessel's service life.

4.2.1. Ship Main Particulars and Navigation Route

For this research, we have selected a high-speed passenger ferry (HSPF) and a tugboat as the
vessels under study. Ship specifications for these two vessels are sourced from various entities
including the MarineTraffic [146], shipbuilders, fleet operators, port, and they are presented in
Table 17. Similarly, details regarding operating modes and coverage are extracted from Automatic
Identification System (AILS) data obtained from MarineTraffic. According to the AIS data and ship
data, the high-speed passenger ferry (HSPF) shuttles passengers and goods between the mainland
(specifically the Port of Los Angeles and the Port of Long Beach) and Santa Catalina Island
(Avalon). Additionally, the tugboat operates within the ports of Los Angeles and towing vessels
from the Port of Los Angeles to either the Port of Long Beach or Seal Beach. A segment of the

navigation routes is illustrated in Figure 18.
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Figure 17: Flowchart of the data analysis process for marine alternative fuels in conventional and fully autonomous vessels

69| Page




Table 17 : Main particulars for the conventional vessels adapted from [146].

Parameters Vessel 1 Vessel 2
Ship Type HSPF Tugboat
Overall Length (m) 44.20 25
Breadth (m) 10.45 10
Draft (m) 3.96 5
Gross Tonnage (ton) 462 298
Design Speed (knots) 37 12.5
Number of Passenger, 381 2-6
Main Engine Power(kW) 6,869.56 3,840.35
Aux Engine Power (kW) 198 250
Navigation Route(s) Avalon — Long Beach Los Angeles - Long
Avalon —Los Angeles beach Los Angeles —
Seal Beach

Terminal
Island

(a) HSPF, (b) tugboat.

Long!each
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Figure 18: A segment of navigation routes depicted on a map sourced from Google maps [147]:
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4.2.2. Estimation of Fuel Consumption

Fuel consumption in vessels occurs during propulsion and while powering auxiliary systems
onboard. Therefore, to accurately assess total fuel consumption per voyage, it is essential to
consider factors such as ship speed, load factor, and power demand along navigation routes must

be considered.

4.2.2.1. Ship Speed

The speed of a vessel is directly correlated with its fuel consumption. As a result, the operational
pattern of the vessel along navigation routes is segmented into three distinct phases based on speed
and engine load: cruising mode, maneuvering mode, and idling (or hoteling) mode. In cruise mode,
operational activities are governed by the inputs of cruise distance and speed. Typically, for
conventional vessels, the cruising speed (Verys conv) €Xceeds 12 knots for normal cruising and falls
within the range of 8 knots to 12 knots for low cruising speed. In maneuvering mode, the vessel's
speed is determined based on the nautical distance from land or to the port (that is, from the port
entrance to the berth, pier, wharf, or dock). For instance, at ports like the Port of Los Angeles (San
Pedro) and Port of Long Beach, maneuvering operations occur within the precautionary area,
limiting the maneuvering speed for conventional vessels (Viyan,cony) to less than 12 knots [148],
[149].

In the case of idle mode, when the ship is at berth or anchorage, the main engines are shut off,
resulting in a speed of zero (Vigie cony), While the auxiliary engines continue to operate. Table 18
presents the estimated average speeds for the vessels using real-time data for the three operational

modes based on AIS data.

Table 18: Average daily estimates for marine vessels across two operational modes.

Type of Vessels Average Cruising (knots) | Average Maneuvering (knots)
HSPF 23.70 10.25
Tugboat 9.50 6.70
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4.2.2.2. Load Factor (LF)

The load factor represents the percentage of the vessel’s total power. Utilizing AIS data for the
vessels, the estimation of the load factor for the main engines (LFyg;) is derived. Hence, by

employing the Propeller Law, the LFyg ; is determined as follows [150], [151]:

3 (34)
3
Vavg,conv,i) _ Vavg,conv,i

Vdesign
0.937

where LFy ; is the load factor for the main engine, i represents the vessel operating modes (that

LFME,i = (

Vm ax

is, cruising, maneuvering, and idling), Vayg conv,i 18 the average speed for the operational modes in
Table 18 (knots), Vi ax 18 the maximum speed (knots), and Vyesign is the design speed (knots),
and 0.937 represents a safety margin that offers a conservative estimate for maximum speed,
ensuring that the vessel can operate effectively under various conditions while minimizing the risk
of damage or excessive strain on the propulsion system. In addition, if the determined LFy ; is
less than 2%, it is adjusted to a minimum of 2% [150] this is to ensure a baseline level of efficiency

and to maintain consistency in performance metrics.

The same activity-based calculation formula was applied to the auxiliary engine. However, since
these engines are primarily used for providing electricity rather than propulsion, their loads are
independent from the vessel speed. In addition, given the limited data available regarding onboard
auxiliary engines, the load factors (LFy,, ;) were derived from a technical report conducted by the
US Environmental Protection Agency for the ports of Los Angeles and Long Beach [150], [152].

Table 19 presents the estimated load factors for both main engines and auxiliary engines.

Table 19: Estimated load factors of the main engines and auxiliary engines for the vessels.

Engine Type Type of Ships Cruising Maneuvering Idling
HSPF 21.82% 2.00%' -

Main Engines Tugboat 26.10% 3.87% -
HSPF 17% 45% 22%

Aux Engines Tugboat 17% 45% 22%

1.The determined value is 1.76%, but it has been adjusted to 2% for the purpose of this research.
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4.2.2.3. Ship Power Demand and Energy Consumption

The load demand varies for each mode of operation and is specific to each vessel. Consequently,
the power requirements for the vessel and its integrated auxiliary systems are met by the onboard
main engines and auxiliary engines. To illustrate, the effective power generated by the main

engines for propelling the conventional ship (PegrME—cony) 18 calculated as follows:

Peff,ME—conv = Fnom-ME,conv * MMME * LFME,i (35)
where Pyom-ME,conv 15 the total nominal power of the main engine (kW), and nyg denotes the

efficiency of the main engines which falls within the range of 70% - 90% [153].

Likewise, while the vessel is in port during idling mode, the auxiliary engines are operational, and
the resultant effective power generated by the installed auxiliary engines on the conventional

vessel (Pegr aux—conv ) at an efficiency (144x) 0of 95% [154] is represented as follows:

Peff,Aux—conv = Pnom—Aux,conv *Naux * LFAux,i (36)

Hence, the total power required (Piorqi—cony) for the conventional ship, considering all three

modes of operation, is calculated as follows:

Pcru—conv = Pnom—ME,conv *NmE * LFME,cru + Pnom—Aux,conv *Naux * LFAux,cru (37)

Pman—conv = Pnom—ME,conv *NMmE * LFME,man + Pnom—Aux,conv *Naux (38)

* LF, Aux,man

Pidle—conv = Pnom—Aux,conv *Naux * LFAux,idle (39)

Ptotal—conv = Pcru—conv + Pman—conv + Pidle—conv (40)

where P, _cony 15 the cruising power for the conventional ship (kW), LFyg cry and LFgyy oy are
the load factors for main and auxiliary engine at cruising state (%), Pyan—cony 1S the maneuvering

power for the conventional ship (kW), LFyg man and LF4yy man are the load factor for the main
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and auxiliary engines at maneuvering state (%), Pigie—conv 15 the idle power for conventional ship

(kW), and LF4y,x iq1e 1s the load factor of auxiliary engine at idle state.

Similarly, the total energy consumption by the conventional vessel (E¢ytq1—cony) 1N kilowatt-hours
(kWh) is estimated based on the ship's load and speed. Thus, the relationship between loads and

the three states of operation in real-time is expressed as follows:

(41)

NDman,conv

Etotal—conv = (Pidle—conv * idle,conv) + Pman—conv * ( ) + Pcru—conv

% <NDCT‘U.S,COTLU>
]/CT"LLS,COTL‘U

where Vs cony denotes the instantaneous cruising speed for the conventional ferry (knots),

Vman,conv

NDan,conv 18 the nautical distance from berth during maneuvering phase (NM), ND s conv
denotes the length of navigation route per one-way trip during cruising (NM), and Vipan conv

represents the instantaneous maneuvering speed for the conventional vessel (knots).

In the case of fully autonomous ships, we assume that they share the same dimensions and
navigation routes as conventional ships to prevent excessive fuel consumption. Moreover, the
absence of a ship crew results in a reduction in the required auxiliary power [155], as well as the
elimination of crew living quarters and certain applicable auxiliary systems, which affects the
vessel's displacement, decreases the space consumption [156] and required propulsion power [46].
For instance, studies have shown that a fully autonomous container vessel can achieve energy
savings of up to 74.5% compared to a conventional one, primarily due to the elimination of
facilities and equipment used by sailors [46]. The vessels utilized in our research are short-sea
vessels, which return to port after each trip, as opposed to container ships that undertake long
voyages. However, the assumptions in this study are derived from findings concerning fully
autonomous container vessels, owing to the limited data available on energy consumption for fully
autonomous tugboats and high-speed ferries. However, in our research, although there is no ship
crew, passengers are still onboard. Therefore, we assume that the total power required by
autonomous vessels is 40% lower than their respective conventional ships [145]. By substituting

these assumptions into Equation (40) and Equation (41), it follows that the total power
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(Protai—auto) and energy consumption (E¢prai—aquto) for fully autonomous vessels are 40% lower
than Pyorq1—cony and Eoral—conv, respectively. Additionally, we anticipate a 30% increase in energy
and power requirements to accommodate potential expansions and uncertainties in loads in the
near future. Consequently, we have substituted these values into the subsequent equations in

subsections 4.2.3 — 4.2.5 for fully autonomous vessels.

4.2.3. Proposed Alternative Fuels for the Marine Vessels

The use of fuel by marine engines is vital in the propulsion of ships and for providing power to
other fitted systems on board. To reduce the rate of GHG emissions, the IMO has proposed
enforcing stringent rules and regulations on ships’ emissions. As a result, the IMO has teamed up
with the Global Industry Alliance in support of low-carbon shipping in the marine industry [132],
[157] via the use of alternative low- and zero-carbon fuels [158]. The alternative marine fuels
include conventional fuels (marine diesel oil (MDO), heavy fuel oil (HFO), marine gas oil (MGO),
biofuel (B20), methane (or liquefied natural gas (LNG)), hydrogen, methanol, battery-electric,
ethanol, dimethyl ether (DME), liquefied petroleum gas (LPG), ethane, and ammonia) [94], [159].
The applications of the aforementioned fuels are not limited to environmental impacts but also
economic criteria, fuel properties, effects on the propulsion system, and safety handling criteria
[160], just to mention a few. However, for this research, only the first six alternative marine fuels

will be considered due to their maturity regarding regulatory readiness levels.

4.2.3.1. Diesel - Propelled Marine Vessel

Formally, marine diesel fuel encompasses any type of diesel used in seagoing vessels. The three
primary marine fuels are Marine Diesel Oil (MDO), Heavy Fuel Oil (HFO), and Marine Gas Oil
(MGO) distinguished by their sulfur contents. For instance, MDO, readily available, is composed
of various distillate blends with a minor inclusion of HFO. In addition, it possesses a slightly
greater density and exhibits a lower cetane value as compared to MGO [152]. Similarly, HFO,
with a higher sulfur content, requires the use of approved exhaust gas cleaning systems (or
scrubbers) [161] when used onboard vessels. Likewise, MGO, comprising a blend of distillates,

features a lower sulfur content compared to HFO and MDO [161]-[163].
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Additionally, most existing marine engines and fuel-burning equipment are specifically
engineered for the use of HFO, MDO, or MGO [161]. The total fuel consumption of the marine

engine is determined by its overall energy usage, which is expressed as follows:

FCaiesel—conv = Etotal—conv * SFCaiesel (42)
where FCrytqi—cony denotes the fuel consumption per trip (kg), and SFCg;e5e; 1S the specific fuel
consumption (kg/kWh). The SFCj.se; for slow-speed diesel vessels and high -speed diesel vessels
are 0.165 kg/kWh and 0.210 kg/kWh respectively [164], [165]. Likewise, the annual mass flow

rate of the total fuel consumption (11.,,,,) (kg/h) is estimated as follows:

n=N 43
. _ FCdiesel—conv ( )
Myiesel—conv =

1 (Tcrus,conv + Tman,conv + Tidle,conv)
=N

n

Sl

FCdiesel—conv

Ttotal,conv
n=1

where N is the total number of trips in a year (unitless), T¢yys cony 18 the cruising time (hrs.), and

Tiotqr denotes the total hours in the context of the ships' operational profiles for the entire year

(hrs.).

These fuels use the preexisting propulsions and fuel systems, therefore, the total investment costs
(ICi conv) and the total operating cost of fuel (CFiota)—i,cony) for the MDO, HFO, and MGO are

determined as follows:

ICdiesel—conv = Cin * Ptotal—conv (44)

CFiotal-iconv = Ci—fuet * FCaiesel—conv (45)
where C; denotes the investment cost which ranges from 240 - 460 USD/kW [166], C;_fy¢; 1s the
cost of fuel (USD/kg), and i denotes the type of fuel. The cost of MDO, HFO, and MGO are 3.09
USD/kg [167], 0.511 USD/kg [168] and 0.956 USD/kg [169] respectively. In addition, the
maintenance cost of the diesel-propelled conventional marine vessel is 50 USD/kW [170].
Nevertheless, the maintenance cost for the fully autonomous vessel exhibits a 15% increment,

attributed to the elevated necessity of skilled ship crew members required for the maintenance of
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the ship while at berth [145]. This percentage increase is applied to the fully autonomous ship

powered by the other alternative fuels.

4.2.3.2. Hydrogen- Propelled Marine Vessel

In terms of propulsion, the use of the above fuels in the preceding engines are feasible, with the
exception of hydrogen, which can only be applied to four-stroke engines (shorter voyage) due to
ample hydrogen storage space requirements and safe handling of the generated hydrogen [116].
The vessel’s propulsion system is motor-driven via electrical power [110]. We proposed proton
exchange membrane fuel cells (PEMFC) over the solid oxide fuel cells (SOFC) due to their quicker
start-up time, strong dynamic responsiveness, operation at low temperature, and excellent power

density [171].

The hydrogen fuel use in the PEMFC is produced through two different methods. The first option
is via electrolysis of water using renewable energy sources (Hz - Ren) [172], as a result the
generated hydrogen is considered low or net-zero emission [94]. In addition, the second method
is from fossil fuels (Hz - F). This approach generates a significant amount of CO; as a byproduct
during its production. In contrast, the utilization of hydrogen in combustion or fuel cells does not
result in CO2 emissions [173]. Thus, the required mass of hydrogen consumption by the PEMFC
(FChyd—conv) (kg) in both options is determined as follows [174]:

FC _ Etotal—conv (46)
hyd—conv — Nre * LHV

where 1 is the fuel cell efficiency during beginning of life (51%), and LHV denotes the lower
heating value of hydrogen (120,000 KJ/kg). In addition, the annual mass flow rate of the total
hydrogen fuel consumption (Mpyq—cony) (kg/h), is estimated by substituting FCpyg_cony into
Equation (43). We presume that the PEMFC power system will engage in cold-ironing while at
berth. This is to aid in the warming of the system until it reaches its designated operating

temperature and for the production of electric power. The power demand by fuel cell components

from shore power (Ppyd shore-conv) (KW) is determined as follows:

Phyd,shore—conv = 1.30 * Pigie—conv (47)
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Therefore, the annual cost of cold-ironing is Phyg shore-conv times the idling time and the shore

power charging fees (SC.os ) of 0.20USD/kWh [175]. In addition, the total investment cost

(I Chyd—conv) of PEMFC and its accessories is determined as follows:

IChyd-conv = Cin—rc * Payd—conv T Cace * Phyd shore—conv (48)
where C;,_pc 1s the initial investment cost for PEMFC, which is in the range of 730 — 2,860
USD/kW [166], and C,.. represents the cost of accessories, which consist of gas supply system
and type IV 700 bar hydrogen storage tanks - and ranges from 576-868 USD/kW [166]. Likewise
the replacement cost is 40% of the total component cost [176], and annual maintenance cost is 6%
of the total capital cost per lifetime [177]. The cost of green hydrogen fuel (option 1) and blue
hydrogen fuel are 4.5-12 USD/kg and 1.8 — 4.7 USD/kg respectively [178]. Thus, total cost for the

hydrogen fuel (CFuyg,conyv) is determined as similar by substituting the cost of fuel and FCpyq—cony

into Equation (45).

4.2.3.3. Battery or Electric - Propelled Marine Vessel

The battery electric systems onboard vessels are operated in three different ways: as hybrid, plug-
in hybrid, and fully electric [94]. For this research, we focus on fully electric systems, where the
battery bank stores the necessary energy for propulsion and to satisfy the auxiliary loads. The
advantage of electrifying ships is the elimination of GHG emissions [94]. Additionally, lithium-
ion (Li-ion) batteries are considered for this research over the lead- acid batteries [91], nickel metal
hybrid batteries [92], silver—zinc batteries, and open water-powered batteries due to their optimal

chemical composition or battery chemistry [94], [179].

To avoid excessive battery weight onboard, the battery capacity (B.qp-cony) (kWh) required by
the fully battery-electric vessel is determined based on round trips using Equation (45). In addition,
to prevent power failure, the battery capacity is increased by a power factor (P) of 20 % for the
conventional vessel and 40% for the fully autonomous vessel to provide onboard power supply for

a round trip.
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Pr*Etotal-conv*2 (49)

NLi-ion*NMmotor*DOD*Ninyerter

Bcap—conv =

where 717;;_ion 18 the efficiency of the Lithium-ion battery (100%) [180], Nnmotor 18 the efficiency
of the DC motor (80%) [181], DOD denotes the battery depth of discharge (80%) [181], and
Ninverter 18 the inverter efficiency (90%) [182]. Thus Equation (41) is substituted into Equation
(50), but the average speeds, average nautical distances, and average duration are used. The
investment cost (Bjnpest—cony) and cost for the shore power connection (BC,yg5¢—cony) for the

battery bank are determined as follows:

Binvest—conv = Ninst * (Bcap—conv * Bcost + Ptotal—conv * EMcost) (50)

BCCOSL'—COTLU = Bcap—conv * SCCOSt (51)

where Njj¢¢ 1 the number of times to install the battery bank during its lifetime (unitless), B¢

is the initial cost of the Li-ion marine battery which ranges from 500 — 1000 USD/kWh [166], and
EM_,s: 1S the cost of the electric motor which we assumed it to be equal to 250 USD/ kW. Also,
we assumed that the battery bank needs replacement every 4-5 years. In addition, the annual cost
of shore power connection is estimated by multiplying Equation (51) by the total number of

voyages in a year.

4.2.3.4. B20 - Propelled Marine Vessel

Biodiesel is a renewable and non-toxic fuel- that offers a cleaner combustion option, serving as a
noteworthy alternative to conventional diesel. Its combustion results in diminished air emissions,
encompassing reductions in soot, smoke, carbon monoxide, and GHG emissions [183], rendering

it highly environmentally friendly.
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In this research, we explore a biodiesel diesel blend, denoted as B20. This composite fuel consists
of 20% biodiesel and 80% conventional diesel [184]. The adoption of B20 in lieu of traditional

diesel enables ships - to achieve a potential reduction of up to 20% in GHG emissions [183].
The total B20 fuel consumption (FCgyo—_cony) by the conventional vessel is determined as follows:

FCBZO—conv = Etotal—conv * (0-20 * SFCbiodiesel + 0.80 = SFCdiesel) (52)

where specific fuel consumption for biodiesel (SFCpipgieser) 18 0.74 kg/kWh [185], [186].
Similarly, the mass flow rate of the total fuel consumption for B20 (mgy¢_cony) 1S estimated by

dividing the annual FCgy¢-cony bY Ttotar,conv-

The total investment cost of replacing the existing diesel power system with B20 power system is
calculated by multiplying the initial investment cost of B20 system which ranges from 240 to 460
USD/kW [166], by the total power (Piptai—conv)- Similarly, the total cost of operating the B20 fuel
is estimated by multiplying the cost of B20 fuel, which is 3.980 USD/ kg [187], by the total fuel
consumption (FCgyiesei—cony )- The maintenance cost for a ship powered by B20 is comparable to

that of a vessel powered by diesel.

4.2.3.5. Liquefied Natural Gas (LNG) - Propelled Marine

Vessel

Liquefied Natural Gas (LNQG) is regarded as a feasible substitute fuel for diverse classes of ships,
encompassing those involved in deep-sea, short-sea, and inland navigation. The evaluation of
various technologies has raised significant apprehensions regarding the potential shift of ships to
LNG as the primary fuel source in recent times [188]. Furthermore, the current bunkering
strategies implemented by shipping companies have a pivotal influence on the decision-making

process between LNG and low-sulfur fuel [189].

The fuel consumption of the LNG marine engine encompasses not just the direct utilization of
LNG but also incorporates the consumption of pilot fuel [188]. The purpose of the pilot fuel is to

initiate the combustion process and to ensure a dependable source of ignition [190]. This dual-fuel
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approach enables the vessel to curb the emission of pollutants. The mixing proportion of LNG and

pilot fuel in a dual-fuel system is 98% and 2%, respectively [191] .
The total fuel consumption by LNG-propelled ship is calculated as follows:

FCLNG—conv = Etotal—conv * (0-98 * SFCLNG + 0.02 « SFCpilotfuel) (53)

where the SFCpng and SFCpjio fuer Tepresent specific fuel consumption for LNG (0.15 kg/kWh)
and pilot fuel (0.02 kg/kWh) [188] respectively.

The overall investment cost for the replacing the existing diesel power system with an LNG power
system is determined by multiplying the initial investment cost of 400USD/kW [166] by
Piotai—cony- Likewise, the total operating cost of LNG fuel is estimated by multiplying the cost of
LNG fuel, which is 1.560 USD/kg [168], by the total fuel consumption (FCjyng—conv)- The
maintenance cost for the LNG-propelled ship is 0.005 USD/kWh [192] .

4.2.3.6. Methanol - Propelled Marine Vessel

Currently, methanol (MeOH) stands out as a prospective alternative to traditional fuels in maritime
transport. Notably, methanol exhibits a heat of vaporization nearly four times higher than that of
diesel fuel. This characteristic implies that methanol requires more heat energy for vaporization,
leading to a charge cooling effect and a subsequent reduction in in cylinder temperature.
Furthermore, the charge cooling effect contributes to a reduction in NOx emissions, attributable to

its lower combustion temperature compared to diesel fuel [193], [194].

In this study, a combustion strategy involving the use of methanol—diesel is employed for ships
powered by methanol. The primary fuel comprises 98% methanol, supplemented by 2% pilot fuel

added to the methanol—-air mixture within the cylinder to initiate ignition [54].

The calculation of fuel consumption for the ship powered by methanol (FCpetn—cony) 1S as

follows:

FCmeth—conv = Etotal—conv * (0-98 * SFCmeth + 0.02 * SFCpilotfuel) (54)
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where SFCp et 18 the specific fuel consumption of methanol which is equal to 0.48964 kg/kWh
[195].

The total investment cost for replacing the current diesel power system with a new methanol power
system is computed by multiplying the initial investment cost of 265-505 USD/kW [166], by the
total converted power (Pyorai—conv)- Similarly, the total operational cost of methanol is estimated
by multiplying the cost, set at 0.520 USD/kg [168], by the total fuel consumption (FCpeth—conv)-
The maintenance cost for the ship propelled by methanol is equivalent to that of the ship powered

by diesel.

4.2.4. Environmental Impact and Environmental Cost

Assessments

The marine vessels used for this case study are HSPF and a tugboat, which are known to cause a
very high rate of emissions due to their speed and variable modes of transportation [138]
Additionally, the internal combustion of marine fuels emits numerous of pollutants into the
atmosphere. Therefore, this section presents a detailed discussion on the mass emission rate, global

warming potential, environmental impact and damage cost.

4.2.4.1. Mass Emission Rate

The mass emission rate is defined as the discharge rate of a pollutant, denoted by its weight per
unit of time [196]. Similarly, the emissions factor refers to the quantity of pollutants emitted into
the atmosphere relative to a specific activity [197]-[199]. The main pollutants associated with
marine alternative fuels include carbon monoxide (CO), CO», sulfur oxides (SOx), nitrogen oxide
(NOx), nitrous oxide (N20), particulate matter (PM) or black carbon, and unburned hydrocarbons
(UHC) or methane (CH4) [200], [201]. The mass emission rate by each pollutant for the alternative

fuels is expressed as follows:
Thij,conv = Meony * EF)' (55)
where M cony is the mass emission rate of each pollutant (kg/h), i is the type of alternative marine

fuel, j denotes the type of pollutant from marine fuel (unitless), and EF; denotes the emission
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factor (g/kg-fuel), which is tabulated in Table 20. In addition, the Total Mass Emission Rate
(TMER) of pollutants from a particular alternative fuel is calculated by aggregating the individual

mass emission rates of the pollutants emitted by that specific alternative fuel.

Table 20: Emission factors (EF) for marine alternative fuels (g/kg fuel)

Alternative

Fuels CO2 CO N20 NOx SOx PM CH4

B20 1202] 2.52 0.15 61.21 2.64 1.02 0.06

(Biofuel) ) [184] [202] [202] [202] [202] [202]

2.87 0.18 78.61 50.83 7.53 0.05

HFO 3114 [201] [201] [201] [201] [201] [201] [201]
Hydrogen - [202] - [202] - [203] - [202] - [202] - [202] | - [203]

3.57 0.10 10.95 0.03 0.18 51.6

LNG 2753 [201] [201] [201] [201] [201] [201] [202]
Methanol 1375 [202] -[201] | - [202] 8 [202] - [201] - [202] | - [202]

0.70 0.18' 51.23 2.74! 0.97! 0.05!

MGO 3206 [204] [204] [201] [204] [201] [201] [201]

2.54 0.18 57.62 2.74 0.97 0.05

MDO 3206 [201] [201] [201] [201] [201] [201] [201]

1. The designation "MDO" in the 4" IMO GHG study refers to the emission factors (EFs) for both MGO and MDO.
Consequently, some of the EFs assigned to MDO are also attributed to MGO.

The table mentioned above presents the emission factors (EFs) for all alternative fuels under
investigation, excluding electricity. Additionally, the EFs for B20 are sourced from references
[184], [202] while hydrogen is considered to have zero emissions according to references [202]
[203]. The EFs for HFO and MDO are derived exclusively from the Fourth IMO GHG report
[201], whereas the EFs for LNG and methanol are obtained from both [201] [202] . Furthermore,
the values for MGO are sourced from [201] [204] . In addition, the total mass emission rate
(TMER) of pollutants from a particular alternative fuel is calculated by aggregating the individual

mass emission rates of the pollutants emitted by that specific alternative fuel.
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4.2.4.2. Global Warming Potential (GWP)

The global warming potential a measure of the amount of energy a single ton of gas will consume

over a specific period compared to one ton of CO». The greater the GWP, the more a particular

gas contributes to heating the earth in comparison to CO> over that period [205]. Additionally,

the typical time horizon used for regulatory the GWP assessments is 100 years [206], [207].

Although NOx and SOx are not classified as greenhouse gases (GHGs), they can exert indirect

effects on the climate. Their primary impacts are localized, influencing air quality and human

health; however, they may also have broader environmental repercussions. Consequently, they

were included in the GWP calculations; thus, the total GWP of emissions (GW P;; ¢ony) indicated

by the GWP index (%g COz eqv.) is expressed as follows [208]:

TGWPij,conv =

mij,conv * GWPj

(56)

where GWP; denotes the GWP value for each pollutant (unitless) as shown in Table 21.

Table 21 Global warming potentials values for greenhouse gases, environmental impact factor,

and environmental costs of emissions.

Pollutants Global warning Environmental Impact Environmental Cost of

Potential (GWP) Value factor, b (mPts/kg) Emission, C (USD/kg) 2
(unitless)

COz 1[205]-[209] 5.451208], [210], [211] 0.128 [208], [210]

CcO 1 [208] 8.36 [208], [210], [211] 0.201 [208], [210]

N20O 273 [205] 163.8![212] 2.66 [211]

NOx 310 [208] 2,749.36 [208] [213] 5.912 [208]

SOx 23,900 [208] 1,499.37 [208] 9.670 [208]

PM 460 [214] 240.00 [215] 40.40 [216]

CH4 28 [209]-[217] 114.62 [208] 2.78 [208], [210]

1 Converted from KG/T] to mPts/kg. 2. These values have been converted to USD.

The wvalues for global warming potential (GWP), environmental impact factor (b), and

environmental cost of each emission (C) are presented in Table 21. However, the cost values (C)
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are originally reported in GBP/kg, and we have converted them to USD/kg to ensure consistency

with the context of our research conducted in North America.

4.2.4.3. Environmental Impact and Damage Cost

The environmental impact (EI) is defined as the change to the environment resulting from a direct
activity, which can have either adverse or beneficial consequences for the inhabitants of an

ecosystem [218]. The total EI (TEI) for the marine engine emissions can be expressed as:

n=i (57)
TEIij,conv = mij,conv * bj

n=1
where TEljjcony signifies the total environmental impact (mPts/h) and b; denotes the

environmental impact factor (mPts/kg) in Table 21.

In addition, the environmental damage cost (EDC) is defined as the cost of emissions released into
the atmosphere by the combustion of the marine alternative fuels [219]. Thus, the total EDC can
be determined as follows:

n=1 (58)

TEDCij,conv = mij,conv * C]

n=1
where TEDCjj cony denotes the total environmental damage cost (US$/h) and C; denotes the

environmental cost of emission (US$/kg) in Table 21.

4.2.5. Total Cost Assessment

The total cost assessment is the process of incorporating environmental cost into the cost analysis
for a long term [220]. The cost analysis comprises of the capital cost, operating cost, voyage cost,

and net present value, which are discussed in detail in the subsections.

4.2.5.1. Capital Cost

Capital cost refers to the expense associated with the ship. Additionally, the capital cost for the
conventional ferry varies based on the marine vessel’s specific particular and conditions. The
elimination of onboard ship crew, hoteling systems, and certain deckhouses for the fully
autonomous ship directly affects the capital cost. Nevertheless, the implementation of the

advanced sensors and control systems for onboard navigation and lookout systems at the shore
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control center (SCC) leads to an increase in capital costs due to redundancy in these systems,

resulting in an overall increase of 10% [170].

4.2.5.2. Voyage Cost

The voyage cost consists of the fuel cost for the engines, the environmental damage cost, and the
port call costs. However, the port call cost is assumed to be 20% higher for the fully autonomous
marine vessels due to the implementation of new framework and assistance from the SCC crew.

Therefore, the annual voyage cost (VCannyal cony) for the ship’s lifetime is determined as follows:

VCannual,conv = (TEDCij,conv * Ttotal,conv + Dtotal—days,conv * PCtotal—i,conv (59)

+ CFtotal—i,conv)

where Tiotair,cony 18 the total hours of operation per year (hrs.), Diotai-aays,conv 18 the total days
of voyage in a year (days), PCiotal—iconv 15 the port cost (124 USD/day)[221], and FCiotal-iconv

is the annual fuel cost.

4.2.5.3. Net Present Value (NPV)

The net present value is the difference between the present cash inflows and outflows over a given
period, at a discount rate of today’s value. The cashflow comprises the investment cost, operating
cost, voyage cost, and cost of revenue. Although the vessels chosen for this research have been in
operation for more than a decade, we assume their respective engines will be replaced after 25
years, as a well-maintained marine engines can last for approximately 40 years [222]. Thus, the
NPV for conventional vessels with a lifetime (t) of 25 years at a discount rate (r) of 5.50% [223]

1s determined as follows:

25
B [cashflow]; (60)
NPVeony = (;_1 < [1+7]t >> — ICicony
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where ICj ;on, represents the investment cost of the conventional vessel for the different marine
fuels as specified in subsections 4.2.3.1 to 4.2.3.3. However, the investment cost for the fully
autonomous ships (ICj q,¢0) 1s expected to be 30% higher than IC; .oy, due to the newly fitted

advanced sensors and control systems [170].

4.3. Results

This study investigates KPIs for marine alternative fuels across both conventional and autonomous
vessels, including total mass emission rate (TMER), total global warming potential (TGWP), total
environmental impact (TEI), total environmental damage cost (TEDC), and net present value
(NPV), as illustrated in Figure 19. The findings reveal that alternative fuels, such as H2-Ren, H2-
F, and Elec, exhibit zero environmental emissions and costs during ship operations. In contrast,
traditional fuels like HFO, MDO, MGO, and MeOH demonstrate the highest TMER due to their
pollutant constituents and mass flow rates, with B20 and LNG showing comparatively lower
emissions. To illustrate, the TMER associated with traditional fuels is significantly impacted by
their constituent pollutants and mass flow rates, whereas B20 and LNG exhibit a contrasting trend
across different vessel types. Additionally, HFO ranks highest in TGWP, indicating substantial
contributions to global warming, while LNG and MeOH have the lowest potential, suggesting a
more favorable environmental profile. Regarding TEI, B20 has the highest TEI value, primarily
due to incomplete combustion and increased NOx emissions, whereas LNG shows the lowest TEI
value, indicating a lesser overall environmental impact. In terms of TEDC, HFO exhibits the
highest TEDC, attributable to the environmental damage caused by SOx emissions, while LNG
presents the lowest TEDC, showcasing its advantages in terms of environmental costs. All
proposed marine fuels demonstrate viable economic values (NPVs), with LNG achieving the
highest NPV owing to its fuel efficiency, lower capital costs, and significant environmental

benefits, including reduced emissions of SOx, PM, NOx, and TGWP.

Moreover, the analysis indicates that alternative marine fuels for autonomous vessels yield better
environmental and economic outcomes compared to conventional vessels. This improvement is
primarily due to reductions in fuel consumption, energy usage, operating costs, and the overall

environmental footprint. A comparative analysis based on vessel types reveals that alternative
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marine fuels for high-speed passenger ferries (HSPF) achieve lower emissions, benefiting from
high operational speeds and engine efficiency. In contrast, tugboats emit more pollutants despite
shorter navigation routes due to their lower operating speeds, continuous operation, and port
activities. However, alternative fuels for tugboats exhibit higher NPV values than those for HSPF,
a trend attributed to greater utilization rates, stable revenue streams, lower operating costs per unit

of time or distance traveled and reduced initial capital investments.

In summary, the data presented in Figure 19 underscores the significant differences in
environmental impact and economic viability among various marine fuels. By illustrating these
KPIs, the figure serves to enhance understanding of the advantages and challenges associated with
alternative fuels in the marine sector, particularly in relation to both conventional and autonomous

vessels.

4.3.1. Sensitivity Analysis

In this study, a sensitivity analysis is conducted to examine the critical technical and economic
input variables with respect to the NPV of alternative marine fuels for both conventional and fully
autonomous vessels. The input parameters considered for the analysis include rate, fuel costs,
emission costs, vessel speed, load factor, and nautical miles (or navigation distance). These input
parameters are systematically adjusted within a range from —50% to +50% with increments of
10%. The outcomes of the sensitivity analyses for each vessel are depicted in Figure 20 through
Figure 23. Specifically, Figure 20 illustrates the sensitivity analysis for the conventional high-
speed passenger ferry (HSPF), while Figure 21 focuses on the sensitivity analysis for the fully
autonomous HSPF. Figure 22 depicts the sensitivity analysis for the conventional tugboat, and
finally, Figure 23 presents the sensitivity analysis for the fully autonomous tugboat. It can be

inferred that the figures from the sensitivity analyses demonstrate a consistent trend.

The findings reveal that interest rate variation has the most significant impact on NPV values
compared to the other five input parameters. Lowering the rate increases NPV by raising the
present value of future cash flows, whereas increasing the rate decreases NPV. LNG consistently
achieves the highest NPV across all vessel types while Elec and B20 exhibit the lowest NPV for
conventional and fully autonomous HSPFs, respectively. Similarly, B20 has the lowest NPV for

both conventional and fully autonomous tugboats.
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Figure 19: Results of the KPIs for the conventional and fully autonomous ships: HSPFs and

tugboats
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Following interest rates, load factor variation emerges as the second most critical parameter. A
lower load factor results in higher NPV due to reduced operational and environmental costs per
unit of distance traveled; while a higher load factor decreases NPV. Again, LNG records the
highest NPV for all vessels, while Elec and B20 have the lowest NPV for conventional and fully
autonomous HSPFs, respectively. Also, it shows the lowest NPV for both conventional and fully

autonomous tugboats.

Fuel cost variation is the third most significant input parameter with lower NPV values. Lower
fuel costs lead to higher NPV due to reduced operational expenses per unit of distance traveled,
while higher fuel costs have the opposite effect. LNG maintains the highest NPV for all ships,
while Elec and B20 present the lowest NPV for conventional and fully autonomous HSPFs
respectively. Similarly, B20 records the lowest NPV for both conventional and fully autonomous

tugboats.

Emission cost variation is the fourth most significant input parameter with low NPV values. Lower
emission costs increase profitability due to reduced operational and environmental expenses, while
higher emission costs have the opposite effect. LNG attains the highest NPV for all ships, while
B20 records the lowest NPV.

Nautical miles variation is ranked fifth, with shorter distances leading to reduced fuel consumption,
emissions, and associated costs, resulting in higher NPV values. However, longer distances have
the opposite effect. LNG records the highest NPV for all ships. Elec and B20 have the lowest NPV
for conventional and fully autonomous HSPFs, respectively. B20 also records the lowest NPV for

both conventional and fully autonomous tugboats.

Lastly, speed variation is identified as the least significant parameter, recording the lowest NPV
values among all parameters. Reducing ship speed leads to extended operational times, increased
emissions, higher fuel and emission costs per unit of distance traveled, which impacts profitability
and reduces NPV. Conversely, increasing ship speed results in the opposite outcome. LNG
achieves the highest NPV for all ships. Elec has the lowest NPV for both conventional and fully
autonomous HSPFs. Similarly, B20 records the lowest NPV for both conventional and fully

autonomous tugboats.
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In summary, LNG is determined to be the optimal choice for the four proposed vessels in this
study. Autonomous vessels consistently achieved the best results in all scenarios, supporting the
argument that implementing fully autonomous vessels would not only reduce pollutant emissions
but also increase both profitability and potential revenue. Consequently, the subsequent section
focuses exclusively on LNG-fueled vessels for the proposed fully autonomous HSPF and tugboat,

using the same input parameters simultaneously to examine their respective impacts on NPV.
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Figure 20: Sensitivity analysis for conventional HSPF: (a). HFO, (b). MDO, (c). MGO, (d). H2 Ren, (e). H2-F, (f). Elec (g). B20 (h). LNG (i).
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4.3.2. Stochastic Analysis

This study employs stochastic analysis to ascertain the NPV of LNG-powered fully autonomous
vessels, utilizing probability and random sampling techniques to assess performance and economic
outcomes amidst uncertainty. Each input parameter is varied between a lower bound of -50% and
an upper bound of +50% of its base value, with these variations applied simultaneously and

uniformly across 1,000 model runs.

Figure 24 presents the results of the tornado analysis and cumulative distribution function (CDF)
for both the fully autonomous HSPF and tugboat. In the tornado analysis, which ranks uncertain
input parameters by their impact, the rate emerges as the most critical factor affecting NPV
estimates, suggesting that improving economic rate accuracy and reducing uncertainty could
enhance these estimates. The load factor follows as the next crucial parameter, highlighting the
significance of efficient load factor management in controlling operational costs. Therefore,
enhancing energy efficiency through optimized hull designs and advanced propulsion systems is
crucial for enhancing economic performance. The emission cost ranks third, indicating significant
costs associated with regulatory compliance, which can fluctuate based on changes in regulations
and fuel quality, underscoring the necessity for emission reduction technologies. For the fully
autonomous HSPF, speed and nautical distance are significant factors, while fuel cost has the least
impact on NPV variability. In contrast, for the fully autonomous tugboat, fuel cost is significant,
followed by speed and nautical distance. These findings stress the importance of strategic rate
setting, energy-efficient technologies, compliance with IMO regulations, and optimized

operational planning for financial success.

The stochastic analysis illustrates the range of potential financial outcomes for LNG-powered fully
autonomous vessels through the CDF of the NPV. At the 5th percentile, NPV values for both
vessels are zero, suggesting the possibility of no financial gain or a potential loss in worst-case
scenarios, emphasizing the need for effective risk management. At the 95th percentile, NPV for
the fully autonomous HSPF and tugboat is approximately 35 billion USD and 4 billion USD,
respectively, indicating substantial profitability under favorable conditions. This extensive range
illustrates the considerable uncertainty and variation associated with critical input parameters.
These observations emphasize the necessity for meticulous management and optimization of these

factors to enhance economic feasibility and address risks. The outcomes provide valuable
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perspectives for guiding strategic decisions, validating investments, and ensuring compliance with

regulatory and environmental objectives in the marine sector.

In brief, this stochastic analysis reveals critical insights into the net present value (NPV) of LNG-
powered fully autonomous vessels, identifying interest rate, load factor, and emission costs as key
determinants. The analysis underscores the potential for zero NPVs in adverse scenarios,
highlighting the importance of effective risk management. Conversely, favorable conditions could
yield substantial profitability, with NPVs reaching approximately 35 billion USD for high-speed
passenger ferries and 4 billion USD for tugboats. These findings emphasize the need for strategic

decision-making and operational optimization to ensure economic viability in the marine sector.
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4.4. Discussion

The pursuit of improved energy efficiency and reduced emissions in maritime operations is
increasingly vital as the industry grapples with sustainability challenges. This study enhances the
understanding of alternative marine fuels by conducting a comprehensive analysis using key
performance indicators (KPIs), such as total mass emission rate (TMER) and net present value
(NPV). This discussion contextualizes our findings within the existing literature, highlighting the

contributions and unique insights of our research.

The findings align with previous studies, such as those by Chen and Yang [137], which utilized
automatic identification system (AIS) data for emission estimations. Our approach extends this
methodology by integrating AIS data to evaluate both environmental and economic impacts across
conventional and autonomous vessels, offering a more nuanced understanding of real-time
operational dynamics. This integration addresses a noted gap in prior research that often relied on

vessel-specific data, potentially limiting the applicability of findings.

Furthermore, our results corroborate the work of Aarskog et al. [138] , which highlighted the
economic feasibility of fuel cell (FC) propulsion. Our study builds on this by showcasing the zero
emissions of hydrogen and electric options, contrasting starkly with traditional fuels like HFO and
MDO, which exhibited the highest TMER. This reinforces the necessity for adopting cleaner fuels

and aligns with calls for transitioning towards sustainable maritime practices.

The analysis conducted by Jafarzadeh and Schjelberg [139] regarding optimal propulsion power
utilization supports our findings on the operational efficiency of alternative fuels. Our results
indicate that high-speed passenger ferries benefit significantly from alternative fuels, achieving
lower emissions due to enhanced engine efficiency at operational speeds. This observation
diverges from previous study that identified limited benefits in hybrid or electric integration for
certain vessel types, such as ocean-going reefers, suggesting that our findings may indicate broader

applicability of alternative fuels for high-speed vessels.

Moreover, our research contributes a comprehensive mathematical model for assessing
environmental and economic impacts, a feature underexplored in existing literature. This model,
designed specifically for selected ships, offers stakeholders a practical tool for evaluating fuel

options in line with environmental policies. Our stochastic analysis further distinguishes our study,
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allowing for sensitivity assessments that have not been extensively covered in prior research. This
analysis reveals how variations in load factors and operating conditions significantly affect NPVs,

an aspect that previous studies often overlooked.

While many studies, including those by Kouzelis et al.[ 140] and Kosmas and Acciaro [141], have
focused on specific alternative fuels, our holistic approach enables a direct comparison of multiple
fuels across various vessel types and operational profiles. This comparative analysis not only
highlights the economic viability of LNG and biofuels but also underscores the necessity for

adaptive regulatory measures to promote sustainable fuel use.

In conclusion, this study provides valuable insights into the environmental and economic
assessments of alternative marine fuels, building on previous research while introducing
innovative methodologies. By addressing the simultaneous analysis of economic feasibility and
emissions for both conventional and autonomous vessels, our findings advance the discourse on
sustainable shipping solutions. The comprehensive mathematical model and stochastic analysis
presented here serve as critical tools for industry stakeholders, guiding decisions that align with
both ecological sustainability and economic performance. As the maritime sector evolves, the
adoption of alternative fuels will be essential in achieving the dual goals of reducing emissions
and enhancing energy efficiency, ultimately contributing to the global commitment to sustainable

development.
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4.5. Conclusion

This research paper presents an effective approach aimed at reducing marine pollution and costs
by determining the optimal marine alternative fuel for short-sea operating shipping vessels while
maximizing energy efficiency. Utilizing mathematical models in a Python environment, analyses
are conducted on both conventional and fully autonomous HSPFs and tugboats, employing
bottom-up approaches, analyzing ship operating phases, and utilizing the global warming potential

approach.

The study's objective is to identify the optimal marine fuel with the highest NPV and minimal
emissions that aligns with IMO regulatory standards, environmental objectives, and economic
uncertainties. The analysis integrates ships' AIS data, specifications, and port information to
determine power, energy, and fuel consumption while incorporating parameters of proposed
marine alternative fuels for environmental and cost analyses. In addition, the key performance
indicators (KPIs) are investigated for marine alternative fuels across both conventional and
autonomous vessels, including TMER, TGWP, TEIL, TEDC, and NPV. Sensitivity analyses are
conducted for each alternative fuel to validate results, and a stochastic analysis is performed on

the optimal marine fuel.

The study identifies LNG fuel as the optimal choice for the proposed vessels, with autonomous
vessels consistently yielding favorable results. Sensitivity analyses reveal the critical technical and
economic input variables that affect NPV for both conventional and autonomous vessels.
Additionally, stochastic analysis demonstrates the range of potential financial outcomes for LNG-

powered fully autonomous vessels.

Despite significant constraints due to data limitations, the study underscores the importance of
conducting further research to assess the techno-economic impacts and emissions effects of fully
autonomous vessels across different navigation routes. Overall, the findings emphasize the need
for meticulous management and optimization of critical input parameters to enhance economic
feasibility and address risks, providing valuable insights for decision-making, justifying

investments, and ensuring regulatory compliance in the marine sector.
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CHAPTERS. MODELING OF ENERGY
MANAGEMENT SYSTEM FOR FULLY
AUTONOMOUS VESSELS WITH HYBRID
RENEWABLE ENERGY SYSTEMS USING
NONLINEAR MODEL PREDICTIVE
CONTROL VIA GREY WOLF
OPTIMIZATION ALGORITHM

In this chapter, we present a multi-objective predictive energy management system (EMS) for
optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective
is to minimize fuel consumption and emissions while maximizing renewable energy usage and
pure-electric sailing durations. The EMS combines nonlinear model predictive control (NMPC)
with metaheuristic optimizers—Grey Wolf Optimization (GWO) and Genetic Algorithm (GA)—
and is benchmarked against a conventional rule-based (RB) method. The HRES architecture
comprises photovoltaic arrays, vertical-axis wind turbines (VAWTSs), diesel engines, generators,
and a battery storage system. A ship dynamics model was used to represent propulsion power
under realistic sea conditions. Simulations were conducted using real-world operational and
environmental datasets, with state prediction enhanced by an Extended Kalman Filter (EKF).
Performance is evaluated using marine-relevant indicators—fuel consumption, emissions, battery
state of charge (SOC), and emission cost—and validated using standard regression metrics. The
NMPC-GWO algorithm consistently outperformed both NMPC-GA and RB approaches,
achieving high prediction accuracy and greater energy efficiency. These results confirm the
reliability and optimization capability of predictive EMS frameworks in reducing emissions and

operational cost in autonomous maritime operations

This chapter is based on the following publication: H. Laryea and A. Schiffauerova, “Modeling of
energy management system for fully autonomous vessels with hybrid renewable energy systems
using nonlinear model predictive control via grey wolf optimization algorithm,” J. Mar. Sci. Eng.,

vol. 13, no. 7, p. 1293, 2025. [Online]. Available: https://doi.org/10.3390/imsel3071293
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5.1. Introduction

Marine shipping represents the most energy-efficient mode of freight transportation, serving as the
backbone of global trade. It is responsible for transporting 80 % of the world's goods by volume
and over 70% by value. Although not the largest consumer, the maritime sector remains heavily
dependent on fossil fuels [224], [225].The maritime industry—including container ships, bulk
carriers, cruise liners, ferries, tankers and tugboats—has an estimated annual fuel consumption of
approximately 330 million metric tons (87 billion gallons), surpassing the world’s annual jet fuel
consumption of 220 million metric tons (1.4 billion barrels). With the anticipated growth in global
trade, the overall demand for marine fuels is projected to double by 2030 [226]. While the shipping
industry is one of the lowest contributors to carbon dioxide (CO2) emissions relative to other
transportation modes, it accounts for approximately 3% of global greenhouse gas (GHG)
emissions, with CO2 comprising the vast majority of these emissions [227]. According to recent
IRENA projections, under a Business-As-Usual’ scenario, if current trends continue, marine CO:
emissions could reach approximately 0.92 Gtper year by 2050—representing a nearly 65%
increase from 2018 levels [228].

The International Maritime Organization (IMO) is actively implementing a global cap on marine
fuels to mitigate emissions from the shipping sector. Thus the 2023 IMO strategy aims for zero or
near-zero greenhouse gas (GHG) emission technologies and fuels to constitute at least 5%, with a
target of 10%, of the energy used in international shipping by 2030 [11].This has led to increased
interest in enhancing fuel efficiency and reducing the environmental impact of marine vessels.
Utilizing high-efficiency power sources, such as fuel cells, along with renewable energy sources
(RES) like wind and solar energy, offers promising solutions [76], [77], [229]. Moreover, the
advent of maritime autonomous surface ships (MASS) positively influences environmental
performance. In fully autonomous fleets the absence of onboard crew reduces energy consumption
and pollution. [230], [231]. For instance, a fully autonomous container vessel can achieve a 74.5%
reduction in energy usage compared to conventional vessels, primarily due to the removal of crew
facilities. While such savings are specific to container ships, the example illustrates the broader
potential of autonomous operation to improve energy efficiency in marine applications.
Consequently, integrating autonomous MASS with renewable energy sources represents a viable

strategy for decreasing GHG emissions in the maritime sector [48], [232]. Furthermore, the IMO’s
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Interim MASS Code represents a goal-based, non-mandatory regulatory framework developed to
support the safe design and operation of Maritime Autonomous Surface Ships (MASS). At
MSC 105-108, IMO Member States advanced its development and approved a roadmap to finalize
and adopt the non-mandatory MASS Code by mid-2025 [233], transitioning to a mandatory code
by 2030 with expected entry into force by 1 January 2032 [234], [235]. In parallel, the Facilitation
Committee (FAL 48) scheduled an assessment of the finalized Code in Spring 2025, including
considerations for updating the FAL Convention [236]. The inclusion of the MASS Code in this
study aligns the energy and propulsion strategy with internationally recognized standards for

autonomous vessel operation.

The optimal operation of hybrid renewable energy sources (HRES) within the shipboard power
system (SPS) of fully autonomous vessels can enhance efficiency and reduce emissions during
operations. For instance, the Mayflower Autonomous Ship—a fully autonomous, unmanned
research vessel—features a state-of-the-art hybrid propulsion system integrating solar photovoltaic
panels, wind-assist technology, and auxiliary diesel generators, demonstrating reduced reliance on
fossil fuels and lower emissions during transatlantic trials [237], [238]. While specific performance
data remain limited, such configurations illustrate the growing potential of HRES integration in
reducing the environmental footprint of autonomous marine operations. However, challenges arise
when integrating diverse energy sources, including complex power flow conditions, environmental
conditions, and the need for coordination among multiple energy resources. A reliable integrated
energy system is essential for improving fuel efficiency, reducing overall costs, and ensuring
environmental sustainability, which underscores the necessity of an effective power management
system (PMS) [229]. Measures to enhance energy efficiency on vessels include power and energy
management, vessel performance optimization [239], [240], and power system reconfiguration
[241]. The current strategies for the PMS and energy management systems (EMS) are generally
categorized into rule-based (RB) and optimization-based approaches [242]-[244].These
classifications have been widely adopted in the automotive industry, particularly for hybrid electric
vehicles [244], or in land-based applications. A comprehensive comparison of the advantages and
disadvantages of these strategies is provided by Inal et al. [70] and Peng et al. [245]. Rule-based
(RB) methods, on one hand, depend on human expertise, predefined strategies, and established
priorities [246]-[248]. These methods are easier to implement, exhibit lower computational

complexity, and are well-suited for real-time applications. In contrast, optimization-based
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approaches, such as model predictive control (MPC) [7], [249]-[252], Pontryagin’s minimum
principle, equivalent consumption minimization strategy (ECMS) [253]-[255], dynamic
programming (DP) [256], [257], optimal control theory, and mixed-integer optimization [258],
focus on real-time optimization. Additionally, various machine learning (ML) techniques [244],
[259]-[261] have been employed in energy management systems. However, ML algorithms require

extensive validation and training to ensure their real-time performance can be reliably maintained.

The existing literature predominantly focuses on optimizing energy management systems for
standalone hybrid generation systems aboard ships, primarily involving marine diesel engines,
diesel generators, and energy storage. RB and ECMS have been extensively studied as effective
methods for online implementation in hybrid propulsion and ship power distribution [248], [255].
To illustrate, Roslan et al. [248] applied the RB method to analyze an LNG hybrid tugboat system
across four configurations: fixed speed, variable speed, and with or without a battery bank. The
results indicate that the LNG-battery hybrid configuration is optimal, offering significant
reductions in CO; emissions, daily fuel costs, and improved energy efficiency compared to the
other configurations. Similarly, Chan et al. [255] implemented an intelligent power management
strategy to optimize real-time power distribution between the generator sets and batteries, aiming
to reduce fuel consumption and emissions while meeting load requirements for the tugboat. The
results demonstrated that the ECMS method achieved up to 18% fuel savings over the RB
approach, assuming constant battery efficiency. Nevertheless, most recent and advanced works
use predictive control for the power-split problem, and power plant performance. The MPC is a
more effective method for EMS strategies due to its ability to simultaneously handle multivariable
control and state with apparent real-time optimization effects [7], [239], [262]-[264]. For example,
Haseltalab et. al. [239] proposed a multi-level model predictive control approach for DC-PPS,
enabling effective power generation and stability control in constant power-loaded microgrids.
Also, Haseltalab et. al. [7], applied an MPC-based predictive energy management (PEM) system
for a hybrid autonomous tugboat, optimizing the energy split between onboard sources to enhance
fuel efficiency and performance. This approach accounts for environmental disturbances during
missions, improving the operation of all-electric autonomous vessels. Similarly, Haseltalab et. al
[262], used MPC for the control of a diesel-generator-rectifier set and voltage stabilization in a DC
Power and Propulsion Systems (DC-PPS). The control strategy is capable of handling sudden

changes in load conditions as well as adverse effects of constant power loads (CPL). Furthermore,
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some authors propose joint optimization algorithms [263], [264], to analyze EMS for the ships. To
illustrate, Wang et al. [263], implemented MPC-PSO for dynamic optimization of ship energy
efficiency, using a rolling optimization strategy to determine optimal sailing speeds based on real-
time environmental factors. The method effectively enhances energy efficiency and reduces CO»
emissions for the cruise ship under varying weather conditions. Similarly, Xie et al. [264],
designed a power management system (PMS) for Shipboard Power Systems (SPS) using MPC -
ECMS to handle high-frequency propulsion loads from sea wave conditions, efficiently
distributing power between diesel generators and hybrid energy storage systems (HESSs) to
minimize fuel consumption for an electrical ship. Whereas the MPC is widely recognized and
demonstrates predictable performance, adaptive model predictive control (AMPC) offers greater
flexibility and adaptability to real-time changes in system dynamics, resulting in improved
performance in uncertain or time-varying conditions [265], [266]. For example, Hou et al. [265]
used integrated power generation, electric motors, and hybrid energy storage control using AMPC
to estimate and predict propulsion load torque across various sea states, improving system
efficiency, enhancing reliability, and reducing mechanical wear. Similarly, Hou et al. [266] applied
AMPC on both simulations and experiments to optimize power distribution between the battery
and ultra capacitor (UC), aiming to mitigate load fluctuations and enhance system efficiency and
reliability. Although, both MPC and AMPC algorithms are suitable for HRES, nonlinear MPC
(NMPC) is considered optimal for standalone HRES under variable load and environmental
conditions [250], [258], [267]. This is due to its ability to provide more accurate control without
relying on linear approximations or model adjustments, in contrast to traditional MPC and AMPC.
For example, Chen et al. [250], developed an energy management strategy to optimize ship energy
use and torque distribution between the internal combustion engine and motor in random waves
for a tugboat, while balancing fuel consumption and carbon emissions under reference operating
conditions. The NMPC strategy outperforms the genetic algorithm (GA) and DP, effectively
achieving energy conservation and emission reduction goals. Similarly, Planakis et al. [258]
implemented an NMPC-based predictive energy management system to optimize fuel
consumption and nitrogen oxides (NOx) emissions for parallel hybrid diesel-electric propulsion
plants onboard a tugboat. The system calculates power-split, estimates propeller load, and predicts
operator input, achieving reductions in both fuel consumption and NOx emissions. Whereas

NMPC can address the complex challenges associated with hybrid ship power systems, it is often
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hindered by limited solution accuracy and low computational efficiency. As result, Chen et al.
[267] design an NMPC energy management strategy for a tugboat using a hybrid algorithm
combining chaotic and grey wolf optimization (GWO) to optimize energy distribution. The results
demonstrate that the chaotic grey wolf optimization (CGWO)-based NMPC outperforms other

algorithms in real-time performance, fuel consumption, carbon emissions, and engine load path.

Although the existing literature offers valuable insights into optimizing power splits for EMS,
there are areas requiring further improvement, particularly in fuel consumption and emissions
analysis. Several studies [248], [255], [265], [268] overlook ship dynamics, which may result in
inaccurate and inefficient outcomes, undermining both operational efficiency and sustainability.
Additionally, while some authors [248], [250], [255], [267], [269] analyze emissions from
proposed EMS, they focus only on CO2 or NOx, neglecting other pollutants such as carbon
monoxides (CO), nitrous oxide (N20), sulfur oxides (SOx), methane (CH4), and particulate matter
(PM). This narrow focus leads to incomplete environmental assessments, missed opportunities for
emission reductions, and potential regulatory non-compliance. Furthermore, only a few studies
[248], [263] incorporate the energy efficiency operational indicator (EEOI) into their models.
Notably, Haseltalab et al. [7] did not determine the EEOI for the autonomous tugboat, which is
required by IMO regulations to ensure energy efficiency and reduce CO2 emissions for a new ship.
Lastly, while several authors [263], [264], [267] use joint algorithms to optimize EMS for HRES,
only two authors [263] [264] performed sensitivity analysis. Without this, the predictive energy
management system may suffer from inaccurate predictions, poor risk assessment, and failure to
handle uncertainty, thereby limiting its reliability and effectiveness. Table 22 presents a synthesis
of relevant EMS studies for hybrid-powered vessels, emphasizing key methodological omissions
such as the exclusion of real-time environmental factors, non-CO: emissions, and sensitivity

analysis—tegardless of ship type or application.

Although substantial research has been conducted on the optimal configurations of hybrid energy
storage systems (HESS) and hybrid energy sources (HES) in microgrid systems, significant gaps
remain in the literature. While significant research has been conducted on EMS optimization for
conventional and hybrid ships, studies focused specifically on fully autonomous vessels—
particularly autonomous tugboats—remain scarce. Although the number of operational

autonomous tugboats has surpassed 200 globally [270], indicating growing technological uptake,
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many are still in developmental or trial stages. Consequently, this review draws on related work
from both conventional and semi-autonomous vessels to inform the development of predictive
EMS frameworks tailored to the unique operational and design challenges of fully autonomous
ships. In particular, the integration of hybrid renewable energy systems (HRES) into the power
systems of autonomous ships has not been thoroughly investigated. Furthermore, there is a lack of
comprehensive decision-making models for energy management systems (EMS) in HRES,
whether applied to conventional or autonomous vessels. This study introduces a novel integrated
multi-energy supply system for autonomous ships, leveraging the combined potential of
photovoltaic (PV) arrays, vertical axis wind turbines (VAWT), battery banks, diesel engines, and
diesel generators to ensure reliable electrical power, meeting both propulsion and onboard shipload
demands. Specifically, the paper develops a mathematical model for VAWT power generation,
accounting for the relative wind velocity along the ship's navigation route. Additionally, a more
accurate method is proposed for calculating power generation from onboard PV arrays,
considering the vessel’s sailing path. This approach incorporates reliable technologies from land-
based and other transportation sectors to address the unique energy management needs of
autonomous ships. Moreover, the study factors in ship dynamics, including frictional resistance,
form resistance, wave resistance, wind resistance, and current resistance. Wind resistance, for
example, takes into account the relative wind velocity to the vessel speed, wind direction, and ship
course, while current resistance considers the current velocity relative to the vessel speed, sideslip
angle, and course angle. To overcome these challenges, the study prioritizes standalone HRES and
utilizes objective functions, predictive models, and metaheuristic algorithms to optimize the EMS
for the HRES model. For a hybrid renewable fully autonomous tugboat’s EMS with nonlinear
dynamics and varying environmental conditions along navigation routes, the extended Kalman
filter (EKF) 1s employed for predictive offline control, ensuring accuracy in nonlinear state
estimation with high computational efficiency, ideal for real-time applications. The primary
objective is to identify the optimal EMS, ensuring efficient power-splitting across the HRES while
meeting load demands with minimal fuel consumption, mass emission rate (MER), emission cost

and energy efficiency operational indicator (EEOI) within predefined operational constraints.

This study addresses a clear gap in the current literature on energy management systems (EMS)
for shipboard hybrid renewable energy systems (HRES), especially in the context of autonomous

tugboats. As summarized in Table 1, while several studies have investigated EMS optimization
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for various vessel types—including tugboats [248], [250], [251], [255], [261], and autonomous
vessels [7]—the majority either neglect ship hydrodynamics, environmental variability, or full-
spectrum emission profiling. For instance, studies such as [248], [250], [255], [261] focus narrowly
on CO: or NOy emissions, omitting other regulated pollutants like SOx, CHa, PM, and N>O. Ship
dynamics—such as wave, wind, and current resistance—are either excluded or oversimplified, as
seen in [239], [251], [255], [262], [263], despite their significance in propulsion load estimation.
Furthermore, only a few works [49], [264] conduct sensitivity analyses, and even these are limited
to a narrow set of parameters (for example, sailing speed or load). Notably, even the only study
explicitly involving an autonomous tugboat [7] excludes wind and sea current effects and lacks
emission or sensitivity analysis. These critical omissions hinder the robustness, adaptability, and

compliance potential of proposed EMS frameworks.

This research makes a significant contribution to the existing body of literature by introducing the
first known predictive, multi-objective EMS tailored to HRES-equipped autonomous vessels. To
the best of our knowledge, no prior study has implemented a predictive, tri-objective EMS that
integrates real-time environmental inputs, nonlinear ship dynamics, and regulatory constraints

specifically for HRES-powered autonomous vessels. This study seeks to bridge that gap.

Unlike previous studies that primarily focus on minimizing fuel consumption, this approach aims
to balance fuel consumption, renewable energy generation, and pure-electric sail time per day trip.
The study also incorporates ship dynamics and scenarios characterized by uncertainty, considering
factors such as total load fluctuations, ship speed, towing force, ambient temperature, wind speed,
and solar irradiance along sailing routes—aspects often overlooked in prior research. Furthermore,
the study advances energy management and design optimization strategies by introducing multi-
objective algorithms that account for power distribution, fuel consumption, and environmental
impact. In contrast to previous work, which typically relies on one or two algorithms for HES, this
study employs HRES predictive-metaheuristic algorithms (NMPC- GWO, and NMPC- GA) and
the RB method for optimizing energy management strategies, assuming a prior knowledge of the
operating profile. Additionally, the rule-based approach integrates port regulatory requirements
for operations. Finally, the performance of the tri-objective optimal design is validated through

sensitivity analysis offering a comprehensive and innovative contribution to the field.
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The remaining sections of the paper are structured as follows: Section 5.2 outlines the materials
and methods for simulating and optimizing the HRES on an autonomous tugboat, Section 5.3
presents the results and discussion, and Section 5.4 concludes with remarks and suggestions for

future research.
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Table 22: Overview of energy management system (EMS) approaches in ship applications.

Vessel Energy
Ref. Objective type sources Algorithms Remarks
To ensure system stability by
[239] | maintaining the DC voltage and Diesel MPC Emission analysis and sensitivity analysis were not
diesel-generator shaft speed at Unspecified engine, conducted, and ship dynamics were not considered.
their nominal values. battery
Evaluate the performance of an LNG, RB Only CO; emissions were calculated in the study. Ship
[248] | LNG-hybrid system under four Tugboat Battery dynamics were excluded, live data were not used, and
distinct configurations. sensitivity analysis was not performed.
Ultra Performance comparisons were conducted for
To achieve comprehensive Capacitor - different cases across the two sea states, without
[249] | performance in mitigating load Cargo battery, AMPC sensitivity analysis.
effects under varying sea ship battery-
states. flywheel.
To design an optimal energy Diesel NMPC, DP, | The algorithms' RMSE and computing time were
management system for parallel engine- GA. compared, excluding sensitivity analysis, other
[250] | hybrid power ships. Tugboat battery pollutants, and sea currents
NMPC-
To minimized energy Diesel CGWO, The model excludes sea currents, other pollutants, and
consumption and carbon Tugboat | engine- NMPC-SQP | robustness analyses.
[251] | emissions from ships. battery NMPC-GA
NMPC-GA-
SQP
Ref. Objective Vessel Energy
type sources Algorithms Remarks
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To ensure efficient power Autonomous | Diesel 3D ship dynamics were considered, though wind and
[7] | availability, reduce trajectory Tugboat engine, MPC, RB, sea currents were excluded. Additionally, emission
tracking error, and improve fuel battery PEM. analysis and sensitivity analysis were not performed
efficiency on the model.
To develop an intelligent power
management strategy to ensure Diesel Emission analysis was limited to CO», with ship
[255] | optimal power allocation in the Tugboat engine, RB, ECMS | dynamics and sensitivity analysis excluded from the
system battery study.
Diesel NMPC, DP | Mathematical modeling and experiments are
To design an optimal EMS for a Tugboat engine, conducted, excluding sea currents, with only NOx
[261] | hybrid ship propulsion plant. battery emissions considered.
A tube-based technique is used to enhance the
To control of a diesel-generator- Diesel algorithm's robustness. Ship dynamics, emission
[262] | rectifier set and achieve voltage engine, MPC analysis, and sensitivity analysis were not
stabilization in a DC-PPS. Unspecified battery considered in the simulation.
Sea currents were excluded, with only CO2 emissions
To optimize ship energy Cruise Diesel MPC- PSO, | assessed and other pollutants not considered.
[263] | efficiency, accounting for time- Ship engine DO, QSO, Sensitivity analysis focused on variable sailing time
varying environmental factors. SO. and route.
To optimize real-time power-split Diesel
[264] | between hybrid energy sources engine, Ultra Sensitivity analysis was conducted based on variable
while minimizing fuel Electrical | Capacitor, MPC-ECMS | ship speed, with sea currents not considered and
consumption. Ship battery emission analysis not performed.
Analysis was conducted at sea states 2 and 4, with
To optimally split power, address Ultra sensitivity analysis on load power, voltages, and
constraints, and achieve the Cargo Capacitor- module numbers; emission analysis and sea currents
[266] | desired dynamic responses. ship battery AMPC were not considered.

DO: Dynamic optimization, QSO: Quasi-static optimization, SO: Static optimization
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5.2. Materials and Methods

The propulsion system of a fully autonomous tugboat comprises key components such as the main
diesel engines, propellers, propeller shaft, motor, and gearbox, while the power supply for the
vessel is sourced from a combination of renewable energy systems, batteries, diesel engines, and
diesel generators. The primary focus is to develop mathematical models that accurately capture

the physical characteristics of each of these components.

The HRES model for the vessel integrates various factors, including the vessel's specific
characteristics, ship logs, port data, Automatic Identification System (AIS) data, technical
specifications of the energy sources, and environmental conditions encountered along the

navigation route.

The analysis flowchart is presented in Figure 25. All computational tasks are performed using
Python 3.11.6, with the code incorporating simulation and optimization, as well as sensitivity to
the variability of key input parameters. These key input variables—such as ship speed, wind speed,
ambient temperature, solar irradiance, towing force, and ship load—were selected based on both
engineering relevance and statistical analysis. The full dataset was collected over a 12 months
period from a single tugboat operating in the Port of Los Angeles and its environs, encompassing
approximately 520 voyages. However, due to variability in data quality and the need for temporal
alignment across multiple sources, a representative subset was extracted for modeling.
Specifically, a typical round-trip daily profile was selected for simulation, based on operational
consistency and completeness of both environmental and vessel-specific parameters. Prior to
modeling, the full dataset was preprocessed to remove outliers and synchronize the time series.
Pearson correlation analysis was applied to assess the statistical significance of each input variable
relative to model outputs such as propulsion load, fuel consumption, and emissions.
Multicollinearity was further evaluated using the Variance Inflation Factor (VIF). Variables with
a VIF exceeding a standard threshold were flagged for removal or transformation to reduce
redundancy. Based on the combined statistical findings and engineering relevance, only variables
that demonstrated both high correlation with output variables and low multicollinearity were

retained for the simulation model and sensitivity analysis.
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The energy management system (EMS) for the hybrid renewable energy system (HRES) employs
a hybrid optimization framework that integrates Nonlinear Model Predictive Control (NMPC) with
both GWO and GA, while also benchmarking their performance against a conventional RB
method. This hybrid strategy is designed to predict and optimize the offline power distribution,
fuel consumption, and environmental impact of the vessel under varying mission conditions. The
NMPC framework operates over a finite prediction horizon to compute optimal energy allocation
strategies across four independent power sources: marine diesel engines, Gensets, photovoltaic
(PV) arrays, and vertical-axis wind turbines (VAWTs) —as well as a battery energy storage system
(BESS), which operates bidirectionally to store excess energy or supply power during peak
demands. Each energy source is mathematically modeled in a Python-based simulation

environment, incorporating its dynamic behavior, efficiency, and operational constraints.

The optimization problem minimizes a multi-objective cost function that includes fuel
consumption, emission cost, energy efficiency operational indicator (EEOI), and power tracking
error, subject to practical constraints such as engine RPM, battery state-of-charge (SOC) bounds,
VAWT operating power limits, and other system constraints. The ultimate objective is to enhance
overall energy efficiency, reduce pollutant emissions, minimize emission-related costs, increase
renewable energy utilization, and ensure compliance with physical and regulatory constraints as

defined by IMO and MARPOL standards.

In addition, the energy management system for the HRES utilizes a hybrid optimization strategy
combining NMPC with GA, and GWO while also benchmarking their performance against the RB
method. This approach aims to predict and optimize the offline power distribution, fuel
consumption, and environmental impact under different conditions. The goal is to enhance energy
efficiency, minimize emissions and their cost, improve EEOI, maximize the use of renewable
energy, and ensure compliance with both physical and operational constraints. The analysis
flowchart is presented in Figure 25. All computational tasks are performed using Python 3.11.6,
with the code incorporating simulation and optimization, as well as sensitivity to assess how
variability in key input parameters—such as ship speed, wind speed, ambient temperature, solar
irradiance, towing force, and ship load—affects the power distribution, fuel consumption, mass
emission rate (MER), emission cost and energy efficiency operational indicator (EEOI). In

addition, the dynamic equations governing the vessel and its HRES, along with the algorithms and
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the overall mathematical model for the fully autonomous tugboat, are comprehensively explained

in the following subsections.

5.2.1. Ship Dynamics

Marine vessels exhibit six degrees of freedom in their motion, encompassing translational
movements in the horizontal plane (surge, sway, yaw) and rotational motions (roll, pitch, heave),
as illustrated in Figure 26. For the purposes of this study, a one- degree-of-freedom (1-DOF) ship
dynamic model is sufficient to analyze the hybrid renewable energy system (HRES) within the

integrated energy and propulsion system framework of marine engineering.

Therefore, the 1-DOF ship dynamic equation governing the forward surge motion of the vessel

incorporates external and based on Newton’s second law can be expressed as follows [271]:

Mg = v5(t) = thd(t) — Reny(t) + Feou (0) (61)
dv(t) 1
= dt - MR [(Fprop (t) - Rresistance (t)) - Renv(t) + Ftow(t)]

1
= M_R [Fprop (t) — Reotar (t) + Ftow(t) ]

where Mg denotes the mass of the rigid body which contains the mass of tugboat and added mass
(kg), V5 (t) is the surge velocity of the ship or vessel speed (knots or m/s), Vs (t) is the acceleration
of the ship (m/s?), Fhya(t) is the hydrodynamic force acting along surge direction (N), and
Reny(Dis the environmental forces (N), Fprop (1) is the propulsive force (N), Ryesistance (D) is the

resistance force (N), Rigea1 (1) is the sum of the Ry and Ry esistance(N), Frow (t) is the towing force
(N) exerted by tugboat or bollard pull during tug operations (N) . In addition, the sub-section 5.2.2
elucidates the external forces depicted on the left-hand side of Equation (61).
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Figure 25: Schematic diagram of methodology for HRES assessment in a fully autonomous ship
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Figure 26: Ship dynamic motion and degrees of freedom (DOF).
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5.2.2. Ship Resistances

The hydrodynamic resistance forces (Ryesistance), Which act in opposition to the vessel's forward
motion, encompass various elements: frictional resistance force (Rgc), originating from the drag
between the tugboat's hull surface and the water; and form resistance force (R¢orm) , Which arises
from the interaction of the tugboat's hull shape and profile with the water [272], [273]. The

equation for the R esistance Can be expressed as:

Rresistance(t) = Rfric(t) + Rform(t) (62)
= 0.5 p,, Vs(t)? (Cr Aws + Crorm Acs)
where p,, is the density sea water (kg/m?), Csis frictional coefficient which ranges from 0.002 to

0.004 (smooth-hulled vessels) and from 0.004 to 0.006 (moderate surface roughness) [273], [274],
A is the wetted surface area of the vessel (m?), Crorm 1s form resistance coefficient, typical for

vessel designed primarily for maneuverability at lower speeds rather than high speed, generally
falls within the range of 0.8 to 1.2 [273], [274], A, is the cross-sectional or frontal area of the

vessel (m?).

This necessitates that the fully autonomous tugboat must produce adequate towing force to
counteract the hydrodynamic resistance of both itself and the towed vessel, ensuring optimal

towing performance.

Lastly, the environmental forces (Rey,y), Which encompass external forces acting on the vessel
from its surrounding natural environment contribute to the total resistance. These forces include
random wave forces (Ryyave) affecting the hull, current forces (R¢yrrent) influencing the vessel's
hull and appendages due to water currents, and wind forces (Ry,jnq) involving the interaction
between the ship and external sea waves, thereby impacting the superstructure components above
the waterline [272], [273]. The exerted environmental forces ( Rq,y(t)) is expressed as follows

[53], [275]:
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Renv(t) = Rwave(t) + Rwind (t) + Rcurrent(t)

1 5 2m
Ryave (t) = E prH(t)sw (T—(t)> S(fm(t))

(63)
1 2
Ryina(®) = 5 paV(t)rw Cwilwi

1
- E pa[Vs (t) - Vwi(t)cos(ﬁwi(t) - lp(t))]ZCWiAWi

[\

1
Rcurrent(t) = E pw V(t)g,ship Cd,currAc

1
=5 P e cos(Be®) = »(®) = () Cacurrd,

where g is the acceleration due to gravity(m/s2 ), Hgy(t) is the significant wave height (m), Tiy(t)
is the mean wave period between the successive wave crest in a wave train (s), S(f,(t)) is the
spectral density of wave energy at frequency f,, (t) in the JONSWAP spectrum [271], [276] , p, is
the density of air (kg/m?), V., (t) is the velocity of the wind relative to the vessel speed (m/s), Cy;

is the drag coefficient of wind, and Awi is the reference area of the tugboat exposed to the wind
(m?), Vi (1) is the wind velocity (m/s), Bwi(t) is the wind direction (degrees), y(t) is the ship’s
course (degrees), V¢ship (t) 1s the velocity of sea or water current relative to the vessel (m/s),
Cd,curr is the drag coefficient of the vessel with respect to currents, Ac is the reference or cross
section area of the tugboat exposed to the current force (m?), V. (t) is the current velocity along x-

axis (m/s), and B¢ (t) is the sea current direction (degrees).
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5.2.3. Modeling of Propeller

The propeller hydrodynamic forces (Fprop) produced by the propeller’s interaction with the water

contributes to the propulsive force. The propeller hydrodynamic forces can be expressed as [277],

[278]:

Forop () = Tyrop ()1 = Tyc) * prop (t) (64)

where Tyrop(t)denotes the propeller thrust (N), Nprop(t) denotes the number of propellers
(unitless), and Ty is the thrust deduction coefficient (unitless) which is estimated using empirical

relation, and this is expressed as follows [279]:

D
Ty = 0.21593 + 0.099768 * C, — prop

Bship * dship

(65)

where Cyp, is the block coefficient which is approximately 0.53 [280], Dprop 1s the propeller

diameter (m), Bgp;p, is the breadth of the ship (m), and d ship denotes the draft of the ship (m).

For ships equipped with a single propeller, the T4 typically ranges from 0.12 to 0.30 [281].

The propeller component takes as input the rotational speed of the propeller (1yyop (t)) and the

ship's speed (Vg (t)), which are provided by the engine shaft and ship components, respectively.
Thus, the propeller inflow velocity in the presence of wake V,,,(t) and propeller inflow velocity

without interference Vy,, (t) are expressed as:

pr () = (@[l — w(®)]]
(66)

Vhy(t) = \/pr (t)z + (0-77TDpropnprop (t))z

where w(t) is the wake fraction coefficient (unitless) which can be determined from an empirical
formula based on Taylor’s model as w(t) = —0.05 + 0.5 * C}, . However, for ships equipped
with a single propeller, the w(t) typically ranges from 0.20 to 0.45 [281], [282].

119 |Page



The output of the propeller includes the torque (Tyrop (1)), Which is transmitted to the engine shaft
component, and the propeller thrust (Qprop(t)), which is delivered to the ship component. The

propeller thrust and torque when considering open-water can be expressed as [277], [278]:

Tyrop () = Kr(J) puwDprop Moprop (£)?
Qurop(t) = Ko() PuwDprop Nprop (t)*
Kr(J) = B1 — B2J (¥)

KoU) = v1 —v2J(©)

) = —w® KO- e@)]] (©7)
Nyrop (8) Dprop Nprop (£) Dprop
_J®OKr ()
M0(t) = 2Ky ()

where K1 (J) is thrust coefficient, J(t) is the advance coefficient, p,, is the density of sea or water

(kg/m®) Dprop 18 the propeller diameter (m), Kq(J) is the torque coefficient, Vi, (t) is the water
speed at the propeller or speed of advance (m/s) , w(t) is the wake fraction, and Moy is the

propeller rotational velocity (rad/s), and n,(t) is the open-water propeller efficiency. The four

coefficients (1, B1,Y1,Y2) for the propeller thrust and torque are illustrated in Figure 27, and

21Ny r0p () Qprop (t
likewise, the power consumed by the propeller,Py,, (1)) is given by e OZ( ()t(;p op®)
1 [
] e S S S 20
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Figure 27: Thrust and torque coefficient for open-water propeller [278].
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5.2.4. Modeling of Gearbox

The gearbox, which is connected between the motor and propeller, optimizes the power
transmission from the motor to the propeller by balancing both the torque and rotational speed for
effective and efficient ship movement at a certain gearbox reduction ratio Ageq,. The equation of

gearbox in relation to the motor and propulsion torque is expressed as follows:

B Qprop(t) _ gear
Umotor () = <ngear) = Cprop 0 (Agear> (68)

Agear

Wmotor(t) = 2 * T * Agear * Nprop (1)
where Qmotor () is the motor torque (Nm), 7744 denotes the gear efficiency, and w10, (1) is the
angular velocity of the motor (rad/s). Furthermore, the gearbox, propeller shaft, and propeller are
subjected to the load side torque (or resistance torque) Q;yqq(t), which must be overcome by the

engine to propel the ship. The governing equations for the propulsion system's shafting

components are given as follows [261]:
Q act(t)
Qload (t) = ApTOpTc]lCh .
gear 'Ishaf (69)
Qprop (t)

Nr

Wengine ) = Agear * Wprop ®

Qprop,act (t) =

where Qprop,act (t) is the actual propeller torque, Ngpqr, is the mechanical efficiency of the shaft,
MR is the relative rotative efficiency ( on ships with a single propeller it typically ranges from 1.0
to 1.07, while for two propellers it is approximately 0.98 [281] ), and Wengine () , Wprop (1), are

the angular velocities of the engine and propeller (rad/s) respectively.
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5.2.5. Modeling of Motor

The motor forms the core of the propulsion system in converting energy into mechanical power to
drive the propeller shaft. The motor is modeled in relation to the engine’s angular velocity using

the simple Willian’s equation as follows:

Wengine (t) * Qmotor(t) =ex Pmotor(t) — Py

QmOtOT (t) = fmotor * Cmotor

where Pp,oc0r-(t) is the motor electrical power (kW), the coefficients e and P, are the Willan's

(70)

constants associated with power conversion efficiency and are valued at 0.9598 kW/Nm and
358.18 kW, respectively [261], Cinotor 18 the torque command as a percentage of the maximum
torque fed to the drive or torque distribution ratio of the motor , and f;;,,¢0, 15 the unit conversion

factor or torque coefficient constant for the motor.

5.2.6. Rotational Dynamic Interaction with Propeller,

Motor and Engine

During tugboat operations, the hull, propeller, and engine interact along the surge direction. Also,
the wave-induced forces drive the hull's surge motion, impacting the propeller's efficiency and
thrust, while the engine adjusts its power output to compensate. This rotational dynamic
interaction, essential for maintaining consistent propulsion and stability in a fluctuating wave
environment, is modeled using the following equation:

dWengine (t) (71)
]total + = Qengine (t) + Qmotor (t) - Qload (t)

where Jiota1 18 the total moment of inertia of the system, which consists of the moment of the

dwengine(t)

propeller, gear, added mass, engine, motor, and propeller shaft (kg-m?), "

is the engine
angular acceleration (rad/s?), and Qengine(t) is the engine delivered torque at the shaft or engine

brake torque output (Nm).
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5.2.7. Modeling of the Power Distribution System

The power distribution system is illustrated in Figure 28. On the DC bus's left side, power
generation components include two diesel engines, two synchronous generators (SGs), additional
diesel generators (Gensets), photovoltaic (PV) arrays, two vertical axis wind turbines (VAWTs),
a battery bank, and shore power. On the right side of the DC bus, the energy consumption includes
the propulsion system (motor, propeller shaft, thrusters, and propeller) and the ship's electrical
loads (auxiliary systems and hotel services). To ensure optimal efficiency of the vessel, the fully
autonomous tugboat dynamically alternates between renewable energy sources, the battery bank,
and Gensets to supply the ship load, while the propulsion load demands are fulfilled by the marine
diesel engines and the battery bank. Additionally, the battery bank is recharged through the

utilization of the Gensets and surplus green energy.

Furthermore, the SGs are connected to rectifiers for AC/DC conversion to the DC link, while diesel
generators use AC/DC converters to stabilize the DC output. In addition, the PV arrays and
VAWTs connect to dedicated DC/DC converters for efficient power delivery. Similarly, the

battery bank employs a bidirectional converter for charging, discharging, shore power connection,

and to support the integration with renewable energy sources. The DC power distribution system,
or the DC hub, is preferred for its stability, reduced weight of components, cost-effectiveness, and
environmental benefits compared to AC systems [283], [284], [285]. This paper focuses on the
primary power generation sources and energy consumption within the power generation system,

omitting other electrical connectors.
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Figure 28: Simplified schematic of the hybrid renewable energy power distribution system for
the fully autonomous tugboat.
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5.2.7.1. Diesel Engine Model

The diesel engine acts as the primary source of mechanical power for propulsion. The rotational
motion produced by the diesel engine is transferred to the propeller shaft, which then drives the
propeller, enabling the vessel to move through the water. The diesel engine model is derived based

on the engine's operating points along the lug curve and its power rating from the technical
operating profile. Therefore, the mechanical output power of the engine Pengine (t) in conjunction

with engine torque can be expressed as follows:

Pengine,mech (t) = Sengine (t) * engine (t) * Qengine (t) * wengine (t)

72
Qengine(t) = Cl * Cengine + CZ * RPMezngine + C3 * RPMengine + C4 (72)

where Sengine (t) is the binary number for engine switch status using 1 (ON) and 0 (OFF), and
Nengine 18 the number of engines in operation, RPMepgine is the engine rotational shaft speed

O0*Wengine ®

6
(rpm), which equal to » Cengine 18 the engine torque command ( %), and Cy, C;, Cs,

2m

and C, are the coefficients determined from a dynamometer test or engine simulation.

Likewise, the quadratic relation between the diesel engine mass flow rate of the total fuel
consumption Mepgine (kg/min) and the mechanical power output under variable speed operations

can be approximated as follows:

Mengine (£) =4 * 107*PZ, 1o (£) — 0.3502P,; 4ine (t) + 111.92 (73)

engine
In addition, the synchronous generator transforms mechanical energy derived from the diesel
engine into electrical energy. The interconnection between the generator and the diesel engine
occurs via the propeller shaft, where the torque produced by the diesel engine Q.pgine(t) serves
as an input to the synchronous generator. Therefore, electrical output power for engine

Pengine,mech (t)and synchronous generator efficiency 71)s;(t) based on empirical data are

expressed as follows:

Pengine,elec (t) = Pengine,mech (t) *Nse (t) (74)

125|Page



5.2.7.2. Marine Diesel Generator Model

The marine diesel generator (or Genset) is used to supply the ship’s onboard electrical load. In

addition, the Genest is used to charge batteries and provide power as an emergency back up during

power failures. The total diesel Genest output power Pgenset (t) [48] can be expressed as follows:

Pgenset,mech (t) = Pgenset,nom *Nbrake * NGenset * Ngenset (75)

where Pyenset,nom denotes the nominal power (kW), 1p7qke 18 the brake thermal efficiency, while
Ngenset - and Ngenset are number of Gensets (unitless), and Gensets efficiency (%). In addition,

the mass flow rate of the total fuel consumption Mmgepger 1S determined using the linear least-
squares method, ensuring optimal alignment with the Gensets data by minimizing the overall
deviation between the observed and predicted values. This approach guarantees accurate fuel
consumption predictions across a range of Genset power outputs. The equation to determine the

Mgenset (t) , (kg/min) is as follows:
mgenset (t) = 0.005 Pgenset,mech (t) + 0.1095 (76)

where Pyenset,nom denotes the nominal power (KW), 71,k 18 the brake thermal efficiency, Ngenset
, and Mgenget 18 the Gensets efficiency (%). In addition, and mass flow rate of the total fuel

consumption Mgepset 1S determined using the linear least-squares method, ensuring optimal
alignment with the Gensets data by minimizing the overall deviation between the observed and
predicted values. This approach guarantees accurate fuel consumption predictions across a range

of Genset power outputs. The equation to determine the 71ep 50 (t) , kg/min. is as follows:

5.2.7.3. Photovoltaic Modules (PV) Model

The photovoltaic modules are to be installed on the starboard and port sides of the vessel. The
daily solar energy output from the PV cells under standard testing conditions (STC) is described
as follows [48]:
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Iamb (t) (77)

ISTC

NOCT — 20
* 1 — APV,temp * 3 Tamp (t) + Lamp (t) * I - TPV,STC
PV,cell

PPV(t) = PPV,nom * NPV,modules * nwire,eff * 7']PV—cell,eff *

where Ppy (t) is the total power generated by the PV panels at time t [kWh], Ppy o is the nominal
or rating power of the PV cells (kW), Npy moquies 1S the number of PV panels (unitless), Npy_cel eff
is the efficiency of the PV panel (%), Nwire off denotes the efficiency of the wire [%], Iymp (t) is
the ambient radiation intensity at time t (kW/m?), Igrc is the radiation intensity at the standard test
conditions [1 kW/m?], Apv,temp 18 the temperature coefficient of the PV modules (% / °C), Tgmyp is
the ambient temperature at the study area (°C), NOCT is the nominal operating cell temperature
(°C), Ipy cens is the radiation intensity on cell surface (0.8 kW/m?), and Tpy sr¢ is the PV cell

nominal temperature at the standard test conditions (25°C).

5.2.7.4. Vertical Axis Wind Turbines (VAWT) Model

Vertical Axis Wind Turbines (VAWTs) are selected for this study due to their quieter operation,
ease of maintenance, capability to generate power at low cut-in speeds, and suitability for close
clustering. Energy output is influenced by the VAWT's hub height, local wind speed, and ship
speed. This research proposes the installation of two VAWTSs: one on the starboard mast and the
other on the port mast. Each VAWT is fitted with a permanent magnet synchronous generator that
converts the mechanical energy from the rotating blades into electrical power. Using the wind

power law profile, the VAWT speed at the turbine height Va1 pyp can be expressed as [48]:

M]“ (78)

Vv awt,hub = Vanemo * [ H
anemo
where V,nemo 1 the wind speed at the anemometer height (m/s), Hyawr hup 1 the hub height of

the VAWT above waterline (m), Hypemo 1S the height of the anemometer (m), and X power law
exponent for the United State of America is equal to 0.216 [286] .
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Lo Rudder

Figure 29: Schematic of ship's heading, course, speed, and wind direction.

Given that the tugboat is in motion, the relative speed V,..;(t) is determined by the wind speed at
the hub, V/,,,;(t), ship speed V(t), wind direction f3,,,;(t) , and ship heading ¢(t) . This relationship

is illustrated in Figure 29 and it can be expressed as follows:

Veet () = {Vo(©O® + Vyawrhup () = 2Vs(£) * Vyawr nup()cos(p(t) (9
0.5
- .Bwi (t))}
Similarly, the output mechanical power extracted from the wind by the VAWT Py 4y mecn (t) can

be modeled using the three distinct regions based on wind speed and these are expressed as follows:

Py awr mecn (t)
1
5Pa Ay awr Covawr (4, B) * Vi (£)° Vei < Vet (0) <V
—) P VAWT, nom Ve < Vet (8) < Vg (80)
0 Vrel(t) < Vci or Vrel(t) < Vco

1= Ry awr * Wyawr
Vrel(t)
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where V,; is the VAWT cut-in wind speed (m/s), V,, is the VAWT cut-off speed (m/s), V: is the

rated wind speed for VAWT (m/s), Ayawr is the swept area of the wind turbine (m?),
Cpvawt (A, B) is the power coefficient, which is function of tip speed A and the pitch angle [3
of the VAWT, Ryawr is the radius of turbine blade (m), Wy qyr is the VAWT rotor speed
(rad/s), and Pyawr nom is the nominal power of the VAWT. In addition, Cp, y 4 (4, B) can be

expressed as the mechanical parameters of the VAWT model as follows [287]:

Coyawr(LB) = 0.5 (% —0.48 — 5) exp (%65) +0.0064

_ 1 0.035\7" (81)
§ = (0.08%’ +1 1+ B3>

Furthermore, the output electrical power VAWT PyawT elec (t) based on Equation (81) can be

expressed as follows:

Pyawr etec(t) = Pyawr mech (t) * Nyawr * Neotarvawr (82)

where Ny 47 is the number of VAWTS (unitless), and Nota vawT denotes the overall efficiency

ofthe VAWT, which consists of the losses in mechanical conversion and electrical generation [%].

5.2.7.5. Battery Model

The battery bank stores excess energy from the prime mover, Gensets, and/or renewable sources
during low-demand periods. This research favors lithium-ion (Li-ion) batteries over lead-acid,
nickel-metal-hydride, silver-zinc, and open water-powered batteries due to their superior
chemistry [48]. When the combined power from the renewable energy sources and Gensets
exceeds the load or when the state of charge SOC(t) is less than the minimum SOC,,;, (t) the

battery bank is charged. The charging power of the battery bank is determined by:

P oa
Pbattery (t) = Pbattery (t - 1) * (1 - 0) + [Z Pi(t) - l—d(t)] *1 patt,ch (83)

N inveter
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Conversely, when load demand surpasses the available generated energy or when the SOC(t) is
greater than maximum SOC,,,,,(t), the battery bank discharges. The available capacity of the

battery bank during discharge is determined as follows:

Pioa (84)
Pbattery(t) = Pbattery(t - 1) * (1 - 0) - [ _z Pi(t) + l;d(t)]

inveter

*1N batt,disch

where B, attery (t) is the available battery bank power during charging and discharging at time t,
Pbattery (t — 1) is the available battery bank power at time (t-1), o is the self-discharge rate of the
battery bank, P;(t) is the total power generated by the PVs , VAWTs, Gensets (kW), ) inveter 1S
the AC-DC inverter efficiency, 7 pqrecn 1S battery efficiency during charging process, and
1 patt.aisch 15 battery efficiency during discharging process. In addition, using the battery model

known as internal resistance model or Rint model is shown in Figure 30, and the battery SOC and

battery current (I, ) can be expressed as follows:

Rharr

NN—= ®

Ihatt

O,

Figure 30: Simplified equivalent circuit battery model
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d S0C — Ibatt *Ncotm
dt 3600 Q

(85)

. Vpatt — \/Vbatt - 4Pbatterbeatt
batt

where Q denotes the battery capacity (Ah), 1.o1m 1S the coulombic efficiency (%), Vpqe 1s the

battery open-circuit voltage (V), and Rp4; 1s the battery resistance (ohms).

5.2.7.6. Environmental Assessment

Tugboats are known to produce high emissions due to their speed and diverse operational modes.
Specifically, the mass emission rate (MER) measures the pollutants emitted from the combustion
of fuel in the main engines and Gensets. Thus, the key pollutants include carbon monoxide (CO),
carbon dioxide (CO»), sulfur oxides (SOx), nitrogen oxides (NOy), nitrous oxide (N20), particulate
matter (PM), and unburned hydrocarbons (UHC) or methane (CH4). The MER is expressed as
follows [47] :

MERtotal(t) = MERengine (t) + MERgenset(t)

< : . (86)
= Z EF; * [Mengine () + Tgensee (t)]

n=1

n=N
= B+ [corar (0]

n=1

where MER 41 (t) is the total mass emission rate (kg/h), m;q:(t) denotes the total mass flow
rate of fuel consumption from both the diesel engines and Genset (kg/hr), EF; denotes the emission
factor for each pollutant (g/kg-fuel), and j is the type of pollutant for marine fuel (unitless).
Furthermore, for new vessels, including fully autonomous tugboats, the IMO requires the
implementation of energy efficiency measures, represented by the energy efficiency operational
indicator (EEOI) [288], to ensure regulatory compliance. However, the application of EEOI in
tugboats may differ due to their unique operational patterns, such as frequent short trips and
fluctuating loads. Consequently, reducing fuel consumption throughout the voyage is an effective

approach to lowering the EEOI (kg/ton-nm), is expressed as follows:
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2 EFco,; * [Meora (0] (87)

mClngO * D

EEOI =

where EF¢, j denotes the emission factor for the CO; for the fuel type j, myoq; (1) is the total fuel
consumption (kg), Mcqrgo signifies the weight of the cargo in metric tons (or number of

passengers), and D is the distance in nautical miles corresponding to the cargo carried or work

done.

Furthermore, the emission cost or penalty (EC), which considered a cost factor in the HRES
assessment, reflects the environmental cost of using non-renewable energy sources compared to
renewable alternatives. Its purpose is to create an economic incentive for reducing emissions [289],

[290]. The EP is expressed as follows [47]:

n=N (88)
EC = z Cj * [mengine (t) + mgenset(t)]

n=1

where C; denotes the environmental cost of emission (USD/kg).

5.2.8. Estimation of Propeller Load

Understanding propeller load disturbances is essential for maintaining system equilibrium and
solving the optimal HRES management problem. The effect of random waves on propeller torque
is validated through extended Kalman filtering (EKF). Propeller torque can be estimated using an
extended state observer (ESO) with engine speed and torque measurement [250]. Therefore, the
accurate estimation of this influence is crucial for optimal HRES management and torque data.

Additionally, based on propeller strip theory, propeller rotation power (Pprop) is proportional to
the cube of engine speed nepng (Porop = Qroad Wprop = Zloadng’ng). Therefore, the propeller load

torque can be determined as follows:

T 89
Qioaa = gKQ(]) waprop3Vhy2 (89
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where Z;,,4 1S the proportional parameter which is dependent on the tugboat’s environmental and
the load conditions. Thus, the Equation (89) can be written as follows:
5

_ v
Qioaa = A2 waprop wpruplwpropl (90)

1 v
Wy = §KQ(]) (0.7m)2 + (Lg)z
prop = prop

The calculation of the propeller Q44 in Equation (90) uses angular velocity wpyop, Which is

measured from the speed sensor. This enables the determination of Q;,,4 Without the need for
additional parameters. Therefore, Equation (90) is substituted into Equation (71) to define the
unknown disturbance (d), which is to be estimated using the extended state observer principle as

follows:

dwengine (t) _ 1
dt ]total

[Qengine (t) + Qmotor (t) - Agear_3d wproplwpropl ]

91)

W,
Q

d= m IOWDprop5

The EKF operates in two stages. In the first stage, it predicts the next state and error covariance
using the system's nonlinear model and state transition. In the second stage, the state estimate is
updated with the new measurement, and the error covariance matrix is revised accordingly. The

EKF design for the plant model is expressed as follows:

x(k+1) = f(x(k),ulk) +w(k)), wk ~ (0 Ok)

y(k) = h (x(k),u(k)) + v (k),  v(k) ~ (0,R(k)) ©
where X = [(Uer;qine] is the augmented state vector, u = Qeng inel is the input, y = Wengine 1s the
motor

output, k is the time steps, v is the measurement noise, w is the process noise, h is the nonlinear

state transition function, and Q and R are the noise of covariances.
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The estimated unknown disturbance d is used in conjunction with the above methods to get the
estimate disturbance d. The gathered estimated value is used to determine observed strip constant
coefficient Z,,,4 as follows:

7 :ZloadeBPWDpropsz 477:2dA _ nzd
AT B Aear602 T 23,4,602 T 90043, (93)

Thus, Z load observed by the EKF in Equation (93) is used to determine the propeller torque as

follows:

3 Oneng 2Z’\load
T (94)

Qioad = Qioaa =

5.2.9. Proposed Nonlinear Model Predictive Control
(NMPC) Method for the Energy Management System
(EMYS) via Grey Wolf Optimization (GWO)

This section evaluates the energy management system (EMS) for a hybrid propulsion plant
integrating renewable energy sources to optimize shipboard load distribution. The EMS regulates
engine speed and power distribution between the energy sources and manages power allocation
across main engines, Gensets, PVs, VAWTs, and battery banks for shipboard loads and propulsion
loads. The proposed EMS method utilizes a hybrid approach combining NMPC with GWO
strategy to optimize the power split between power sources. The rule-based system ensures
robustness and fail-safes, NMPC enables real-time optimization, and GWO tunes parameters or
optimizes long-term strategies, with GWO-derived parameters feeding into NMPC for efficient
real-time control. This combination allows for a more adaptive, flexible, and optimized energy

management solution.
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5.2.9.1. Grey Wolf Optimisation (GWO)

The grey wolf optimization (GWQO) algorithm is a nature-inspired metaheuristic based on the
hunting and social behavior of grey wolves. Similar to other nature-based methods, such as the
genetic algorithm, GWO begins by generating a set of random candidate solutions. Two primary
components define the algorithm’s behavior: the social hierarchy and the hunting strategy. The
social hierarchy, illustrated in Figure 31(a), ranks wolves based on strength, with alphas (a), betas
(B), deltas (0), and omegas (m) representing the top to lowest ranks, respectively. The alpha wolf
is considered the fittest solution, followed by beta and delta, while omega represents the remaining
candidates. During the optimization process, the top three wolves namely a, B, and 6 guide others

toward promising search regions.

In addition to the social structure, the hunting strategy involves wolves working collectively to
hunt prey. They coordinate to separate the prey from the herd, with one or two wolves attacking
while the others handle stragglers. In the optimization context, wolves, operating as a team, explore
and track potential solutions, encircle them, and apply pressure until the prey (optimal solution) is
captured. When the prey moves, the wolves adjust their strategy to maintain the encirclement,

ensuring continued progress toward the optimal solution.

In the mathematical model of GWO, let X_l;(t) and X (t) represent the positions of the prey and
wolf, respectively, at iteration. The encircling behavior of the wolves is mathematically modeled

as follows:
D =|C.Xp(t) — X(0)|

X(t+1)=X,(t)—A.D

A=2d.77-d ©3)
C =27,

where t denotes the current or number of iterations, D is distance between grey wolf and prey, C

is coefficient vector, A is coefficient vector, d is the linearly decreased from 2 to 0 over the course

of iterations, 75 and T, are random vectors in the interval of [0, 1].
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During the optimization (hunting phase), the ® wolves update their positions around the prey or
encircling a, B, and 6 wolves based on Equation (96). In addition, in Figure 31(b) illustrates how

the » wolf adjusts position based on the locations of the a, B, and § wolves in the search space.

—

—

D5 =[G —A] L Dy = 6% - K]

Xl = Xa _Al-Da 5 XZ = Xﬁ _AzDB . X3 = Xé‘ _A3D6 (96)
Xi+X, + X
X+ =——"F—

where D_a) , D—'g), D_(g) are the three position vectors of the a, 3, and 6 respectively, a, a , a are
coefficient vectors, A_{, A_)z, A_)3 are the adaptive vectors, XTX , )TB) , )Tg) are the position vectors of
the a, B, and O respectively, )71), )T;, z are current positions of the a, B, and 9,

respectively, X(t + 1) denotes the position update for ® wolf.

The vectors A and € govern the exploration and exploitation phases of the GWO algorithm. In
addition, the exploration is emphasized when |A1> 1, while exploitation is emphasized when
1Al1<1. Furthermore, as the algorithm progresses, A gradually decreases, with the first half of the

iterations focusing on exploration and the latter half on exploitation. Also, the random nature of ¢
further enhances the balance between exploration and exploitation, preventing the algorithm from

converging to local optima.
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Figure 31: Principle of social structure and hunting strategy of GWO: (a) social hierarchy in wolf pack, (b) updating of wolf position
after the prey is encircled.
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5.2.9.2. Nonlinear Model Predictive Control (NMPC)

The nonlinear model predictive control (NMPC) algorithm is ideal for dynamic systems with
intricate, nonlinear interactions among subsystems such as propulsion, energy sources, and
environmental factors. The NMPC can optimize power distribution across energy sources by using
GWO to adjust parameters or refine control inputs (U(k)) while considering the system's dynamics

and constraints to ensure optimal performance over time.

The HRES is governed by a set of nonlinear dynamics that describe how the state of the system
evolves over time. Thus, after discretization, the nonlinear system model can be represented as

follows:

x (k+ 1) = f(x(k), uk)) k=0,...,N, — 1 97)

where x (k + 1) is the prediction model, f is the nonlinear system dynamics function; for this

HRES the NMPC has the following system state parameters:

, T . .
x(k) = [RPMengine,SOC, Crmotors Cengine Pgenset Myoeal]| > control inputs or variables are used
as controller at each time step to optimize system behavior at time step k, U(k) =

. . T . . .
[ Crmotors Cengine <p,] are the control inputs and ¢ denotes the slack parameter which introduced

as an additional control input to enforce soft constraints, significantly penalizing limit violations
within the prediction horizon in the cost function. Similarly, the d (k) is fed to the NMPC controller

as a disturbance whiles the system’s outputs is determine as y(k).

The cost function J, which must be minimized to solve the optimal control HRES problem, is as

follows:
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] (RPMengine' SOC* Cmotor' Cm;tor' C .

X

Np—1
k=0

Wi

engine’ Pgensetl fntotal' P ) =
_ _T
(RPMengine,i - RP]VIengine,ref)2
(SOC; — SOCyef)? _ ,
(C )2 (RPMengine,N - RPMengine,ref)
motor,i , (SOCN _ SOCTef)Z
. + W
(Cmowr’l) N (Pgenset - Pgenset,ref)2
2
(Pgenset - Pgenset,ref) . 2
. 2 L (mtotal,N)
(Cengine,i)
i @? |

(98)

where W; is the stage cost matrix and Wy is the final cost matrix, Np is the prediction time. The

optimization problem is expressed as:

min / (RPM

Cmotor'

SOC, Conotor

engine’

Subjected to:

Eq. (1) - (35)

-

engine’

P ®)

m
genset’ “h o’

SOCmin,soft —9p <S50C < SOCmax,soft + ¢

SOCmin,hard <S50C < SOCmax,hard

RPMengine,min,soft - S RPMengine,soft S RPMengine,max,soft + @

<

0< Cengine

engine,in — ~engine —

C <cC

motormin — ~motor —

C < Cmotor —_—

motormin —

< C..

< C

< C.

RPMengine,min,hard < RPMengine,hard < RPMengine,max,hard

Cengine,max (RP M engine)

engine oo

mOtOTmax
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=0

Pgenset,min(t) S Pgenset (t) S Pgenset,max (t)

Ppy min(t) < Ppy(t) < Ppymax(t)
Py awr min(t) < Pyawr(t) < Pyawrmax(t)

Pengine (t) + Pgenset(t) + PPV,total(t) + PVAWT (t) + Pbattery (t)

= Ptotal,load(t)

Ptotal,load(t) = Pship,load (t) + Pprop,Load (t)

5.2.9.3. Simulation procedure for the proposed NMPC-GWO algorithm

The flowchart of the NMPC-GWO algorithm for the fully autonomous HRES model is presented
in Figure 32. Initially, the data are collected and prepared, and the energy source constraints are
defined. This is followed by the initialization of the GWO vector constraints, the weight factors,
and the bounds for the objective functions of all energy sources within the control loop. Since the
GWO is employed as the dynamic optimizer for the NMPC, the NMPC cost function serves as the
input for determining the fitness of the GWO, as indicated by the letter "A" in Figure 32(a). The
GWO algorithm then explores the parameter space to identify the optimal values for the NMPC
control loop, thereby enhancing its ability to minimize fuel consumption and emissions.
Additionally, during each iteration, if the optimizer's criteria are not met, these values are
introduced into the NMPC cost function as weight metrics Q and R, as denoted by the letter "B"
in Figure 32(b).

All simulations were conducted in a Python 3.11.6 environment on a Windows 11 system, utilizing
key libraries such as CasADi for nonlinear model predictive control and custom implementations
of the GWO. Data processing and numerical computations employed NumPy and Pandas, while
visualization was performed with Matplotlib 3.7.0. Additional tools such as SciPy, Scikit-learn,
and FilterPy support statistical analysis and state estimation. The NMPC was implemented over a

prediction horizon of 10-time steps with a control horizon of 5, and a sampling time of 0.5 minute.
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The GWO algorithm used a population size of 30 search agents and a maximum of 100 iterations
per control loop. The cost function integrated fuel consumption, emission cost, battery SOC, and
power flow penalties to ensure optimal energy management under physical and operational
constraints. The operating profile used for the simulation represents a typical daily round-trip of a
harbor tugboat, covering sailing, towing, idling, and return segments. This mission profile was
extracted from a preprocessed subset of a year-long operational dataset. It reflects realistic energy
demands encountered during routine operations under moderate sea states, which influence the

vessel's resistance and load characteristics.

Furthermore, the EKF is used to filter out the random disturbances caused by waves. The EKF
estimates the true state of the propulsion system (such as torque and load) by removing noise and
accounting for non-linearities in the system dynamics. As a result, the optimal solution sequence
U(k) is obtained by solving the function in Equation (97), with the first element of Uo (k) being
fed into the closed loop to adjust control actions in response to wave-induced disturbances in the

proposed plant model.

141 |Page



Inputs: Weather file, load, speed profile. technical data for the component. dimensions.
population, crossover population, mutation probability, crossover distribution index,
mutation distribution index, max iteration

¥
Initialize the grey wolf population X;(i1=1,2 .3, ... n) '

Initialize a, A and C according to the combined objective function

| Generate the randomly positions of search agent '

‘ Calculate the fitness of each search agent (e p.8, )

L ]
I Update the position of the current search agent I

(a)

NMPC Controller
Grey wolf optimizer

BB i

U k)

X®  Erended Kalman
Filter

Consi!'ainis
] Xrer (K)

(b)

Figure 32: Simplified architecture and implementation of the NMPC -GWO algorithm: (a)
GWO and (b) NMPC algorithm
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5.2.10. Data acquisition

This study employs the ship particulars, the ship's logbook, and AIS data of a conventional tugboat
to model a fully autonomous tugboat. A modified hybrid configuration is proposed, featuring four-
stroke marine diesel engines, four-stroke Gensets, renewable energy sources, and a battery bank.
The AIS data, including vessel heading, course, speed, positional coordinates (latitude and
longitude), and dynamic parameters, were sourced from ship log book and MarineTraffic [146] ,
with details provided in the appendix. In addition, the shipload, which is generally minimal
compared to the propulsion load, is detailed in the authors' previous work [48]. The estimation of
propulsion load power for the autonomous tugboat is presumed to be analogous to that of the
conventional tugboat, utilizing historical operational data from the vessel's log. Figure 33 depicts
an extract of the actual operating profile of the tugboat, which includes periods of intense pulling
operations sustained over an extended duration in the Port of Los Angeles (USA). This dynamic
profile was created by integrating ship log data, engine performance records, and input collected
from discussions and interviews with tug operators and experts in the marine sector. The typical
operational sequence involves the tugboat sailing out, awaiting further instructions, performing a
series of pushing and pulling tasks, and ultimately completing the assignment before sailing back

to port.

Similarly, meteorological data, such as ambient radiation intensity, wind speed, and temperature
along the navigational route, were obtained from the NASA Prediction of Worldwide Energy
Resources (POWER) database, and these are detailed in the authors' previous work [48]. Also, the
environmental data, including sea state conditions, wind direction, wave height, and current, were
extracted from the ship logbook and external sources [291]. The daily profiles of sea conditions

along the navigational routes are presented in Figure 34.

Although tugboat operations are typically confined to sheltered port waters, the dataset also
includes segments near the breakwaters of the Ports of Los Angeles and its environs. These semi-
exposed areas may experience low to moderate wave activity, with significant wave heights
ranging from 0.5 to 1.2 meters, according to National Oceanic and Atmospheric Administration

(NOAA) buoy data (Station 46222).
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Figure 33: Dynamic operating profile for tugboat with timescale.

Under adverse weather conditions, particularly when navigating in head seas and rough sea states,
the ship's resistance can increase by up to 100% compared to calm sea conditions [281]. Also, the
definition of adverse sea conditions varies depending on ship length, with the World
Meteorological Organization (WMO) classifying adverse conditions for tugboats under 200 meters

as sea state 5.

To account for these effects, a simplified stochastic wave model was implemented. Though wave
influence is generally secondary to thrust and load dynamics in tug operations, this model
introduces low-frequency disturbances to simulate their indirect impact on propulsion load and
energy demand. This approach ensures realistic estimation of fuel consumption and emissions,

particularly during dynamic positioning, towing, and escorting in nearshore environments.
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5.3. Results and Discussion

Figure 35 illustrates the relationship between engine torque and RPM under the three proposed
control algorithms. The NMPC-GWO algorithm demonstrates superior performance for the HRES
integrated into the tugboat. It achieves the most favorable torque-RPM balance, contributing to
reduced fuel consumption and lower emissions. The NMPC-GA algorithm performs moderately
well but is hindered by slower convergence and less effective torque distribution. Conversely, the
Rule-Based (RB) method yields the worst results due to its non-adaptive framework, which fails
to accommodate dynamic disturbances such as wave-induced torque variations, resulting in

inefficient fuel usage and higher emissions.

Similarly, Figures 36 - 38 present the comparative simulation results of power generation from
photovoltaic (PV) modules, vertical-axis wind turbines (VAWTSs), and diesel generator sets
(Gensets), along with fuel consumption and battery state of charge (SOC) across the three
algorithms. In Figure 36(a), the solar power output remained constant across all cases, indicating
negligible environmental variability. In contrast, in Figure 36(b) the wind power exhibited notable
fluctuations. Both NMPC-GWO and NMPC-GA algorithms adapted effectively to these

variations, outperforming the RB method in wind energy utilization.

Regarding Genset usage in Figure 37(a), NMPC-GWO and NMPC-GA demonstrated more
efficient load-sharing strategies, thereby minimizing reliance on diesel power. The RB method,
which utilizes the same hybrid renewable energy system (HRES) platform but employs a static,
non-adaptive control strategy, by contrast exhibited over-dependence on Gensets during
suboptimal intervals, resulting in elevated fuel consumption, as shown in Figure 37(b). This trend
is reflected in the cumulative fuel consumption graph, where the RB approach, though initially
efficient, incurred higher total fuel usage due to its static fuel management. In addition, Battery
performance in Figure 38 further distinguishes the algorithms. NMPC-GWO and NMPC-GA
maintained SOC within an optimal operational range of 50-70%, with NMPC-GWO exhibiting
tighter control and better charge balance. The RB method, however, revealed large SOC

deviations, indicative of inefficient energy storage control.
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Figure 35: Comparison of the engine RPM and torque for the algorithms.
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Figure 36: Renewable power generation under different control algorithms: (a) PV power, (b)
VAWT power.

148 |Page



100 Genset power comparison for the algorithms

90
80
TD AOOAA

60

50 —8— NMPC_GWO y
—8— NMPC_GA
40 —%— Rule_Base ]

Genset Power(k\W)

20 .

10

0‘ | 1 1 1 L L 1 1 |
0 10 20 30 40 50 60 70 80 90 100

Time (mins)
()

400 Total fuel consumption comparison for the algorithms

—O—NMPC_GWO |
=—@— NMPC_GA
~/\~ Rule_Base

350

300

250

200

150

100

Totalfuel consumption(kg/mins)

50

0 1 1 1 i 1 | 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (mins)

(k)

Figure 37: Power management and fuel usage under different control algorithms: (a) Gensets
power (b) total fuel consumption.

149 |Page



1008 Battery SOC comparison for the algorithms

| | |

—6— NMPC_GWO

—8— NMPC_GA
Rule_Base

~7

90

1

70

.

60

Battery SOC (%)

50

40

30
0 10 20 30 40 50 60 70 80 90 100

Time (mins)

Figure 38: Battery State of Charge (SOC) comparison under different control algorithms.

Table 23, quantitatively reinforces these findings. The NMPC-GWO algorithm achieved the
lowest fuel consumption (161.517 kg), mass emission rate (518.967 kg/hr), emission cost
(9,973.84 USD), and Energy Efficiency Operational Indicator (EEOI) of 3.609 kg/ton-nm, while
also attaining the fastest computational time (31.601 s). The RB method performed the worst
across all key performance indicators due to its lack of adaptiveness. NMPC-GA provided

intermediate results, constrained by its genetic algorithm's slower convergence and suboptimal

energy allocation.
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Table 23: Results of the proposed algorithms for the HRES fitted on the fully autonomous
tugboat.

Total mass
Total fuel emission Emission EEOI Total
consumption rate cost (EC) | (kg/ton- computational
Algorithms (kg) (kg/hr.) (USD/kg) nm) time ()
RB 165.661 532.281 10,229.72 3.796 353.153
NMPC - GWO 161.517 518.967 9,973.84 3.609 31.601
NMPC - GA 163.476 525.263 10,094.84 3.697 3113.783

To quantitatively evaluate the predictive performance of the proposed hybrid Energy Management
System (EMS) algorithms, standard statistical regression metrics—Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and the coefficient of determination (R?)—were computed
using a conventional tugboat without HRES integration as the baseline. This baseline reflects a
traditional marine propulsion configuration devoid of hybridization or autonomous control, and it
serves as a reference point for assessing the gains achieved through predictive control and energy

optimization.

Table 24 presents the comparative results for four primary performance indicators: fuel
consumption, emission rate, emission cost, and the Energy Efficiency Operational Indicator
(EEOI). These metrics were used to quantify the predictive accuracy and control effectiveness of
the NMPC-GWO and NMPC-GA algorithms. In the case of fuel consumption, the NMPC-GA
algorithm yielded the lowest RMSE and MAE values, indicating a marginally higher prediction
accuracy compared to NMPC-GWO, although both models substantially outperformed the
baseline. For emission rate and emission cost predictions, NMPC-GA again demonstrated slightly
lower error values and stronger correlation coefficients, affirming its statistical robustness in
modeling environmental impact. However, NMPC-GWO exhibited a higher R? value in predicting

EEOIL suggesting better alignment with operational efficiency under hybrid-electric propulsion.

It should be noted that the rule-based (RB) method, although implemented on the same hybrid
renewable energy platform, lacks the predictive estimation framework required for regression
analysis and therefore is excluded from Table 24. Instead, its performance is evaluated through

aggregate metrics, as presented earlier in Table 23.

151 |Page



Table 24: Performance metrics of NMPC-GWO and NMPC-GA algorithms compared to baseline

Metric Algorithm RMSE MAE R?
11.10 10.74 0.948
Fuel Consumption (kg) | NMPC-GWO
NMPC-GA 9.82 9.58 0.969
2 2. 964
Emission Rate (kg/h) NMPC-GWO 35.26 32.77 0.96
NMPC-GA 30.44 29.42 0.972
692.45 648.96 | 0.965
Emission Cost (USD) | NMPC-GWO
NMPC-GA 607.6 574.31 | 0.973
0.281 0.259 0.96

EEOI (kg/ton-nm) NMPC-GWO
NMPC-GA 0.276 0.265 0.945

These findings confirm that both predictive algorithms offer statistically significant improvements
in modeling accuracy, energy efficiency, and environmental performance when compared to
conventional marine propulsion systems. While NMPC-GA showed slightly superior accuracy
across most regression metrics, NMPC-GWO remains preferable in real-time maritime
applications due to its faster computational speed, robust adaptability to environmental
disturbances, and superior control convergence, as demonstrated in the subsequent sensitivity
analysis. This underscores the practical suitability of NMPC-GWO for integration into
autonomous energy management frameworks in the maritime domain. These promising results

motivate the subsequent sensitivity analysis of NMPC-GWO under variable operating parameters.
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5.3.1. Sensitivity Analysis

A sensitivity analysis was conducted to evaluate the robustness and performance adaptability of
the proposed HRES governed by the NMPC-GWO algorithm under varying operational conditions
in a fully autonomous tugboat. Key system input parameters were varied by £15% —a range
reflecting realistic operational fluctuations—and their effects on total fuel consumption, mass

emission rate, emission cost, and EEOI are summarized in Table 25.

Firstly, a 15% reduction in vessel speed led to marginal improvements in energy efficiency,
reflected by lower fuel consumption, emissions, and EEOI. This outcome is attributed to reduced
propulsion power demand at lower speeds. Conversely, a 15% increase in speed resulted in higher
fuel consumption and emissions due to elevated engine loading and reduced propulsion system

efficiency.

Secondly, wind speed variations also had a notable impact. A 15% decrease in wind speed
diminished the power output from the VAWTs, increasing reliance on the diesel Gensets and
battery storage, thereby raising fuel use and emissions. In contrast, a 15% increase in wind speed
enhanced wind energy harvesting, improving system efficiency by reducing Genset operation and

associated emissions.

Thirdly, ambient temperature and solar radiation exhibited negligible influence on system
performance. While minor fluctuations may slightly affect PV output and battery charge—discharge

behavior, the overall impact on fuel consumption and emissions was statistically insignificant.

Fourthly, the towing force exhibited a strong correlation with energy demand. A 15% reduction in
towing resistance significantly improved fuel efficiency by lowering shaft torque requirements and
reducing engine workload. In contrast, an equivalent increase in towing force imposed higher

torque demands, thereby escalating fuel usage, emissions, and EEOL

Lastly, variations in vessel deadweight (load) also influenced system behavior. Reduced load
conditions improved fuel economy by enabling greater utilization of renewable energy sources.
However, increased load intensified propulsion and auxiliary power demand, thereby increasing
dependence on Gensets and resulting in elevated fuel consumption and emissions. These findings

highlight the critical importance of adaptive energy management in maintaining operational
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efficiency under dynamic maritime conditions, validating the NMPC-GWO’s suitability for real-

time control of hybrid propulsion systems in autonomous vessels.

Table 25: Sensitivity analysis of HRES for a fully autonomous tugboat using NMPC-GWO
algorithm with impact of operational parameters on fuel consumption, emission rate, emission

cost, and EEOL.

Emission
Total fuel Total mass cost (EC) EEOI
Percentage | consumption emission or penalty | (kg/ton-
Parameters variation (kg) rate (kg/hr.) | (USD/kg) nm)
_1%0
Ship speed (knots) 15% 161.8208 516.6979 9,930.23 2.0310
+15% 163.9685 526.8439 10,125.22 1.7099
_15%0
Wind speed (knots) 15% 162.8371 519.9431 9,992.60 3.6225
+15% 161.5115 518.9493 9,973.50 3.6086
Ambient -15% 161.5217 518.9820 9,974.12 3.6091
temperature (°C)
+15% 161.5136 518.9561 9,973.63 3.6087
Ambient radiation -15% 161.5237 518.9885 9,974.25 3.6092
intensity (kW/m2)
+15% 161.4644 518.7980 9,970.59 3.6065
. -15% 143.4226 461.7921 8,875.01 2.8575
Towing force (tons)
+15% 459.0715 1,475.03 28,348.12 29.15
_1%0
Ship load (kW) 15% 161.5049 518.9281 9,973.09 3.6083
+15% 162.6464 522.5959 10,043.58 3.6595
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5.3.2. Discussion

This study presents a novel multi-objective predictive Energy Management Strategy (EMS)
tailored for Hybrid Renewable Energy Systems (HRES) onboard autonomous marine vessels,
representing a significant advancement beyond existing methodologies. Unlike prior research that
primarily emphasizes minimizing fuel consumption, the proposed approach concurrently
optimizes fuel usage, renewable energy integration, and pure-electric sailing duration, achieving a

balanced operational performance.

Previous studies, such as those by Roslan et al. [248] and Chan et al. [255] employed Rule-Based
(RB) and Equivalent Consumption Minimization Strategy (ECMS) algorithms for hybrid
propulsion. However, these conventional methods often neglect the influence of dynamic
environmental conditions and system uncertainties. In contrast, the proposed Nonlinear Model
Predictive Control integrated with Grey Wolf Optimization (NMPC-GWO) explicitly incorporates

such variabilities, resulting in improved system adaptability and efficiency.

Compared to the RB method, which demonstrated suboptimal energy distribution and higher
emissions, the NMPC-GWO algorithm consistently outperformed in terms of fuel efficiency,
emissions reduction, and effective load balancing, particularly under fluctuating wind conditions.
This highlights the critical advantage of adaptive and predictive control strategies over static

frameworks in marine hybrid energy management.

Furthermore, the NMPC-GWO results align with findings by Chen et al. [250], on NMPC
applications in tugboats but offer enhanced computational efficiency and dynamic responsiveness.
The sensitivity analysis reinforced the algorithm’s robustness by demonstrating stable
performance across a range of operational scenarios, validating its reliability for real-time

implementation in autonomous maritime propulsion systems.
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5.4. Conclusion

In this research presents an innovative multi-objective predictive Energy Management System
(EMS) for optimizing Hybrid Renewable Energy Systems (HRES) in autonomous ships. By
integrating advanced predictive-metaheuristic algorithms—namely NMPC-GWO, NMPC-GA,
and Rule-Based (RB) methods—the study addresses fuel consumption, emissions, renewable
energy integration, and pure-electric sailing duration within a unified framework. A realistic
modeling approach incorporates random wave effects on propeller load torque, with state

estimation supported by an Extended Kalman Filter to improve prediction accuracy.

The NMPC-GWO algorithm demonstrated superior performance in fuel efficiency, emission
reduction, and computational speed, outperforming NMPC-GA and RB methods. This superiority
was quantitatively confirmed through standard regression metrics—Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and coefficient of determination (R?)—which highlighted
NMPC-GWO's accuracy and reliability in predicting fuel consumption and emissions compared
to a conventional diesel-only baseline. Sensitivity analyses further verified the robustness and
adaptability of the NMPC-GWO under varying operational parameters such as vessel speed, wind
conditions, and towing forces, confirming its suitability for real-time energy management in

dynamic maritime environments.

Ultimately, this study offers a comprehensive and adaptable energy management framework that
advances the integration of renewable energy sources in autonomous vessel propulsion and power

systems.

For future work, real-world validation through experimental testing or sea trials on autonomous
vessels is recommended to assess the practical performance of the proposed system. Additionally,
the EMS framework can be extended to other vessel types, such as ferries and cargo ships, to
evaluate its scalability. Further enhancement may include integrating alternative renewable energy
sources like fuel cells or wave energy converters into the HRES model for broader applicability
and improved sustainability. Moreover, efforts will focus on optimizing the computational
efficiency of the NMPC-GWO algorithm to enable real-time implementation in dynamic maritime

environments.
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CHAPTER 6. CONCLUSION AND FUTURE
WORKS

The maritime industry remains a significant contributor to global GHG emissions, notably sulfur
oxides (SOx), nitrogen oxides (NOy), and carbon dioxide (COz), primarily due to the incomplete
combustion of conventional marine fuels. Recent studies have shown that maritime operations
account for over 13% of global SOx emissions, prompting the enforcement of stringent regulatory
frameworks such as the IMO 2020 sulfur cap, which mandates a maximum sulfur content of 0.50%
m/m in marine fuels. In parallel, the IMO has set ambitious long-term decarbonization targets,
including a 50% reduction in CO:-equivalent emissions from international shipping by 2050
relative to 2008 levels. These regulatory measures underscore the urgent need for the development
and integration of cleaner, more sustainable marine propulsion technologies and energy
management systems to ensure environmental compliance and support the global transition toward

low-emission maritime transport.

This thesis has addressed these challenges by developing a comprehensive framework for the
energy management of both conventional and fully autonomous short-sea vessels. It presents a
multi-faceted investigation into sustainable energy solutions, focusing on three core areas: hybrid
renewable energy integration, alternative marine fuel evaluation, and predictive energy

management under dynamic operating conditions.

Firstly, this research addresses a critical gap in marine energy systems research by proposing and
optimizing standalone hybrid renewable energy systems (HRES) for both conventional and fully
autonomous tugboats, a topic largely overlooked in existing literature. Unlike prior studies that
either focused on partial operational periods or lacked robustness and statistical validation, this
research introduces a comprehensive techno-economic and environmental assessment framework
integrating PV, VAWT, battery storage, and diesel Gensets. Five HRES configurations were
evaluated using advanced metaheuristic algorithms —specifically the ABC, PSO, GA—alongside
HOMER Pro software, the study identifies the Genset/PV/VAWT/Battery configuration (Case 1)
as the optimal power architecture. Results show that the ABC algorithm consistently delivers
superior performance across all configurations, achieving the lowest annualized cost of system
(ACS), total net present cost (TNPC), levelized cost of energy (LCOE), and CO: emissions, owing

to its enhanced convergence rate and optimization efficiency. The fully autonomous tugboat,
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benefiting from reduced operational load and higher renewable energy integration, demonstrated
significantly lower emissions and energy costs compared to its conventional counterpart.
Robustness tests further confirmed the model’s resilience under varying operational and
environmental conditions, while one-way ANOVA and Tukey post-hoc analyses validated the
statistical significance of the optimization results, identifying the ABC algorithm as the most
effective among the tested methods. These findings underscore the viability and economic
advantage of integrating renewable energy into autonomous marine propulsion systems and
contribute to the strategic design of low-emission, high-efficiency hybrid marine power systems
in compliance with IMO decarbonization goals. Ultimately, this research offers a novel decision-
support framework for shipboard HRES integration, applicable to diverse vessel types and

operational profiles.

Secondly, in response to the ongoing challenge of identifying the most viable alternative fuel for
short-sea shipping vessels, this study addresses key gaps in the literature by integrating dynamic,
geospatially-informed bottom-up methodologies to assess fuel consumption, emissions, and cost
implications across various vessel types and operational profiles. Despite a robust body of research
on alternative marine fuels, few studies simultaneously evaluate the environmental and economic
performance of these fuels in the context of high-speed, short-sea, and autonomous operations.
This study contributes to the marine engineering field by developing a comprehensive Python-
based mathematical model that utilizes AIS data, vessel specifications, and port information to
simulate operational conditions and evaluate multiple marine fuels against key performance
indicators (TMER, TGWP, TEI, TEDC, NPV). Our analysis reveals that LNG emerges as the
optimal marine fuel, offering the highest economic returns and lowest environmental impact across
both conventional and fully autonomous high-speed passenger ferries and tugboats. Furthermore,
the incorporation of sensitivity and stochastic analyses distinguishes this research by capturing the
influence of operational variability and economic uncertainty—factors often omitted in prior
studies. These findings align with existing literature on the benefits of cleaner fuels and fuel cell
technologies but advance the discourse by demonstrating how autonomy enhances fuel efficiency
and profitability. Our work not only provides a decision-support framework for stakeholders
seeking compliance with IMO regulations but also underscores the feasibility of integrating
alternative fuels within next-generation vessel designs, thereby contributing a practical, scalable

tool for sustainable marine engineering.
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Lastly, the problem addressed in this study centers on the lack of robust, comprehensive EMS
frameworks for optimizing HRES in fully autonomous vessels, particularly under dynamic marine
environmental conditions. Existing literature primarily focuses on limited emission types, omits
key ship dynamic influences, and lacks sensitivity analyses and comprehensive emission metrics
like EEOI, resulting in suboptimal power distribution strategies. In response, this study introduces
a multi-objective predictive EMS for a fully autonomous tugboat integrating PV arrays, VAWTs,
battery banks, and diesel-based power sources. Using a nonlinear model predictive control
(NMPC) scheme enhanced with metaheuristic algorithms—GWO and GA—the proposed system
dynamically allocates power while incorporating wave-induced disturbances filtered via an
Extended Kalman Filter. Our contributions lie in modeling realistic ship dynamics (including
wind/current resistance), optimizing fuel use and emission costs, and accounting for all key
pollutants (CO2, NOy, SO, PM, CHa4, CO, N20). The model is benchmarked against a traditional
rule-based (RB) method, with NMPC-GWO outperforming all others in minimizing fuel
consumption, emissions, and EEOI. Sensitivity analysis further validates the robustness of the
proposed system to environmental and operational variations. These findings align with and extend
existing marine energy research by integrating predictive EMS with adaptive optimization and
regulatory compliance, thereby advancing the operational viability of low-emission autonomous
marine propulsion systems. This study offers a scalable, regulation-aware approach to enhancing
sustainability and efficiency in next-generation shipboard power systems, in line with IMO

decarbonization objectives.

Future works should focus on the real-world implementation and validation of the proposed
systems to bridge the gap between simulation and operational deployment. For the HRES
configuration aboard tugboats, sea trials on both conventional and fully autonomous platforms are
essential to assess system resilience across varying navigational routes, shiploads, and climatic
conditions. The modeling framework should also be extended to other vessel types, such as ferries

or offshore supply vessels, to test scalability and adaptability.

In the context of marine alternative fuels, future studies should consider the long-term economic
impacts of fluctuating fuel prices, regulatory developments, and infrastructure readiness.
Expanding the fuel assessment to include emerging alternatives such as biofuels, hydrogen, and

ammonia will enhance strategic foresight for sustainable shipping. Furthermore, comprehensive
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life cycle assessments (LCAs) of these fuels—from cradle to grave—should be conducted to
capture their full environmental impact, including feedstock extraction, production, transportation,
on-board usage, and end-of-life emissions. This will ensure a holistic evaluation of each fuel's

sustainability profile beyond tailpipe emissions alone.

Regarding the energy management system (EMS) architecture, the next phase should involve
hardware-in-the-loop simulations and field trials to evaluate controller responsiveness under real-
time marine dynamics. Integrating additional renewable technologies—such as wave energy
converters or marine fuel cells—could further enhance energy diversity and operational
sustainability. Across all systems, improving access to high-fidelity sensor data from autonomous
vessels will enable more accurate modeling, ultimately strengthening the reliability and decision-

making capabilities of sustainable marine energy systems.

Moreover, this study has already demonstrated the value of predictive control through the
application of nonlinear model predictive control (NMPC), which leverages system dynamics to
optimize performance over a finite prediction horizon. Building on this foundation, the integration
of Artificial Intelligence (Al) techniques presents a promising direction for future research. Al-
driven approaches—such as reinforcement learning, deep learning, and data-driven predictive
analytics—could enhance the adaptability and robustness of energy management systems by
enabling real-time, self-learning control strategies tailored to complex and dynamic marine

environments.

These techniques could also support multi-objective optimization in evaluating marine alternative
fuels, balancing environmental performance, cost efficiency, and regulatory constraints under
uncertain operating conditions. In hybrid power configurations, Al can be leveraged to process
high-fidelity sensor data from autonomous vessels, improving forecasting accuracy, anomaly
detection, and decision-making. Incorporating Al into future system architectures would
complement the current NMPC-based framework, aligning with the broader vision of intelligent,

autonomous, and sustainable maritime operations.
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Table A.1: Main particulars for the study vessels

Parameters Vessel Parameters Vessel
Overall length (m) 25 Engine torque coefficient, C3 (N.m/rpm) | -0.0043
Breadth (m) 10 Engine torque coefficient, C4 (N.m/rpm) | 2.3932
Draft (m) 5 Motor torque command, Cmotor (N.m/%) 5.8
Gross tonnage (ton) 298 Number of motors 2
Design speed (knots) 12.5 Diesel Genset (kW) 125
Vessel displacement (m?) 1250 Number of Genset 2
Wetted surface area (m?) 375 Nominal RPM for Genset 1800
Cross-sectional or frontal area (m?) 50 Brake thermal efficiency for Genset (%) 37.5
Main Engine power(kW) 1,920.18 Generator efficiency (%) 33.7
Number of engines 2 Diameter of propeller (m) 2.4
Engine RPM 1600 Number of propellers 2
Engine torque coefficient, C1 (N.m/%) 90.51 Shaft efficiency (%) 95
Engine torque coefficient, C2 (N.m/rpm2) | 0.0047 Gearbox reduction ratio 3.05:1

Table A.2: Technical specifications for the PV modules

Parameters Value
Nominal Power (kW) 0.37
Temp Coefficient (% / °C) -0.29
Efficiency (%) 22.7
NOCT (°C) 41.5
Maximum power voltage at STC (V) 59.1
Maximum power current at STC (A) 6.26
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Table A.3: Technical specifications for the lithium-ion battery bank.

Parameters Value
Battery voltage (V) 48
Nominal Capacity (Ah) 135
Maximum State of charge (%) 100
Minimum State of Charge (%) 20
Charging Efficiency (%) 80
Discharge Efficiency (%) 100

Table A.4: Technical specifications for the vertical axis wind turbine (VAWT)

Parameters Value
Nominal Power (kW) 5
Hub Height (m) 4.8
Number of Turbines 2
Number of blades per turbine 3
Swept area of the wind turbine (m?) 15.9
Rotor diameter (m) 4.5
Overall Efficiency (%) 29.8
Rate Wind Speed (m/s) 11
Survival Wind Speed (m/s) 52.2
Cut-in Wind Speed (m/s) 1.5
Cut-out Wind Speed (m/s) 15
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Table A.S: Simulation parameters

Parameters Value
Sample time 0.5
Prediction Horizon (steps) 10
Control Horizon (steps) 5

Cost matrix (Wi)

diag [1,100,5,0.5,10, 0.5]

Final Cost matrix (Wn)

diag [15,1000,50.0.5]

SOC soft constraints (%) [25, 75]
SOC hard constraints (%) [20, 80]
Engine RPM soft constraints (RPM) [600, 1600]
Engine RPM hard constraints (RPM) [500, 1700]
Engine command rate (%/min) [-20,10]
Motor command (%) [-95,95]
Motor command rate (%/min) [-50, 50]
State noise covariance matrix (Q [k]) 0.0005
Input noise covariance matrix (R[k]) 4
Population size (number of wolves) 30
Maximum number of iterations 100

Table A.6 : Emission factors (EF) for marine alternative fuels (g/kg fuel) [47].

Alternative Fuels | COz CO N20 NOx SOx PM CH4
B20 (Biofuel) - 2.52 0.15 61.21 2.64 1.02 0.06
HFO 3114 2.87 0.18 78.61 50.83 7.53 0.05
Hydrogen - - - - - - -
LNG 2753 3.57 10.95 0.03 0.11 11.22
Methanol 1375 - 8 - - -
MGO 3161 3.6 0.08 46.2 1.50 0.31 0.39
MDO 3206 2.54 0.10 56.72 2.74 0.97 0.05
Table A.7: Environmental costs of emissions for marine alternative fuels [47].
Pollutants CO2 CO N20 NOx SOx PM CH4
Cost of emission,
C; (USD/kg) 0.128 | 0.201 2.66 5912 | 9.670 | 40.40 2.78
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Table A.8: NATO sea state numeral table for the open ocean North Atlantic [292].

Sustained Wind
Significant Wave Speed (knots) ! Modal wave period
Height (m) Percentage (sec)
Sea Probability Most
State Range Mean Range Mean | of Sea State Range? Probable?
0-1 0-0.1 0.05 0-6 3 0.7 - -
2 0.1-0.5 0.3 7-10 8.5 8.5 3.3-12.8 7.5
3 0.5-1.25 0.88 11-16 13.5 13.5 5-14.8 7.5
4 1.25-2.5 1.88 17-21 19 19 6.1-15.2 8.8
5 2.5-4 3.25 22-27 24.5 24.5 83-15.5 9.7
6 4 -6 5 28 - 47 37.5 37.5 9.8-16.2 12.4
7 6-9 7.5 48 - 55 51.5 51.5 11.8-18.5 15
8 9-14 11.5 56 - 63 59.5 59.5 14.2 -18.6 16.4
> 8 > 14 > 14 > 63 > 63 > 63 18 -3.7 20

1. Ambient wind sustained at 19.5m above surface to generate full-developed seas. To convert to
another altitude, H> apply V> = V(H»/19.5)"”7

2. Minimum is the 5™ percentile and maximum is the 95" percentile for periods given wave height
range.

3. Based on periods associated with central frequencies included in Hindcast Climatology.

Table A.9:The Beaufort wind scale table [293], [294].

Probable
Wind Speed Wave Height

Wind

Forces Description km/h knots Min | Max | Sea State
0 Calm <1 <1 - - 0
1 Light air 1-5 1-3 0.1 0.1 1
2 Light breeze 6-11 4-7 0.2 0.3 2
3 Gentle breeze 12 -19 8-12 0.6 1.0 3
4 Moderate breeze 20 - 28 13 -18 1.0 1.5 3-4
5 Fresh breeze 29 - 38 17-21 2.0 2.5 4
6 Strong breeze 39-49 22-27 3.0 4 5
7 Near gale 50-61 28 -33 4.0 5.5 5-6
8 Gale 62 -74 34-40 5.5 7.5 6-7
9 Strong gale 75 - 88 41 - 47 7.0 10.0 7
10 Storm 89 -102 48 - 55 9.0 12.5 8
11 Violent Storm 103 -117 56 - 63 11.5 | 16.0 8
12 Hurricane 118 - 133 64 - 71 14+ | - 9
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