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ABSTRACT 

Robot-Supervised Intelligent Workload Reallocation Based on Stress-Aware Human 

Performance Monitoring in Human-Robot Teams 

Rukiye Kirgil Budakli, Ph.D. 

Concordia University, 2025 

 

The integration of humans and artificial intelligence-based robotic systems in collaborative 

environments is transforming teamwork across domains. These human–robot teams, which include 

both physically embodied robots and intelligent virtual agents, require careful coordination to 

ensure effective task performance. A critical factor is the dynamic allocation of workload, which 

must consider the distinct characteristics of humans and robots. Human performance, influenced 

by stress and other physiological states, contrasts with the algorithmic and cognitive nature of 

robotic behavior. This disparity highlights the need for adaptive workload allocation strategies that 

safeguard human well-being while sustaining overall team efficiency. 

This research investigates a robot-supervised, stress-aware workload allocation framework that 

continuously monitors human stress levels and reallocates tasks in real time to maintain optimal 

performance. Leveraging advancements in wearable technology and affective computing, the 

study explores multiple physiological (EEG, f-NIRS, ECG, EDA, EOG) and behavioral (facial 

expressions, speech, eye movement) indicators to assess stress. It further considers contextual 

factors such as task complexity, time of day, and individual differences in skills and knowledge. 

The central contribution is a stress-sensitive reallocation algorithm that enables robots to adapt 

task assignments when stress affects human performance. The scope of this thesis is intentionally 

limited to single-human, single-robot, single-task scenarios to provide a controlled foundation for 

stress-aware workload redistribution. This focused scope allows a systematic investigation of how 

human stress influences task execution and how robots can intervene effectively. Within this 

boundary, the thesis offers a generic stress-sensitive framework and a structured methodological 

approach validated through simulation.  
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1. INTRODUCTION 

Humans and intelligently developed computerized systems, commonly known as robots, have 

recently been forming hybrid teams for collaborative tasks. These robots can either be physically 

present in human-robot collaborations, such as surgical robots, socially assistive robots, and 

humanoid robots, or they can be intelligent, software-based programs, such as chatbots, large 

language models, and virtual AI tools. As humans and AI-assisted robots are expected to 

collaborate in completing tasks, the careful consideration of their workload allocation—and by 

extension, their collaborative performance—is essential. 

A key element in this collaboration is interaction, which can be viewed as an evolved form of 

communication. Interaction plays a pivotal role in effective teamwork. However, the nature of 

interaction between humans and robots differs significantly. While human interaction is 

emotionally driven, influenced by affective states and stress, robot interaction is cognitive, 

grounded in computer programming, statistical models, and AI algorithms. As such, defining 

distinct interaction modes with unique features is crucial to ensuring that the right tasks are 

assigned to the appropriate partner. Once these modalities are established, it is essential to assess 

the suitability of tasks for each partner based on their individual characteristics. This should be 

followed by an examination of the dynamics of workload allocation, leading to the final step of 

task assignment, taking into account the factors that influence human-robot collaboration. 

In addition to task allocation, it is vital to continuously monitor human emotional states 

throughout the collaboration, particularly after tasks are assigned. This is necessary because 

fluctuations in human performance can occur. Should a human's performance decline for any 

reason, the robot partner must investigate the cause and intervene, ensuring that the human remains 

in optimal conditions for effective collaboration. 

According to Yerkes-Dodson’s law (1908), human performance peaks when stress levels are 

moderate. If stress deviates from this optimal range—either increasing or decreasing beyond 

predefined thresholds—human performance deteriorates. Therefore, maintaining the human's 

stress level within its optimal range is critical for sustaining effective performance. However, stress 

is not the sole factor that may influence performance. Time-related factors such as circadian 
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rhythms, sleep patterns, and the time of day have been shown to significantly impact human 

performance in human-robot collaborations (Kalanadhabhatta et al., 2021; Razavi et al., 2023). 

Additionally, the knowledge and skillset of the human assigned to the task can play a crucial role 

(Nguyen and Zeng, 2017). 

Recent developments in technology allow for the assessment of human stress through various 

physiological measurements. These include the analysis of brain signals using 

electroencephalography (EEG) (Al-Shargie et al., 2016; Perez-Valero et al., 2021; Katmah et al., 

2021; Attar, 2022; Hemakom et al., 2023), the tracking of oxygenated and deoxygenated 

hemoglobin in brain tissue via functional near-infrared spectroscopy (f-NIRS) (Al-Shargie et al., 

2016; Mirbagheri et al., 2019), heart rate evaluation using electrocardiography (ECG) (Behinaein 

et al., 2021; Hemakom et al., 2023), skin resistance or electrical potential changes through 

electrodermal activity (EDA) (Awada et al., 2024; Dao et al., 2024; Pop-Jordanova & Pop-

Jordanov, 2020; Rahma et al., 2022), and the analysis of cornea-positive potential through 

electrooculography (EOG) (Mocny-Pachońska et al., 2021; Das et al., 2023; Dao et al., 2024) using 

skin electrodes near the canthi during horizontal eye movements. 

In addition to these physiological measures, behavioral indicators, such as facial expression 

recognition (Jabon et al., 2010; Zhu et al., 2017), image and speech recognition (Fahn et al., 2022), 

head pose estimation (Murphy-Chutorian & Trivedi, 2008), and eye movement recognition 

(Lachance-Tremblay et al., 2025; Gazetta et al., 2023; Mocny-Pachońska et al., 2021), can also 

provide insights into human emotions. 

Given that stress is a dominant emotional factor in human-robot collaboration, this research 

primarily focuses on monitoring and adjusting human stress levels to optimize workload 

management. As outlined earlier, such adjustments necessitate a well-structured interaction system 

and dynamic workload allocation principles to facilitate timely and effective interventions. The 

following sections will delve into the specific problem addressed in this thesis, explain how the 

research objectives respond to this issue, identify the basic assumptions and limitations, and 

provide an overview of the steps that will be covered throughout the thesis. 
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1.1.Problem Statement 

Advancements in artificial intelligence have enabled robots to collaborate with humans in a 

manner similar to human-to-human collaboration. Recent technological developments allow 

robots to understand human intentions and behaviors through emotion and stress detection 

algorithms, establishing feedback-based interaction between both partners. While humans are 

expected to perform according to predefined standards, their performance can fluctuate over time. 

Therefore, monitoring human performance plays a critical role in dynamically reallocating tasks 

between humans and robots to maintain the expected level of human performance. This dynamic 

task allocation must consider precedence, prioritization, and task compatibility for both humans 

and robots (Alirezazadeh and Alexandre, 2022). 

Although stress recognition and dynamic task allocation have been extensively studied, the 

development of a human stress-aware task reallocation algorithm designed to maximize the 

collaborative performance of a human-robot team has not been sufficiently addressed. This 

research aims to fill this gap by proposing solutions to address fluctuations in human performance 

within a human-robot team, ultimately enhancing collaborative performance. 

1.2.Research Objective  

This research aims to enhance the productivity of human–robot teams through a robot-assisted, 

stress-aware workload allocation algorithm. The underlying hypothesis is that maintaining human 

stress levels within optimal ranges can maximize individual performance, thereby improving the 

overall efficiency and effectiveness of the human–robot collaboration. With advancements in 

technology, robots are now capable of detecting fluctuations in human stress. Accordingly, this 

study posits that human stress can be quantified, continuously monitored by robots, and used as a 

basis for timely intervention. Through this approach, workload can be dynamically and adaptively 

reallocated to optimize team performance in real time. 

According to the research objective outlined above, the main research question is first identified, 

followed by ten sub-research questions developed around it. This structured approach guides the 

systematic presentation of the proposed model. These questions are listed below. 
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Main Research Question: How can the collaborative performance of a human-robot team be 

improved through robot-supervised decision mechanism for workload allocation based on 

fluctuations in human stress levels? 

• Sub-Research Question 1: What is the structure of human-robot systems, and how do 

humans and robots interact within this framework? 

• Sub-Research Question 2: What are the task zones in human–robot collaboration? 

• Sub-Research Question 3: What are the interaction channels through which humans and 

robots collaborate? 

• Sub-Research Question 4: What are the dynamics of task reallocation when determining 

the feasible set of tasks? 

• Sub-Research Question 5: What constitutes the performance of a human–robot team? 

• Sub-Research Question 6: What are the optimal conditions under which humans 

perform at their best? 

• Sub-Research Question 7: What factors influence human stress levels and performance? 

• Sub-Research Question 8: How can human stress levels be measured, and is there a 

reliable method to quantify them? 

• Sub-Research Question 9: How does the robot determine the appropriate moment to 

intervene in task allocation? 

• Sub-Research Question 10: How can robots effectively determine when and how to 

reallocate tasks based on real-time human performance and human stress data? 

The following section outlines the key assumptions established for this research. 
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1.3.Basic Assumptions 

• Since this research focuses on human–robot collaboration, it is essential to clearly define 

the term robot. In this study, robots are considered AI-based, intelligent, adaptive, 

computerized systems. 

• Tasks are categorized based on the capability of each partner: some tasks can be performed 

exclusively by humans, others solely by robots, and some collaboratively. Additionally, 

certain tasks may be performed by either humans or robots independently, or jointly 

through human–robot collaboration, forming intersecting task domains. 

• Human stress can be measured and quantified using wearable devices that capture 

physiological biosignals. 

• Human stress can serve as a decision checkpoint to support performance optimization. 

• Control charts can be utilized to detect irregularities or deviations in human performance 

over time. 

• Task-specific stress levels can be quantified by considering the following parameters: 

o Perceived workload (𝑊𝑝): The workload subjectively experienced by the human 

at time t. 

o Task complexity (𝐶): The inherent difficulty level of the assigned task. 

o Time of day (𝑇): The temporal context that may affect human cognitive and 

physical effectiveness. 

o Actual workload (𝑊𝑎): The pre-defined workload assigned to the human at the 

beginning of the project. 

o Affective state (𝐴): The human’s emotional or mood-related condition at a given 

time. 

• If the task being pursued lies on the project’s critical path and the human’s stress level 

exceeds acceptable thresholds, the task cannot be delayed or paused. In such cases, the task 

should be reassigned to another human collaborator capable of completing it. If the task is 

not on the critical path, it may be swapped with another task from the human’s to-do list to 

mitigate the impact of stress. 
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1.4.Thesis Organization 

This thesis presents a comprehensive literature review in Section 2 to illuminate the evolution of 

human–robot collaboration, the tools and techniques used within this context, the concept of 

collaborative performance in human–robot teams, the influence of human stress levels on 

collaboration, and current implementations of robot-supervised human–robot systems. To 

systematically address these topics, guiding questions are posed for each section and subsection of 

the literature review. This structured approach is designed to ensure the inclusion of relevant 

interdisciplinary literature and to support the reader’s understanding of the review's flow. The 

questions used to guide the literature analysis are listed in Table 1. 

Table 1: Key Questions Addressed in the Literature  

LITERATURE 

SECTIONS 

LITERATURE 

SUBSECTIONS 

QUESTIONS ADDRESSED 

2.1 EVOLUTION OF 

THE HUMAN-

ROBOT 

SYSTEMS 

2.1.1. System’s 

Evolution: From Human-

to-Human Interaction to 

System-to-System 

Interaction 

• How has human-robot 

collaboration evolved from 

human-to-human interaction to 

system-to-system interaction? 

• In what ways has the inclusion 

of systems changed the nature of 

human work in collaborative 

environments? 

2.1.2. Evolution of 

Human-Robot 

Collaboration: From 

Coexistence to Proactive 

Collaboration 

 

I. What are the driving factors 

behind the evolution of human-

robot collaboration from 

coexistence to active 

collaboration? 

2.1.3. From 

Communication/Interacti

on to Collaboration 

between Humans and 

Robots 

II. How are communication, 

interaction, and collaboration 

defined within human-robot 

teams? 

III. What leads human-robot 

interaction to become 

collaboration? 
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2.1.4. Human Factor in 

Human-Robot 

Collaboration 

IV. What are the key human factors 

influencing the success of 

human-robot collaboration? 

2.1.5. Robot Factor in 

Human-Robot 

Collaboration 

V. What are the defining factors 

that contribute to a robot's 

effectiveness in human-robot 

collaboration? 

2.2 TOOLS AND 

TECHNIQUES 

USED IN 

HUMAN-ROBOT 

SYSTEMS 

2.2.1. Behavioral 

Measurements in Human-

Robot Systems 

VI. What behavioral metrics are 

used to assess human responses 

in human-robot collaborations? 

2.2.2. Physiological 

Measurements in Human-

Robot Systems 

VII. What physiological metrics are 

used to assess human responses 

in human-robot collaborations? 

2.3 PERFORMANCE, 

STRESS AND 

TASK 

ALLOCATION 

FACTORS IN 

HUMAN-ROBOT 

SYSTEMS 

2.3.1. Human-Robot 

System Performance 

VIII. What factors influence the 

overall performance of human-

robot systems in collaborative 

tasks? 

2.3.2. The Effect of 

Human Stress in Human-

Robot System 

Performance 

 

IX. How does human stress impact 

the performance and efficiency 

of human-robot systems? 

2.3.3. Task Allocation in 

Human-Robot Systems 

X. What factors should be 

considered when allocating tasks 

between humans and robots in 

collaborative systems? 

XI. How does the human factor 

influence task allocation in 

human-robot systems? 

2.4 ROBOT-

SUPERVISED 

HUMAN-ROBOT 

SYSTEMS 

2.4.1. Robots’ Decision-

Making in Human-Robot 

Systems 

XII. What are the decision-making 

algorithms used by robots in 

collaborative human-robot 

systems? 

2.4.2. Implementations of 

Robot-Supervised 

Human-Robot Systems 

XIII. What are the current real-world 

applications of robot-supervised 

human-robot systems, and how 

do they perform in different 

industries? 
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Following the methodology presented in Section 3, the implementation of the proposed model is 

detailed in Sections 4 through 7. These sections correspond to the sub-research questions outlined 

in Section 1.2. The mapping of each section to the respective research questions is provided below. 

Table 2: Mapping of Thesis Sections to Sub-Research Questions  

Thesis Sections Thesis Subsections Sub-Research Questions of the Thesis 

4. The Human-Robot 

System Framework in 

The Proposed Model 

4.1. System Components 

in Human-Robot Systems 

4.2. Interactions in 

Human-Robot Systems 

Question 1: What is the structure of 

human-robot systems, and how do humans 

and robots interact within this framework? 

5. Interaction Modalities 

Across Task Zones in 

the Proposed Human-

Robot Collaboration 

Model 

5.1. Definition of Task 

Zones 

Question 2: What are the Task zones in 

human–robot collaboration? 

5.2. Classification of 

Interaction Modes 

Question 3: What are the communication 

channels used in different interaction 

modes for human-robot collaboration? 

5.3. Integration of 

Interaction Modes with 

Task Zones 

Question 2: What are the task zones in 

human–robot collaboration? 

Question 3: What are the communication 

channels used in different interaction 

modes for human-robot collaboration? 

5.4. Dynamic Task 

Reallocation Algorithm 

Based on Task Zones 

Question 4: What are the dynamics of task 

reallocation when determining the feasible 

set of data? 

5.5. Case Study: Dynamic 

Task Reallocation 

Management for 

Optimized Performance in 

Human-SAP System 

Collaboration 

Question 2: What are the task zones in 

human–robot collaboration? 

Question 3: What are the interaction 

channels through which humans and robots 

collaborate? 

Question 4: What are the dynamics of task 

reallocation when determining the feasible 

set of data? 

6. Performance 

Evaluation of the 

Proposed Human-Robot 

Collaboration Model 

6.1. Formulating Human-

Robot System 

Performance as a Function 

of Human Stress 

Question 5: What constitutes the 

performance of a human–robot team? 

Question 6: What are the optimal 
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conditions under which humans perform at 

their best? 

6.2. Identification of 

Parameters Influencing 

Human Stress and 

Performance 

Question 7: What factors influence human 

stress levels and performance? 

6.3. Measuring Human 

Stress Levels Using 

Wearable Devices 

Question 8: How can human stress levels 

be measured, and is there a reliable method 

to quantify them? 

6.4. Quantifying Task-

Specific Human Stress: 

Development of 

Conceptual Formula 

Question 8: What methods can be used to 

quantify task-specific human stress, and 

how can a conceptual formula be 

developed to measure it accurately? 

7. Robot-Supervised 

Intelligent Workload 

Reallocation based on 

Stress-Aware Human 

Performance Monitoring 

in Human-Robot Teams 

7.1. Process Flow of 

Robot-Supervised 

Workload Allocation 

Question 9: How does the robot determine 

the appropriate moment to intervene in task 

allocation? 

7.2. Intervention-Based 

Task Reallocation Model 

for Robots 

Question 10: How can robots effectively 

determine when and how to reallocate 

tasks based on real-time human 

performance and human stress data? 

7.3. Monte Carlo 

Simulation: Intervention-

Based Task Reallocation 

Model 

Question 9: How does the robot determine 

the appropriate moment to intervene in task 

allocation? 

Question 10: How can robots effectively 

determine when and how to reallocate 

tasks based on real-time human 

performance and human stress data? 

 

Sections 4 through 7 address the core inquiries of this study. The research findings are then 

discussed in Section 8, followed by a presentation of the study’s limitations in Section 9. Although 

the thesis offers a significant contribution to the field, certain constraints—outlined in Section 9—

limit its applicability in fully replicating the complexity of real-world implementations. Future 

directions for extending and validating the proposed model are discussed in Section 10. Finally, 

Section 11 provides the overall conclusion. 
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2. LITERATURE REVIEW 

This section provides a comprehensive examination of the transition from traditional human–

human interaction to the development of intelligent, next-generation human–robot systems within 

collaborative work environments. It begins by tracing the evolution of these systems, emphasizing 

how technological advancements have transformed interaction dynamics in the workplace. 

Subsequently, the review explores contemporary tools and techniques used to support and optimize 

human–robot collaboration. Particular emphasis is placed on the central theme of this research: the 

relationship between human stress and performance within collaborative systems. Accordingly, 

this section also examines how these factors have been conceptualized, measured, and addressed 

in recent studies. Finally, given the thesis’s focus on robot-supervised decision-making—

especially for workload reallocation—the review investigates current implementations of such 

systems and the mechanisms they employ to enable task-level intervention. 

To structure the review and inform the development of the proposed model, thirteen targeted 

research questions were formulated. These questions, introduced in the previous section, are 

systematically addressed in the subsections that follow. 

2.1.Evolution of the Human-Robot Systems 

This section focuses on the evolution of human-robot systems and the contribution of human and 

robot partners. 

2.1.1. System’s Evolution: From Human-to-Human Interaction to System-to-System 

Interaction 

As technology continues to advance, system-to-system interaction has increasingly replaced 

traditional human-to-human interaction within collaborative work environments. This shift is 

driven by the promise of faster, more effective, and more efficient automated solutions. The term 

"systems" here encompasses machines, computerized systems, robots, and Internet of Things (IoT) 

devices. However, these automated systems cannot operate entirely independently, as many work 

processes still require human oversight, creativity, and adaptability. As a result, humans must 

remain an integral part of these systems although their roles have been changed by the CPSs 
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(Horvath et al., 2017). To address this integration, the concept of Cyber-Physical Systems (CPSs) 

has emerged. CPSs refer to systems in which physical components—such as humans, machines, 

robots, and IoT devices—interact with cyber components, including sensors, wireless sensor 

networks (WSNs), actuators, and software-based programs. These systems operate in a closed-

loop manner, enabling real-time monitoring and feedback-based control (Lee, 2008; Marculescu 

& Bogdan, 2010; Shi et al., 2011; Sanislav et al., 2016). CPSs exhibit cross-domain functionality, 

distributed control, and heterogeneous components, giving rise to what Liu et al. (2011) describe 

as organizational intelligence within these systems. Figure 1 illustrates the structure of the CPSs. 

 

Figure 1: The Structure of Cyber Physical Systems 

The evolution toward system-to-system interaction has also been explored through the lens of 

Machine-to-Machine (M2M) communication. Researchers such as Yan et al. (2012) have noted 

the close relationship among M2M, IoT, WSNs, and CPSs, while Wan et al. (2013) argue that 

CPSs represent an advanced generation of M2M systems. However, Wan et al. also highlight 

challenges, including the overwhelming volume of data generated by M2M systems, which places 

new demands on human operators who must be trained to interpret and manage this information. 

As Antón-Haro et al. (2013) observe, the M2M research focus has evolved over time—from early 

studies on access and scheduling algorithms to more recent concerns around energy efficiency and 

system optimization—reflecting the increasing complexity of human involvement in automated 

environments.  
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In addition to advancements in machine technology, Kim et al. (2009) emphasize that the evolution 

of knowledge within intelligent systems introduces the concept of cooperation as a defining feature 

of these technologies. As intelligent systems grow more autonomous and context-aware, their 

ability to collaborate with other agents—both human and machine/robot—becomes increasingly 

essential. Building on this idea, Marculescu and Bogdan (2010) highlight workload optimization 

among diverse physical components as a key driver in the development and functioning of cyber-

physical systems. This optimization ensures that tasks are dynamically allocated based on the 

capabilities and current states of each component, contributing to the overall efficiency and 

adaptability of the system. 

Finally, Mois et al. (2016) emphasized that CPSs should not be viewed solely as part of 

Information and Communication Technology (ICT), despite their connection to it. This distinction 

arises from the unique demands placed on CPSs, including adaptability, functionality, usability, 

efficiency, and autonomy. Sanislav et al. (2016) further reinforced these requirements by 

highlighting additional system attributes such as security, interoperability, predictability, and 

sustainability. These evolving requirements have undeniably transformed the roles of both humans 

and robots, a transformation that is further explored in the following subsection. 

2.1.2. Evolution of Human-Robot Collaboration: From Coexistence to Proactive 

Collaboration 

As discussed in the previous section, the working environment has progressed from a phase with 

no systems involved to one characterized by extensive automation, largely due to advancements 

in Cyber-Physical Systems (CPSs). Within CPSs, Horváth et al. (2017) identify four distinct 

subsystems that must be considered separately due to their diverse characteristics: human–human 

interaction, human–system interaction, system–human interaction, and system–system interaction. 

Given that this thesis focuses on human–robot collaboration, particular attention is paid to the 

human–system and system–human subsystems. When the term human–robot systems is used 

throughout this work, it specifically refers to these two types of interaction within CPSs. 

Horváth et al. (2017) further explain that the level of automation plays a key role in shaping system 

behavior, ranging from "no system in the loop" to "no human in the loop." This progression—

illustrated in Figure 2—demonstrates a central driving factor in the evolution of human–robot 
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collaboration: the increasing automation and intelligence of systems, which gradually shift human 

roles from coexistence to active collaboration with robotic agents. 

 

Figure 2: Levels of Automation in Cyber-Physical Systems (adapted from Horvath et al., 2017) 

Li et al. (2023) evaluated this system evolution in the context of human–robot relationships by 

categorizing it into six distinct phases: Human–Robot Coexistence (1979–1985), Human–Robot 

Interaction (1986–1996), Human–Robot Cooperation (1997–2007), Human–Robot Collaboration 

(2008–2015), Symbiotic Human–Robot Collaboration (2016–2020), and Proactive Human–Robot 

Collaboration (2020–present). Initially, robots were merely used as tools. Over time, they began 

interacting with human operators, then progressed to cooperating—working on related tasks in 

parallel but not simultaneously on the same task. Eventually, robots became capable of true 

collaboration, jointly working with humans on common tasks in real time. This collaboration has 

continued to evolve, shaped by technological advancements, into forms such as standard (or 

normal), symbiotic (Wang et al., 2021), and proactive collaboration (Li et al., 2021). 

Although collaboration represents an advanced form of interaction, this thesis places significant 

emphasis on interaction as a distinct concept. Interaction establishes the foundation for reciprocal 

communication between humans and machines, upon which collaboration is built. Therefore, the 

next subsection explores the definitions and relationships among communication, interaction, and 

collaboration in greater detail. 
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2.1.3. From Communication/Interaction to Collaboration between Humans and Robots 

Communication plays a crucial role in human life, both in affective socialization and cognitive 

work. It helps human teams understand each other’s intentions, meet each other’s requirements, 

and thereby collaborate toward a shared goal. Given this foundational role, a similar 

communication method is necessary between humans and robots. Claude Elwood Shannon (1948), 

a foundational figure in information theory, proposed that communication is essentially a statistical 

process, where senders offer multiple messages for receivers to select from. Additionally, Shannon 

and Weaver (1949) identified three levels of communication problems: technical, semantic, and 

effectiveness. Although originally developed for human-to-human communication, this 

framework has been extended to various communication forms, including human-robot 

communication. 

Before discussing how communication evolves into collaboration, it is important to clarify the 

distinctions and overlaps between communication, interaction, and collaboration. McNeil et al. 

(2000) studied how to facilitate communication, interaction, and collaboration between students 

and online courses, and thus defined these terms and their boundaries clearly. They described 

communication as the exchange of ideas regardless of whether the receiver provides feedback, 

whereas interaction involves reciprocal communication between both parties. Based on this, 

interaction encapsulates communication, as it requires a reciprocal exchange between agents. On 

the other hand, collaboration refers to joint work shared by collaborators—such as humans and 

robots in human-robot systems—toward a common goal. 

In terms of communication, Bergman et al. (2019) discussed that current robotics advancements 

have yet to fully replicate human physical and cognitive communication abilities. Floridi (2020) 

emphasized that although machines may outperform humans in certain tasks, they do so through 

fundamentally different mechanisms. Therefore, communication theory needs to adapt to hybrid 

environments composed of both humans and intelligent computerized systems. Addressing this, 

McNeese et al. (2021) conducted an experiment comparing collaboration in various team 

compositions: human-only, human-human-AI, human-AI-AI, and AI-only teams. They observed 

that team cognition was highest in human-only teams. This demonstrates that, because 

communication is more structured among humans, their intentions and requirements can be 
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conveyed more effectively than in hybrid or fully automated teams. Nass et al. (1996) also found 

that humans tend to prefer interacting with other humans. Similarly, Merritt et al. (2011) reported 

that participants enjoyed collaborating more with partners they believed to be human, even when 

the partners were AI. These findings suggest that becoming comfortable communicating with 

robots—comparable to communicating with human partners—takes time, especially until humans 

feel as fully understood by robots as they do by other humans. 

When it comes to interaction, multi-agent learning was studied by Tuyls and Weiss (2012) to 

develop optimal solutions under dynamically changing conditions, involving many agents with 

different characteristics. To support this, Maeda et al. (2017) proposed an innovative interaction 

learning approach based on action recognition and human-robot movement coordination. These 

learning approaches in human-robot communication support the development of interaction by 

incorporating partner feedback. In addition, shared control has been proposed as a method to 

enhance interaction between humans and robots. For instance, Abbink et al. (2018) argued that 

shared control provides a more comfortable and intuitive way for both human and robotic agents 

to contribute to a task simultaneously, enabling effective human-robot interaction. 

Collaboration, as the final stage of this continuum, requires reciprocal communication, mutual 

understanding, and joint intention. It represents a coordinated effort between human and robotic 

partners to achieve a shared objective. Damacharla et al. (2018) conceptualized Human-Machine 

Teams (HMTs) as collaborative systems that aim to improve overall performance through shared 

goals, highlighting the importance of mutual contribution. As collaboration has matured over time, 

proactive methods have been developed to enable both humans and robots to understand each 

other’s intentions and act accordingly—even before a need or issue arises. For example, Broo 

(2022) emphasized the necessity of adopting a futuristic mindset in human-robot collaboration 

within complex and ambiguous smart systems to anticipate unknown unknowns and provide 

solutions in advance. Moreover, Cruz et al. (2021) developed explainable robotic systems that 

allow robots to communicate their intentions transparently to human collaborators. Likewise, Li 

et al. (2021) introduced Proactive HRC, a framework based on inter-collaboration cognition that 

promotes bi-directional empathy between humans and robots. 
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Based on the literature regarding communication, interaction, and collaboration, Figure 3 below 

illustrates the conceptual differences and relationships among these terms. According to the logic 

presented in Figure 3, interaction and communication intersect when there is a reciprocal 

exchange; however, communication alone does not imply reciprocity and can occur in a one-way 

manner. On the other hand, interaction does not always include communication, as communication 

typically involves verbal or non-verbal information exchange. For example, two agents may 

interact—such as by physically touching—without necessarily engaging in any meaningful 

communication. Collaboration is represented at the intersection of interaction and communication, 

where reciprocal exchange and mutual understanding co-occur. Yet, not every interaction 

involving two-way communication leads to collaboration. For collaboration to emerge, the agents 

must also share a common goal, which transforms communicative interaction into purposeful joint 

action. 

 

Figure 3: Conceptual Relationship among Communication, Interaction, and Collaboration 

 

2.1.4. Human Factor in Human-Robot Collaboration 

Human-robot systems have been evolving from supervised models toward more autonomous, 

unsupervised approaches (Horvath and Wang, 2015). This shift raises concerns about whether 

humans are being removed from the decision-making loop. However, research strongly 

emphasizes that human involvement remains essential; the goal is not to eliminate humans from 
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these systems but rather to leverage their cognitive, experiential, and sociocultural contributions 

(Wang et al., 2010; Liu et al., 2011). Despite the uncertainties inherent in human behavior 

(Yalçinkaya et al., 2023), humans enrich these technical systems by transforming them into 

socially embedded and behaviorally adaptive environments through interaction (Horvath, 2014). 

Studies have identified several scenarios where human contribution is indispensable. For example, 

Kosa et al. (2023) explored the application of robots in intensive care units for the elderly, driven 

by staffing shortages. Their findings confirmed that even in technologically advanced healthcare 

systems, human involvement remains critical. Similarly, Borges et al. (2021) examined ways to 

reduce work-related musculoskeletal disorders in industrial settings. Their research demonstrated 

that when handling small or delicate parts, human input is crucial, as robots may lack the required 

dexterity or sensitivity. 

Beyond direct participation, human feedback plays a critical role in enhancing the performance of 

human-robot systems. Roveda et al. (2023) proposed a preference-based optimization algorithm 

that integrates qualitative user input, emphasizing its importance in refining system behavior. In a 

similar vein, Humann et al. (2023) designed a graphical user interface capable of identifying the 

optimal configuration and proportion of heterogeneous agent types, tailored to the user's trade-off 

preferences. Additionally, Kirtay et al. (2023) highlighted the potential of human cognitive 

strengths—particularly creativity and intuitive judgment—to reduce the computational burden on 

robotic systems. Collectively, these studies underscore that despite growing automation 

capabilities, humans continue to be indispensable in the loop, serving as both contributors to and 

beneficiaries of intelligent systems. 

A key consideration for ensuring effective human-robot collaboration is the transparency and 

intelligibility of robotic capabilities. Boy (2017), for instance, advocated for a human-centered 

design approach, emphasizing the limited utility of intelligent systems—such as autonomous 

vehicles—when users are unable to understand their functionalities or resolve system failures. 

Consequently, although intelligent robotic components provide undeniable support within human-

robot teams, they may also function as constraints, particularly when their complexity impedes 

user comprehension or system transparency (Sha et al., 2008). To address these challenges, 

researchers have introduced BCI-Augmented Reality (AR) and virtual reality interfaces to 
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facilitate more realistic and comprehensible interactions between humans and robots. These 

interfaces aim to clarify human expectations in collaborative contexts by enhancing users’ 

understanding of robotic behavior and capabilities (Perrin et al., 2010; Ji et al., 2021; Lei et al., 

2023). Complementing these efforts, researchers have also proposed the development of more 

human-like cognitive models for robots to improve mutual understanding and coordination 

(Anzalone et al., 2015; He et al., 2021). Also, Gombolay et al. (2017) investigated the role of 

human situational awareness in collaborative performance, while Nikolaidis et al. (2017) 

introduced computational frameworks that support mutual adaptation between humans and robotic 

partners. 

This concept of mutual adaptation is foundational for effective collaboration. Rather than imposing 

rigid task divisions, systems should facilitate bi-directional learning—allowing both humans and 

robots to adjust to one another's strategies. Yun et al. (2016) distinguished autonomous learning 

from direct learning, proposing that the former enables humans to generate hypothetical 

knowledge by integrating insights from multiple experiences. This capacity for abstract and 

integrative thinking marks a key advantage of human intelligence. In line with this, Rozo et al. 

(2016) introduced a learning framework demonstrating how humans can teach robots, further 

enabling adaptive, collaborative behavior. 

In conclusion, human-robot collaboration must prioritize the human factor—not only as a practical 

necessity but as a guiding principle. Since humans are the ultimate beneficiaries and users of these 

systems, collaboration should be grounded in human cognitive models, enriched by their feedback, 

and measured by their satisfaction. No matter how advanced robotic technologies become, 

preserving the human-in-the-loop approach is essential for fostering meaningful, efficient, and 

ethical collaboration. 

2.1.5. Robot Factor in Human-Robot Collaboration 

As mentioned in the previous subsection, learning from each other enhances human-robot 

collaboration. The contribution of robots in collaborative systems largely stems from their ability 

to learn and adapt based on human input and environmental data. Central to this capability is the 

Learning from Demonstration (LfD) approach, which enables robots to replicate human actions 

and develop new skills by observing task execution (Sosa-Ceron, 2022). Building on this, some 
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researchers have proposed more advanced frameworks—such as imitation learning (Hussein et al., 

2017), task-parameterized LfD for intelligent robots (Zaatari et al., 2022), and collaborative 

intelligence-based models incorporating fine-grained human digital twins—to enhance robots’ 

contextual understanding and personalization in task execution (Zheng et al., 2023). Raziei and 

Moghaddam (2021) further extended robot learning through a hyper-actor model that links lessons 

learned from past tasks to future operations, thereby creating a knowledge-transfer mechanism that 

improves robot preparedness. These learning paradigms reflect a broader trend in robotics, where 

machines are no longer static executors but dynamic participants capable of adapting to changing 

contexts. In this direction, Parisi et al. (2019) emphasized the importance of lifelong learning 

frameworks that enable autonomous computational agents to incrementally accumulate knowledge 

throughout their operational lifetime. As highlighted by di Fiore and Schneider (2017), modern 

robots refine their cognitive and functional capabilities through continuous analysis of complex 

datasets, striving to emulate the subtleties of human intelligence. Complementing this view, Soori 

et al. (2023) provided an extensive overview of artificial intelligence techniques that underpin 

these learning models, showing the breadth of methods through which robots contribute 

intelligently and proactively in human-robot collaboration. 

After learning the way of handling tasks, robots play a critical role in supporting collaborative 

work environments, particularly through task sharing and physical assistance. There are many 

virtual and physical human-robot examples in today’s world. Riedelbauch et al. (2023), for 

instance, investigated novel methods for enabling humans and robots to work side by side, with a 

focus on handling tasks, collaborative assembly, and broader industrial applications. Their study 

also emphasized safety concerns, which are essential when integrating robotic systems into shared 

workspaces. In line with this, numerous studies have examined the physical contribution of 

collaborative robots in complex and potentially hazardous environments. Many of these works 

highlight how robots enhance safety and operational efficiency, especially when functioning in 

close proximity to humans during assembly tasks in smart manufacturing contexts (Merlo et al., 

2023; Lopez-de-Ipina et al., 2023; Yonga Chuengwa et al., 2023; Zanchettin et al., 2022; Pereira 

et al., 2022; Prendergast et al., 2021; Darvish et al., 2021). Beyond task execution, robots also 

support system reliability and operator awareness. For example, Polenghi et al. (2024) proposed a 

predictive maintenance framework that enables cobots to detect and respond to anomalous motion 
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patterns, allowing human operators to address issues proactively. Last but not least, Dahl et al. 

(2021) explored the deployment of two types of robots in collaborative environments: one group 

focused on mounting tasks, while another was designed for flexible material transportation. These 

examples demonstrate that robot contributions extend beyond isolated functions, supporting both 

safety and operational adaptability in dynamic work settings. 

In addition to physical assistance and safety functions, robots increasingly contribute to the 

proactive management of system reliability and human-centered interaction. Park et al. (2021) 

presented a programmable motion-fault detection method aimed at enhancing predictive 

maintenance strategies by identifying potential equipment failures before they escalate. This 

approach enables more efficient upkeep and reduces unexpected downtime in collaborative 

environments. Complementing this, Dutta and Zielinska (2021) emphasized the need for early 

detection of two key abnormalities in robotics: information faults and system failures. Their work 

underscores the importance of anticipating such disruptions and implementing safeguards in 

advance to maintain system continuity and safety. Beyond technical diagnostics, the role of robots 

in adapting to human intentions has also gained attention. Lemaignan et al. (2017) explored 

human-aware task planning through a multi-modal dialogue system supported by a cognitive 

architecture. Their framework integrates perspective-taking, affordance assessment, situated 

language interaction, and logical inference to foster more intuitive and responsive collaborations 

between humans and robots in shared workspaces. These developments illustrate that robotic 

support is not limited to mechanical functions, but extends into predictive reasoning and socially 

aware interaction. 

Robots are applied in nearly every field, either physically or virtually; therefore, their contribution 

is extensive and continues to grow—especially in understanding human emotions and intentions 

in collaborative settings. The following Section 2.2 focuses on how robots perceive and interpret 

emotional and behavioral signals through physiological and behavioral data analysis. 

2.2.Tools and Techniques Used in Human-Robot Systems 

Understanding human intentions is a fundamental aspect of effective human-robot collaboration. 

These intentions can be assessed through two primary sources: behavioral data, which reflects 

observable actions and expressions, and physiological data, which provides insights into internal 
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states such as stress or cognitive load. Both types of data are captured using a variety of tools and 

techniques designed to interpret human signals accurately. In this section, the focus begins with 

an overview of the tools and techniques used to extract behavioral measurements, followed by a 

discussion of those employed for physiological assessments. 

2.2.1. Behavioral Measurements in Human-Robot Systems 

In human-robot systems, behavioral measurements are essential for understanding human 

intentions, emotional states, and engagement levels. These measurements rely on external and 

observable cues collected through various interfaces, sensors, and perceptual systems. The 

subsections below group the key techniques used for behavioral observation, based on the modality 

they represent. 

2.2.1.1.Mouse and Keyboard Motion 

Mouse and keyboard movements are frequently utilized to infer users’ behavioral responses in 

digital environments. Salmeron-Majadas et al. (2014) investigated this method in the context of 

cyber-physical learning systems and proposed that such inputs could reveal emotional states, 

though they also noted the importance of combining them with other emotional data sources to 

improve accuracy. Similarly, Sun et al. (2014) explored the relationship between stress and mouse 

motion. Their findings suggest that stress can be triggered by users’ interactions with unfamiliar 

or confusing digital interfaces, which manifest as variations in cursor movement or typing 

behavior. 

2.2.1.2.Facial Expression 

Facial expressions have long been regarded as valuable indicators of internal emotional states. A 

widely accepted method in this domain is the Facial Action Coding System (FACS), which 

identifies emotions based on specific muscle movements (Prkachin & Solomon, 2008). Their study 

showed strong correlations between physical pain and a set of facial reactions including brow 

lowering and eye closure. This connection between facial indicators and subjective experience 

provides a structured approach to interpreting emotional feedback. Building on this, Jabon et al. 

(2010) focused on detecting accident risk based on facial changes in drivers moments before a 
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collision, proposing systems that can issue warnings or act autonomously. Kaltwang et al. (2012) 

applied facial recognition to pain detection, though they highlighted challenges in distinguishing 

subtle variations like eye blinks from true pain signals. In another line of work, McDuff et al. 

(2014) emphasized the need to differentiate between genuine and posed emotional expressions—

particularly smiles—in order to improve recognition accuracy in natural interactions. Zhu et al. 

(2017) expanded this concept by incorporating gesture recognition into facial analysis, employing 

LSTM networks to detect meaningful movements. A broader review of technologies for facial 

expression and gaze recognition was also provided by Fahn et al. (2022), highlighting recent 

developments in perceptual systems. 

2.2.1.3.Image Recognition, Speech and Voice Recognition, and Audiovisual Behavior 

Descriptors 

Multimodal recognition systems that combine visual and auditory cues have gained traction for 

their ability to detect emotional and psychological states. For example, Malta et al. (2011) 

integrated facial expression, speech analysis, and behavioral cues like gas and brake pedal usage 

to detect driver frustration. Their findings suggest that the fusion of multiple inputs strengthens 

the reliability of affect detection. In contrast, Kim et al. (2013) employed unsupervised learning 

models to classify audiovisual data, which they found to be effective in situations where clear 

labeling is not available, such as with unclear speech or ambiguous vocal tones. Further supporting 

the multimodal approach, Yang et al. (2013) and Scherer et al. (2014) explored how conditions 

like depression or anxiety manifest through voice prosody and visual signals such as gaze 

direction, smile behavior, and bodily self-adaptors. Scherer et al. emphasized the challenges in 

automating the detection of subtle behaviors—like leg fidgeting or voice tension—due to the lack 

of robust automatic descriptors, hence relying on manual annotations for certain features. 

Meanwhile, Guo et al. (2018) designed an auditory system for intelligent robots to support 

emotional interpretation. These efforts are reinforced by Fahn et al. (2022), who reviewed a wide 

range of recognition technologies, highlighting their expanding role in socially intelligent robotic 

systems. 
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2.2.1.4.Head Pose Estimation and Body Position Analysis 

Body language, including posture and head orientation, plays a crucial role in decoding human 

intent during interactions. Murphy-Chutorian and Trivedi (2009) emphasized that head pose 

estimation can provide insight into social attention and interaction dynamics—for instance, 

identifying who a person is speaking to in a group setting. They proposed several design principles 

for future systems, including the need for real-time processing, lighting invariance, and 

multiperson tracking. Despite progress in this area, they noted that fully capturing nonverbal cues 

remains an open challenge. Complementing this perspective, Schmitz (2012) pointed out that 

“self-adaptors”—behaviors like fidgeting or hair twirling—are particularly difficult for machines 

to interpret due to their subtlety. Recent work by Orsag et al. (2023) demonstrates progress in this 

domain by analyzing upper-body motion with LSTM networks to infer human intentions in real-

time. 

2.2.2. Physiological Measurements in Human-Robot Systems 

In addition to behavioral observations, physiological data offer an objective and often continuous 

means to assess human stress levels, cognitive load, and emotional responses in human-robot 

collaboration. These data are captured through a range of biosensing technologies that measure 

signals such as heart rate variability, eye movement, brain activity, and skin conductivity. This 

section outlines key physiological measurement techniques categorized by modality and supported 

by current research. 

2.2.2.1.Heart Rate and Electrocardiography (ECG) 

Heart rate monitoring, particularly through electrocardiography (ECG), has been widely used to 

assess emotional and cognitive states during human-robot interaction. Deep learning approaches 

have recently been applied to ECG signals for stress recognition, showing robust results across 

multiple datasets using end-to-end models with minimal manual feature extraction. These 

advancements have positioned ECG as a reliable tool for real-time affective state recognition. For 

instance, ECG-based stress detection models have shown promising performance on benchmark 

datasets. 
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In another application, heart rate monitoring was employed to track cognitive workload during 

complex procedures such as endotracheal intubation (ETI) (Gazetta et al., 2023), where 

participants were exposed to audiovisual stressors. The integration of heart rate sensors with real-

time tasks demonstrates the growing relevance of physiological data in high-stress training and 

evaluation scenarios (Behinaein et al. 2021). Interestingly, non-contact methods for measuring 

heart rate have also emerged—Poh et al. (2010) showed that specially designed cameras could 

monitor the heart rates of multiple individuals simultaneously without physical sensors. 

2.2.2.2.Eye Tracking and Electrooculography (EOG) 

Eye tracking is another widely adopted technique for interpreting users’ cognitive and emotional 

states in human-robot systems. Huang et al. (2015) demonstrated that gaze behavior could be used 

to infer user intent, employing a support vector machine model trained on eye movement patterns. 

Other studies have confirmed that eye movements and facial expressions captured through tracking 

cameras can effectively reflect human performance and engagement in collaborative tasks (Bitkina 

et al., 2021; Behinaein et al., 2021; Del Carretto Di Ponti E Sessam, 2023; Gazetta et al., 2023; 

Hemakom et al., 2024; Awada et al., 2024). 

Electrooculography (EOG), which captures the eye’s corneal-retinal potential via electrodes near 

the canthi, has also proven useful in detecting horizontal gaze direction (Mocny-Pachońska et al., 

2021; Das et al., 2023; Dao et al., 2024). These techniques help identify attention shifts and 

cognitive workload in real time. In high-pressure environments, such as simulation-based training 

sessions, metrics derived from eye tracking have been used to distinguish between relaxed and 

cognitively strained states with high accuracy—up to 83% binary classification between relaxed 

and stressed conditions during tasks like the Stroop and N-Back tests. 

Complementing these findings, wearable technologies like wristbands have gained popularity due 

to their non-intrusive nature and ability to monitor multiple physiological signals, including heart 

rate, skin temperature, and electrodermal activity. Their ease of use and reliability make them 

attractive alternatives to head-mounted systems, especially in applied workplace settings (Gjoreski 

et al., 2017; Nath & Thapliyal, 2021; Mitro et al., 2023; Bello-Orgaz & Menéndez, 2023; Awada 

et al., 2024). For instance, Lachance-Tremblay et al. (2025) employed eye-tracking data to manage 

drivers’ workload by redirecting their attention back to critical tasks when distraction was detected. 



25 

 

2.2.2.3.Electroencephalography (EEG) and Functional Near-Infrared Spectroscopy (f-NIRS) 

Brain activity provides direct insight into cognitive processes and mental workload. 

Electroencephalography (EEG) has been extensively applied to capture neural responses during 

human-robot collaboration (Al-Shargie et al., 2016; Perez-Valero et al., 2021; Katmah et al., 2021; 

Attar, 2022; Hemakom et al., 2023). For example, Zhao et al. (2024) used EEG to monitor pilots’ 

mental states in a virtual training environment, marking a significant move toward quantitative 

cognitive measurement. However, EEG sensors often involve intrusive hardware that can limit 

natural movement during tasks. This concern has been echoed by Sugiono et al. (2022), who noted 

that while EEG offers precision, it can compromise ergonomics and user comfort. 

Functional near-infrared spectroscopy (f-NIRS) presents a less intrusive alternative, capable of 

tracking hemodynamic responses by measuring the levels of oxygenated and deoxygenated 

hemoglobin in brain tissue (Al-Shargie et al., 2016; Mirbagheri et al., 2019). Both EEG and f-

NIRS have shown promise in advancing cognitive-state recognition in collaborative systems, 

although each comes with trade-offs related to usability and signal reliability in real-world 

applications. 

2.2.2.4.Electrodermal Activity (EDA) 

EDA is a widely used physiological marker for assessing arousal and emotional intensity, 

particularly in stress detection. It is measured through sensors that detect changes in skin 

conductance, which are influenced by sweat gland activity. Numerous studies have validated the 

effectiveness of EDA as a standalone indicator of stress (Pop-Jordanova & Pop-Jordanov, 2020; 

Rahma et al., 2022; Dao et al., 2024). Awada et al. (2024), through a comparative study of 

physiological indicators, found that EDA yielded the strongest results in stress classification when 

compared to other biosignals. 

Wearable devices capable of measuring EDA—along with related signals such as blood volume 

pulse (BVP), skin temperature (ST), and motion acceleration—have proven particularly valuable 

due to their ergonomic design and suitability for extended monitoring in work environments 

(Gjoreski et al., 2017; Nath & Thapliyal, 2021; Mitro et al., 2023; Bello-Orgaz & Menéndez, 

2023). These tools offer over 90% classification accuracy in stress detection tasks, making them 
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highly reliable for human-robot collaboration studies where user performance and well-being are 

critical. 

These tools and techniques are applied in contexts where human stress levels directly influence 

both individual and system performance. Section 2.3 explores how the concepts of stress and 

performance are defined and integrated within human-robot systems. 

2.3. Performance, Stress and Task Allocation Factors in Human-Robot Systems 

After exploring the evolution of human-robot systems and the tools and techniques used to assess 

human affective states—such as stress levels and emotional responses—this section shifts the 

focus to three key factors that shape the success of collaboration: performance, stress, and task 

allocation. These elements are not only interconnected but also critical for maintaining balance 

and efficiency within human-robot teams. The following subsections examine these aspects in 

detail, beginning with an overview of system performance, followed by an analysis of how human 

stress impacts collaborative outcomes, and concluding with a discussion on task allocation 

strategies in human-robot environments. 

2.3.1. Human-Robot System Performance 

Human-robot system performance is shaped by a complex interplay of physiological, cognitive, 

temporal, and task-related factors. Human performance within these systems is inherently dynamic 

and subject to fluctuation due to both internal and external influences. 

One of the earliest insights into human performance variability comes from Kleitman’s (1933, 

1938) research on circadian rhythms. His work demonstrated that performance levels rise and fall 

in alignment with the body’s internal biological clock. This rhythm leads to periods of heightened 

alertness and cognitive capacity, followed by inevitable declines. Building on this, 

Kalanadhabhatta et al. (2021) examined both circadian and homeostatic components, concluding 

that human cognitive performance peaks between 09:00–16:00 and diminishes during early 

morning and late-night hours. Razavi et al. (2023) confirmed that aligning demanding tasks with 

these peak periods significantly improves overall task efficiency. 
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In parallel, the Cognitive Load Theory emphasizes the role of knowledge and experience in human 

performance. Sweller (1988) and Van Merriënboer and Sweller (2010) noted that individuals with 

greater expertise perceive tasks as less complex, resulting in more efficient execution. Zeitlhofer 

et al. (2024) experimentally supported this idea by showing that participants performed faster 

during subsequent attempts at previously complex problems, suggesting that knowledge 

acquisition plays a critical role in task performance. 

Performance variability, however, is not solely a result of time-of-day or knowledge level. Lee and 

McGreevey (2002) argued that every human task involves inherent variability, distinguishing 

between natural process variation and deviations that warrant corrective intervention. When 

performance deviates significantly from expected levels, interventions may be necessary to restore 

consistency (Caulcutt, 2004). Nguyen and Zeng (2012) synthesized multiple contributing 

factors—such as ergonomic strain, mental stress, and environmental discomfort—into a 

conceptual model describing the stress-performance relationship. Their bell-curve representation 

reflects that optimal performance occurs at moderate stress levels, while both under-stimulation 

and overload reduce effectiveness. Zhao et al. (2023) adapted this relationship into three 

performance zones—Laid-back, Capacity, and Fatigue—which can guide intervention strategies 

based on real-time stress levels. 

Project management research adds further depth by linking performance to task structure. 

According to Wilkinson et al. (2012), Walhout et al. (2017), Guo et al. (2020), and Zhou et al. 

(2022), estimated task durations often reflect task complexity, especially when skill requirements 

are comparable. In this way, task duration serves as a proxy for workload and can help optimize 

individual task distribution. The Project Management Institute (2021) and Mulcahy (2013) 

emphasize that accurate time estimation during planning is essential for workload balance and 

schedule reliability. 

Several studies have demonstrated the effectiveness of statistical tools in monitoring human 

performance in both individual and collaborative contexts. Wang et al. (2013) used X-bar control 

charts to detect performance drops in supermarket cashiers after prolonged working hours. 

Similarly, Yousefi et al. (2019) introduced the Duration Performance Index (DPI) as a time-

efficiency metric in construction projects, using control charts to track performance deviations. 
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Their findings reinforced that such tools offer valuable insights into when interventions are 

required to prevent inefficiencies. 

In safety-critical contexts such as rail transport, Sugiono et al. (2022) incorporated control charts 

into their Cognitive Workload Management (CWM) framework. Their system used brain data and 

train operation logs to assess workload zones (underload, optimal, overload) and recommend rest 

schedules accordingly. This data-driven approach proved effective in supporting real-time 

decision-making to maintain operator readiness and safety. 

Beyond temporal and cognitive factors, task complexity also plays a crucial role in shaping system 

performance. Zahmat Doost and Zhang (2023) categorized tasks into skill-based, rule-based, and 

knowledge-based groups and measured mental workload across different scenarios. Their findings 

revealed that knowledge-based tasks are the most cognitively demanding, imposing the highest 

mental workload during uninterrupted performance at 78.2%, followed by rule-based tasks at 

50.2%, and skill-based tasks at 40.5%. However, under distraction, the ranking shifted: 

knowledge-based tasks still led with 58.6%, but skill-based tasks (40.4%) slightly exceeded rule-

based tasks (36.9%) in terms of perceived mental workload. This nuanced differentiation 

underscores the importance of considering environmental interruptions when allocating task types 

in human-robot collaboration settings. 

Merlo et al. (2023) approached performance from an ergonomic perspective, emphasizing the need 

to avoid assigning high-risk or physically demanding tasks to humans under unfavorable 

ergonomic conditions. Tao et al. (2024) expanded this view by comparing different interaction 

modalities—such as gesture-based or device-assisted inputs—under varying ergonomic 

conditions. They concluded that the choice of interaction type can significantly influence user 

performance and comfort, with mid-air interaction resulting in poorer performance and higher 

muscle strain, especially in vibration environments. 

To ensure consistent and efficient human-robot collaboration, performance should not be treated 

as a static measure but rather as a dynamic outcome influenced by stress, fatigue, task complexity, 

and temporal rhythms. As Kalanadhabhatta et al. (2021) and others have shown, aligning human 

tasks with peak performance windows and continuously monitoring workload conditions can 
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significantly enhance system-wide outcomes. To that end, dynamic task scheduling systems that 

assess both human capabilities and task demands in real time (Pupa et al., 2021; Alirezazadeh and 

Alexandre, 2022) are increasingly seen as necessary components of adaptive human-robot 

systems. 

2.3.2. The Effect of Human Stress in Human-Robot System Performance 

In human-robot collaboration (HRC), human performance is not only influenced by skill or 

experience but also by fluctuating mental states—especially stress. Stress plays a dual role: while 

a moderate level can enhance alertness and responsiveness, excessive or insufficient stress can 

significantly impair human performance. Therefore, understanding and regulating stress levels is 

a critical factor in optimizing collaborative system outcomes. 

The relationship between stress and performance has long been studied, with foundational work 

by Yerkes and Dodson (1908) showing that performance improves with increasing stress up to a 

certain point—beyond which it declines. More recently, Awada et al. (2024) reaffirmed this 

curvilinear relationship and emphasized the need for quantifying stress accurately to improve 

collaborative system performance. Zhao et al. (2023), though focusing on workload rather than 

stress, identified a parallel trend: human efficiency increases with workload to a certain threshold 

before declining—mirroring the stress-performance bell curve. Their classification of performance 

zones—Laid-back, Capacity, and Fatigue—offers a practical model for identifying when 

intervention is needed to restore optimal workload levels. Sickles and Zelenyuk (2019) further 

noted that efficiency is both a key driver of and an outcome of performance, reinforcing the 

importance of managing human states for improved system outcomes. 

The link between stress and performance is further supported by research on creativity and 

cognitive capacity. Wilke et al. (1985) and Zhao et al. (2018) emphasized that optimal 

performance—particularly in tasks requiring innovation—occurs when stress is balanced. Low 

stress may result in disengagement, while high stress can lead to panic or impaired judgment. 

Similarly, Nguyen and Zeng (2017) offered a stress formulation (Stress = Workload / Mental 

Capability) to explain how cognitive overload occurs when task demands exceed an individual’s 

internal resources. 
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One of the challenges in leveraging these models in real-world HRC systems is measuring stress 

in an accurate yet unobtrusive manner. In this context, Awada et al. (2024) conducted a 

comparative study of physiological indicators and concluded that Electrodermal Activity (EDA) 

alone offered the most consistent and interpretable results. Wrist-worn sensors capable of 

recording EDA, Skin Temperature (ST), Blood Volume Pulse (BVP), and wrist motion have been 

validated as ergonomically suitable and reliable tools for in-the-field stress detection (Gjoreski et 

al., 2017; Nath & Thapliyal, 2021; Mitro et al., 2023; Bello-Orgaz & Menéndez, 2023). These 

technologies enable stress data collection with minimal disruption to the natural flow of human 

behavior, making them particularly advantageous for use in collaborative settings. Despite the 

technological advances, however, ergonomic limitations and usability concerns still pose barriers 

to widespread implementation. 

In conclusion, integrating stress-aware task allocation strategies and adopting non-invasive 

monitoring tools are essential for achieving balanced and efficient human-robot collaboration. 

Wrist-worn devices and contactless sensors represent viable paths forward, offering accurate stress 

detection while preserving user comfort. These innovations mark an important step toward more 

adaptive and intelligent collaborative systems—where human performance is continuously 

supported through real-time, data-driven stress regulation. 

2.3.3. Task Allocation in Human-Robot Systems 

Humans are efficient elements of human-robot systems, capable of quickly adapting to changing 

conditions and adjusting themselves when new missions are introduced. For this reason, the human 

factor is expected to play a role in task allocation. However, as the number of robots increases, the 

cognitive workload placed on a single human may not be sufficient due to the increased demand 

of managing multiple robots. To mitigate this issue, the number of humans involved should also 

be increased accordingly (Jo et al., 2024). 

As hybrid teams consisting of both humans and robots become more common, the workload should 

be allocated by taking the unique characteristics of each into account. Task allocation (Miller et 

al., 2002; Hardin and Goodrich, 2009; Khamis et al., 2015) and task scheduling (Gutzwiller et al., 

2015; Creech et al., 2021; Tokadlı et al., 2021) have been widely discussed in the literature. 

However, the inclusion of multiple humans in multi-robot systems—particularly when human 
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affective states are considered—has not been studied extensively. A recent study by Jo et al. (2024) 

addressed this gap by integrating human affective states into workload distribution across multiple 

humans and robots. This complements earlier research that evaluated human decision-making 

ability based on task difficulty or performance metrics without explicitly considering cognitive 

workload (IJtsma et al., 2019; Talebpour and Martinoli, 2019). Still, cognitive workload—which 

refers to the mental capacity required to complete tasks (Debie et al., 2019)—is one of the key 

factors influencing human decision-making mechanisms (Harriott et al., 2015; Heard et al., 2018; 

Roy et al., 2020; Biondi et al., 2021). 

Le et al. (2024) emphasized that human participation improves situational awareness and provides 

flexibility to the team. However, because human affective states—such as emotions and cognitive 

load—are inconsistent, and human performance can fluctuate due to both internal and external 

factors (Lyons and Stokes, 2012; Hooey et al., 2017; Kolb et al., 2022), systems need to be aware 

of and monitor these changes. Accordingly, the allocation of workload should adapt in real time 

to help maintain humans at their optimal performance level in collaborative environments (Feigh 

and Pritchett, 2014; Barnes et al., 2015; Dahiya et al., 2023). 

Therefore, this thesis focuses on how human performance can be sustained at optimal levels 

through a robot-supervised intervention algorithm that considers affective states and stress levels. 

Finally, the following section presents examples of existing robot-supervised systems that support 

this approach. 

2.4.Robot-Supervised Human-Robot Systems 

As discussed in the previous chapters, recent technological advancements have enabled robots to 

take on supervisory roles within human-robot systems. This shift has led to their integration across 

a wide range of fields, where they monitor, support, and adapt to human behavior. In this section, 

the focus is placed on how robots make decisions in such systems and how these capabilities are 

implemented in real-world applications through various examples. 
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2.4.1. Robots’ Decision-Making in Human-Robot Systems 

As human-robot collaboration becomes increasingly dynamic and task-oriented, the ability of 

robots to make context-aware decisions becomes essential for sustaining both efficiency and 

human well-being. In robot-supervised systems, the robot is not merely a reactive tool but an 

intelligent agent capable of interpreting human behavior, evaluating task demands, and adapting 

its responses accordingly. 

A foundational approach to robot decision-making lies in the analysis of human behavior across 

different time scales. Töniges et al. (2017) outlined a human-centered adaptation framework 

consisting of three behavioral analysis layers. In short-term analysis, robots monitor momentary 

human actions—such as individual work steps—and detect anomalies or irregularities that may 

require immediate response. Medium-term analysis focuses on broader task sequences, enabling 

the robot to evaluate ongoing workload and, if necessary, assume control of specific subtasks to 

alleviate human strain. Finally, long-term behavioral analysis aims to identify patterns over 

extended periods, supporting decisions that align with a more holistic understanding of the user’s 

capabilities and working style. 

Incorporating human-centered principles into robotic decision-making has also been explored 

through cognitive and cloud computing integration. Chen et al. (2018) proposed a computing 

model that leverages real-time cognitive inputs alongside distributed computational resources to 

enhance the robot’s responsiveness and contextual awareness. This approach supports more 

adaptive decision-making by equipping robots with the capacity to interpret not only what the 

human is doing but also how and why. 

From a health and safety perspective, Borges et al. (2021) introduced a decision-making 

framework that prioritizes ergonomic considerations. By assessing the physical demands of 

specific tasks and matching them with the human's ergonomic condition, the system aims to reduce 

the risk of musculoskeletal disorders while simultaneously optimizing task performance. In this 

way, robotic decisions are informed by both physiological and operational parameters. 

Machine learning techniques, particularly reinforcement learning, are also gaining traction in 

robotic decision systems. Dromnelle et al. (2022) implemented reinforcement learning models to 
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train robots in dynamic environments where optimal responses are learned through feedback and 

interaction. This enables robots to adapt their decision-making strategies based on the evolving 

behavior of their human collaborators and the task context, rather than relying solely on predefined 

rules. 

Together, these approaches reflect a growing emphasis on making robotic systems more 

intelligent, context-sensitive, and aligned with human needs. By analyzing behavior over time, 

incorporating ergonomic and cognitive factors, and learning from interaction, robots can make 

informed decisions that enhance collaboration, reduce human fatigue, and improve overall system 

resilience. 

2.4.2. Implementations of Robot-Supervised Human-Robot Systems 

Robot-supervised human-robot systems are no longer confined to industrial manufacturing lines; 

their applications now span diverse fields—from intelligent tutoring to healthcare, smart mobility, 

and immersive virtual environments. The core feature across these domains is the robot’s capacity 

to interpret, predict, and respond to human behavior in real time, often underpinned by artificial 

intelligence, cognitive computing, and adaptive control mechanisms. 

In education, intelligent tutoring systems offer a compelling example of robot-supervised 

implementations. D’Mello et al. (2007) emphasized the importance of integrating affective state 

recognition into learning environments. Their study proposed that user emotions—such as 

confusion, boredom, frustration, and engagement—can be detected using multiple data channels 

including facial expressions, posture sensors, and dialogue cues. They argued that adapting 

tutoring strategies to these emotional signals can enhance cognitive outcomes. Similarly, Whitehill 

et al. (2011) investigated how automated systems could emulate human tutors by detecting student 

emotions to adjust their pedagogical approach. Their findings demonstrated that affect-sensitive 

systems, powered by data collected through sensor networks, could improve learner engagement 

and the overall effectiveness of instruction. 

In the healthcare domain, brain-computer interfaces (BCIs) represent another significant 

advancement in robot-supervised interaction. Perrin et al. (2010) designed an intelligent 

wheelchair system that interprets neural signals to anticipate user needs, enabling the robot to 
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propose supportive actions. Carlson and Demiris (2012) built on this concept by implementing a 

collaborative control model that allows the robot to detect when users need assistance and step in 

accordingly. These systems highlight the value of intention recognition in physically supportive 

environments. 

Outside of these cognitive and assistive applications, robot-supervised systems have made strides 

in industrial settings. Fischer and Pöhler (2018) distinguished between automation and tooling 

scenarios, pointing out that in modern cyber-physical systems, computer technologies increasingly 

act as participants rather than passive tools. Wei and Ren (2018) contributed by focusing on 

dynamic path planning for autonomous adaptation, while Ji et al. (2021) integrated augmented 

reality to improve situational awareness and human-machine interface clarity in collaborative 

environments. 

More broadly, robot-supervised systems powered by AI, cognitive computing, and operational 

technologies are now used across numerous sectors. Examples include smart manufacturing 

systems (Zhang et al., 2023; Johannsmeier and Haddadin, 2016), educational robotics 

(Sannicandro et al., 2022), surgical and mobile healthcare robots (Chi et al., 2018; Wan et al., 

2020), wearable and soft robotics (Lee et al., 2020; Xiong et al., 2021), robotic agriculture 

(Marinoudi et al., 2019), and robotic systems designed for entertainment or assistive purposes for 

children (Van Den Heuvel et al., 2022; Mascarenhas et al., 2022). In each of these 

implementations, robots act not as isolated systems, but as context-aware collaborators capable of 

adapting their roles based on human needs. 

Digital twin modeling further extends the possibilities of robot supervision. Gallala et al. (2022) 

developed a mixed-reality framework using IoT, collaborative robots, and AI, allowing a virtual 

counterpart of the human-robot system to simulate and predict behavior. Prasad et al. (2024) and 

Sreedevi et al. (2022) emphasized the role of cognitive computing and AI in simulating human-

like reasoning for robot decision-making. These frameworks not only support predictive 

maintenance and simulation but also enable real-time decision adjustments based on human 

activity and context. 
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In parallel, machine vision and digital twins have been extensively reviewed as key enablers of 

human-robot collaboration (Yonga et al., 2023; Ramasubramanian et al., 2022). When paired with 

virtual reality applications, such as those demonstrated by Lei et al. (2023), robot-supervised 

systems gain immersive capabilities that enhance task planning, situational awareness, and stress-

free user interaction. 

Despite technological progress, research by Kosa et al. (2023) underscores that full autonomy is 

not always desirable. Their study on robot support in intensive care units highlights that human 

involvement remains critical—especially in high-stakes scenarios where empathy, ethical 

judgment, or contextual interpretation is needed. 

Finally, implementation efforts have consistently prioritized safety and ergonomic performance. 

Numerous studies (e.g., Merlo et al., 2023; Lopez-de-Ipina et al., 2023; Yonga Chuengwa et al., 

2023; Zanchettin et al., 2022; Pereira et al., 2022; Prendergast et al., 2021; Darvish et al., 2021) 

have investigated the physical support provided by collaborative robots in tasks requiring close 

human-robot proximity, often in environments where ergonomic conditions, safety, and 

coordination are critical. These implementations have shown that when robot-supervised systems 

are aligned with human comfort, workload, and task complexity, they significantly enhance both 

system performance and user satisfaction. 

In summary, robot-supervised systems are no longer limited to automation—they are evolving into 

intelligent, multi-functional collaborators. Whether in education, healthcare, manufacturing, or 

immersive virtual environments, their implementation is increasingly marked by adaptability, 

contextual sensitivity, and real-time responsiveness to human needs. 
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3. METHODOLOGY 

Human performance fluctuates based on both implicit conditions, such as stress level, 

physiological conditions like circadian rhythm (which represents sleep patterns), and knowledge 

level, as well as explicit conditions such as environmental factors. This thesis proposes that human 

stress can be controlled by robot partners in human-robot collaboration when human performance 

is impaired due to changing stress levels. To address fluctuations in human performance and stress 

level, a robot-supervised intelligent workload reallocation algorithm is introduced. This algorithm 

tracks human performance through statistical control charts, analyzes human stress via behavioral 

and physiological data, and intervenes in task allocation between robots and humans. The 

assumptions underpinning this model are defined in Subsection 1.3. The proposed model executes 

the following steps: 

1. Initially allocates workload according to task characteristics. Some tasks are exclusive to 

humans, some to robots, and others require human-robot collaboration to utilize both 

partners' capabilities. 

2. The collaborative work is then initiated. 

3. The robot begins observing human performance through statistical control charts, 

alongside its own tasks assigned at the outset. 

4. If human performance becomes unstable, the robot checks whether the human’s stress level 

exceeds predefined thresholds to determine if the human is underloaded, overloaded, or 

stable, using wearable devices such as smartwatches or wristbands. If the stress level is 

stabilized (within predefined thresholds), the robot assesses that irregularities in human 

performance may be due to factors such as the human’s knowledge, skills, or sleep 

conditions. While identifying the root causes of unstable human performance is important, 

investigating this condition is beyond the scope of this thesis. If stress levels are 

underloaded or overloaded, the algorithm proceeds with the following steps. 

5. The robot calculates the task-specific stress level of the current task and possible tasks for 

the human, based on workload allocation zones that represent potential task distributions 

according to partners' capabilities. 

6. If the wearable device indicates that the human is underloaded, the robot assesses whether 

task reallocation will increase stress to reach an optimal stress level and enhance 



37 

 

productivity. If the human is overloaded, the robot investigates whether task reallocation 

will reduce stress, bringing it to the optimal level to boost productivity. This comparison 

is made using the conceptual formula developed for task-specific human stress, which 

represents the individual effect of a task on human stress. In this case, the robot subtracts 

the effect of the current task from the overall stress and adds the potential task’s effect, 

using the task-specific stress values to compare the two different conditions. 

7. If the expected condition is achieved, the task is reallocated accordingly. If not, new tasks 

are tested to determine whether they will achieve the desired condition. 

8. The robot continues to monitor human performance after stabilizing human stress, ensuring 

that performance remains under control in case it fluctuates again. 

Although human-robot collaboration occurs in multi-human, multi-robot systems, this thesis tests 

the proposed algorithm in a one-human, one-robot system to assess whether the model yields the 

expected results. Following this model logic, subsequent sections provide details of the system, its 

components, hypotheses for the proposed model, and elaborations on adopted ideas, flowcharts, 

conceptual formulas, and pseudocodes. A case study and a Monte Carlo simulation model are 

conducted to evaluate the feasibility of the model. 

Section 4 introduces the human-robot system framework, outlining system components and their 

potential interactions within the human-robot team. 

Section 5 presents the interaction modalities across task zones. First, the concept of workload is 

defined by dividing it into distinct zones using a Venn diagram, representing the ability of 

collaboration partners to perform tasks. Some tasks require human expertise, others require robot 

functionality, and some necessitate the complementary capabilities of both. Second, interaction 

modes are identified using the Axiomatic Theory of Design (Zeng, 2002) to illustrate the diverse 

communication channels and interactions within the hybrid system. Third, each interaction 

modality is mapped onto the classified Venn diagram. Fourth, a dynamic task reallocation 

algorithm, considering task zones and human stress levels, is introduced through pseudocode. 

Finally, a case study investigates how dynamic task reallocation can optimize performance in 

human-SAP system collaboration. This study classifies system workload, identifies relevant 

interaction modes and task zones, and provides data to the supervisory controller (the robot). While 
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dynamic task allocation is discussed as stress-aware in this section, Section 6 explores how human 

stress levels can be measured and quantified, and Section 7 examines how human stress affects the 

proposed model in detail. The focus of Section 5 is to identify intervention opportunities based on 

task zones and interaction modes. 

Section 6 evaluates the performance of the proposed human-robot collaboration model, focusing 

on how human stress influences this performance. First, human-robot system performance as a 

function of human stress is evaluated mathematically using a disjoint union formula to assess 

overall system performance, with a focus on human-related factors. Second, the parameters of 

human performance and stress are analyzed through set theory to identify which factors implicitly 

and explicitly affect human performance. Third, it is hypothesized, and supported by existing 

studies, that human stress can be measured through wearable devices. Fourth, a conceptual formula 

is developed to quantify task-specific human stress and adjust stress levels when they exceed 

acceptable thresholds. This quantification is crucial because, when stress is monitored through 

wearable devices, the robot must adjust task assignments and modify the human's workload as 

needed. Mathematical calculations are performed whenever an intervention is made to verify its 

effectiveness. 

Section 7 introduces the proposed model, building on the foundations established in Sections 4 

through 6. First, the process flow of the proposed robot-supervised workload allocation algorithm 

is outlined using Microsoft Visio, divided into three steps to explain how and when the robot 

intervenes in workload allocation. These steps are explained in detail within this subsection. The 

first step focuses on monitoring human performance using statistical process control charts. The 

second step centers on measuring human stress, as detailed in Subsections 6.3 and 6.4. The third 

step illustrates the detailed operation of the proposed model, highlighting the need for integration 

with other systems to ensure proper functionality. 

Based on the proposed model’s process workflow, as depicted in Subsection 7.1.3, the model’s 

three key phases are discussed in Subsection 7.2. The first phase illustrates a state diagram based 

on human stress conditions—underloaded, stabilized, and overloaded. The state diagram triggers 

the robot’s intervention in workload reallocation when human stress levels are overloaded or 

underloaded. The second phase calculates the effect of each task on human stress to determine 



39 

 

which task should be exchanged with the current one. This quantification, as mentioned earlier, is 

explained in Subsection 6.4. The third phase introduces pseudocode that guides the robot in 

adjusting human stress levels to optimize performance during collaboration, as tested in the 

simulation study to evaluate the validity of the proposed model. Finally, Subsection 7.3 presents a 

Monte Carlo simulation to validate the proposed model. 
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4. THE HUMAN-ROBOT SYSTEM FRAMEWORK IN THE PROPOSED MODEL 

Human-robot systems have evolved, as outlined in the literature review, from the use of robots as 

tools in human-dominated work environments to collaborative interactions within cyber-physical 

systems, where physical components such as humans and robots interact through cyber 

components, including sensors, actuators, and software. Since the central theme of this thesis is 

human-robot collaboration through interaction, this section first visualizes the key system 

components—humans, robots, and their collaboration. It then explains how interaction is 

structured within multi-robot, multi-human systems. 

4.1.System Components in Human-Robot Systems 

In the context of human-robot systems, one system’s output serves as the input for another in a 

collaborative setup. Interactions form the foundation of human-robot collaboration through 

communication channels. As mentioned in the literature, communication occurs when information 

is transferred without expecting feedback. In contrast, interaction involves two-way 

communication, where feedback is expected. When the aim is to achieve a shared goal through 

this two-way communication, collaboration emerges. Therefore, understanding the interactions 

and their interrelations within the system concept is crucial. 

Human-robot systems consist of multiple humans and robots, which can form various collaborative 

groups. These groups may include human-human collaborations, where individuals work together 

to achieve a common goal through human-to-human interactions; robot-robot collaborations, 

where robots work together toward a shared goal through robot-to-robot interactions; and human-

robot collaborations, where humans and robots work together toward the same objective through 

human-robot interactions. 

As each group produces output, these outputs may serve as input for other groups, creating a 

continuous cycle of interactions and inputs across the system. This exchange of inputs and outputs 

between groups results in the integration of various system components. This integration 

mechanism underscores the importance of collaboration among system components. Thus, it is 

essential to recognize that system components interact to collaborate and generate output, which 

in turn triggers the operations of other systems. This mechanism is illustrated in Figure 4. 
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Figure 4: System Components in Human-Robot Systems 

 

4.2.Interactions in Human-Robot Systems 

There may be many possible collaboration groups in a human-robot system. The possible 

collaboration groups in a multi-human, multi-robot system, including human-human interactions, 

robot-robot interactions, and human-robot interactions, are expressed as follows: 
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Let n represent the number of humans and m the number of robots. IH is the number of possible 

human-human collaboration groups, IR is the number of possible robot-robot collaboration groups 

and IHR is the number of possible human-robot collaboration groups in the human-robot systems, 

𝐼𝐻 =∑(
𝑛

𝑥
) , 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑢𝑚𝑎𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑔𝑟𝑜𝑢𝑝

𝑛

𝑥=2

 (1) 

𝐼𝑅 =∑(
𝑚

𝑦
) , 𝑤ℎ𝑒𝑟𝑒 𝑦 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑏𝑜𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑔𝑟𝑜𝑢𝑝

𝑚

𝑦=2

 (2) 

𝐼𝐻𝑅 =∑∑(
𝑛

𝑥
) (
𝑚

𝑦
) 

𝑚

𝑦=1

𝑛

𝑥=1

 

𝑤ℎ𝑒𝑟𝑒 𝑥 𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑢𝑚𝑎𝑛𝑠 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑏𝑜𝑡𝑠  

𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑔𝑟𝑜𝑢𝑝 

(3) 

 

According to the numbers obtained from the Equations (1)-(3), (IH* IR) + (IH* IHR) + (IR* IHR) 

gives the possible interactions between collaboration groups. These interactions may require 

integration, as they depend on one group’s output to serve as the input for another group within 

the system. 

As illustrated by the multi-human, multi-robot system concept, the system is complex, and the 

relationships between subsystems are interwoven. Therefore, classifying the communication 

channels, integration modes, and collaboration groups at the beginning of the project, and 

distributing the workload based on their characteristics, is crucial for maximizing system 

performance. The next section explains how such classification can be done, taking into account 

communication channels, interaction modes, and the characteristics of the workload to be assigned 

to system components such as humans, robots, or their joint collaborations. 
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5. INTERACTION MODES ACROSS TASK ZONES IN THE PROPOSED HUMAN-

ROBOT COLLABORATION MODEL 

Decomposing collaboration into fundamental building blocks facilitates a clearer understanding of 

hybrid team structures, enabling effective identification and resolution of issues based on the 

specific needs of each system component. This section outlines how these building blocks are 

defined and how the overall mechanism operates. 

First, task zones are introduced to classify task types according to the responsible system 

component—human, robot, or joint collaboration. This classification supports effective workload 

allocation by mapping tasks to the most appropriate actors. Second, interaction modes are 

presented, comprising reciprocal communication channels designed to support appropriate 

feedback-based interactions among system components. Third, the defined interaction modes are 

integrated into the established task zones to demonstrate their operational alignment within the 

collaboration framework. Finally, a dynamic task reallocation algorithm is proposed, driven by 

intervention opportunities that arise from the task zone structure. While this algorithm incorporates 

stress-aware principles, it does not delve into the specifics of stress assessment. A detailed 

discussion of human stress measurement is provided in Section 6, followed by stress analysis and 

its integration into the model in Section 7. To elaborate on the practical applicability of the 

proposed dynamic workload allocation algorithm, a case study on Dynamic Task Reallocation 

Management for Optimized Performance in Human-SAP System Collaboration is presented at the 

end of this section. 

5.1.Definition of Task Zones 

In human-robot collaboration, interaction is the key mechanism through which system components 

coordinate to achieve shared goals. These interactions—whether between humans, robots, or 

both—directly influence the overall performance of the system. Each collaboration group, defined 

by its configuration and task responsibility, contributes to system output. Figure 5 presents the 

correlation between different types of interactions and their corresponding impact on system 

performance. 
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System performance is classified into three categories: human performance, robot performance, 

and collaboration performance. 

• Human performance is influenced by factors such as the human’s perceived workload, 

knowledge, skills, affective states (e.g., emotions and mood), the actual workload assigned 

to the human, and the time remaining until task deadlines. 

• Robot performance is determined by the robot’s skills, knowledge, assigned workload, and 

time to deadline. 

• Collaboration performance reflects the integration of both human and robot contributions. 

It depends on the human’s perceived workload and affective states, the joint knowledge 

and skills of both agents, the collaborative workload assigned, and time to deadline. 

The first parameters in the performance formulations shown in Figure 5 reflect the influence of 

human stress on system performance. Work-associated stress (σ) is defined as a function of 

perceived workload (WP), knowledge (K), skills (S), and affective states (A), as shown in Equation 

4 below (Nguyen & Zeng, 2017; Yang et al., 2021). When human stress is evaluated using this 

formula, all parameters— WP, K, S, and A—are considered human-related. However, when the 

formula is applied to human-robot collaboration stress, knowledge and skills (K and S) are treated 

as collaboration-related parameters, while perceived workload and affective states (WP and A) 

remain human-related. This distinction arises because the human is the only emotional component 

in the human-robot team, making WP and A the emotion-related parameters in the collaborative 

context. 

𝜎 =
𝑊𝑃

(𝐾 + 𝑆) ∗ 𝐴
 (4) 

Stress can arise from a mismatch between the human’s capacity and workload or from emotional 

and cognitive states. Section 6 discusses in detail how different parameters contribute to human 

stress and how that stress affects both individual and system-wide performance. 
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Figure 5: Connection between performance and collaboration 

This thesis argues that enhancing human-robot system performance requires optimizing human 

performance, which is closely linked to the human’s stress level. Human stress is primarily 

influenced by two factors: 

1. Affective states (e.g., mood, anxiety, emotional well-being), which are difficult to control 

directly, 

2. Actual workload assigned, which can be adjusted dynamically. 

Because affective states are not externally controllable, the actual workload assigned to the human 

becomes the most practical control variable for managing stress. By adjusting this workload in real 

time, it is possible to regulate human stress and maintain it within an optimal range that supports 

high performance. 

Therefore, workload management is central to this thesis. Classifying tasks according to the most 

suitable performer—human, robot, or both—enables the system to allocate workload effectively. 

This forms the basis of the task zones, which will be used throughout the model to guide task 

assignment and dynamic reallocation. 

Subsequently, two lemmas are presented to formally articulate the problem at hand. 
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Lemma 1: Given a set of N tasks allocated among humans, robots, or human-robot teams, each 

task assigned to a human affects their stress level. Some tasks may increase stress, while 

others may reduce it. If the human stress level falls outside the optimal range, task 

redistribution among humans and human-robot teams can be employed to bring the stress 

level back within the desired boundaries. 

Proof: As shown in Equation 4, assuming a planning period too short for significant changes in 

knowledge and skills, variations in stress levels can be counterbalanced by modifying the 

perceived workload. 

Lemma 2: Perceived workload is a controllable parameter, as defined in Equation 4, and can be 

regulated through the actual workload. 

Proof: Perceived workload, shaped by task assignments, previous performance, and time 

availability, can be actively managed by altering the task composition. Drawing on prior 

experiences and evaluating the remaining capacity, it is possible to adjust task distribution to 

regulate perceived workload effectively. 

In a collaborative work environment, tasks are assigned to team members based on their 

competencies—specifically, their skills, knowledge, and available capacity. As a result, it is known 

which members (whether human, robot, or human-robot teams) are capable of performing each 

task. Based on this understanding, tasks can be classified into seven distinct zones, as depicted in 

Figure 6. 
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Figure 6: Possible task distribution map among team members  

 

5.2.Classification of Interaction Modes 

Building upon the task zone classifications presented in the previous subsection, this section 

examines the interactions and communication channels within human-robot collaboration. Since 

collaborators can accomplish tasks through various interaction modes and communication 

pathways, understanding these dynamics is critical. 

Environment-Based Design (EBD) theory (Sun et al., 2011; Zeng, 2011) proposes that the world 

is shaped by three interconnected environments: the human environment, the natural environment, 

and the built environment. In the context of human-robot systems, robots represent the built 

environment. Inspired by the Axiomatic Theory of Design (Zeng, 2002), the relationships among 

these three environments are interpreted as reciprocal communication channels, which provide a 

foundational perspective for modeling interactions in collaborative human-robot systems. Based 

on this theoretical grounding, the communication pathways that constitute a human-robot system 

are structured into a framework, as shown in Table 3. 
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Table 3: Communication Channels and their Application Domains 

Collaboration 

Type 

Interaction 

Modality 

Communication 

Channel 

Definition Traditional 

Application 

Domains 

⊕𝑯𝑯 (𝑯⊗𝑯) (𝑯𝒊 → 𝑯𝒋)

∪ (𝑯𝒋 → 𝑯𝒊) 

Human-Human 

Interaction composed 

of communication 

from Hi to Hj and from 

Hj to  Hi 

Education, 

Psychology, Social 

Sciences, People 

Management, Project 

Management, … 

⊕𝑹𝑹 (𝑹⊗ 𝑹) (𝑹𝒋 → 𝑹𝒊)  

∪  (𝑹𝒊 → 𝑹𝒋) 

Robot-Robot 

Interaction composed 

of communication 

from Rj to Ri and 

from Ri to Rj 

Machine-to-Machine 

Communication 

Technology, 

Wireless Sensor 

Networks, Computer 

Technology, … 

⊕𝑵𝑵 (𝑵⊗𝑵) (𝑵𝒌 → 𝑵𝒊)

∪ (𝑵𝒊 → 𝑵𝒌) 

Human-Human 

Interaction composed 

of communication 

from Nk to Ni and 

from Ni to  Nk 

Natural Sciences 

⊕𝑯𝑹 (𝑯⊗ 𝑹) (𝑯𝒊 → 𝑹𝒋)

∪ (𝑹𝒋 → 𝑯𝒊) 

Human-Human 

Interaction composed 

of communication 

from Hi to Rj and from 

Rj to  Hi 

Perceptual 

Processing, 

Behavioral 

Processing, 

Embodied Cognition, 

Artificial 

Intelligence, Machine 

Learning, Natural 

Language Processing, 

Voice Recognition, 

Image Processing, 
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Cognitive 

Psychology, … 

⊕𝑯𝑵 (𝑯⊗𝑵) (𝑯𝒊 → 𝑵𝒌)

∪ (𝑵𝒌 → 𝑯𝒊) 

Human-Nature 

Interaction composed 

of communication 

from Hi to Nk and 

from Nk to Hi 

Applied Science, 

Economics, 

Business, … 

⊕𝑹𝑵 (𝑹⊗𝑵) (𝑹𝒋 → 𝑵𝒌)

∪ (𝑵𝒌 → 𝑹𝒋) 

Robot-Nature 

Communication 

composed of 

communication from 

Rj to Nk and from Nk 

to Rj 

Applied Science, 

Business, 

Manufacturing, …  

⊕ [(𝑯⊗𝑹)] (𝑯⊗ 𝑹) (𝑯𝒊 → 𝑹𝒋)

∩ (𝑹𝒋 → 𝑯𝒊) 

Mutual understanding 

for a shared goal 

involves 

communication 

between Hi, Rj: from 

Hi to Rj, from Rj to  Hi 

Applied AI 

⊕ [(𝑯𝒊⊗𝑯𝒋)] (𝑯𝒊⊗𝑯𝒋) (𝑯𝒊 → 𝑯𝒋)

∩ (𝑯𝒋 → 𝑯𝒊) 

Mutual understanding 

for a shared goal 

involves 

communication 

between Hi, Hj: from 

Hi to Hj, from Hj to Hi 

Human Science 

⊕ [(𝑹𝒊⊗𝑹𝒋)] (𝑹𝒊⊗𝑹𝒋) (𝑹𝒋 → 𝑹𝒊)  

∩  (𝑹𝒊 → 𝑹𝒋) 

Mutual understanding 

for a shared goal 

involves 

communication 

between Ri, Rj: from 

Ri to Rj, from Rj to  Ri 

Computer Science, 

Applied AI 
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⊕ [(𝑯⊗𝑹

⊗𝑵)] 

(𝑯⊗𝑹

⊗𝑵) 

(𝑯𝒊 → 𝑹𝒋)

∩ (𝑹𝒋 → 𝑯𝒊)  ∩ 

(𝑯𝒊 → 𝑵𝒌) ∩

(𝑵𝒌 → 𝑯𝒊)  ∩ 

(𝑹𝒋 → 𝑵𝒌) ∩

(𝑵𝒌 → 𝑹𝒋) 

Mutual understanding 

for a shared goal 

involves 

communication 

between Hi, Rj, and 

Nk: from Hi to Rj, 

from Rj to  Hi, from Hi 

to Nk from Nk to Hi, 

from Rj to Nk and 

from Nk to Rj 

Applied AI 

 

According to Table 1, communication channels are denoted by the symbol “→”, interactions by 

“⊗”, and collaborations by “⊕”. As discussed in the Literature Review section, communication 

channels constitute interactions when they are bidirectional, and interactions lead to collaborations 

when the system components share a common goal. The shared goal is expressed as 

“⊕[(H⊗R⊗N)]”, indicating that it must involve the intersection of all interaction modes within 

the system. This representation reflects the mutual understanding of each component’s 

requirements, achievements, capabilities, and limitations, allowing them to compensate for one 

another in order to achieve the collective objective. The communication channels outlined in Table 

1 provide the foundation for formulating Human-Robot-Nature System Collaboration (⊕HRNS) 

as a function of these interlinked communication pathways: 

 

⊕𝑯𝑹𝑵𝑺  =   [(𝑯𝒊 → 𝑯𝒋) ∪ (𝑯𝒋 → 𝑯𝒊)] ∪ [(𝑯𝒊 → 𝑯𝒋) ∩ (𝑯𝒋 → 𝑯𝒊)] ∪

                             [(𝑹𝒋 → 𝑹𝒊)  ∪ (𝑹𝒊 → 𝑹𝒋)] ∪ [(𝑹𝒋 → 𝑹𝒊)  ∩ (𝑹𝒊 → 𝑹𝒋)] ∪

                             [(𝑵𝒌 → 𝑵𝒊) ∪ (𝑵𝒊 → 𝑵𝒌)] ∪ [(𝑵𝒌 → 𝑵𝒊) ∩ (𝑵𝒊 → 𝑵𝒌)] ∪

                             [(𝑯𝒊 → 𝑹𝒋) ∪ (𝑹𝒋 → 𝑯𝒊)] ∪ [(𝑯𝒊 → 𝑹𝒋) ∩ (𝑹𝒋 → 𝑯𝒊)] ∪

                             [(𝑯𝒊 → 𝑵𝒌) ∪ [(𝑵𝒌 → 𝑯𝒊)] ∪ [(𝑯𝒊 → 𝑵𝒌) ∩ [(𝑵𝒌 → 𝑯𝒊)] ∪

                             [(𝑹𝒋 → 𝑵𝒌) ∪ (𝑵𝒌 → 𝑹𝒋) ]  ∪  (𝑹𝒋 → 𝑵𝒌) ∩ (𝑵𝒌 → 𝑹𝒋) ]  ∪

                              [(𝑯𝒊 → 𝑹𝒋) ∩ (𝑹𝒋 → 𝑯𝒊)  ∩ (𝑯𝒊 → 𝑵𝒌) ∩ (𝑵𝒌 → 𝑯𝒊)  ∩

 (5) 
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                                (𝑹𝒋 → 𝑵𝒌) ∩ (𝑵𝒌 → 𝑹𝒋)]                                             

                          

⊕𝑯𝑹𝑵𝑺  =   (𝑯⊗𝑯) ∪ [(𝑯𝒊 → 𝑯𝒋) ∩ (𝑯𝒋 → 𝑯𝒊)] ∪ (𝑹⊗ 𝑹) ∪ [(𝑹𝒋 → 𝑹𝒊)  ∩

                            (𝑹𝒊 → 𝑹𝒋)] ∪ (𝑵⊗𝑵) ∪ [(𝑵𝒌 → 𝑵𝒊) ∩ (𝑵𝒊 → 𝑵𝒌)] ∪ (𝑯⊗ 𝑹) ∪

                            [(𝑯𝒊 → 𝑹𝒋) ∩ (𝑹𝒋 → 𝑯𝒊)] ∪ (𝑯⊗𝑵) ∪ [(𝑯𝒊 → 𝑵𝒌) ∩ [(𝑵𝒌 → 𝑯𝒊)] ∪

                            [(𝑹⊗𝑵) ∪ (𝑹𝒋 → 𝑵𝒌) ∩ (𝑵𝒌 → 𝑹𝒋) ]  ∪ [(𝑯⊗𝑹) ∩ (𝐇⊗𝑵) ∩

                              (𝐑⊗𝑵)] 

(6) 

The HRNS formula can be simplified when individual collaborative interactions are organized as 

illustrated below: 

⊕𝑯𝑹𝑵𝑺  =  ⊕𝑯𝑯 ∪ ⊕ (𝑯⊗𝑯) ∪ ⊕ 𝑹𝑹 ∪ ⊕ (𝑹⊗𝑹) ∪ ⊕𝑵𝑵 ∪ ⊕ (𝑵⊗𝑵) ∪

 ⊕𝑯𝑹 ∪ ⊕ (𝑯⊗𝑹) ∪ ⊕ 𝑯𝑵 ∪ ⊕𝑹𝑵 ∪ ⊕ (𝑹⊗𝑵) ∪ ⊕ [(𝑯⊗𝑹⊗𝑵)] (7) 

While the influence of nature on a human-robot system (HRS) is indisputable, its inherent 

complexity leads to its exclusion from the HRS formulation. Therefore, the HRS system 

examined in this thesis is defined as follows: 

⊕𝑯𝑹𝑺  = ⊕𝑯𝑯 ∪ ⊕ (𝑯⊗𝑯) ∪ ⊕ 𝑹𝑹 ∪ ⊕ (𝑹⊗𝑹) ∪ ⊕𝑯𝑹 ∪ ⊕ (𝑯⊗𝑹) (8) 

As demonstrated in Equation 8, multi-human–multi-robot system collaboration comprises human–

human interaction (⊕𝑯𝑯), robot–robot interaction (⊕𝑹𝑹), human–robot interaction (⊕𝑯𝑹), 

and their shared understanding of a common objective. Therefore, humans must not only 

understand their human partners’ requirements, capabilities, and limitations (⊕ (𝑯⊗𝑯)) but also 

those of their robot partners (⊕ (𝑯⊗𝑹)). Similarly, robots must comprehend the needs, abilities, 

and limitations of both their robotic counterparts (⊕ (𝑹⊗𝑹))—via automated integration—and 

their human collaborators (⊕ (𝑯⊗𝑹))—through physiological and behavioral analysis. 

However, mutual understanding is not meaningful unless it leads to action that compensates for 

each other's limitations. At this point, the intersection of human-robot interactions, denoted as “⊕

(𝑯⊗𝑹)” plays a crucial role. It represents mutual understanding directed toward a shared goal 
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within the human–robot system and captures the decision-making process of system 

components—human or robot—when they detect performance-degrading limitations in their 

partners. 

This interaction can be evaluated in two directions: how humans respond to a robot's inability or 

constraint in task execution, and vice versa. This thesis proposes a decision-making algorithm that 

enables robots to recognize such limitations and take appropriate action. Consequently, the thesis 

centers on the “⊕ (𝑯⊗𝑹)” component of the collaboration tree defined in Equation 8. 

5.3.Integration of Interaction Modes with Task Zones 

After understanding task zones and interaction modes, this section matches these terms to show 

relationship. This relationship facilitates assigning right tasks to the right task owners while 

deploying system components in the human-robot collaboration.  

 

Figure 7: Possible task zones for interchange 

Figure 7 emphasizes that Zone 4, Zone 5, Zone 6, and Zone 7 are the only zones where robots can 

either change tasks assigned to humans or assign new tasks to them. In these zones, mutual 

understanding for a shared goal must be maintained throughout the collaboration, regardless of 
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whether the task is performed by a human or a robot. The main objective of conducting task 

reallocation in these zones is to optimize human working conditions and enhance their 

performance while both human and robot partners work toward a common goal. 

Therefore, each member should be aware of their partner’s individual abilities and limitations, 

aiming to compensate for each other’s weaknesses during collaboration. When a decrease in a 

partner’s performance is detected, an appropriate action should be taken. This behavior represents 

the essence of effective and efficient collaboration. This logic is symbolized by the notation 

“⊕[(H⊗R)]” introduced in the previous subsection, which denotes the need to understand a 

collaborator’s state and respond accordingly. 

Additionally, identifying the correct interaction modes plays a crucial role in recognizing the active 

communication channels based on the task at hand. For example, tasks in Zone 6 can be executed 

either by robots alone or through human-robot collaboration. In this case, both (R⊗R) and (H⊗R) 

interaction channels should remain active when a task from Zone 6 is undertaken. The robot 

continuously monitors the human channel during joint tasks. If the human is overloaded while 

performing the task, the robot can take over the task entirely to reduce the human’s workload. 

Conversely, if a robot is independently handling a Zone 6 task and observes that the human partner 

is underloaded, the task assignment can shift from the (R⊗R) channel to the (H⊗R) channel. 

Such adaptive task exchange mechanisms serve as a foundational component in modeling 

intelligent human-robot systems that are responsive to real-time variations in partner performance 

and workload. 

5.4.Dynamic Task Reallocation Algorithm Based on Task Zones 

Effective collaboration depends on establishing a shared cognitive framework among all 

participants, which promotes mutual understanding. In human-robot collaboration, this shared 

understanding hinges on the robot’s ability to exhibit decision-making capabilities that are 

compatible with human reasoning. A key enabler of such intelligent and coordinated behavior is 

the implementation of an advanced supervisory control system. In this thesis, the supervisory 

controller is embedded directly into the robot systems, enabling them to autonomously monitor, 

interpret, and respond to dynamic task environments. This intelligent controller ensures a 
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continuous and synchronized exchange of information, drawing from both human performance 

data and collaborative task dynamics. Within this adaptive communication environment, the 

controller evaluates whether task reallocation is necessary using embedded decision-making 

algorithms. When reallocation is required, it efficiently redistributes tasks—either by assigning 

responsibilities to human collaborators or autonomously taking over certain tasks—ensuring a 

balanced and responsive workload distribution. The structure of this mechanism is presented in 

Figure 8 below. 

 

 

Figure 8: Workload reallocation between humans, robots and their collaborations in smart 

systems 

 

The intelligent human-robot system utilizes its interaction modes to dynamically manage task 

allocation across defined zones, as illustrated in Figure 7, with the primary goal of maintaining 

human stress levels within an optimal range. To support this objective, this thesis introduces an 
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eight-step methodology designed to regulate human stress and enhance human performance in 

collaborative settings. Stress monitoring—explained in detail in Section 6—combined with the 

implementation of the algorithm outlined in the pseudo-code below, serves as the foundation of 

this approach. For the human-robot system to effectively reallocate tasks, it is essential to identify 

communication pathways, foster collaborative interactions, and promptly detect stress in human 

partners to enable timely interventions. 

An Eight-Step Algorithm for Performance Optimization through Stress Regulation in Smart Robot-

Governed Systems: 

1. Apply the Axiomatic Theory of Design to analyze complex interaction structures within 

the system. 

2. Identify distinct interaction modes: 𝑯⊗𝑯 (human-human), 𝑹⊗𝑹 (robot-robot), and 

𝑯⊗𝑹 (human-robot). 

3. Address each interaction mode within the smart system and associate relevant tasks. 

4. Define the roles of each system component—humans, robots, and human-robot 

collaborations. 

5. Determine which roles may be executed by multiple system components, where applicable. 

6. Highlight human-involved tasks to prioritize stress monitoring. 

7. Develop an algorithm for robots to detect, assess, and respond to human stress by 

redistributing workload accordingly. Implement the algorithm via a smart supervisory 

controller, which may be embedded within robot systems—as proposed in this thesis—or 

supported externally, depending on system capabilities. 

The detailed pseudo-code implementing this logic follows below. 

Task Reallocation Algorithm: 

Inputs:  

i. Resources: Set of Human (ℎ ∈ 𝐻); Set of Robots/Machines (𝑟 ∈ 𝑅) 

ii. Set of tasks (𝒘 ∈ 𝑾) 
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iii. Capabilities of Human, Robot and Human-Robot team: Distribute tasks 

according to resource capabilities as illustrated in Figure 5. 

 

Step 0: 𝑡 = 0 distribute tasks among Human, Robot, and Human-Robot jointly 

𝑊0
𝐻 ∈ {𝑤𝑍1, 𝑤𝑍4, 𝑤𝑍5, 𝑤𝑍7 }  

𝑊0
𝑅 ∈ {𝑤𝑍2, 𝑤𝑍4, 𝑤𝑍6, 𝑤𝑍7 }  

𝑊0
𝐻𝑅 ∈ {𝑤𝑍3, 𝑤𝑍5, 𝑤𝑍6, 𝑤𝑍7 }  

Step 1: 𝑡 = 𝑡 + 1, assess human stress (𝜎 =
𝑊𝑡
𝑃

(𝐾𝐻, 𝑆𝐻) 𝐴𝑡
𝐻) 

Step 2: Task reallocation: 

if (𝜎 ≥ 𝜎𝑈𝐵): 

Human is over-stressed: Transfer tasks from Human to Robot or Human to Human-Robot team 

If 𝑊𝑡
𝐻 includes tasks belong to Zone 4 ➔ Transfer tasks to Robot 

elseif 𝑊𝑡
𝐻 includes tasks belong to Zone 5 ➔ Transfer tasks to Human-Robot team 

elseif 𝑊𝑡
𝐻 includes tasks belong to Zone 7 ➔ Transfer tasks to Robot or Human-Robot team 

elseif if (𝜎 ≤ 𝜎𝐿𝐵): 

Human is under-stressed: Transfer tasks from Robot or Human-Robot team to Human 

If 𝑊𝑡
𝑅 includes tasks belong to Zone 4 ➔ Transfer tasks to Human 

elseif 𝑊𝑡
𝐻𝑅 includes tasks belong to Zone 5 ➔ Transfer tasks to Human 

elseif  𝑊𝑡
𝑅 or 𝑊𝑡

𝐻𝑅   includes tasks belong to Zone 7 ➔ Transfer tasks to Human 

Subject to following constraints 

∑ 𝓉𝑘
𝐻

𝑘∈𝑊𝑡
𝐻

+ ∑ 𝓉𝑘
𝐻𝑅

𝑘∈𝑊𝑡
𝐻𝑅

≤ 𝑇𝐻 
(9) 
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∑ 𝓉𝑘
𝑅

𝑘∈𝑊𝑡
𝑅

+ ∑ 𝓉𝑘
𝐻𝑅

𝑘∈𝑊𝑡
𝐻𝑅

≤ 𝑇𝑅 
(10) 

𝑊̂𝑡
𝑃 = 𝑓 (( ∑ 𝑓(𝓉𝑘

𝐻 ,  𝐾𝑘
𝐻 , 𝑆𝑘

𝐻 )  + ∑ 𝑓(𝓉𝑘
𝐻𝑅,  𝐾𝑘

𝐻 , 𝑆𝑘
𝐻 ,  𝐾𝑘

𝑅, 𝑆𝑘
𝑅 )

𝑘∈𝑊𝑡
𝐻𝑅𝑘∈𝑊𝑡

𝐻

) ,  𝛽𝑡−1
𝐻 ,  𝑇𝐻 ) (11) 

𝜎̂ =  
𝑊̂𝑡

𝑃

(𝐾𝐻 ,  𝑆𝐻) 𝐴𝑡
𝐻 (12) 

𝜎𝐿𝐵 ≤ 𝜎̂ ≤ 𝜎𝑈𝐵 (13) 

Where:  

𝓉𝑘
𝐻is the estimated completion time when task k is completed by a Human alone 

𝓉𝑘
𝑅is the estimated completion time when task k is completed by a Robot alone 

𝓉𝑘
𝐻𝑅is the estimated task completion time when handled by Human-Robot jointly. 

𝑇𝐻is the available time (remaining capacity) and the 𝑡 is the current period. 

𝑊̂𝑡
𝑃is the estimated perceived workload at period t 

𝛽𝑡−1
𝐻 is the performance of human (percentage of successful completion of tasks) at the t-1 

𝐾𝐻 ,  𝑆𝐻 and 𝐴𝑡
𝐻 are knowledge, skill and the affective state of human at time 𝑡𝑖. 

𝜎̂is the estimated stress level at period 𝑡𝑖 

𝜎𝐿𝐵 is the lower bound for desired stress level 

𝜎𝑈𝐵 is the upper bound for desired stress level 

else 

Continue with the current task assignment 

Step 3: Has the job completed? 

NO:  Go to Step 1 
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YES: Go to step 4 

Step 4: End intervention 

Outputs: 

i. Updated 𝑊𝑡
𝐻, 𝑊𝑡

𝑅 and 𝑊𝑡
𝐻𝑅 

ii. Optimized Human stress (𝜎𝐿𝐵 ≤ 𝜎 ≤ 𝜎𝑈𝐵)  

 

8. Optimize human stress levels to achieve overall enhancement of smart system 

performance. 

The objective of the outlined steps is to maximize the effective use of human and robotic 

capabilities, as well as their collaborative synergy. Managing this interaction through well-

established interaction modes (reciprocal communication channels) enables collaborators to 

maintain human stress within an optimal range, thereby supporting the attainment of targeted 

system productivity. 

5.5.Case Study: Dynamic Task Reallocation Management for Optimized Performance 

in Human-SAP System Collaboration 

This subsection demonstrates how the proposed algorithm, introduced throughout Section 5, can 

be applied in a real-world context. The case study focuses on the interaction between humans and 

SAP systems within an organizational setting, where the human-robot collaboration control model 

is evaluated through the lens of SAP integration. 

The implementation of SAP Transportation Management (TM) software is examined by 

comparing task allocations and operational outcomes before and after its adoption. Task 

assignments across different zones (see Figure 6) are determined based on SAP’s functional 

capabilities. Although SAP’s integrated architecture supports smooth coordination with other 

enterprise systems, communication conflicts during collaboration may still occur, leading to 

reduced efficiency in human-SAP interaction. 
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This case study aims to identify both the timing and nature of these conflicts and explores how 

they can be addressed through the dynamic task reallocation method presented earlier and 

visualized in Figure 8. 

5.5.1. Introduction of the System Structure 

SAP is a multifaceted system consisting of numerous IT components that support a wide range of 

business processes. This study focuses on eight key SAP modules: S/4 HANA (Cloud ERP), 

Transportation Management, Event Management, Extended Warehouse Management, Business 

Network Global Track and Trace, Business Network for Logistics, External Geographic 

Information Systems, and the VSR (Vehicle and Routing) Optimizer. These modules are 

interconnected through a variety of integration technologies, including IDOC, SOAP, REST, RFC, 

Proxy, File, EDI, JDBC, and BAPI. Additionally, SAP Process Integration serves as a dedicated 

integrator system, specifically designed to facilitate seamless communication across different 

platforms. 

The primary emphasis is placed on the SAP Transportation Management (TM) module and its 

interactions with both direct and indirect collaborators that impact its operational performance. 

Evaluating the system's overall efficiency requires an understanding of how these collaborators 

contribute to SAP TM’s functionality. Smooth operation of TM processes depends heavily on 

input from surrounding systems, which deliver critical data needed to execute logistics tasks 

effectively. 

To illustrate this, a scenario involving an S/4 HANA side-car configuration is presented, 

highlighting the integration of SAP TM with external systems. Lauterbach et al. (2019) offer a 

detailed representation of these continuous integrations in the context of such a setup (see Figure 

9). Although the case study centers on the adaptation process of logistics service providers to the 

SAP Business Network for Logistics (LBN), SAP TM remains the core element—functioning as 

the central hub for operational data flow. Figure 10 provides a visual overview of the information 

exchange within a SAP TM-centric system. 
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Figure 9: Overview of SAP TM Integration When Not Embedded in SAP S/4 HANA 

(Lauterbach et al., 2019) 

 

Figure 10: Illustration of Robot-Robot Communication; Systems integration in SAP S/4 HANA 

Side-Car Scenario (Robots are systems such as SAP LBN and SAP S/4 HANA) 
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To ensure a clear distinction and understanding of roles within the system, robotic components are 

labeled as ‘R’ followed by numerical identifiers (e.g., R1, R2, R3), while human personas—such 

as users, developers, analysts, consultants, and managers—are represented as ‘H’ with 

corresponding numbers (e.g., H1, H2, H3). While existing SAP systems do not yet exhibit 

autonomous intelligence or engage in dynamic interaction with human collaborators, it is 

anticipated that future advancements will transform these systems into intelligent robotic entities 

capable of ongoing cooperation with humans. 

Integration technologies form the foundation for communication among robotic systems. In this 

context, integration components are also referred to as robots, as they actively facilitate system-

level interactions. Additionally, human contributors responsible for managing these integrations—

particularly through SAP Process Integration (PI)—are recognized as SAP PI consultants. 

 

Figure 11: Dynamic Collaboration between Human-SAP systems (robots): Navigating the Smart 

SAP S/4 HANA Side-Car Ecosystem with human in the loop 
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Given this structure, robotic systems communicate with one another via an intermediary robot that 

serves as an integrator, forming the R⊗R interaction channel. These exchanges are supervised and 

coordinated by human collaborators through the H⊗R channel. Each robotic system also 

interfaces with its human users to support their interactions, which also take place through the 

H⊗R pathway. Meanwhile, human-to-human communication occurs through the H⊗H channel. 

The envisioned collaborative ecosystem for a future smart SAP system—where both robots and 

humans work together dynamically—is illustrated in Figure 11. 

5.5.2. Identifying Tasks and Their Corresponding Zones 

To conduct a comprehensive analysis of human-robot collaboration, the first essential step is to 

clearly define and map out the communication channels involved, as discussed earlier. Grounded 

in the Axiomatic Theory of Design (Zeng, 2011), this approach requires recognizing three core 

relational dynamics: human-human, robot-robot, and the crucial bidirectional interactions that 

define human-robot collaboration. Based on this framework, tasks within the SAP system are 

identified, along with their potential executors—classified into designated zones. As illustrated in 

Figure 6, tasks are grouped into seven distinct zones depending on the capabilities of the 

collaborators (H, R, or H-R). Table 4 presents the identified tasks alongside their corresponding 

zones. 

 

Table 4: Possible Tasks Available for Human, Robot, Human-Robot in the LBN (Business 

Network for Logistics) System of SAP S/4 HANA Side-Car Scenario 

Task 

number 
Task details Channel 

Tasks that can by  

Task 

Zone H R HRC 

T01 
H18 initiates integration between different 

systems. 
(𝑯⊗𝑹)   X 3 

T02 
H19 designs the RFC (Remote Function Call) 

interface. 
(𝑯⊗𝑹)   X 3 

T1 H4 creates deliveries on R3. (𝑯⊗𝑹)   X 3 

T2 
Deliveries are sent from R3 to R4 and from R3 to 

R1. 
(𝑹⊗ 𝑹)  X  2 
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T3 

Transportation units are automatically created on 

R4. (Together with the delivery information, those 

form the basis for warehouse planning and 

execution.) 

(𝑹⊗ 𝑹)  X  2 

T4 
Freight orders are created by H1 or H2 in 

collaboration with R1. 
(𝑯⊗𝑹)   X 3 

T5 
The information regarding planned freight orders 

is sent from R1 to R2 and R1 to R4. 
(𝑹⊗ 𝑹)  X  2 

T6 

H6 confirms the freight orders through R2 on the 

Freight Order Management section, or this process 

can be automated. 

(𝑹⊗ 𝑹)  

𝒐𝒓  

(𝑯⊗𝑹) 

 

 X X 6 

T7 
Information regarding freight orders is sent from 

R2 to R1. 
(𝑹⊗ 𝑹)  X  2 

T8 
H15 creates the picking warehouse on R4, or this 

process can be automated. 

(𝑹⊗ 𝑹)  

𝒐𝒓  

(𝑯⊗𝑹) 

 

 X X 6 

T9 

Information regarding warehouse task creation is 

sent from R4 to R3 and then R3 to R1. (R1 and R3 

can be directly integrated. In this case, information 

is sent directly from R4 to R1.) 

(𝑹⊗ 𝑹)  X  2 

T10 

When the freight orders are confirmed on the 

Freight Order Management section of R2, they 

appear on Dock Appointment Scheduling and 

Freight Execution sections of R2. 

(𝑹⊗ 𝑹)  X  2 

T11 
H7 books appointments for the assigned freight 

orders. 
(𝑯⊗𝑹)   X 3 

T12 
The driver(s) pick up the freight(s) from the 

warehouse and transportation(s) start. 
(𝑯⊗𝑯) X   1 

T13 

When the driver(s) pick up the freight(s) from the 

warehouse and transportation(s) start, H8 or H9 

should report each stop's arrival and departure time 

on the Freight Execution section of R2. 

(𝑯⊗𝑹) 

 
  X 3 

T14 

When reporting is completed on the Freight 

Execution section of R2, invoicing information is 

visible on the Freight Settlement section of R2. 

(𝑹⊗ 𝑹)  X  2 
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T15 

If there is a dispute that should be created for the 

invoice, H10 or H11 creates dispute(s) on the 

Freight Settlement section of R2. 

(𝑯⊗𝑹)   X 3 

T16 
Information regarding dispute(s) is sent from R2 

carrier tenant to R2 shipper tenant. 
(𝑹⊗ 𝑹)  X  2 

T17 
H5 resolves the dispute indicated by the carrier on 

the shipper tenant of R2. 
(𝑯⊗𝑹)   X 3 

T18 

Information regarding dispute resolution is sent 

from the shipper tenant of R2 to the carrier tenant 

of R2. 

(𝑹⊗ 𝑹)  X  2 

T19 
H10 or H11 confirms the invoices finalized on the 

carrier tenant of R2 (Freight Settlement section). 
(𝑯⊗𝑹)   X 3 

T20 Confirmed invoices are sent from R2 to R1. (𝑹⊗ 𝑹)  X  2 

T21 Confirmed invoices are sent from R1 to R3. (𝑹⊗ 𝑹)  X  2 

T22 
R1 users (H1, H2, H3, H4, H5, H13) meet to 

allocate tasks. 
(𝑯⊗𝑯) X   1 

T23 
R2 users (H6, H7, H8, H9, H10, H11, H12) meet 

to allocate tasks. 
(𝑯⊗𝑯) X   1 

T24 

R1 users and R2 users meet to resolve the 

problems occurred on R2 that lead to setbacks on 

R1. 

(𝑯⊗𝑯)  

𝒐𝒓  

(𝑯⊗𝑹) 

X  X 5 

T25 

H13 meets managers of the other systems to 

address the problem(s) occurred on R1, whether it 

is because of integration incompatibilities or not. 

 

(𝑯⊗𝑯)  

𝒐𝒓  

(𝑯⊗𝑹) 

X  X 5 

T26 

Other systems' managers meet the consultants, 

specialists, and developers to find the root cause of 

the problem(s). 

(𝑯⊗𝑯) 𝒐𝒓  

(𝑹⊗ 𝑹) 𝒐𝒓  

(𝑯⊗𝑹) 

X X X 7 

T27 

The people in charge of the problematic point(s) of 

the system work on the system components in 

collaboration. 

(𝑯⊗𝑯)  

𝒐𝒓  

(𝑯⊗𝑹) 

X  X 5 

𝑇𝐴𝐷1 
H17 reports transportation events in collaboration 

with R5. 
(𝑯⊗𝑹)   X 3 

𝑇𝐴𝐷2 
Reported events are sent from R5 to R1 (and R1 to 

R2 if needed). 
(𝑹⊗ 𝑹)  X  2 
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𝑇𝐴𝐷3 
R6 constantly runs while H1, H2, H3, H4, H5, 

H13 run the optimizer on R2. 

(𝑹⊗ 𝑹)  

𝒐𝒓  

(𝑯⊗𝑹) 

 

 X X 6 

𝑇𝐴𝐷4 
H13 reports events regarding orders and shipments 

on R8. 
(𝑯⊗𝑹)   X 3 

𝑇𝐴𝐷5 
Reported events are sent from R8 to R3 and then 

from R3 to R1 if needed. 
(𝑹⊗ 𝑹)  X  2 

𝑇𝐴𝐷6 
H16 creates a company-specific geographic 

information system structure. 
(𝑯⊗𝑹)   X 3 

𝑇𝐴𝐷7 
The information regarding the GIS structure is sent 

from R7 to R1. 
(𝑹⊗ 𝑹)  X  2 

 

The next step involves systematically navigating through each task assigned within the respective 

zones outlined in Figure 12. This deliberate navigation enables the collaborative robot—or smart 

supervisory controller—to detect and intervene where necessary. According to the proposed 

framework, the robot’s intervention is limited to the overlapping areas within its designated 

operational zones. These intersecting regions represent key opportunities for reallocating tasks, as 

they allow transitions between robots, humans, or joint execution depending on situational needs. 

Within this shared responsibility structure, the robot or smart supervisory controller can 

dynamically adjust task assignments to enhance overall efficiency—either by delegating specific 

responsibilities to human collaborators or by taking over certain tasks itself. However, it is 

important to highlight that tasks assigned to Zones 1, 2, and 3 are not eligible for cross-component 

reassignment; instead, they can only be redistributed internally—for example, transferring tasks 

from one human to another in order to mitigate individual stress levels. 

The overarching goal is to optimize human stress conditions, beginning with robotic support and 

followed by internal reallocation within the same system category. In this context, tasks T6, T8, 

T24, T25, T26, T27, and T_AD3 are identified as flexible and dynamic elements that can influence 

workload distribution, based on the algorithm introduced earlier in the pseudocode. 
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Figure 12: Generating Task Zones for Human, Robot, Human-Robot in the LBN System of SAP 

S/4 HANA Side-Car Scenario 

 

The first six steps of the proposed procedure have been carefully implemented up to this point. 

The next part of the case study focuses on the detailed process of identifying human stress levels 

and enhancing system performance by keeping individuals within optimal emotional ranges. This 

section offers an in-depth exploration of methods aimed at fostering emotionally supportive 

environments for human collaborators—ultimately contributing to improved efficiency and 

stability across the entire system. 

5.5.3. Task Reallocation Based on Stress/Workload 

As the assigned workload (𝑊𝑡
𝐻) steadily increases, there is a natural escalation in the perceived 

workload (𝑊𝑡
𝑃) experienced by individuals, compounded by the current stressors (𝜎𝑡

𝐻) they face. 

The rise in perceived workload, assuming the task completion time or time-to-deadline (𝑇𝐷) 

remains constant, inevitably leads to a decline in human performance (ղ𝐻). This decrement in 
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performance not only impacts the ongoing emotional and psychological states of individuals (𝐴𝑡
𝐻), 

but also serves as a precursor for the level of stress (𝜎𝑡+1
𝐻 ) in the next period. Consequently, this 

evolving stress level influences how individuals perceive and respond to the forthcoming workload 

assigned to them.  

Smart supervisory system’s (robot) primary function within this context is to monitor human stress 

levels and correlate them with performance output. Should the estimated stress level deviates from 

predetermined thresholds, both below or above the acceptable range ( 

𝜎𝐿𝐵 ≤ 𝜎̂ ≤ 𝜎𝑈𝐵), the robots are tasked with dynamically adjusting workload allocation. This 

intervention mechanism is crucial for maintaining human stress within an optimal range conducive 

to efficient performance. In our detailed case study, aforementioned task reallocation algorithm is 

applied on the case study as: 

Task Reallocation Algorithm for SAP S/4HANA Side-Car Scenario (Mathematical 

Representation) 

𝑖𝑓 𝜎̂ ≥ 𝜎𝑈𝐵: 

𝑖𝑓 {𝑇25 ∨  𝑇24 ∨  𝑇27}  ∈ 𝑊𝑡
𝐻:  

𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 {𝑇25 ∨  𝑇24 ∨  𝑇27} 𝑓𝑟𝑜𝑚 𝑊𝑡
𝐻 𝑡𝑜 𝑊𝑡

𝐻𝑅   

𝑖𝑓 𝑇26 ∈  𝑊𝑡
𝐻: 

𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 𝑇26 𝑓𝑟𝑜𝑚 𝑊𝑡
𝐻 𝑡𝑜 {𝑊𝑡

𝐻𝑅  ∨  𝑊𝑡
𝑅} 

𝑒𝑙𝑠𝑒𝑖𝑓 𝑇26 ∈  𝑊𝑡
𝐻𝑅: 

𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 𝑇26 𝑓𝑟𝑜𝑚 𝑊𝑡
𝐻𝑅  𝑡𝑜 𝑊𝑡

𝑅 

𝑖𝑓 {𝑇6 ∨  𝑇8 ∨  𝑇𝐴𝐷3}  ∈  𝑊𝑡
𝐻𝑅: 

𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 {𝑇6 ∨  𝑇8 ∨  𝑇𝐴𝐷3} 𝑓𝑟𝑜𝑚 𝑊𝑡
𝐻𝑅  𝑡𝑜 𝑊𝑡

𝑅 

𝑒𝑙𝑠𝑒𝑖𝑓 𝜎̂ ≤ 𝜎𝐿𝐵:   

𝑖𝑓 {𝑇24 ∨  𝑇25 ∨  𝑇27} ∈ 𝑊𝑡
𝐻𝑅: 

𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 {𝑇24 ∨  𝑇25 ∨  𝑇27} 𝑓𝑟𝑜𝑚 𝑊𝑡
𝐻𝑅  𝑡𝑜 𝑊𝑡

𝐻  

𝑖𝑓 𝑇26 ∈  𝑊𝑡
𝑅: 

𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 𝑇26 𝑓𝑟𝑜𝑚 𝑊𝑡
𝑅  𝑡𝑜 {𝑊𝑡

𝐻  ∨  𝑊𝑡
𝐻𝑅} 

𝑒𝑙𝑠𝑒𝑖𝑓 𝑇26 ∈  𝑊𝑡
𝐻𝑅: 

𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 𝑇26 𝑓𝑟𝑜𝑚 𝑊𝑡
𝐻𝑅  𝑡𝑜 𝑊𝑡

𝐻 

𝑖𝑓 {𝑇6 ∨  𝑇8 ∨  𝑇𝐴𝐷3}  ∈  𝑊𝑡
𝑅: 

𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 {𝑇6 ∨  𝑇8 ∨  𝑇𝐴𝐷3} 𝑓𝑟𝑜𝑚 𝑊𝑡
𝑅  𝑡𝑜 𝑊𝑡

𝐻𝑅 

𝑅𝑒𝑝𝑒𝑎𝑡 𝑤ℎ𝑖𝑙𝑒 𝜎𝐿𝐵 ≤ 𝜎̂ ≤ 𝜎𝑈𝐵  𝑛𝑜𝑡 𝑇𝑅𝑈𝐸 
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The algorithm outlined above for the case study provides a mathematical representation of the 

proposed logic, inspired by common problems encountered during system implementation in IT 

projects. Below, the details are evaluated and explained verbally: 

Task Reallocation Verbal Assessment for SAP S/4HANA Side-Car Scenario: 

Inputs:  

 

i. Resources: Set of Human (ℎ ∈ 𝐻); Set of Robots/Machines (𝑟 ∈ 𝑅) 

Assuming the presented case study involves 19 humans, 13 robots, and 22 human-

robot (H-R) teams, representing the collaboration between systems and their users. 

H: {H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H13, H14, H15, 

H16, H17, H18, H19} 

 

R: {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13} 

 

HR: {H1-R1, H2-R1, H3-R1, H4-R1, H5-R1, H13-R1, H6-R2, H7-R2, H8-R2, H9-

R2, H10-R2, H11-R2, H12-R2, H3-R2, H5-R2, H13-R8, H14-R3, H15-R4, H16-R7, 

H17-R5, H18-R9, H19-R13} 

 

ii. Set of tasks (𝒘 ∈ 𝑾) 

At the start of the project, the work breakdown structure should be clearly defined 

for each communication channel. In other words, each task should be specified 

along with the corresponding system component capable of undertaking it. This 

approach allows robots to first evaluate which communication channels can 

facilitate the assigned tasks and map these onto task zones using a Venn diagram. 

Once the re-allocatable tasks on the Venn diagram are identified, the robots can 

then analyze these tasks to determine alternative communication channels for 

possible reassignment. The tasks to be completed using the SAP LBN system are 

outlined below: 

T: {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, 

T18, T19, T20, T21, T22, T23, T24, T25, T26, T27, TAD1, TAD2, TAD3, TAD4, TAD5, 

TAD6, TAD7} 
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iii. Capabilities of Human, Robot and Human-Robot team: Distribute tasks according 

to resource capabilities as illustrated in Figure 2. 

Systems comprising software-based programs and their users must ensure seamless 

collaboration. Users should be adequately trained on the system’s operation and 

equipped with strategies to resolve potential blockages effectively. Moreover, 

computerized systems must be fully integrated with other digital systems, 

functioning smoothly even when users are actively involved in the workflow. 

 

Step 0: 𝑡 = 0 distribute tasks among Human, Robot, and Human-Robot jointly:  

Initially, the tasks were allocated as follows: 

𝑊0
𝐻 ∈ {𝑤𝑍1, 𝑤𝑍4, 𝑤𝑍5, 𝑤𝑍7 }  

𝑊0
𝐻: {𝑇12 (𝑍1), 𝑇13(𝑍1), 𝑇22(𝑍1), 𝑇24(𝑍5), 𝑇25(𝑍5), 𝑻𝟐𝟔(𝒁𝟕), 𝑻𝟐𝟕(𝒁𝟓)} 

𝑊0
𝑅 ∈ {𝑤𝑍2, 𝑤𝑍4, 𝑤𝑍6, 𝑤𝑍7 }  

            𝑊0
𝑅: {𝑇2 (𝑍2), 𝑇3(𝑍2), 𝑇5(𝑍2), 𝑇7(𝑍2), 𝑇9(𝑍2), 𝑇10(𝑍2), 𝑇14(𝑍2), 𝑇16(𝑍2), 𝑇18(𝑍2), 𝑇20(𝑍2), 

                       𝑇21(𝑍2), 𝑇𝐴𝐷𝐷2(𝑍2), 𝑇𝐴𝐷𝐷3(𝑍6), 𝑇𝐴𝐷𝐷5(𝑍2), 𝑇𝐴𝐷𝐷7(𝑍2)} 

𝑊0
𝐻𝑅 ∈ {𝑤𝑍3, 𝑤𝑍5, 𝑤𝑍6, 𝑤𝑍7 }  

            𝑊0
𝐻𝑅: {𝑇01 (𝑍3), 𝑇02(𝑍3), 𝑇1(𝑍3), 𝑇4(𝑍3), 𝑻𝟔(𝒁𝟔), 𝑻𝟖(𝒁𝟔), 𝑇11(𝑍3), 𝑇13(𝑍3), 𝑇15(𝑍3), 

                         𝑇17(𝑍3), 𝑇19(𝑍3), 𝑇𝐴𝐷𝐷1(𝑍3), 𝑇𝐴𝐷𝐷4(𝑍3), 𝑇𝐴𝐷𝐷6(𝑍3) } 

 

Step 1: 𝑡 = 𝑡 + 1, assess human stress (𝜎 =
𝑊𝑡
𝑃

(𝐾𝐻, 𝑆𝐻)𝐴𝑡
𝐻): 

After assessing human stress levels, the robot (assumed to be an intelligent SAP system in our case) 

determines that human stress is higher than expected. It also double-checks human performance 

outputs, such as whether tasks are completed within the given time frame, to identify any 

irregularities. Consequently, the robot reviews the tasks assigned to the human and analyzes how 

the workload is distributed, aiming to reduce stress and optimize performance. 

 

Step 2: Task reallocation: 

When the human stress level exceeds the upper limit (𝜎 ≥ 𝜎𝑈𝐵) , the robot should take over some 

tasks from the human. Since performance is calculated based on group outputs using the disjoint 

union formula, the overall performance of the group must be considered when evaluating an 

individual human's performance. Therefore, communication channels are emphasized here rather 

than focusing solely on humans, robots, or human-robot teams. 
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Following the stress analysis and performance check, the robot detects a blockage caused by 

systems communication (R⊗R) that is hindering human performance. While humans attempt to 

resolve the encountered issues, they lack sufficient knowledge to overcome them, leading to 

increased stress levels and higher perceived workload. 

The robot identifies that tasks T26(Z7) and T27(Z5), which belong to zone 7 (representing tasks 

that can be undertaken by humans, robots, or through collaboration) and zone 5 (representing 

tasks that can be undertaken by humans or through collaboration), were initially assigned to the 

(H⊗H) communication channel. Since human involvement remains necessary to address the issues 

encountered while collaborating with the robot systems, these tasks will be reassigned from the 

(H⊗H) channel to the (H⊗R) channel to reduce human stress. 

However, during the second iteration, the robot determines that this reassignment alone may not 

sufficiently lower human stress levels, as humans still retain partial responsibility for these tasks 

despite robot involvement. Consequently, the robot further detects that tasks T6(Z6) and T8(Z6), 

currently assigned to the (H⊗R) channel, can be fully automated and reassigned to the (R⊗R) 

channel. As a result, T6(Z6) and T8(Z6) will be moved from the (H⊗R) channel to the (R⊗R) 

channel to further alleviate human workload and stress. 

 

Step 3: Has the job completed? 

NO:  Go to Step 1 

YES: Go to step 4 

 

Step 4: End intervention 

 

Outputs: 

 

i. Updated 𝑊𝑡
𝐻, 𝑊𝑡

𝑅 and 𝑊𝑡
𝐻𝑅: 

 

𝑊𝑡+1
𝐻 : {𝑇12 (𝑍1), 𝑇13(𝑍1), 𝑇22(𝑍1), 𝑇24(𝑍5), 𝑇25(𝑍5), 𝑻𝟐𝟔(𝒁𝟕), 𝑻𝟐𝟕(𝒁𝟓)} 

 

𝑊𝑡+1
𝑅 : {𝑇2 (𝑍2), 𝑇3(𝑍2), 𝑇5(𝑍2), 𝑻𝟔(𝒁𝟔), 𝑇7(𝑍2), 𝑻𝟖(𝒁𝟔), 𝑇9(𝑍2), 𝑇10(𝑍2), 𝑇14(𝑍2), 

             𝑇16(𝑍2), 𝑇18(𝑍2), 𝑇20(𝑍2), 𝑇21(𝑍2), 𝑇𝐴𝐷𝐷2(𝑍2), 𝑇𝐴𝐷𝐷3(𝑍6), 𝑇𝐴𝐷𝐷5(𝑍2), 

             𝑇𝐴𝐷𝐷7(𝑍2)} 

 

𝑊𝑡+1
𝐻𝑅 : { 𝑇01 (𝑍3), 𝑇02(𝑍3), 𝑇1(𝑍3), 𝑇4(𝑍3), 𝑻𝟔(𝒁𝟔), 𝑻𝟖(𝒁𝟔), 𝑇11(𝑍3), 𝑇13(𝑍3), 𝑇15(𝑍3), 

              𝑇17(𝑍3), 𝑇19(𝑍3), 𝑻𝟐𝟔(𝒁𝟕), 𝑻𝟐𝟕(𝒁𝟓), 𝑇𝐴𝐷𝐷1(𝑍3), 𝑇𝐴𝐷𝐷4(𝑍3), 𝑇𝐴𝐷𝐷6(𝑍3) } 
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ii. Optimized Human stress (𝜎𝐿𝐵 ≤ 𝜎 ≤ 𝜎𝑈𝐵):  

Ultimately, human stress levels are effectively minimized, leading to enhanced 

overall performance and productivity. 

 

Upon completion of the robot’s intervention process—where the system workload is reallocated 

across both humans and robots—the aim is to maintain human stress levels within a range that 

enables peak performance. This approach not only supports the full utilization of human capacity 

but also recognizes the value of human input within the collaboration, even in the presence of the 

robot’s virtually boundless capabilities. 
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6. PERFORMANCE EVALUATION OF THE PROPOSED HUMAN-ROBOT 

COLLABORATION MODEL 

System performance has been emphasized throughout the thesis, although the core focus remains 

on adjusting human stress levels and understanding their relationship within the dynamic workload 

allocation algorithm. As consistently highlighted across the sections and subsections, the aim of 

robotic intervention in dynamic workload reallocation is to enhance human performance by 

addressing and managing stress levels. Given the significance of this relationship, a detailed 

evaluation of both performance and stress is essential. Therefore, these concepts are further 

examined through conceptual formulations and supporting analysis in the following subsections: 

Subsection 6.1 presents the performance formulation of the human-robot system; Subsection 6.2 

explores the relationship between human stress and performance by examining the parameters that 

influence stress; Subsection 6.3 reviews existing studies on human stress measurement methods; 

and finally, Subsection 6.4 introduces a conceptual formula to express the effect of task-specific 

stress on overall human performance. 

6.1.Formulating Human-Robot System Performance as a Function of Human Stress 

In collaborative environments where humans and robots work toward shared objectives, effective 

use of communication tools is essential for sustaining optimal collaboration. However, while 

robots rely on structured communication mechanisms, these tools are not yet capable of fully 

interpreting the emotional needs of their human partners—who remain the emotional actors in 

such systems. This limitation underscores the importance of examining how human emotional 

states, particularly stress, relate to performance in human-robot systems. 
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Figure 13: Relationship between Stress and Creativity/Performance 

 

Several studies have explored this connection. Building on the Yerkes-Dodson law, Nguyen and 

Zeng (2017) demonstrate that human performance is strongly influenced by stress levels, with the 

highest levels of performance occurring under moderate stress. Both insufficient and excessive 

stress levels have been shown to reduce human performance and creativity as illustrated in Figure 

13. 

A conceptual model describing this relationship was introduced earlier in Equation 4 (see 

Subsection 5.1). In this model, work-associated stress (𝜎) is defined as a function of perceived 

workload (𝑊𝑃), knowledge (K), skills (S), and affective states (A), as proposed by Nguyen and 

Zeng (2017) and supported by Yang et al. (2021). The model suggests that stress is directly 

proportional to perceived workload, while it is inversely proportional to an individual’s 

knowledge, skills, and affective states. 

Since affective states fluctuate in response to changing environmental conditions—even when 

knowledge and skill levels remain constant—human stress is inherently variable. When stress 

levels move outside the desired range, human performance tends to decline. Within a smart human-

robot collaboration system, it becomes essential for robots to monitor these stress levels and 

intervene when necessary to restore balance. 

Desired Stress 

Level 



74 

 

Before establishing mechanisms to manage human stress within such systems, the human-robot 

system performance (ղ) should be formally defined. It is composed of three main elements: human 

performance (ղ𝐻), robot performance (ղ𝑅) and their collective performance (ղ𝐻𝑅). This 

relationship is expressed as: 

ղ = ղ𝐻 + ղ𝑅 + ղ𝐻𝑅 (14) 

Each of these components is a function of specific variables. Human performance (ղ𝐻) depends 

on the human’s stress level (𝜎𝐻), assigned workload (𝑊𝐻), and time allocated for task completion 

(𝑇𝐻). Robot performance (ղ𝑅) is influenced by its knowledge (𝐾𝑅), skillset (𝑆𝑅), assigned 

workload (𝑊𝑅), and available execution time (𝑇𝑅). Collaborative performance (ղ𝐻𝑅) is shaped by 

human stress (𝜎𝐻), collective knowledge and skills (𝐾𝐻𝑅, 𝑆𝐻𝑅), shared workload (𝑊𝐻𝑅), and the 

time allotted for collaborative tasks (𝑇𝐻𝑅): 

ղ𝐻 = 𝑓(𝜎𝐻 , 𝑊𝐻, 𝑇𝐻); ղ𝑅 = 𝑓(𝐾𝑅 , 𝑆𝑅 ,𝑊𝑅 , 𝑇𝑅); and ղ𝐻𝑅 = 𝑓(𝜎𝐻 , 𝐾𝑅 , 𝑆𝑅 ,𝑊𝐻𝑅 , 𝑇𝐻𝑅) (15) 

Assuming robots operate under stable conditions—without significant variations in knowledge or 

skill and without encountering mechanical or computational issues—their performance can be 

considered steady and predictable during a given planning period. In contrast, human performance 

is more variable, as stress levels influence not only task completion times but also the quality of 

outputs, particularly for tasks assigned to humans (𝑊𝐻) or jointly shared (𝑊𝐻𝑅). 

In collaborative projects, the interplay between humans and robots complicates dynamics, 

underscoring the importance of cohesive team performance. Robots are required not only to 

interact with individual human partners but also to assess the collective stress level of the team. 

This enables them to take appropriate actions—such as reallocating tasks—to enhance 

performance and ensure smooth collaboration. Effectively managing such interactions calls for 

nuanced, context-aware adjustments. Disjoint union logic is employed to represent the complexity 

of these interactions across diverse system components. Through this formulation, the performance 

metrics of humans, robots, and their collaborative efforts are expressed, leading to a 
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comprehensive evaluation of system performance in scenarios involving multiple humans and 

robots working toward a common goal. 

Let ղ
ℎ
𝐻, ղ

𝑟
𝑅 and ղ

ℎ𝑟
𝐻𝑅 be performances of hth human, rth robot and hth human and rth robot interaction 

respectively. Accordingly: 

ղℎ
𝐻 = {𝑓 (

𝑊ℎ
𝑃

(𝐾ℎ
𝐻 + 𝑆ℎ

𝐻) ∗ 𝐴ℎ
𝐻 ,𝑊ℎ

𝐻 , 𝑇𝐻) |

𝑊ℎ
𝑃, 𝐾ℎ

𝐻 , 𝑆ℎ
𝐻 , 𝐴ℎ

𝐻 ,𝑊ℎ
𝐻 , 𝑇𝐻 𝑎𝑟𝑒 

ℎ𝑢𝑚𝑎𝑛𝑠′𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

𝑤ℎ𝑒𝑛 𝑡ℎ𝑒𝑦 𝑤𝑜𝑟𝑘 𝑖𝑛 (𝑯⊗𝑯) 𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛 

} (16) 

ղ
𝑟
𝑅 = {𝑓(𝑊𝑟

𝑅 , 𝐾𝑟
𝑅, 𝑆𝑟

𝑟 , 𝑇𝑅) |
𝑊𝑟

𝑅 , 𝐾𝑟
𝑅, 𝑆𝑟

𝑅, 𝑇𝑅  𝑎𝑟𝑒 𝑟𝑜𝑏𝑜𝑡𝑠′ 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

𝑤ℎ𝑒𝑛 𝑡ℎ𝑒𝑦 𝑤𝑜𝑟𝑘 𝑖𝑛 (𝑹 ⊗ 𝑹) 𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛 
} (17) 

ղℎ𝑟
𝐻𝑅 = 

{
 

 
𝑓 (

𝑊ℎ
𝑃

(𝐾ℎ
𝐻 + 𝑆ℎ

𝐻) ∗ 𝐴ℎ
𝐻 ,𝑊ℎ𝑟

𝐻𝑅, 𝐾𝑟
𝑅, 𝑆𝑟

𝑅 ,  𝑇𝐻𝑅) ||

𝑊ℎ
𝑃 , 𝐾ℎ

𝐻 , 𝑆ℎ
𝐻 , 𝐴ℎ

𝐻 ,𝑊ℎ𝑟
𝐻𝑅 , 𝐾𝑟

𝑅 , 𝑆𝑟
𝑅 ,  𝑇𝐻𝑅 𝑎𝑟𝑒 

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝐻 − 𝑅 𝑡𝑒𝑎𝑚𝑠
𝑤ℎ𝑒𝑛 𝑡ℎ𝑒𝑦 𝑤𝑜𝑟𝑘 𝑖𝑛 

(𝑯 ⊗ 𝑹) ∪ (𝑹⊗𝑯) 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛 }
 

 
 (18) 

The disjoint union formula for individual sets delineates the performance levels of overall human, 

robot, and collaboration group performances as follows 

ղ𝐻 =∐ղℎ
𝐻 = ⋃ {(𝑓 (

𝑊ℎ
𝑃

(𝐾ℎ
𝐻 + 𝑆ℎ

𝐻) ∗ 𝐴ℎ
𝐻 ,𝑊ℎ

𝐻 , 𝑇𝐻) , ℎ) |𝑊ℎ
𝑃, 𝐾ℎ

𝐻 , 𝑆ℎ
𝐻 , 𝐴ℎ

𝐻 ,𝑊ℎ
𝐻 , 𝑇𝐻 ∈ 𝐻}

ℎ∈𝐻ℎ∈𝐻

 (19) 

ղ𝑅 =∐ղ𝑟
𝑅 = ⋃{(𝑓(𝑊𝑟

𝑅 , 𝐾𝑟
𝑅 , 𝑆𝑟

𝑟 , 𝑇𝑅), 𝑟)|𝑊𝑟
𝑅 , 𝐾𝑟

𝑅, 𝑆𝑟
𝑅, 𝑇𝑅 ∈ 𝑅}

𝑟∈𝑅𝑟∈𝑅

 (20) 

ղ𝐻𝑅 = ∐ ղ
ℎ𝑟
𝐻𝑅 = ⋃⋃{(𝑓 (

𝑊ℎ
𝑃

(𝐾ℎ
𝐻 + 𝑆ℎ

𝐻) ∗ 𝐴ℎ
𝐻 ,𝑊ℎ𝑟

𝐻𝑅 , 𝐾𝑟
𝑅, 𝑆𝑟

𝑅 ,  𝑇𝐻𝑅) , ℎ, 𝑟) |

𝑊ℎ
𝑃 , 𝐾ℎ

𝐻 , 𝑆ℎ
𝐻 , 𝐴ℎ

𝐻 ∈ 𝐻

𝐾𝑟
𝑅 , 𝑆𝑟

𝑅 ∈ 𝑅

𝑊ℎ𝑟
𝐻𝑅,  𝑇𝐻𝑅 ∈ 𝐻 ∪ 𝑅 

}

ℎ∈𝐻𝑟∈𝑅ℎ∈𝐻; 𝑟∈𝑅

 (21) 

 

This thesis adopts a comprehensive approach to measuring performance, defining it as the ratio of 

completed tasks to the total number of tasks assigned to each system component. This definition 

encompasses multiple performance indicators, including the monetary value generated by the 

smart system, the number of clients effectively served, and the completion rate of allocated tasks. 

Within this framework, the collective performance of a human group is derived from the combined 

contributions of individual members, while the performance of a group of robots is calculated as 
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the sum of each robot’s individual output. Similarly, the contribution of collaborative efforts 

between humans and robots is evaluated as the cumulative effect of their joint task completions, 

reflecting the effectiveness of shared responsibilities within the system. 

To accurately assess the level of success, it is essential to normalize performance values by 

dividing them by the total number of tasks assigned across all system components—humans, 

robots, and collaborative groups. This normalization process enables equitable comparison and 

offers meaningful insights into the efficiency and effectiveness of each entity within the system 

(see Equation 22). The complete logic described above is now formalized through the following 

mathematical expression: 

ղ =
∐ ղ

ℎ
𝐻

ℎ∈𝐻 +∐ ղ
𝑟
𝑅

𝑟∈𝑅 +∐ ղ
ℎ𝑟
𝐻𝑅

ℎ∈𝐻,𝑟∈𝑅

∑ 𝑊ℎ
𝐻

ℎ + ∑ 𝑊𝑟𝑅𝑟 + ∑ 𝑊ℎ𝑟
𝐻𝑅

ℎ,𝑟

 (22) 

Under current conditions, evaluating system performance requires a holistic approach that 

integrates the average proficiency of humans, the average capability of robots, and the collective 

effectiveness of collaborative efforts. At the core of this evaluation lies human stress, which serves 

as a key indicator for robots to assess and maintain balance within the system. Since human 

performance is closely tied to stress levels, robots are assigned the critical role of continuously 

monitoring and adjusting human performance as needed. The previously introduced formula 

captures this qualitative dimension of smart system performance, highlighting the dual 

responsibility of robots to regulate human stress while enhancing both individual and collaborative 

performance outcomes. 

Following the clarification of system performance, the next subsection turns to an in-depth analysis 

of the parameters that impact human affective responses, workload perception, and performance—

highlighting stress as the core element influencing human efficiency. 

6.2.Identification of Parameters Influencing Human Stress and Performance 

In preceding sections, we delved into the pivotal role of interaction modes and communication 

channels in effectively navigating diverse collaboration types. Additionally, we dissected various 

collaboration models, shedding light on their intricate dynamics. This discourse underscores the 

profound impact of human stress levels on the efficacy of these collaborations. Consequently, this 
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section endeavors to formulate qualitative metrics crucial for assessing and quantifying human 

stress levels. The precision of these metrics is of paramount importance, as they hold the key to 

comprehending and potentially shaping the overarching dynamics of collaborative smart systems. 

This formulation operates along three pivotal dimensions: firstly, by measuring human affective 

states, which exert a direct influence on human stress levels; secondly, through the assessment of 

perceived human workload, intricately intertwined with both the assigned workload and human 

stress; and thirdly, by evaluating human performance, which is shaped by factors such as task 

completion time and the perceived workload burden. 

To establish the parameters governing human stress and performance, Cantor’s (1895) Set Theory 

is employed, elucidating the intricate relationships within the realm of human performance 

parameters. Assumptions are carefully crafted to enhance the clarity of the proposed model. It is 

noteworthy that the parameters in the subsequent formulations are designed to represent an 

individual human being. However, when considering a scenario involving a collaborative effort 

between a human group and a robot group, the collective human-robot system performance 

formula introduced earlier becomes paramount. This collective formula should be utilized to gauge 

the collective stress performance levels of the entire group. Hereafter, each of these levels, 

accompanied by their respective assumptions, is meticulously examined. 

6.2.1. Formula Generation: Human Affective States 

The first step in comprehending human performance within the realm of their emotions involves 

the measurement of their stress levels. The underlying assumptions guiding the assessment of 

human stress levels are elucidated below: 

• Human’s initial affective states (𝐴𝐻
0 ) are influenced by input parameters of human 

performance such as knowledge (KH) and skills (SH), which are evaluated under the human 

capability class. 

• Human initial stress is a function of human capability and initial environmental conditions 

(𝐸0). 

• Human’s ongoing affective states at time t (𝐴𝐻
𝑡 ) are influenced by output parameters of 

human performance such as human’s previous performance (𝜂𝐻
𝑡−1) and available human 

time (𝑇𝐻
𝑡 ) at time t, which are evaluated under the human achievement class. 
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• Human stress over time is a function of human achievement and environmental conditions 

over time (𝐸𝑡). 

During human interaction with a smart system, two distinct affective states emerge: initial affective 

states and affective states over time. The former is influenced by the combination of human 

capabilities, such as skills (SH) and knowledge (KH), along with the current environmental 

conditions (𝐸0), while the latter is determined by past performance (𝜂𝐻
𝑡−1) and the amount of 

available human time (𝑇𝐻
𝑡 ), in addition to the affective states that evolve over time (𝐸𝑡). Leveraging 

Cantor’s Set theory (1895), we can articulate the initial affective states of a human within this 

context through the following formulation (Equations 23-26) illustrated in Figure 14: 

𝐴𝐻
0 = 𝑓1(𝑆𝐻 ∪ 𝐾𝐻) ∪ 𝑓2(𝐸0) (23) 

 

Figure 14: Decomposition of Initial Human Affective States 

 

Expanding on the conceptual foundation of set operations, particularly the union of two sets, it is 

expressed as the union of the intersection of those sets and the symmetric difference between them. 

This extension of the formula is articulated as follows: 

𝐴𝐻
0 = 𝑓1( 𝑓7(𝑆𝐻 ∖ 𝐾𝐻) ∪ 𝑓8(𝐾𝐻 ∖ 𝑆𝐻) ∪ 𝑓9(𝐾𝐻 ⋂ 𝑆𝐻)) ∪ 𝑓2(𝐸0) (24) 

In the expanded formula, 𝑓7(𝑆𝐻 ∖ 𝐾𝐻)  denotes human talent for the assigned task, 𝑓8(𝐾𝐻 ∖ 𝑆𝐻)  

represents human familiarity with the task, and 𝑓9(𝐾𝐻 ⋂ 𝑆𝐻)  signifies human proficiency in 

executing the task. The combined influence of these three parameters defines human capability, 
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which in turn impacts human affective states. Additionally, it's important to note that initial 

environmental conditions also play a significant role in shaping an individual's initial affective 

states. 

𝐴𝐻
0 = 𝑓1(𝑇𝑎𝑙𝑒𝑛𝑡 ∪ Familiarity ∪ 𝑃𝑟𝑜𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) ∪ 𝑓2(𝐸0) (25) 

𝐴𝐻
0 = 𝐻𝑢𝑚𝑎𝑛 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐸𝑓𝑓𝑒𝑐𝑡 ∪ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝐸𝑓𝑓𝑒𝑐𝑡 (26) 

The experience of initial human stress can be seen as intricately connected to the initial states of 

human affectivity, underscoring the profound impact of our emotional well-being on the 

manifestation and modulation of stressors. In that case, initial human stress is a function of initial 

affective states (Equations 27-30). 

𝜎𝐻
0 = 𝑓3(𝐴𝐻

0 ) (27) 

In that case, the expanded formula is as follows: 

𝜎𝐻
0 = 𝑓3(𝑓1(𝑓7(𝑆𝐻 ∖ 𝐾𝐻) ∪ 𝑓8(𝐾𝐻 ∖ 𝑆𝐻) ∪ 𝑓9(𝐾𝐻 ⋂ 𝑆𝐻)) ∪ 𝑓2(𝐸0)) (28) 

𝜎𝐻
0 = 𝑓3(𝑓1(𝑇𝑎𝑙𝑒𝑛𝑡 ∪ Familiarity ∪ 𝑃𝑟𝑜𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) ∪

                 𝑓2(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)) 

(29) 

𝜎𝐻
0 = 𝑓3(𝐻𝑢𝑚𝑎𝑛 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐸𝑓𝑓𝑒𝑐𝑡 ∪ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝐸𝑓𝑓𝑒𝑐𝑡) (30) 

The second influential factor affecting overall stress encompasses the ongoing affective states of 

individuals. This intricate interplay involves a fusion of previous time’s human performance (𝜂𝐻
𝑡−1) 

and the availability of human time (𝑇𝐻
𝑡 ), and a function of ever-changing environmental conditions 

(𝐸𝑡). The amalgamation of these elements creates a dynamic landscape that significantly 

contributes to the overall emotional and psychological well-being of individuals, ultimately 

shaping their stress levels (Equations 31-34) illustrated in Figure 15: 

𝐴𝐻
𝑡 = 𝑓4(𝜂𝐻

𝑡−1 ∪ 𝑇𝐻
𝑡) ∪ 𝑓5(𝐸𝑡)  (31) 
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Figure 15: Decomposition of Ongoing Human Affective States 

 

Again, the combination of the intersection of those sets and the symmetric difference between 

them is employed to demonstrate the union of two sets. 

𝐴𝐻
𝑡 = 𝑓4(𝑓10(𝜂𝐻

𝑡−1 ∖ 𝑇𝐻
𝑡) ∪ 𝑓11(𝑇𝐻

𝑡 ∖ 𝜂𝐻
𝑡−1) ∪ 𝑓12(𝜂𝐻

𝑡−1⋂𝑇𝐻
𝑡)) ∪ 𝑓5(𝐸𝑡) (32) 

In the expanded formula, 𝑓10(𝜂𝐻
𝑡−1 ∖ 𝑇𝐻

𝑡) represents human capacity, 𝑓11(𝑇𝐻
𝑡 ∖ 𝜂𝐻

𝑡−1) denotes 

human availability, and 𝑓12(𝜂𝐻
𝑡−1⋂𝑇𝐻

𝑡) signifies human excellence. These parameters collectively 

contribute to the human achievement effect, which, when combined with environmental conditions 

over time, delineates the dynamic affective states. 

𝐴𝐻
𝑡 = 𝑓4(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∪ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∪ 𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑐𝑒) ∪ 𝑓5(𝐸𝑡) (33) 

𝐴𝐻
𝑡 = 𝐻𝑢𝑚𝑎𝑛 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡 𝐸𝑓𝑓𝑒𝑐𝑡 ∪ Environmental Effect over time (34) 

The ongoing human stress is closely tied to the evolving affective states, highlighting the crucial 

role of emotional landscapes in determining stress levels (Equations 35-38). 

𝜎𝐻
𝑡 = 𝑓6(𝐴𝐻

𝑡 ) (35) 

 

The subsequent passage delves into the intricacies of the ongoing stress formula. 
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𝜎𝐻
𝑡 = 𝑓6(𝑓4(𝑓10(𝜂𝐻

𝑡−1 ∖ 𝑇𝐻
𝑡) ∪ 𝑓11(𝑇𝐻

𝑡 ∖ 𝜂𝐻
𝑡−1) ∪ 𝑓12(𝜂𝐻

𝑡−1⋂𝑇𝐻
𝑡)) ∪ 𝑓5(𝐸𝑡) (36) 

𝜎𝐻
𝑡 = 𝑓6(𝑓4(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∪ Availability ∪ 𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑐𝑒) ∪

                𝑓5(𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒)) 

(37) 

𝜎𝐻
𝑡 = 𝑓6(𝐻𝑢𝑚𝑎𝑛 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡 𝐸𝑓𝑓𝑒𝑐𝑡 ∪ 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒) (38) 

Unquestionably, the cumulative human stress (𝜎𝐻) comprises both the inherent initial stress (𝜎𝐻
0) 

and the persisting ongoing stress (𝜎𝐻
𝑡 ) (Equation 39). 

𝜎𝐻 = 𝜎𝐻
0 ∪ 𝜎𝐻

𝑡 = 𝑓3(𝐴𝐻
0 ) ∪ 𝑓6(𝐴𝐻

𝑡 ) (39) 

Upon expanding this formula as outlined in Equation 40, each factor contributing to the overall 

human stress becomes apparent: 

𝜎𝐻 = 𝑓3(𝑓1(𝑓7(𝑆𝐻 ∖ 𝐾𝐻) ∪ 𝑓8(𝐾𝐻 ∖ 𝑆𝐻) ∪ 𝑓9(𝐾𝐻 ⋂ 𝑆𝐻)) ∪ 𝑓2(𝐸0)) ∪

           𝑓6(𝑓4((𝑓10(𝜂𝐻 ∖ 𝑇𝐻) ∪ 𝑓11(𝑇𝐻 ∖ 𝜂𝐻) ∪ 𝑓12(𝜂𝐻 ⋂ 𝑇𝐻)) ∪ 𝑓5(𝐸𝑡)) 
(40) 

This formula indicates that the human stress level depends on human talent, familiarity with the 

work, proficiency, capacity, availability, excellence, as well as initial and ongoing environmental 

conditions. The relationship between the features and the formula is illustrated in Figure 14 and 

Figure 15. 

𝜎𝐻 = 𝑓3(𝑓1(𝑇𝑎𝑙𝑒𝑛𝑡 ∪ Familiarity ∪ 𝑃𝑟𝑜𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) ∪ 𝑓2(𝐸𝑖 − Initial Environmental Conditions) ) ∪ 

           𝑓6(𝑓4(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∪ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∪ 𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑐𝑒) ∪ 𝑓5(𝐸𝑡 − 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒)) 
(41) 

𝜎𝐻 = 𝑓3(𝐻𝑢𝑚𝑎𝑛 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐸𝑓𝑓𝑒𝑐𝑡 ∪ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝐸𝑓𝑓𝑒𝑐𝑡) ∪ 

           𝑓6(𝐻𝑢𝑚𝑎𝑛 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡 𝐸𝑓𝑓𝑒𝑐𝑡 ∪  Environmental Effect over time) 
(42) 

In summary, human stress levels comprise the function of the combined human capability and 

initial environmental conditions, as well as the function of human achievement and ongoing 

environmental conditions. 

6.2.2. Formula Generation: Perceived Human Workload 

Tasks are commonly assigned to humans, robots, and their collaborative efforts within smart 

systems, yet often, implicit influencing factors such as human affective states and stress levels are 
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overlooked. Consequently, the workload allocated to a human may differ significantly from the 

workload they subjectively perceive. In this context, the perceived workload is evaluated as a 

dynamic function, accounting for both the assigned workload and the individual's stress level. This 

implies that humans gauge the workload imposed on them in relation to their current stress levels. 

To further elucidate, the following assumptions are outlined below to formulate the perceived 

workload of an individual. 

• Assigned workload (𝑊𝐻
𝑎) and perceived workload (𝑊𝐻

𝑝
) are not equal. 

• Perceived workload (𝑊𝐻
𝑝
)  is a union of assigned workload (𝑊𝐻

𝑎) and human stress (𝜎𝐻). 

Equation 43 outlines the methodology for measuring perceived workload: 

𝑊𝐻
𝑝 = 𝑓13(𝑊𝐻

𝑎 ∪  𝜎𝐻)  (43) 

𝑊𝐻
𝑝 = 𝑓13(𝑓14(𝑊𝐻

𝑎 ∖ 𝜎𝐻) ∪ 𝑓15(𝜎𝐻 ∖𝑊𝐻
𝑎) ∪ 𝑓16(𝑊𝐻

𝑎 ∩ 𝜎𝐻))  (44) 

In the expanded formula, 𝑓14(𝑊𝐻
𝑎 ∖ 𝜎𝐻) stands for the initial workload, 𝑓15(𝜎𝐻 ∖ 𝑊𝐻

𝑎) indicates 

the level of human stress prior to workload allocation, and 𝑓16(𝑊𝐻
𝑎 ∩ 𝜎𝐻) represents the human 

stress following workload allocation.  

𝑊𝐻
𝑝 = 𝑓13(𝑅𝑎𝑤 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 ∪ 𝑆𝑡𝑟𝑒𝑠𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ∪

                     𝑆𝑡𝑟𝑒𝑠𝑠 𝑎𝑓𝑡𝑒𝑟 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡)  
(45) 

In the exploration of Set Theory-driven expansions within the formula, the perceived workload 

emerges as intricately linked to the unalloyed task volume delegated to individuals. Notably, this 

connection extends beyond the mere quantitative assessment of raw workload, delving into the 

profound impact of stress levels. The holistic framework encompasses stress both preceding and 

succeeding workload assignment, unraveling a complex interplay that significantly shapes the 

perception of workload. This nuanced relationship finds its visual representation in the elucidating 

Figure 16 below, where the dynamic dynamics of workload, coupled with antecedent and 

subsequent stress factors, are graphically showcased for clarity and comprehension. 
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Figure 16: Formulation of human workload 

 

6.2.3. Formula Generation: Human Performance 

In the realm of human performance evaluation, Set Theory serves as the cornerstone for 

formulating a comprehensive understanding. The intricate web of human capabilities is intricately 

woven into an assessment that intricately considers perceived human workload and task 

completion time as pivotal variables. This formulation operates on certain foundational 

assumptions, elucidated below to lend clarity and coherence to the evaluative process. 

• Performance is affected by task completion time 𝑇𝐷 (Time to deadline) 

• Performance is based on human’s perceived workload 𝑊𝐻
𝑝
 

• Performance is a union of  𝑇𝐷 and 𝑊𝐻
𝑝
 

In accordance with this data, human performance is articulated below through Equations 46-48: 

𝜂 = 𝑓17(𝑊𝐻
𝑝 ∪ 𝑇𝐷)  (46) 

 𝜂 = 𝑓17(𝑓18(𝑊𝐻
𝑝 ∖ 𝑇𝐷) ∪ 𝑓19(𝑇𝐷 ∖𝑊𝐻

𝑝) ∪ 𝑓20(𝑊𝐻
𝑝 ∩ 𝑇𝐷))  (47) 
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In the expanded formula, 𝑓18(𝑊𝐻
𝑝
∖ 𝑇𝐷) symbolizes the workload perception without time 

constraints, 𝑓19(𝑇𝐷 ∖𝑊𝐻
𝑝) describes the deadline devoid of workload assignments, and 𝑓20(𝑊𝐻

𝑝 ∩

𝑇𝐷) denotes the ideal deadline considering the human's perceived workload. 

 𝜂 = 𝑓17(𝑇𝑖𝑚𝑒 − 𝑓𝑟𝑒𝑒 𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 ∪ 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 − 𝑓𝑟𝑒𝑒 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 ∪

                 𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑤𝑖𝑡ℎ 𝐻𝑢𝑚𝑎𝑛′𝑠 𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑)  
(48) 

Following an exhaustive performance analysis, three specific factors that directly impact human 

performance were identified: 

• Time-Free Perceived Workload (TFPW): This refers to the workload perceived by the 

individual without taking into account time-to-deadline constraints. 

• Assignment-Free Deadline (AFD): This parameter indicates the deadline irrespective of 

the individual's perceived workload. 

• Optimum Deadline with Human's Perceived Workload (ODW): This signifies the 

synchronization between the individual's perceived workload and the deadline necessary 

for optimal performance. 

These key factors are visually depicted in Figure 17: 

 

Figure 17: Formulation of human performance 
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On the flip side, a myriad of indirect factors intricately shape human performance, exerting a 

significant influence on stress levels, perceived workload, and overall efficiency. The following 

catalog elucidates these subtle yet impactful parameters of human performance: 

• Raw Workload (RW): The workload assigned without considering human stress levels and 

emotions. 

• Stress before Workload Assignment (SBW): The level of human stress regardless of 

workload assignment, representing stress just before task allocation. 

• Stress after Workload Assignment (SAW): Human stress level following workload 

assignment, indicating stress levels immediately after task allocation. 

• Capacity (CP): Human performance on the assigned task without any time constraints, 

reflecting inherent ability. 

• Availability (AV): The time available for the human without task engagement. 

• Excellence (EX): The alignment between human performance and task time requirements 

within the limited available time, indicating exceptional execution. 

• Talent (T): The situation where a human is not knowledgeable about the assigned workload 

but possesses the skills required to accomplish the task. 

• Familiarity (F): The scenario where a human is knowledgeable about the assigned 

workload but lacks practical skills, possessing theoretical understanding. 

• Proficiency (P): The state where a human is either knowledgeable or skilled regarding the 

assigned workload. 

In Figure 18, a comprehensive overview of all the introduced formulas is presented. This visual 

representation underscores the intricate interplay of various elements in the dynamics of human 

experience. The demonstration reveals a fascinating cascade of events, where affective states 

become the genesis of human stress, forming the foundation for the perceived human workload 

when individuals are engaged in a task. 

Subsequently, the perceived human workload becomes a pivotal factor influencing human 

performance, its efficacy inherently constrained by the task completion time. What adds an 

intriguing layer to this process is the cyclical nature of the system dynamics — human 
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performance, the tangible output of this intricate dance, serves as the input for subsequent affective 

states in the following timeframe. 

This recursive relationship establishes an undeniable truth: the system dynamically generates a 

loop, perpetually feeding into itself. This holistic understanding sheds light on the complex and 

dynamic nature of the human experience within the context of assigned tasks and their temporal 

constraints. 

 

Figure 18: Overview of the introduced formulas 

 

In summary, smart systems are intricately woven from the threads of human intellect, robots and 

the collaborative interplay between them. These system components manifest as communication 

channels with distinctive characteristics, dynamically shaping their features during interactions 

and collaborations. Collaborative endeavors unfold across these communication channels, each 

channel encapsulating diverse attributes. 

Consider the ebb and flow of the human-human interaction mode, susceptible to dynamic shifts 

influenced by human emotions. In contrast, the robot-robot interaction mode adheres to a stringent 

model, devoid of the adaptability inherent in human interactions. Yet, there exists another 

interaction mode that facilitates collaborative efforts among system components, allowing them to 
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converge towards a shared goal. This channel fosters a profound understanding, mutual support, 

and adaptive adjustments, transforming robots into collaborative entities and, consequently, 

rendering smart systems collaborative. 

Precise definitions for each interaction mode form the bedrock for comprehending the unique 

needs of each collaborator, enabling the judicious allocation of tasks within smart system projects. 

A heightened awareness of the environment begets greater wisdom in executing tasks. Following 

the initial task allocation, robots, functioning as the artificial smart controllers of the system, shift 

their focus to discerning human stress dynamics. This acute understanding enables the reallocation 

of tasks as needed, given that human emotions constitute dynamic facets within human-robot 

teams. 

While robots diligently carry out their assigned tasks in support of their human partners and 

manage their workload, the smart system undergoes a continuous optimization process. The 

anticipation of challenges, coupled with a responsive approach to human emotions, underscores 

the adaptability and efficiency intrinsic to these intelligent systems. 

In light of the influencing factors of human stress and its effect on performance discussed in this 

subsection, the next subsection explores how human stress can be measured using current 

technologies in order to quantitatively assess stress levels, enabling robots to observe their human 

partners and determine appropriate moments for intervention in their working processes. 

6.3. Measuring Human Stress Levels Using Wearable Devices 

To support the Yerkes-Dodson law adopted in this thesis for illustrating fluctuations in human 

performance, this subsection draws on the findings of Awada et al. (2024) to examine how human 

stress levels can be measured using current wearable technologies. Their study involved two 

experimental conditions designed to simulate low-stress and high-stress environments. In the low-

stress condition, participants were given 40 minutes to prepare a PowerPoint presentation on a 

familiar topic, with no recordings involved. Conversely, the high-stress condition required 

participants to prepare a presentation on an unfamiliar topic within 30 minutes, while being 

recorded by a university professor using live video, audio, and screen sharing tools. 
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Forty-eight participants were equipped with the tools listed in Table 5. The researchers identified 

83 measurable features and recorded data every 30 seconds, resulting in a total of 6,720 data points. 

Table 5: Tools for Measuring Human Stress (Awada et al., 2024) 

Tools used Data Collected 

Empatica E4 Wristband 

Electrodermal Activity (EDA), Skin Temperature 

(ST), Blood Volume Pulse (BVP), and x,y,z wrist 

acceleration 

H10 Polar Chestwrap Heart Rate (HR) 

Microsoft Azure Kinect DK Camera Facial expressions 

Mini Mouse Macro Logging Application 
Participants’ activities involving the computer’s 

mouse and keyboard 

 

Participants were prompted with pop-up screens asking them to rate their perceived stress, mood, 

and productivity on a scale from 0 to 100. They were also asked to classify their stress as either a 

source of pressure or as an opportunity/challenge. To enhance the depth of their analysis, the 

researchers used box plots to compare participants' self-assessments across these different stress 

interpretations. The findings supported the Yerkes-Dodson law (1908), demonstrating that 

performance peaks at moderate levels of stress arousal, while both low and high extremes are 

associated with diminished outcomes. 

Drawing on the responses from the subjective questionnaires, the researchers utilized the Valencia 

Eustress-Distress Appraisal Scale (VEDAS) to categorize participants’ stress perceptions. This 

framework allowed them to distinguish among different stress appraisals, including boredom, 

eustress (positive stress), distress (negative stress), and the coexistence of both eustress and 

distress. The researchers noted that previous studies had largely concentrated on stress arousal 

indicators—such as physiological measurements—to assess stress levels. However, appraisal 

types like boredom, eustress, and their coexistence with distress had received limited attention in 
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earlier work. Addressing this gap, their study incorporated these appraisal categories to enable a 

more refined and comprehensive assessment of human stress. 

This methodology aligns closely with the research objective of this thesis, which seeks to maintain 

human stress within the eustress range to enhance productivity. The classification of stress into 

four distinct categories—boredom, eustress, eustress-distress coexistence, and distress—alongside 

the principles of the Yerkes-Dodson law, offers valuable direction for refining the approach taken 

in this study. Furthermore, the application of the XGBoost machine learning algorithm in their 

research demonstrates the potential of wearable and facial data for stress detection, achieving an 

accuracy rate of 81.08% when both wristband and facial expression inputs are used, and 73.43% 

accuracy when relying solely on wristband data. These results suggest the viability of a comparable 

system in which a robot continuously monitors stress levels in a human partner by analyzing data 

from a wristband or smartwatch—especially in scenarios where control charts signal an out-of-

control condition. Overall, their findings reinforce the feasibility and practicality of the stress 

quantification model proposed in this thesis. 

In addition to Awada et al. (2024), Zhao et al. (2023) simulated various human workload 

conditions to explore their effect on efficiency. They categorized human affective states into three 

workload-based zones: laidback, capacity, and fatigue. Their findings align with this thesis’s 

objective of maintaining human stress within the eustress zone—by ensuring workload remains 

within the capacity zone—thereby maximizing performance, as illustrated in Figure 19. 
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Figure 19: Robot’s Intervention on Human-Robot Workload Allocation to maintain optimum 

human stress by keeping human workload in their capacity zone 

 

As illustrated in Figure 19, efficiency is modeled as a function of workload (Zhao et al., 2023), 

while stress is represented as a function of performance (Yerkes–Dodson, 1908; Awada et al., 

2024). Since this thesis focuses on the relationship between workload and stress in the context of 

system performance, the findings of Sickles and Zelenyuk (2019) offer valuable insight. Although 

their research centers on productivity, they highlight that efficiency acts both as a driver and an 

outcome of productivity. Interpreted within the scope of this study, where system performance is 

the key concern, this relationship suggests that performance and efficiency are closely intertwined. 

Based on this understanding, it is assumed that stress can be modeled as a function of workload, 

and that stress levels may be modulated through workload adjustment to optimize human 

performance. 

[𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  𝑓21(𝑆𝑡𝑟𝑒𝑠𝑠)] ∧ [𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  𝑓22(𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑)] ∧  

[𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  𝑓23(𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒)] ⇒ [𝑆𝑡𝑟𝑒𝑠𝑠 =  𝑓24(𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑)]   
(49) 
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Building on this theoretical framework, the practical measurement and validation of stress are 

further explored. In this context, Awada et al. (2024) demonstrated that wearable technologies can 

reliably estimate stress levels by analyzing physiological signals. This finding underscores the 

importance of physiological monitoring tools for effective stress detection and regulation within 

human–robot collaboration systems. Accordingly, stress can be monitored through wearable 

devices and modulated by reallocating human workload whenever a deviation from the optimal 

stress range is detected. This process is further examined in Subsection 7.1.2, where the stress 

analysis is discussed in detail, followed by the presentation of the task reallocation algorithm. 

To enable a comparison between stress levels detected by wearable devices and the impact of 

individual tasks on overall human stress, it is also necessary to quantify task-specific stress. This 

denotes the incremental stress induced by a task when it is allocated to a human. Therefore, the 

next section introduces a conceptual formula designed to measure the influence of each task on 

human stress levels. 

6.4. Quantifying Task-Specific Human Stress: Development of Conceptual Formula 

Once the robot determines the appropriate intervention to regulate human stress—guided by the 

human state diagram—it must select the most suitable task from a set of feasible options generated 

by an external support system. This system provides a dynamic task pool based on various 

allocation algorithms, including those that incorporate precedence constraints, critical path 

analysis, or the method proposed in Subsection 5.4 of this thesis. Within this framework, the 

feasible task set represents a collection of alternative actions the robot may choose from when 

anomalies in human performance or deviations in stress levels are detected. 

Because the influence of specific tasks on human stress plays a critical role in deciding whether 

tasks should be assigned or exchanged, the relationship between task type and stress must be 

evaluated through multiple interacting parameters. These include the weighted effect of task 

complexity, time of day, individual skills and knowledge, initial task assignments made at the 

project's onset, perceived workload, and mood-related affective states. These factors are inherently 

interdependent and collectively shape how a task impacts human stress. Among them, task 

complexity is examined in particular detail in Subsection 6.4.1 to clarify its role within this 
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network of influencing variables and to lay the groundwork for the development of a conceptual 

formula that quantifies task-specific human stress. 

6.4.1. Task Complexity and Human Workload 

In the context of task complexity, Zahmat Doost and Zhang (2023) investigated how different task 

types influence human workload and developed a detailed classification system. Their framework 

distinguishes among three types of tasks: skill-based tasks, which depend on routine knowledge 

retrieved from long-term memory; rule-based tasks, which involve goal-directed behavior guided 

by stored propositions and if-then logic; and knowledge-based tasks, which require problem-

solving in unfamiliar contexts lacking predefined solutions. The study also examined how 

environmental interruptions—such as hedonic, social, or cognitive distractions—affect mental 

workload. Under uninterrupted conditions, knowledge-based tasks resulted in the highest mental 

workload (78.2%), followed by rule-based tasks (50.2%) and skill-based tasks (40.5%). However, 

in interrupted scenarios, the pattern shifted: knowledge-based tasks remained the most demanding 

(58.6%), while skill-based tasks (40.4%) slightly surpassed rule-based tasks (36.9%) in terms of 

mental workload. 

Despite offering a foundational classification, Zahmat Doost and Zhang’s (2023) model does not 

account for other important variables that influence task complexity—namely, human capability 

(encompassing knowledge and skills), time of day, and the actual task requirements initially 

assigned. Therefore, the subsequent sections expand on these variables, exploring their roles in 

shaping task complexity from a human-centered perspective and contributing to the development 

of a conceptual formula. 

This formula is constructed using mathematical relationships of direct and inverse proportionality; 

however, it is not designed to calculate an exact stress level. Rather, its purpose is to provide 

directional insight—indicating whether stress is likely to increase or decrease depending on the 

combination of influencing parameters. To this end, values inspired by prior research are assigned 

to each variable, resulting in an estimated stress level for the task assigned. By normalizing these 

values and incorporating stress measurements obtained from wearable devices, the estimated and 
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actual stress levels can be compared to assess whether task reallocation leads to a rise or fall in 

stress. 

Building on the classification proposed by Zahmat Doost and Zhang (2023), this study adopts the 

following categorization of task complexity: knowledge-based tasks are considered high-

complexity, skill-based tasks are moderate-complexity, and rule-based tasks are low-complexity. 

Given that interruptions are inherent in real-world work environments, the findings under 

interrupted conditions are considered more representative. Accordingly, task complexity weights 

are assigned—based on the interrupted-condition data—as shown in Table 6. 

Table 6: The Weighted Impact of Task Complexity on Human Stress (Zahmat Doost and Zhang, 

2023)  

Complexity 

Class 
Type 

Weighted Impact of Task 

Complexity on Human Stress  

(𝐶ᵢ ) 

High-Compexity Knowledge-Based Tasks 5.9 

Moderate-Complexity Skill-Based Tasks 4.0 

Low-Complexity Rule-Based Tasks 3.7 

 

The next subsection explores the parameters that influence the perception of task complexity from 

a human-centered perspective. These factors form the foundation of the task-specific conceptual 

formula and help clarify the interrelationships among them. 

6.4.2.  The Influence of Other Parameters on Task Complexity 

As human cognitive and affective states fluctuate in response to various implicit and explicit 

factors, their perception of task complexity can vary depending on the context. This subsection 

examines three key parameters—time of day, human capability (including knowledge and skills), 

and actual task requirements—to support the development of a conceptual formula for estimating 

task-specific stress. 
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Time of Day: The time at which a task is performed significantly influences how complex it is 

perceived to be. Kalanadhabhatta et al. (2021) studied the relationship between human cognitive 

performance and biobehavioral rhythms, focusing on two major regulatory mechanisms: 

• the circadian rhythm, which governs the body's internal biological clock 

• the homeostatic process, which regulates sleep pressure based on the need for and quality 

of sleep 

Their findings showed that cognitive performance peaks between 09:00–12:00 and 12:00–16:00, 

decreases slightly between 16:00–20:00, and drops to its lowest between 04:00–08:00 and 20:00–

24:00. Razavi et al. (2023) confirmed that assigning demanding tasks during high-performance 

time windows enhances outcomes, especially for cognitively complex activities. 

Drawing on Kalanadhabhatta et al.'s (2021) study, this thesis adopts a weighted impact scale for 

time-of-day effects, based on relative response time and the number of additions attempted in their 

experiment. These weights are presented in Table 7. 

Table 7: The Weighted Impact of Time of the Day extracted from Kalanadhabhatta et al. (2021) 

Time of the Day 
Weighted Impact of Time of the Day on Task 

Complexity Perception ( 𝑇ᵢ) 

04:00-08:00 0.23 

08:00-12:00 2.63 

12:00-16:00 2.53 

16:00-20:00 1.33 

20:00-24:00 0.11 

 

This weighted scale reflects the expected level of human cognitive performance at different times 

of day. Higher weights indicate periods of peak performance, while lower weights reflect 
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decreased performance levels. Consequently, tasks assigned during high-performance windows 

are likely to be perceived as less complex, whereas those assigned during lower-performance 

periods may feel more demanding. 

Human Capability: An individual’s perception of task complexity is closely tied to their level of 

knowledge and skill. According to Cognitive Load Theory, individuals with greater expertise 

experience reduced cognitive load when engaging in a task, thereby perceiving it as less complex. 

Conversely, insufficient knowledge or skill increases the perceived difficulty of the same task 

(Sweller, 1988; Van Merriënboer & Sweller, 2010). This is further supported by Zeitlhofer et al. 

(2024), who found that participants performed more efficiently when reattempting previously 

encountered complex tasks, indicating that experience improved their capability and reduced 

perceived complexity. 

Actual Task Requirement: In project environments, large tasks are broken down to distribute 

work effectively among team members. As emphasized in project management guidelines, the 

estimated duration of each task must be accurately assessed during the planning phase (Mulcahy, 

2013; Project Management Institute, 2021). When tasks require comparable levels of knowledge 

and skills, those with longer durations are typically regarded as more complex and demanding 

(Wilkinson et al., 2012; Walhout et al., 2017; Guo et al., 2020; Zhou et al., 2022). In this study, 

task duration is used as a proxy for actual time-based workload, offering a measurable indicator to 

assess and balance complexity across task assignments. 

These parameters—time of day, human capability, and actual task requirements—form the 

foundation for modeling task complexity from the human perspective. Their integration into a 

conceptual formula explained in Subsection 6.4.3 allows for the estimation of task-specific stress 

when allocating tasks in human–robot collaboration systems. 

6.4.3. Conceptual Formula for Task-Specific Human Stress 

Based on the foundations identified so far, Complexity (C) is a function of: 

1. Actual Task Requirement (Wa) – Time-based workload assigned to human 

2. Human Capability (S+K) – consisting of skills and knowledge 
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3. Time of the Day (T) 

In this function, it is proposed that the perception of task complexity is directly proportional to the 

Actual Task Requirement (Wa), while human capability (S+K) and time of the day (T) are 

inversely proportional to the perceived task complexity. Accordingly, a conceptual formula is 

established to represent the complexity of each task from the perspective of an individual human 

as follows: 

Let 

𝐶ᵢ =  𝑓(Wᵢᵃ, (Sᵢ +  Kᵢ), Tᵢ) ∀i ∈  ℕ, 𝑤ℎ𝑒𝑟𝑒 1 ≤  𝑖 ≤  N (50) 

be the function that defines the task-related estimated cognitive complexity level for the ith task, 

where: 

• 𝑊ᵢᵃ is the actual workload assigned for task i, 

• Sᵢ  represents the human skill level for task i, 

• Kᵢ represents the human knowledge level for task i, 

• the sum (Sᵢ + Kᵢ) models the human capability for task i, 

• 𝑇ᵢ is a time-of-day coefficient accounting for temporal cognitive fluctuations, 

• and N is the total number of tasks. 

Accordingly, the estimated cognitive complexity level for a given task i can be formulated as 

follows: 

𝐶ᵢ =
Wᵢᵃ

(Sᵢ +  Kᵢ). Tᵢ
 

(51) 

In addition to this, Nguyen and Zeng (2017) defined stress (σᵢ) as a function of perceived workload, 

human capability, and affective states. Therefore, for a given task i, its contribution to human stress 

can be formulated as shown in Equation 52. Considering that each task has a unique contribution 

to perceived workload (Wᵢᵖ) and that each individual possesses a unique combination of knowledge 
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and skills (Sᵢ + Kᵢ) in response to task i, the specific contribution of that task to human stress can 

be further expressed as shown in Equation 53. 

σᵢ = f (Wᵢᵖ, (Sᵢ + Kᵢ), Aᵢ), ∀i ∈ ℕ, 1 ≤ i ≤ N (52) 

Where: 

• 𝑊𝑖
𝑃 is the perceived workload for task i 

• 𝐴 is the individual’s affective (emotional) state. 

 

 

σᵢ =
Wᵢᵖ

(Sᵢ +  Kᵢ). Aᵢ
 

(53) 

Given that capability (𝑆ᵢ +  𝐾ᵢ) appears in both the complexity (Equation 51) and stress functions 

(Equation 53) presented in Table 8, the task-specific stress can be derived as shown in Equation 

54: 

𝑊𝑖
𝑎

𝐶𝑖 𝑇 
=
𝑊𝑖

𝑃

𝜎𝑖   𝐴
 ⇒ 𝜎𝑖 =

𝑊𝑖
𝑃 𝐶𝑖 𝑇

𝑊𝑖
𝑎  𝐴

= 𝐷𝑃𝐼𝑖
𝐶𝑖 𝑇

 𝐴
 

(54) 

Where, according to Yousefi et al. (2019), Duration-Based Performance Indicator: DPI =
𝑊𝑖
𝑃

𝑊𝑖
𝑎 

 

Table 8: The Combination of Task Complexity and Stress Formulas 

Proposed Conceptual Formula Conceptual Stress Formula  

(Nguyen and Zeng, 2017) 

 

𝐶ᵢ =
Wᵢᵃ

(Sᵢ +  Kᵢ). Tᵢ
 

 

σᵢ =
Wᵢᵖ

(Sᵢ +  Kᵢ). Aᵢ
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(Sᵢ +  Kᵢ) =
Wᵢᵃ

𝐶ᵢ . Tᵢ
 

 

(Sᵢ +  Kᵢ) =
Wᵢᵖ

σᵢ . Aᵢ
 

 

 

Affective State: In this integrated formula, the variable (A) represents a human’s affective state, 

encompassing mood-related conditions categorized into five distinct types, as outlined in Table 9. 

This classification is adapted from the work of Cittadini et al. (2023) on Affective State Estimation. 

As the Yerkes-Dodson law is adopted in this thesis to explain the relationship between stress and 

performance, and the affective states defined in their study align with the stress–performance bell 

curve, the same mood categories are incorporated into the formula to evaluate their impact on 

human stress. Each category is assigned a corresponding weighted impact score, calculated using 

the Analytical Hierarchy Process (AHP) method (Saaty, 1977; Saaty, 1980). 

 

Table 9: Weighted Impact of Affective States Estimated Based on Cittadini et al. (2023) 

Mood Affective State Weighted Impact of Affective 

State on Human Stress 

(𝐀ᵢ) 

Example 

Emotions 

High Arousal – 

High Valence  

(HAHV) 

“Positive and 

involved state of 

the person” 

4.59 pleasure, joy and 

excitement  

Low Arousal – 

High Valence  

(LAHV) 

“Positive and 

uninvolved state 

of the person” 

2.99 calm, relaxed, 

peaceful 

Neutral Neutral 1 emotionally 

balanced, flat 
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Low Arousal – 

Low Valence 

 (LALV) 

“Negative and 

uninvolved state 

of the person” 

0.56 boredom, sleep 

High Arousal – 

Low Valence 

 (HALV) 

“Negative and 

involved state of 

the person” 

0.42 anger, fear, 

anxiety 

Equation 54 is developed in this study to support the adjustment of stress levels detected through 

wristband data by reallocating feasible tasks. To enable this, it is necessary to quantify the stress 

impact associated with each individual task. This allows for the evaluation of changes in human 

stress levels when a task is either assigned (i.e., current stress + task-induced impact) or removed 

(i.e., current stress − task-induced impact). However, the stress measurements obtained from 

wearable devices and the task-specific stress values derived from the conceptual model are based 

on different numerical scales. To ensure meaningful comparison and integration, both datasets 

must be normalized. Once normalized, they can be combined—for instance, by adding a task's 

impact to the current stress level or subtracting it to simulate the effect of task removal. 

After presenting the structure of the human-robot system, outlining the communication channels, 

interaction modes, and collaboration types, detailing the logic behind the dynamic workload 

allocation model, and explaining the factors influencing human stress along with their 

interrelationships, Section 7 provides a step-by-step, phase-by-phase explanation of the dynamics 

of the proposed model.  
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7. ROBOT-SUPERVISED INTELLIGENT WORKLOAD REALLOCATION BASED 

ON STRESS-AWARE HUMAN PERFORMANCE MONITORING IN HUMAN-

ROBOT TEAMS 

This thesis proposes a human-robot collaboration framework in which robots monitor human 

performance by analyzing physiological and behavioral signals, enabling them to manage and 

reallocate human workload accordingly—a concept reiterated throughout the study. This section 

outlines the step-by-step execution of the proposed model. To assess its feasibility, the section 

concludes with a Monte Carlo simulation that validates the model’s effectiveness in dynamic, 

stress-aware workload reallocation. 

7.1. Process Flow of Robot-Supervised Workload Allocation 

The algorithm outlined so far presents an innovative framework for dynamic workload allocation 

within human-robot or human-computer collaborative systems. Building on previously established 

goals, its primary focus is to manage human stress levels to support optimal performance. This 

objective is implemented through a systematic, three-step process: 

i. Monitoring human performance using control charts 

ii. Analyzing stress and performance correlations using physiological and behavioral data 

iii. Reallocating workload to balance stress levels utilizing state diagrams 

Figure 20 illustrates the overall structure of the proposed approach. At its core, this framework 

relies on the robot’s capacity to monitor the human collaborator through both quantitative metrics 

and qualitative observations, and to actively intervene in the work environment—for instance, by 

supporting task redistribution. The primary goal is to maintain human stress within an optimal 

range—avoiding both underload and overload—to maximize human contribution to system 

performance and foster more balanced and efficient human-robot collaboration, a goal reiterated 

in earlier sections. 
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Figure 20: Role of Robot: Controlling Human Stress through Workload Reallocation 

 

The subsequent third-level subsections provide a detailed explanation of each individual step 

within the proposed process. Each step is examined separately to highlight its specific role, 

underlying logic, and contribution to the overall framework. 
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7.1.1. Step 1: Monitoring Human Performance Using Control Charts 

Human performance in collaborative systems naturally fluctuates throughout the workday due to 

changes in physical and mental states. While some of these fluctuations are minor and transient, 

others may indicate deeper issues that require corrective action (Lee & McGreevey, 2002; 

Caulcutt, 2004). As the first step in the proposed supervisory control strategy, this framework 

positions the robot as an intelligent observer capable of distinguishing between normal 

performance variability and deviations caused by specific stress-related factors. 

To facilitate this capability, the robot is equipped with the tools of Statistical Process Control 

(SPC), particularly control chart construction and interpretation (Lee & McGreevey, 2002; 

Montgomery, 2007; Tague, 2023). Control charts offer a robust method for real-time monitoring 

by comparing performance indicators—such as task duration or error rate—against statistically 

defined control limits. When these metrics exceed threshold values, the robot is alerted to potential 

anomalies and can initiate data-driven interventions (Yousefi et al., 2019). This approach not only 

improves process stability but also contributes to enhanced productivity, cost efficiency, and 

overall system predictability (Lee & McGreevey, 2002). 

In this context, the robot continuously monitors the human partner's performance for signs of 

statistical irregularity. When a deviation is detected, it analyzes whether the observed change stems 

from normal variability or indicates an abnormal condition. At this stage, no direct intervention 

occurs. Instead, the robot functions solely as a diagnostic observer, aiming to determine whether 

the deviation may be attributed to fluctuating stress levels or to other underlying factors. 

This distinction informs the next phase of the framework, where the source of the deviation—if 

linked to stress—is examined in detail and appropriate actions are taken. Accordingly, the 

following hypothesis frames Step 1 of the supervisory control strategy: 

• H₀: The robot can accurately detect when human performance exceeds statistical control 

thresholds. 

• H₁: The robot cannot reliably detect such deviations. 
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The effectiveness of control charts in monitoring human performance has been validated across 

several domains. For instance, Wang et al. (2013) used X-bar control charts to track cashier 

scanning durations in supermarkets. When scan times exceeded upper control limits after four 

hours, fatigue was inferred, demonstrating the chart's effectiveness in identifying time-induced 

inefficiencies. 

Yousefi et al. (2019) proposed the Duration Performance Index (DPI)—calculated as the ratio of 

earned duration to actual duration—as a metric for assessing task efficiency in construction 

projects. A DPI value of 1 indicates adherence to the planned schedule, while values below 1 

suggest inefficiency and those above 1 reflect superior performance. Their application of control 

charts to monitor DPI variations yielded meaningful insights into temporal performance patterns. 

Similarly, Sugiono et al. (2022) integrated control charts into their Cognitive Workload 

Management (CWM) framework for train operators. By combining brain simulation models with 

data from On-Train Data Recorders (OTDR), they continuously assessed drivers’ cognitive 

workload and categorized it into underload, optimal load, and overload states. Control charts were 

instrumental in identifying instances where cognitive stress exceeded acceptable thresholds, 

thereby supporting the development of rest schedules and the reallocation of tasks. Their findings 

underscore the value of statistical monitoring in bridging subjective workload evaluations with 

objective performance data. 

Collectively, these studies demonstrate the effectiveness of statistical control charts in identifying 

performance deviations, uncovering their underlying causes, and informing appropriate 

interventions. Within the proposed framework, this analytical function is delegated to the robot 

supervisor, which continuously monitors human performance, detects anomalies, and initiates 

further diagnostic steps to ensure that performance remains within safe and efficient operational 

thresholds. 

Given this capability, the hypothesis that the robot can detect when human performance is 

statistically out of control is accepted (H₀). With this confirmation, the robot can proceed to the 

next stage—Step 2: Analyzing Stress and Performance Correlations Using Physiological and 

Behavioral Data—to determine whether the detected performance deviation stems from elevated 

or reduced stress levels. 
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7.1.2. Step 2: Analyzing Stress and Performance Correlations Using Physiological and 

Behavioral Data 

While Statistical Process Control (SPC) charts allow robots to detect when human performance 

exceeds defined control limits, such detections alone do not provide insight into the root causes of 

these deviations. To address this limitation, SPC data must be supplemented with indicators of 

human stress. Generally, low stress levels are associated with a state of boredom, whereas high 

stress may indicate cognitive overload or task-related chaos. Therefore, in cases where 

performance anomalies are identified, the robot—as a supervisory controller—must evaluate the 

human's stress condition in real time to determine whether stress is the underlying cause. 

To support this decision-making process, the robot must be equipped with non-intrusive sensing 

capabilities for continuous monitoring of human stress. In this step, a stress assessment method is 

introduced that enables the robot to estimate human stress levels precisely at the point when 

performance deviates from defined thresholds. This estimation is based on physiological and 

behavioral data collected through minimally invasive sensing technologies. 

Extensive research has demonstrated that such physiological and behavioral signals can effectively 

indicate human emotions and associated stress levels. For example, Zhao et al. (2024) employed 

EEG signals to monitor pilots’ cognitive states during virtual simulation exercises. Their study 

marked a significant advancement by enabling the quantitative measurement of cognitive activity 

and its association with stress, surpassing the limitations of traditional qualitative approaches. 

However, the use of EEG hardware during active task execution presents notable ergonomic 

challenges. This concern is echoed by Sugiono et al. (2022), who emphasized that while such 

intrusive technologies are effective for measuring cognitive states, they can hinder natural 

movement and negatively impact task performance. 

Given these limitations, it is essential that any data acquisition tools used in robotic supervision 

rely on non-intrusive technologies. Wearable devices such as wrist-worn fitness trackers and 

smartwatches, as well as contactless behavioral monitoring tools (e.g., cameras), offer viable 

alternatives (Gjoreski et al., 2017; Nath and Thapliyal, 2021; Mitro et al., 2023; Bello-Orgaz and 

Menéndez; Awada et al., 2024; Jo et al., 2025). For instance, Awada et al. (2024) demonstrated a 
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73.43% accuracy in stress detection using wristband data, highlighting the potential of such 

technologies for continuous stress assessment. 

Building on this body of research, the proposed framework assumes that robots can effectively 

estimate human stress using wearable sensing devices. Once a robot detects that human 

performance has exceeded control limits, it evaluates whether the anomaly is stress-induced. If 

elevated stress is identified, the robot prepares for an appropriate intervention. However, if stress 

levels remain within the optimal range, the robot will consider alternative explanations—though 

such diagnostic exploration falls outside the scope of this study. 

To formalize this component of the framework, the following hypothesis is adapted from the work 

of Awada et al. (2024): 

• H₀: Human stress levels can be estimated with high accuracy using wearable devices (e.g., 

wristbands, smartwatches). 

• H₁: Human stress levels cannot be accurately estimated using wearable devices (e.g., 

wristbands, smartwatches). 

Quantitatively linking stress and performance has long been studied, with the Yerkes–Dodson law 

(1908) establishing one of the earliest models to describe an inverted-U relationship between 

arousal and performance. In more recent work, Awada et al. (2024) further quantified this 

relationship by incorporating biosignals and task performance metrics. While these studies center 

on the stress–performance interaction, it is proposed here that workload also plays a significant 

role in shaping stress levels. For this reason, the workload-related findings of Zhao et al. (2023) 

are considered alongside the Yerkes–Dodson principle and Awada et al.’s results. Despite their 

different scopes, all studies converge on a similar bell-shaped pattern, often modeled using 

Gaussian distributions, reflecting an optimal zone of stress known as eustress. 

Given that Step 1 confirms the robot’s ability to detect when human performance falls outside 

control limits, and Step 2 establishes that human stress can be reliably estimated using wearable 

technology, these components can be integrated into a unified control strategy. In this model, SPC 

charts are used for anomaly detection, followed by real-time stress evaluation to determine the 

need for corrective action. The objective is to maintain emotional states within the eustress zone—
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where productivity and cognitive function are optimized—through adaptive workload 

management. 

By interpreting biosignals from wearable devices, the robot can detect shifts away from the optimal 

zone and implement timely interventions, such as task redistribution or workload adjustment. This 

proactive stress management strategy not only supports individual well-being but also enhances 

the overall efficiency of the human-robot system. Embedding this capability into the proposed 

framework creates a data-driven mechanism for regulating stress, thereby strengthening the 

system’s adaptive and collaborative potential. 

Given the supporting evidence and demonstrated feasibility—particularly the findings of Awada 

et al. (2024), whose study was discussed in detail in Subsection 6.3—the hypothesis H₀ (that 

human stress levels can be estimated with high accuracy using wearable devices such as wristbands 

or smartwatches) is accepted. With this confirmation, the robot is now equipped to proceed to the 

next phase. In Step 3: Balance Stress Levels Using Robot-Supervised Task Reallocation, the 

system leverages real-time stress assessments to initiate adaptive workload adjustments aimed at 

restoring and maintaining human performance within the optimal stress range. 

7.1.3. Step 3: Balance Stress Levels Using Robot-Supervised Task-Reallocation 

This section introduces the intervention algorithm that governs the task reallocation process when 

irregularities in human performance are accompanied by deviations in stress levels—whether 

elevated or reduced beyond acceptable thresholds. Upon identifying such deviations, the robot 

evaluates current stress indicators and proceeds to review individualized task assignments. This 

evaluation considers a range of contextual and systemic factors that influence task distribution, 

rendering the human-robot collaboration process both dynamic and adaptive. 

As discussed previously in Section 5, multiple modes of collaboration exist within human-robot 

teams, including human-human, robot-robot, and human-robot interactions. Although the 

algorithm proposed here primarily operates within a human-robot framework—where the robot 

supervises and responds to human states—it is important to recognize the role of other 

collaboration types in shaping decision-making. In particular, robot-robot collaboration at the 

system level is crucial for accessing and integrating data from distributed subsystems, enabling the 
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robot to make informed decisions about task reallocation. This integrated interaction is depicted 

in Figure 21. 

This third step constitutes the core contribution of the study. Accordingly, a detailed, phase-by-

phase explanation of the proposed intervention mechanism is provided in Subsection 7.2. 

7.2. Intervention-Based Task Reallocation Model for Robots 

With the advancement of human-robot systems through machine-to-machine (M2M) 

communication, wireless sensor networks, and intelligent AI-driven algorithms, these systems 

have evolved into complex, highly integrated frameworks. In such settings, the outputs of certain 

systems function as critical inputs for others, enabling a continuous exchange of data and inter-

system coordination. 

To accurately interpret implicit human conditions—such as cognitive workload, domain 

knowledge, emotional states, stress levels, and sleep quality—the robot responsible for executing 

the proposed intervention model (System 1 in Figure 21) must rely on input from complementary 

systems, including other robotic agents within a smart integration architecture. Incorporating 

wearable technologies further augments the model’s capability by supplying real-time 

physiological indicators of stress, which are essential for monitoring performance and ensuring 

stress levels remain within optimal thresholds (System 2 in Figure 21) (Gjoreski et al., 2017; Nath 

& Thapliyal, 2021; Mitro et al., 2023; Bello-Orgaz & Menéndez, 2023; Awada et al., 2024). 

Additionally, temporally dependent variables—such as circadian rhythms, sleep cycles, and time-

of-day effects—play a pivotal role in modulating human performance during collaborative tasks 

(System 3 in Figure 21) (Kalanadhabhatta et al., 2021; Razavi et al., 2023). To accommodate these 

fluctuations and execute task transitions effectively, a responsive dynamic task scheduling 

mechanism is essential (System 4 in Figure 21). This system must continuously assess task 

availability and human functional capacity to enable real-time adjustments as needed (Pupa et al., 

2021; Alirezazadeh & Alexandre, 2022). 

Moreover, an analytical evaluation unit should be incorporated to assess task complexity, offering 

critical insights into how individual task demands influence human stress and perceived workload 
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(Zahmat Doost & Zhang, 2023). This layered integration of systems forms the foundation for 

intelligent, context-aware task reallocation in robot-supervised environments. 

In cases where performance irregularities are observed but stress levels remain within acceptable 

thresholds, it suggests that stress is not the primary factor impairing performance. In such 

scenarios, an alternative diagnostic system should be activated to identify other potential causes. 

For instance, a human capacity analysis module can be employed to evaluate the alignment 

between the individual's current knowledge, skills, and the demands of the assigned task (Nguyen 

& Zeng, 2017). If a discrepancy is identified, the system should propose suitable interventions—

ranging from immediate support mechanisms to longer-term upskilling strategies—to address the 

misalignment (System 5 in Figure 21). 

The architecture of the proposed framework allows for the integration of additional subsystems as 

required to increase adaptability and contextual awareness. Figure 12 provides an overview of the 

core reallocation algorithm and its interaction with the broader set of supporting systems. Although 

the literature supports expanding the model by incorporating further modules, the primary 

emphasis of this thesis remains on the development and implementation of the task reallocation 

algorithm itself (System 1 in Figure 21). 

Overall, Figure 21 presents a comprehensive overview of the integrated system architecture, 

highlighting how various subsystems interact to support adaptive task management in human-robot 

collaboration. While the primary focus remains on the task reallocation algorithm (System 1), the 

figure also illustrates the interconnected roles of complementary systems—such as physiological 

monitoring, capacity analysis, and dynamic scheduling—that collectively contribute to informed, 

real-time decision-making. This visual representation underscores the complexity and modularity 

of the proposed framework, reinforcing the importance of multi-system integration for effective 

workload distribution. 
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Figure 21: Intervention-Based Task Reallocation Model for Human-Robot Systems 

 

According to the intervention-based task reallocation logic illustrated in Figure 21, the robot’s 

decision-making follows these phases: 

1. Utilizing a State Diagram for Adjusting Human Stress Levels 
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2. Quantitative Evaluation of the Impact of Task Complexity and the Formulation of Stress 

Induced by the Assigned Task 

3. Deciding on the Suitable Task for Optimal Performance  

The robot’s intervention strategy unfolds through a structured sequence of decision points, each 

addressing a distinct aspect of task reallocation. The following subsections delve into these phases, 

outlining how stress regulation, task complexity analysis, and final task selection are 

systematically integrated to support informed and adaptive collaboration. 

7.2.1. Phase 1: Utilizing a State Diagram for Adjusting Human Stress Levels 

When stress-related input is received from an external supporting system (referred to as System 2 

in Figure 21), the robot processes the incoming biophysical data—following the methodology 

described by Awada et al. (2024)—to assess the individual’s current stress state. This value is then 

positioned along a bell-curve representation (Figure 22), classifying the state as "underloaded" (-

1), "stabilized" (0), or "overloaded" (1). 

If the detected stress level falls into either the underloaded or overloaded category, the system 

activates a Moore State Diagram–based control mechanism (Giantamidis et al., 2021) to trigger 

task reallocation, aiming to return the individual to a stabilized state. According to the logic of the 

state diagram, when a transition occurs from the stabilized state to either overload or underload—

or when the system remains in a non-optimal state—the robot intervenes by modifying the 

workload. Specifically, it reduces the workload (Wp−) to mitigate high stress or increases it (Wp+) 

to counteract low stress. In contrast, if the stress level remains within the stabilized zone, no 

immediate intervention is initiated. The robot continues to observe and monitor performance and 

stress levels to detect any future deviations. 
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Stress Level  

Figure 22: Mapping of Human Stress Levels on a Bell Curve 

 

At this stage, specific input conditions determine whether the robot should intervene in workload 

allocation. If any of the following transitions are observed, the system output is defined as "No", 

indicating that the robot does not intervene (denoted as Wp0) and continues monitoring human 

performance and stress levels: 

• [-1, 0]: Transition from an underloaded state to a stabilized state 

• [+1, 0]: Transition from an overloaded state to a stabilized state 

• [0, 0]: The human state remains stabilized 

In contrast, intervention is required when any of the following state transitions occur: 

• [0, -1] or [0, +1]: Transition from the stabilized state to either underload or overload 

• [-1, +1] or [+1, -1]: Cross-transitions between underload and overload 

• [-1, -1] or [+1, +1]: The human state remains underloaded or overloaded, respectively 
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In these cases, the output is "Yes", prompting the robot to initiate workload reallocation. The 

overarching aim of the state diagram is to restore the human to a stabilized stress level and maintain 

this condition. A summary of this algorithmic logic is presented in Table 10. Based on this 

decision-making framework, the robot operates using the state diagram illustrated in Figure 23, 

which classifies the human state as stabilized, underloaded, or overloaded, and guides whether 

workload intervention is warranted. 

 

Table 10: Summary of the State Diagram Algorithm 

Input Output Action 

[-1 , 0] No Wp0 (Not intervene in workload 

allocation) 

[+1 , 0] No Wp0 (Not intervene in workload 

allocation) 

[0 , 0] No Wp0 (Not intervene in workload 

allocation) 

[0 , -1] Yes Wp+ (Increase human workload) 

[0 , +1] Yes Wp- (Decrease human workload) 

[-1 , +1] Yes Wp- (Decrease human workload) 

[+1 , -1] Yes Wp+ (Increase human workload) 

[-1 , -1] Yes Wp+ (Increase human workload) 

[+1 , +1] Yes Wp- (Decrease human workload) 

 



113 

 

 

Figure 23: The State Diagram for Robot’s Decision-Making in Reallocation Interventions 

 

Human-centric evaluations, as embedded in the proposed algorithm, enhance the robot’s ability to 

interpret and respond to human states, thereby fostering more effective and adaptive collaboration. 

In the current framework, these human conditions are classified into two categories: stabilized and 

non-stabilized stress states. In a similar vein, Merlo et al. (2023) investigated dynamic human-

robot task collaboration by allocating tasks based on a comparison between an individual’s current 

physical condition and the ergonomic requirements of the task. Their findings indicated that 

withholding high-risk tasks when ergonomic conditions were suboptimal significantly reduced 

human fatigue and frustration during interaction. 

Tao et al. (2024) further examined how various forms of human-robot interaction—including 

touchless mid-air gesture-based systems and device-assisted methods—influence human 

performance under differing ergonomic constraints. Collectively, these studies, along with the 

proposed model, underscore the importance of continuously monitoring human physiological and 

behavioral states in collaborative environments. 
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By integrating real-time assessments of human condition, robots can make informed decisions 

about task assignment and interaction modalities. This not only optimizes task performance but 

also ensures that human collaborators remain within an ergonomic, cognitive, and emotional 

comfort zone. In essence, the robot’s ability to monitor and respond to human conditions supports 

efficient, responsive, and sustainable collaboration in dynamic human-robot teams. 

7.2.2. Phase 2: Quantitative Evaluation of the Impact of Task Complexity and the Formulation 

of Stress Induced by the Assigned Task 

Following the detection of human stress levels, the robot must initiate appropriate adjustments by 

either assigning new tasks, modifying the human’s current role, or removing ongoing tasks. To 

make informed decisions, it is essential to quantify the stress-inducing potential of each task—

both current and prospective—in terms of its impact on human performance. This task-specific 

stress value enables the robot to compare multiple task options and select the one that aligns best 

with the human’s current stress condition, thereby facilitating optimal performance. The 

methodology for quantifying these stress effects is described in detail in Subsection 6.4.  

7.2.3. Phase 3: Deciding on the Suitable Task for Optimal Performance 

In human-robot collaboration, ongoing monitoring enables robots to identify inconsistencies in 

human task execution. This process begins with the detection of anomalies—such as prolonged 

task completion times and increased error frequencies—as discussed in Section 7.1.1. Following 

the detection of such performance issues, the robot assesses the human's stress levels using 

physiological signals captured by wearable devices, as detailed in Section 7.1.2. If the assessment 

indicates that task reallocation is required, the robot selects and assigns tasks more appropriately 

aligned with the human’s current cognitive and physical state, with the goal of sustaining or 

enhancing performance, as explained in Section 7.1.3. 

The reallocation mechanism unfolds over three consecutive phases. Section 7.2.1 outlines a state 

diagram that assists in determining when task reassignment should be initiated. Section 7.2.2 

introduces a mathematical model that quantifies the potential stress induced by each task. This 

quantification is not limited to task complexity alone; it also incorporates factors such as task-

specific perceived workload, the time of day the task is performed, time constraints representing 
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actual workload demands, and the human’s affective state during task execution. Building on these 

foundations, the current section (7.2.3) focuses on the final phase: selecting the most suitable task 

by taking into account the human’s current condition as well as broader system constraints. 

To support implementation, Table 11 introduces a pseudocode framework that brings together the 

model’s key assumptions, visual tools, and mathematical foundations. Figure 20 provides an 

illustrative overview of the three main stages of the intervention process, while Figure 21 offers a 

more detailed depiction of the integrated, human-centered task reallocation architecture. 

 

Table 11: Decision Algorithm for Intervention-Based Task Reallocation in Robots 

 

BEGIN (at time t) 

 

1. Is human performance within the control limits? 

 

YES: Continue monitoring human performance: 𝑡 =  𝑡 + 1 

NO: Verify if the stress is the main reason human performance is reduced 

Go to step 2: 

 

2. Observe and record the human's stress level (𝜎𝑤
𝑡 ) from the wearable device at time t. 

 

3. Normalize 𝜎𝑤
𝑡  as     

𝜎̂𝑤
𝑡 =

𝜎𝑤
𝑡 − 𝜎𝑤

𝑚𝑖𝑛

𝜎𝑤
𝑚𝑎𝑥 − 𝜎𝑤

𝑚𝑖𝑛
 

 

Where minimum (𝜎𝑤
𝑚𝑖𝑛) and maximum (𝜎𝑤

𝑚𝑎𝑥) stress values are obtained from 

previous observations 

 

4. Use the state diagram introduced in Figure 5 to determine whether the robot should 

intervene in task reallocation. 

 

IF intervention is required: 

Proceed to Step 5. 

ELSE: 

𝑡 = 𝑡 + 1 
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Return to Step 1 

 

5. Perform task reallocation: 

 

5.1 Evaluate currently handled task’s (𝑡𝑎𝑠𝑘 𝑖) contribution on human stress (𝜎𝑖) 

5.1.1 Calculate actual workload for the currently assigned 𝑡𝑎𝑠𝑘 𝑖: 

Let 𝜀 be time spent on task i so far. 

𝑊𝑎
𝑖
𝑡 = 𝑊𝑎

𝑖
𝑡′   −  𝜀, where 𝑡′ is the time when 𝑡𝑎𝑠𝑘 𝑖 is assigned to human 

 

5.1.2 Identify the human’s perceived workload for task i at time t,  𝑊𝑝
𝑖
𝑡
: 

o For controlled experiments: ask the human partner via subjective 

questionnaires. 

o For real-time applications: estimate via facial expression analysis and/or 

physiological data using inference algorithms. 

 

5.1.3 Determine Duration-Based Performance Indicator: 

DPI𝑖
𝑡  =

𝑊𝑝
𝑖
𝑡

𝑊𝑎
𝑖
𝑡 

 

5.1.4 Determine current task’s contribution on human stress (𝜎𝑖
𝑡). 

𝜎𝑖
𝑡 =

𝑊𝑖
𝑝𝑡𝐶𝑖𝑇

𝑊𝑖
𝑎𝐴𝑡

= DPI𝑖
𝑡 𝐶𝑖𝑇

𝐴𝑡
 

Where: 

𝐶𝑖 = {
Knowledge − based tasks 5.9

Skill − based tasks 4.0
𝑅𝑢𝑙𝑒 − 𝑏𝑎𝑠𝑒𝑑 𝑡𝑎𝑠𝑘𝑠 3.7

}  

 

𝑇 =

{
 
 

 
 
04: 00 < 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐷𝑎𝑦 < 08: 00 0.23
08: 00 < 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐷𝑎𝑦 < 12: 00 2.63
12: 00 < 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐷𝑎𝑦 < 16: 00 2.53
16: 00 < 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐷𝑎𝑦 < 20: 00 1.33
20: 00 < 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐷𝑎𝑦 < 24: 00 0.11}
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𝐴𝑡 =

{
 
 

 
 
HAHV: High Arousal −  High Valence 4.59
LAHV: Low Arousal −  High Valence 2.99

𝑁𝑒𝑢𝑡𝑟𝑎𝑙 1
𝐿𝐴𝐿𝑉: 𝐿𝑜𝑤 𝐴𝑟𝑜𝑢𝑠𝑎𝑙 − 𝐿𝑜𝑤 𝑉𝑎𝑙𝑒𝑛𝑐𝑒 0.56
𝐻𝐴𝐿𝑉:𝐻𝑖𝑔ℎ 𝐴𝑟𝑜𝑢𝑠𝑎𝑙 − 𝐿𝑜𝑤 𝑉𝑎𝑙𝑒𝑛𝑐𝑒 0.42}

 
 

 
 

 

 

 

5.1.5 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝜎𝑖
𝑡  as: 

𝜎̂𝑖
𝑡 =

𝜎𝑖
𝑡 − 𝜎𝑖

𝑚𝑖𝑛

𝜎𝑖
𝑚𝑎𝑥 − 𝜎𝑖

𝑚𝑖𝑛
 

Where 𝜎𝑖
𝑚𝑖𝑛 and 𝜎𝑖

𝑚𝑎𝑥  values are obtained from previous observations 

 

5.2 Determine the contribution of task considered to be assigned on human stress 

5.2.1 Identify feasible task which is possible to assign to human at time t 

5.2.2 Determine candidate task’s contribution on human stress (𝜎𝑗
𝑡). 

𝜎𝑗
𝑡 =

𝑊𝑗
𝑝𝑡𝐶𝑗𝑇

𝑊𝑗
𝑎𝐴𝑡

= DPI𝑗
𝑡
𝐶𝑗𝑇

𝐴𝑡
 

Where 𝐶𝑗 , 𝑇 and 𝐴𝑡are determined similar to Step 5.1.4. 

 

5.2.3 Normalize 𝜎𝑗
𝑡  as: 

𝜎̂𝑗
𝑡 =

𝜎𝑗
𝑡 − 𝜎𝑗

𝑚𝑖𝑛

𝜎𝑗
𝑚𝑎𝑥 − 𝜎𝑗

𝑚𝑖𝑛
 

Where 𝜎𝑗
𝑚𝑖𝑛 and 𝜎𝑗

𝑚𝑎𝑥  values are obtained from previous observations 

 

6. Evaluate reassignment of tasks: 

 

6.1 Case 1: 𝜎̂𝑤
𝑡 ≤ 𝐿𝐶𝐿 → Human is in boredom state. Add new 𝑡𝑎𝑠𝑘 𝑗 without removing 

the current 𝑡𝑎𝑠𝑘 𝑖 

𝜎̂𝑤
𝑡+1 = 𝜎̂𝑤

𝑡 + 𝜎̂𝑖
𝑡 + 𝜎̂𝑗

𝑡 

𝐼𝐹 𝐿𝐶𝐿 ≤ 𝜎̂𝑤
𝑡+1 ≤ 𝑈𝐶𝐿:  

Accept the new assignment  

Update time 𝑡 = 𝑡 + 1  

Go to step 1 and verify the stress level using wearable device data. 

𝐸𝐿𝑆𝐸 consider adding more task and repeat Step 6.1 
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6.2 Case 2: 𝜎𝑤
𝑡 ≤ 𝐿𝐶𝐿 → Human is in boredom state. Replace 𝑡𝑎𝑠𝑘 𝑖 with more complex 

𝑡𝑎𝑠𝑘 𝑗 

𝜎̂𝑤
𝑡+1 = 𝜎̂𝑤

𝑡 − 𝜎̂𝑖
𝑡 + 𝜎̂𝑗

𝑡 

𝐼𝐹 𝐿𝐶𝐿 ≤ 𝜎̂𝑤
𝑡+1 ≤ 𝑈𝐶𝐿:  

Accept the reassignment  

Update time 𝑡 = 𝑡 + 1  

Go to Step 1 and verify the stress level using wearable device data. 

𝐸𝐿𝑆𝐸 consider replacing 𝑡𝑎𝑠𝑘 𝑖 with a more challenging task and repeat Step 6.2 

 

6.3 Case 3: 𝜎𝑤
𝑡 ≥ 𝑈𝐶𝐿 → Human is in chaos state. Replace 𝑡𝑎𝑠𝑘 𝑖 with a simpler 𝑡𝑎𝑠𝑘 𝑗 

𝜎̂𝑤
𝑡+1 = 𝜎̂𝑤

𝑡 − 𝜎̂𝑖
𝑡 + 𝜎̂𝑗

𝑡 

𝐼𝐹 𝐿𝐶𝐿 ≤ 𝜎̂𝑤
𝑡+1 ≤ 𝑈𝐶𝐿:  

Accept the reassignment  

Update time 𝑡 = 𝑡 + 1  

Go to Step 1 and verify the stress level using wearable device data. 

𝐸𝐿𝑆𝐸 consider replacing 𝑡𝑎𝑠𝑘 𝑖 with a less challenging task and repeat Step 6.3 

 

END 

 

7.3.Monte Carlo Simulation: Intervention-Based Task Reallocation Model 

To evaluate the validity of the proposed human-centered dynamic workload reallocation model, 

a Monte Carlo simulation study was conducted. This simulation aims to offer empirical insights 

that can guide the design of future controlled experiments and support the adaptation of the 

proposed model for real-time applications. 

The simulation follows a structured sequence of steps: 

i. Parameter Initialization: 



119 

 

In accordance with Section 2.3.2, key variables were established: actual workload (Wᵃ), 

perceived workload (Wᵖ), task complexity (C), time-of-day impact (T), and affective state (A). 

• Wᵃ and Wᵖ were randomly sampled from a uniform distribution, as this distribution is 

suitable for modeling bounded variables, consistent with project management 

estimates. 

• C, T, and A were generated using multinomial distributions, reflecting predefined 

weighted categories for these variables. 

ii. Task-Specific Stress Computation: 

The stress level associated with each task (σᵢ) was calculated using Equation 54 and normalized 

for comparison. 

iii. Wearable-Based Stress Generation: 

A general stress level (σw), mimicking data from wearable sensors, was generated using a 

normal distribution and normalized. This allowed for direct comparison with the task-induced 

stress values. 

iv. Performance Evaluation: 

Human performance was quantified using Equation 55, which is based on the “Duration-Based 

Performance Indicator (DPI)” proposed by Yousefi et al. (2019). The DPI was then normalized 

to reflect a performance percentage. 

            𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ⇒ 𝐷𝑃𝐼 =
1

𝑊𝑝

𝑊𝑎⁄
=  
𝑊𝑎

𝑊𝑝
 

(55) 

A DPI approaching zero does not imply zero performance; rather, it indicates extremely 

low task-related motivation at that specific time and context. 

v. Checkpoint Analysis: 

Two critical checkpoints were assessed: 
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• Control Chart Monitoring: DPI values were monitored to determine if performance 

remained within control. DPI ≥ 1 indicated that performance was acceptable. 

• Stress Validation: If performance was out of control, the system checked whether 

stress was the underlying factor: 

o Case 1: If stress was within acceptable bounds, the issue was attributed to 

other variables (refer to Figure 3: Systems 3 and 5). No intervention 

occurred. 

o Case 2: If stress was beyond thresholds, the individual’s state was 

reclassified. Based on Zhao et al. (2023), the following conditions applied: 

𝜇 − 1.5𝜎 ≤ 𝜎𝑤 ≤ 𝜇 + 1.2𝜎 (56) 

▪ 𝜎𝑤 < 𝐿𝐶𝐿: Underload (State = -1) 

▪ 𝜎𝑤 > 𝑈𝐶𝐿: Overload (State = 1) 

▪ 𝐿𝐶𝐿 ≤  𝜎𝑤  ≤ 𝑈𝐶𝐿: Stabilized (State = 0) 

If overload or underload was detected, robot intervention was initiated. 

vi. Robot Intervention and Task Reallocation: 

When necessary, the robot reallocated tasks to stabilize the human’s stress level. Task-specific 

stress contributions were recalculated using Equation 54. The updated overall stress at time t 

was determined using Equation 57 below: 

          𝜎𝑤
𝑡 = 𝜎𝑤

𝑡−1 − 𝜎𝑖
𝑡 + 𝜎𝑗

𝑡  (57) 

Here, 𝜎𝑖
𝑡 represents the stress contribution of the removed task, and 𝜎𝑗

𝑡  that of the newly 

assigned task. If the resulting stress 𝜎𝑤
𝑡  fell within predefined thresholds (𝐿𝐶𝐿 ≤ 𝜎𝑤

𝑡 ≤ 𝑈𝐶𝐿), 

the new task assignment was confirmed. 

7.3.1. Simulation Design and Parameters 

In this simulation study, synthetic data were generated to assess the validity of the proposed 

human-centered task reallocation model. The study setup was as follows: 
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• Participants: 10 individuals 

• Task pool: Each individual was assigned 20 potential tasks 

• Evaluation frequency: Performance was assessed at 10 distinct time points throughout the 

day 

• Assumption: None of the tasks were on the project’s critical path 

This configuration resulted in 2,000 unique data points (10 individuals × 20 tasks × 10 time 

points), forming the foundation for the simulation analysis. 

To account for time-dependent variation in performance, simulation times were distributed 

across five time slots, as outlined in Table 7: 

• 04:00–08:00 → 3% 

• 08:00–12:00 → 25% 

• 12:00–16:00 → 51% 

• 16:00–20:00 → 20% 

• 20:00–24:00 → 1% 

The time-of-day selection was modeled using a normal distribution, centered around peak 

cognitive performance periods (08:00–16:00), based on findings by Kalanadhabhatta et al. (2021), 

which indicate enhanced mental performance during standard working hours. This approach 

ensured that data points were predominantly concentrated around these high-performance 

windows. 

7.3.2. Simulation Results and Insights 

As summarized in Table 12, only 9% of cases required intervention—triggered when wearable-

derived stress measurements diverged significantly from the expected stress levels calculated 

through task-based parameters. 
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Table 12: The Distribution of Data in the Monte Carlo Simulation of the Proposed Model: 

I=Intervene; NI=Not intervene 

Simulated Personas Time of the Day 

04:00-08:00 08:00-12:00 12:00-16:00 16:00-20:00 20:00-24:00 

I NI I NI I NI I NI I NI 

Person 1 0 0 3 37 6 134 2 18 0 0 

Person 2 0 20 6 54 13 67 3 37 0 0 

Person 3 0 0 4 56 14 126 0 0 0 0 

Person 4 0 0 8 72 10 90 1 19 0 0 

Person 5 0 0 0 0 14 126 4 56 0 0 

Person 6 0 0 7 93 1 79 2 18 0 0 

Person 7 0 0 1 39 8 92 8 52 0 0 

Person 8 1 19 6 34 7 53 8 52 1 19 

Person 9 0 0 3 57 10 50 9 71 0 0 

Person 10 2 18 0 20 13 107 5 35 0 0 

Total number of simulations 3 57 38 462 96 924 42 358 1 19 

% of total Simulation cases 0.15 2.85 1.9 23.1 4.8 46.2 2.1 17.9 0.05 0.95 

 

Table 13: Monte Carlo Simulation Results for the Proposed Model 

Simulated 

Personas 

t: The time 

irregularity is 

observed 

Task i Task j Expected 

Improvement 

through 

intervention 

(%) 𝝈𝒘
𝒕  with 

𝑻𝒂𝒔𝒌 𝒊 
Human State 

with 𝑻𝒂𝒔𝒌 𝒊 
{-1, 0, 1} 

Task-

Specific 

𝐷𝑃𝐼𝒊 (%) 

𝝈𝒘
𝒕  with 

𝑻𝒂𝒔𝒌 𝒋 
Human State 

with 𝑻𝒂𝒔𝒌 𝒋 
{-1, 0, 1} 

Task-

Specific 

𝑫𝑷𝑰𝒋 (%

) 

Person 1 11:59:00 AM 0.28 -1  9 0.74 0 25 16 

Person 2 1:53:00 PM 0.80 1 2 0.68 0 37 35 

Person 3 3:15:00 PM 0.18 -1 19 0.38 0 54 34 

Person 4 4:05:00 PM 0.22 -1 0 0.59 0 66 66 

Person 5 4:00:00 PM 0.77 1 8 0.58 0 28 19 

Person 6 8:52:00 AM 0.76 1 14 0.41 0 95 81 

Person 7 12:29:00 PM 0.20 -1 1 0.69 0 48 47 

Person 8 8:12:00 PM 0.13 -1 1 0.67 0 74 73 

Person 9 6:58:00 PM 0.93 1 2 0.63 0 79 77 

Person 10 7:16:00 AM 0.86 1 9 0.39 0 93 84 

Average   7   60 53 
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Table 13 presents a detailed comparison of ten simulation points across ten individuals. Each case 

documents Task i (initial assignment) and Task j (reallocated alternative), with corresponding 

stress levels measured using wearable devices. These cases demonstrate how robot-assisted 

reallocation adjusts task assignments to bring the individual’s emotional and physiological state 

closer to a stable condition. 

It is important to note that, due to the randomized input structure, the precise numerical effect of 

task substitution on stress (as described by Equation 8) cannot be validated deterministically. 

However, the aggregate outcomes were encouraging. Average performance without intervention 

was only 7%, whereas robot-assisted task reallocation led to an improvement up to 60%—an 

increase of 53%. Additionally, participants’ emotional states shifted from overloaded or 

underloaded conditions (±1) to a stabilized state (0), indicating successful stress regulation through 

intelligent intervention. 
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8. DISCUSSIONS 

This thesis focuses on robots’ capabilities to observe their human partners, interpret their 

performance along with corresponding emotional and stress states, and act accordingly within 

human-robot collaboration to make smart systems more symbiotic and proactive. To this end, the 

literature was thoroughly reviewed to identify current technologies capable of recognizing both 

covert and overt human intentions. It was found that recent advancements are sufficient to assess 

human behaviors, cognitive states, and emotional conditions. 

This finding led to the formulation of the central research question: “How can the collaborative 

performance of a human-robot team be improved through a robot-supervised decision mechanism 

for workload allocation based on fluctuations in human stress levels?” 

This question formed the foundation and objective of the thesis. 

To address this question, the structure of human-robot systems was first analyzed. Particular 

attention was given to the communication channels and interaction modes through which 

collaboration occurs. The differences between these terms were clarified, and their roles in task 

execution were investigated. In addition, performance factors influencing these channels and 

modes were examined, leading to the identification of task zones that facilitate robots’ role in task 

allocation. These zones were defined according to the distinct characteristics of system members—

namely, humans, robots, or their joint activities. 

Once the foundational components of communication and collaboration were established, a stress-

aware dynamic task allocation algorithm was proposed for robots to apply when intervention 

becomes necessary. The algorithm was conceptually implemented within the context of the SAP 

system architecture, which integrates numerous subsystems and provides visibility into various 

communication channels during operational processes. Although current SAP systems are not 

equipped with the necessary capabilities to detect users’ affective or cognitive states, it is assumed 

that future systems will possess the intelligence required to collaborate with users in the proposed 

manner. 

Following this, the regulation of human stress became a central focus. It was hypothesized that 

certain performance signals could trigger robot intervention. According to the literature, human 
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performance often reflects underlying emotional or affective states. Thus, human performance was 

chosen as the entry point for the proposed model: “Robot-supervised intelligent workload 

reallocation based on stress-aware human performance monitoring in human-robot teams.” 

Accordingly, after reviewing the stress–performance relationship, performance parameters for 

each member in a multi-human, multi-robot system were analyzed in detail to understand their 

collective impact on team output. Furthermore, the individual parameters influencing human stress 

and performance were examined, leading to the identification of a self-feeding loop—a dynamic 

cycle in which output parameters from one stage serve as input parameters for the next. This 

feedback structure highlights the temporal dependencies within the system. 

The next step was to evaluate how other researchers measure human stress levels. A 

comprehensive review of stress detection methods was conducted to identify effective techniques, 

drawing on validated approaches. Based on this analysis, wristbands were selected as the most 

efficient, accurate, and non-intrusive solution for monitoring stress in real-time. 

However, measuring overall human stress alone was not sufficient for the scope of this study. 

Since human stress may fluctuate for various reasons, this thesis focused specifically on how task-

induced stress contributes to general stress levels. This is critical, as the aim is to regulate human 

stress through task reallocation. Consequently, the quantification of task-specific stress 

contribution became essential. 

To address this, a conceptual formula was developed to calculate the stress induced by individual 

tasks. This formula incorporates parameters such as perceived workload, task complexity, time of 

day, actual workload, and mood-related affective states. According to this formulation, the task-

specific effect on human stress can be estimated, enabling more informed task allocation decisions. 

Finally, the process flow of the proposed model was visualized and tested using a Monte Carlo 

simulation. Although there was insufficient time to conduct controlled experiments for real-world 

implementation, the simulation study yielded promising results. The objective was to sustain 

optimal performance by maintaining human stress within an ideal range. The results showed that 

the proposed system successfully maintains stress at manageable levels while simultaneously 

enhancing performance. 
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8.1. Practical Applications of Stress-Aware Human-Robot Collaborations 

Even though the proposed framework introduces a generic algorithm for human-robot 

collaboration—where a robot can represent any computerized smart system—it is evident that the 

framework is applicable to various domains sensitive to workload fluctuations in human 

performance, such as manufacturing and assembly lines, healthcare and assistive robotics, 

transportation and logistics, and military and emergency response. However, since the concrete 

measurement of stress remains the primary challenge in this study, the numerical values within the 

proposed model cannot be generalized. In other words, no universally accepted quantitative 

method has yet been introduced to measure human stress levels; therefore, generic thresholds 

cannot be defined across all application areas. Moreover, different fields may require distinct 

optimal values to successfully accomplish their corresponding tasks. Consequently, this study 

generalizes that neither low nor high stress levels support optimal human performance, but rather 

a moderate level of stress enables maximum human efficiency. Building on this principle, the 

proposed model formalizes human-robot teaming by allocating workload according to stress 

levels. 

8.2. Ethical Considerations in Stress-Aware Human-Robot Collaboration  

Ethical concerns inevitably arise in team collaborations where humans are involved. As Paul et al. 

(2022) note, embedding ethics into technology is challenging, yet it remains essential to account 

for human perceptions of collaboration’s ethical dynamics. These dynamics include fairness 

(justice, non-discrimination, equity), trust and transparency (explainability, reliability), 

accountability (responsibility, liability), and well-being (safety, cognitive load). 

Ali et al. (2022) examined role allocation between humans and robots, suggesting that robots 

should assume task-allocation responsibilities to reduce human workload and allow humans to 

concentrate on execution. However, in high-risk domains such as healthcare or military operations, 

human judgment remains indispensable. Where applicable, research supports automation-driven 

allocation as a means of facilitating effective collaboration. 

Kim and Phillips (2021) hypothesized that maintaining fairness in human-robot collaboration 

enhances motivation and fosters acceptance of robot decisions. Ali et al. (2022) similarly 



127 

 

emphasized fairness in shaping team relationships and performance, while also highlighting the 

importance of negotiation. In this vein, Roncone et al. (2017) proposed a method that allows 

humans to either accept or reject a robot’s decision regarding task execution. Such negotiation 

ensures fairness and strengthens trust within the collaboration. 

When considering task reallocation, trust becomes the pivotal factor influencing both individual 

and team performance. Lee and See (2004) classified trust into three categories: undertrust, 

overtrust, and calibrated trust. Undertrust results in the disuse of robotic capacity, while overtrust 

can lead to misuse through inflated expectations of robot capability. Both disuse and misuse hinder 

team performance, as highlighted by Azevedo-Sa et al. (2020). Only calibrated trust—where robot 

capacity aligns with human expectations—supports effective collaboration. 

Ali et al. (2022) further linked trust to task allocation, noting that undertrust may cause humans to 

underestimate the benefits of robot decision-making, while overtrust may lead them to accept 

decisions without sufficient scrutiny. Calibrated trust, on the other hand, fosters shared 

understanding, which introduces another ethical dimension: shared situational awareness. This 

alignment of team members’ mental models toward a common goal is critical, as Hagos et al. 

(2024) argue, for effective decision-making in collaborative systems. 

Although ethical considerations lie beyond the primary scope of this thesis, their influence on 

human perception is undeniable. Ethical dynamics directly shape stress levels, trust, and ultimately 

human performance—factors that are central to the success of human-robot collaboration. 
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9. LIMITATIONS 

While this study presents a novel framework for stress-aware human-robot collaboration, several 

limitations should be acknowledged.  

First, the framework is currently limited to a single-human, single-robot, single-task scenario. 

Real-world applications often involve multiple humans, robots, and tasks interacting dynamically. 

The lack of simulation or experimentation in complex n-human–n-robot–n-task environments 

constrains the generalizability of the findings. Additionally, although the system attends to the task 

actively pursued by a human at a given moment, it does not fully account for the background 

influence of other pending tasks, which may still affect stress levels. These indirect effects are 

assumed to be partially captured through affective state parameters, as outlined in Equation 4, but 

further empirical validation is required. 

Second, the current model does not address situations that require simultaneous task reallocations, 

as it assumes a human can only manage one task at any given time. In such cases, a more complex 

multi-agent environment should be considered. This simplification underscores the need for future 

research involving adaptive strategies for dynamic, multi-task settings. 

Third, although a simulation study was conducted, the system lacks validation through quantitative 

performance metrics such as task completion time, error rates, or productivity indices. Moreover, 

the framework has not yet been tested across robots with varying levels of intelligence or integrated 

with different systems. As a result, its ability to function effectively in diverse real-world 

applications—where such variability is common—remains uncertain. 

Fourth, long-term changes in human capability and stress levels were not examined due to the 

absence of longitudinal experiments. As such, the model's capacity to adapt to evolving human 

states over time remains an open question for future investigation. 

Despite these limitations, this work contributes a foundational model for robot-supervised 

decision-making under uncertain human performance. The framework demonstrates how robots 

can monitor human activity, estimate task-induced stress, and intelligently intervene to optimize 

collaboration. Although full-scale experimental validation remains a future goal, the simulation 
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results provide promising preliminary evidence that targeted interventions can stabilize human 

stress levels and improve overall team performance. 
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10. FUTURE WORK 

As noted in the Discussion and Limitations sections, this study could not be validated through 

controlled experiments, which limits the assessment of its effectiveness in real-world applications. 

Future research should therefore focus on conducting such experiments—particularly within 

multi-human, multi-robot systems—to evaluate the impact of the proposed model under complex 

and dynamic collaboration conditions. 

Additionally, this study highlights the importance of quantifying task-specific stress contributions 

to overall human stress in order to guide accurate task allocation. While a conceptual formula was 

proposed and demonstrated promising results in simulation, it lacks empirical validation and 

mathematical rigor. Future work should include controlled experimental studies to evaluate the 

formula’s effectiveness and determine its success rate in practical settings. 

To enhance the reliability of this quantification, the development of a mathematical model is 

recommended alongside the existing conceptual framework. In this context, the logic of electrical 

circuits—particularly the self-feeding loop structure discussed in the thesis—may offer a useful 

analogy. Applying Kirchhoff’s Current and Voltage Laws could provide a systematic approach for 

modeling stress flow and feedback within the task allocation process, leading to a more concrete 

and testable mathematical representation. 
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11. CONCLUSIONS 

This thesis has explored the integration of stress-aware decision-making into human-robot 

collaboration, focusing on how robots can adaptively manage workload in response to fluctuations 

in human performance. The study contributes to the broader field of intelligent systems by framing 

collaboration not only in terms of efficiency but also in relation to human cognitive and emotional 

well-being. 

Rather than treating robots as passive executors of predefined tasks, the proposed framework 

positions them as active observers and adaptive decision-makers—capable of interpreting human 

states and responding accordingly. This human-centered approach aligns with emerging trends in 

proactive and symbiotic robotics, where the goal is to foster sustainable, responsive, and 

psychologically supportive collaboration environments. 

Although implemented and evaluated within a simplified context, the framework opens several 

pathways for future research. Extending this work to multi-agent systems, integrating long-term 

learning mechanisms, and validating real-time performance through field experiments will be 

essential steps toward operationalizing stress-responsive robotic systems in practical settings. 

The findings highlight the importance of incorporating affective understanding into collaborative 

technologies. As the boundaries between human and robot capabilities continue to blur, designing 

systems that can perceive, interpret, and respond to human needs in real time will be critical for 

advancing the next generation of human-robot partnerships. 
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