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Étale Cohomology and the Galois Representation

attached to a Modular Form

Michael Weinzierl

In this thesis, we introduce the theory of étale cohomology, assuming basics in algebraic
geometry and sheaf theory on topological spaces. In particular, we define étale morphisms
and develop the theory of sheaves on the étale site alongside some of the most important
examples.

In the last two chapters, we collect, mostly without proofs, some of the most important
results on étale cohomology and apply them to outline Deligne’s construction of the Galois
representation attached to a modular form, illustrating the usefulness of that cohomology
theory in number theory.
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Introduction

Consider a continuous map f : X ³ Y of topological spaces and let F be a sheaf on Y . The
map f induces, via the adjunction map, a homomorphism of global sections

Γ(Y,F)
can
−−³ Γ(Y, f³f

³F) ∼= Γ(X, f ³F).

By the general theory of derived functors, the right derived functors of Γ(Y,−) form a uni-
versal δ-functor, and this homomorphism induces homomorphisms between the sheaf coho-

mology groups H i(Y,F)
f∗

−³ H i(X, f ³F) for all natural numbers i ≥ 0.
If we compare this to singular cohomology from algebraic topology, we note that there

we get maps

H i(Y,Z)
f∗

−³ H i(X,Z)

for all i ≥ 0, where the functor on the right-hand side does not depend on f , i.e., it is
intrinsically defined by X.

We can also archive this in sheaf cohomology by considering the constant sheaf F := ZY :
for any map f we have a canonical isomorphism f ³ZY

∼= ZX , and hence the maps constructed

above can be written as H i(Y,ZY )
f∗

−³ H i(X,ZX), with the codomain now independent of f .
It is a classical result in algebraic topology that for paracompact locally contractible spaces
(e.g. a compact real manifold), these two approaches give naturally isomorphic functors.

But when it comes to algebraic geometry and, say, an (irreducible) variety defined over
an algebraically closed field (other than C, perhaps), both of these approaches are flawed in
some sense: The analytic topology and the Zariski topology on the variety are so different
from one another that singular cohomology generally tends to give undesirable results, and
while sheaf cohomology is regularly used to study the geometry of varieties, the coefficients
used are not usually constant for a simple reason: a constant sheaf on an irreducible space
is flasque, and therefore all of its higher cohomology groups vanish.

As a result of this, when using sheaf cohomology in algebraic geometry, we rarely, if ever
make use of functoriality in the first variable of H i(X,F) and so cannot apply many of the
same tricks applied in topology.

This motivates the need for a different cohomology theory in algebraic geometry, more
reminiscent of the situation in topology. There exists more than one such theory, but in
this thesis, we focus only on étale cohomology (and a closely related variant of it, the l-adic
cohomology groups). We will see, for example, that for algebraic curves (even when defined
over a field of characteristic p > 0), these cohomology groups are very similar to the singular
cohomology groups of curves over C (interpreted as complex manifolds).

We begin by briefly introducing the purely geometric concept of étale morphisms, and
then use them to define the étale site. Our investigation of the cohomology theory will be
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a mixture of results on general sites, and results more specific to the étale site. One such
result that is very specific to the étale site is a categorical equivalence between a certain
subcategory of étale sheaves and representations of the étale fundamental group, which is a
scheme-theoretic analog of the topological fundamental group.

Étale cohomology also plays an important role in number theory: Because the étale
fundamental group (which we will not construct in this paper) computes in many cases
groups also interesting in number theory, we can use étale sheaves and the general theory
surrounding them to construct and study representations of these interesting groups.

To illustrate this, we will outline Deligne’s construction of the Galois representation at-
tached to a modular form in the last chapter of this thesis.
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Chapter 1

Étale Morphisms

The first goal for this paper is to develop the theory of étale cohomology, which we will do,
roughly speaking, in two steps: First, we will introduce étale morphisms and their geometric
properties, and then we develop the theory of sheaves on a general site.

Either one of these two parts is going to be a pretty dry read without the other in mind,
and we begin with the geometric aspects of étale morphisms solely because they could, in
a different paper, also be introduced without the étale site in mind, while it seems hard to
imagine an overview of sheaf theory on general sites without the étale site as one of the first
examples.

1.1 Flat morphisms

We are ultimately going to define étale morphisms as a morphism of schemes that is flat and
unramified, so we first introduce both of these notions independently.

Flat morphisms of schemes are a direct generalization of the concept of a flat algebra over
a ring, in the sense that an algebra A ³ B is flat if and only if the morphism SpecB ³ SpecA
is flat. We therefore begin with the following reminder to commutative algebra, as found, for
example, in [Mat80, Chapter 2].

Reminder. Let A be a ring and M be an A-module. Then the functor −⊗AM is right exact,
as it admits the right adjoint HomA(M,−). We say that M is flat if the functor − ⊗M is
also exact on the left.

Reminder. Let f : A ³ B be a homomorphism of commutative rings. Then, the following
are equivalent:

i) B is flat over A, i.e. it is flat when interpreted as an A-module.

ii) The extension of scalars functor −⊗A B is exact.

iii) For every prime p ∈ SpecB, the local homomorphism of rings Aq ³ Bp, where q :=
f−1(p), is flat.

This third condition fits the scheme setting very well, and so we make the following
definition:
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Definition 1.1.1. Let f : X ³ S be a morphism of schemes and let x ∈ X. We say that f
is flat in x iff OX,x is a flat OS,f(x)-algebra. We say that it is flat iff it is flat in every point
x ∈ X.

Remark. It is immediate that any open immersion is flat. Closed immersions, on the other
hand, are typically not flat.

Assuming a solid basis in commutative algebra, it is easy to prove the following two
permanence properties for flatness.

Proposition 1.1.2. a) A composition of two flat morphisms is again flat.

b) Any base change of a flat morphism is flat.

Proof. Both statements are easily reduced to the affine case, where the statements are stan-
dard results from commutative algebra (cf. [Mat80, Chapter 2, Section3]).

Next, we introduce faithful flatness, a concept which looks interesting enough algebraically
to be talked about in many introductions to commutative algebra (usually using a different
definition, cf. Lemma 1.1.4), but turns out to have a rather geometric aspect to it, as should
be apparent from our definition.

Definition 1.1.3. Let f : X ³ S be a morphism. We say that f is faithfully flat iff it is flat
and surjective.

Remark. Since being surjective and being flat are stable under base change and composition,
and are local on the target, the same is true for faithful flatness.

For the reader’s convenience, we briefly recall the affine preliminaries used in the following
results.

Lemma 1.1.4. Let f : A ³ B be a ring homomorphism. Then the following conditions are
equivalent:

i) f ³ : SpecB ³ SpecA is faithfully flat.

ii) Any sequence of A-modules M ′ ³ M ³ M ′′ is exact if and only the induced sequence of
B-modules M ′ ⊗A B ³ M ⊗A B ³ M ′′ ⊗A B is exact.

iii) B is a flat A-algebra and for any A-module M we have M ∼= 0 if and only if M⊗AB ∼= 0.

iv) B is a flat A-algebra and for any maximal ideal m ⊆ A we have mB ñ= B.

Proof. See [Mat80, Chapter 2, Section 4].

Corollary 1.1.5. A local homomorphism f : A ³ B of local rings is flat if and only if it is
faithfully flat.

Proof. This follows from the last condition in Lemma 1.1.4.
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Having introduced our two main definitions for this section, we now turn our attention
to studying two geometric properties of flat morphisms, the first of which being that a flat
morphism is, under a mild finiteness condition, an open morphism. This allows us to factor
such morphisms into a faithfully flat morphism followed by an open immersion, and will help
us to generalize the concept of an open cover of a topological space once we start developing
the theory of sheaves on the étale site.

Lemma 1.1.6. Let f : X ³ S be a flat morphism of schemes and x ∈ X. Then we have
f(SpecOX,x) = OS,f(x), where we consider the spectra of the local rings as subsets of X and
S respectively.

Proof. We always have f(SpecOX,x) ⊆ OS,f(x), and since, by Corollary 1.1.5, we know that
OX,x is a faithfully flat OS,f(x)-algebra, the surjectivity statement from Lemma 1.1.4 implies
the other inclusion.

Corollary 1.1.7. A morphism of schemes that is locally of finite presentation and flat is
universally open.

Proof. Since being locally of finite presentation and being flat are both stable under base
change, it suffices to show that such a morphism is open. Since the morphism is still locally
of finite presentation and flat after we compose with an open immersion, we only have to
show that its image is open.

This is a slightly technical but completely general statement using only the property
established in Lemma 1.1.6, see for example [GW20, Corollary 10.72.].

The second property will turn out to be as essential for sheaf theory on a site as it looks
useless without it in mind. Together with Corollary 1.1.7, it makes flatness so important in
fact, that all commonly used sites in algebraic geometry use this concept in their definition.
Its usefulness will only become apparent in the proof of Corollary 2.2.10, so that this last
part of the section could safely be skipped until needing it there.

We begin with the following general definition, which lends itself well to contexts also
outside of algebraic geometry when working with sites.

Definition 1.1.8. In any category C, a morphism f : X ³ S is called an effective epimor-
phism iff the fiber product X óS X exists and the diagram

X ×S X X S
π2

π1 f

is exact, i.e. X ³ S is the coequalizer of the two projections.

With a bit of creativity, this diagram could hint (contravariantly) at the relation to the
sheaf condition also familiar from classical sheaf theory.

To prepare our main result, we first cover the affine case. Note that exactness at A and
B is precisely saying that f is an effective epimorphism in the category Ringop, commonly
identified with the category of affine schemes.
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Lemma 1.1.9. Let f : A ³ B be a faithfully flat ring homomorphism. Then the sequence

0 A B B
⊗2

. . . B
⊗r

. . .
f d1 d2 dr−1 dr

of A-modules is exact, where

• B⊗r is the r-fold tensor product of B with itself over A,

• dr :=
∑r

i=1(−1)i+1ei and

• ei(b1 ⊗ · · ·⊗ br) := b1 ⊗ · · ·⊗ bi−1 ⊗ 1⊗ bi ⊗ · · ·⊗ br ∈ Br+1.

Proof. It is trivial to check that the sequence is a chain complex (this does not use the faith-
fully flat condition). First, we assume that f admits a section g, i.e. a ring homomorphism
such that gf = idA. We want to show that the identity of the complex is null-homotopic.
Let r ≥ 1 and define

kr : B
⊗r ³ B⊗r−1

by kr(b1 ⊗ · · ·⊗ br) := g(b1)(b2 ⊗ · · ·⊗ br). We compute

(dr−1kr + kr+1d
r)(b1 ⊗ · · ·⊗ br)

=g(b1)
r

∑

i=2

(−1)iei(b2 ⊗ · · ·⊗ br) +

(

b1 ⊗ · · ·⊗ br +
r

∑

i=2

(−1)i+1g(b1) · ei(b2 ⊗ · · ·⊗ br)

)

=b1 ⊗ · · ·⊗ br,

concluding this step of the proof, since the only position we have not yet checked is at r = 0,
where the desired equation is trivially satisfied by the assumption that g is a section.

In general, for any A-algebra A′, the analogously defined sequence for the base change
morphism f ′ : A′ ³ B′ := A′⊗AB is canonically isomorphic to the sequence obtained by the
extending scalars to A′ via the natural isomorphism B′⊗r ∼= (B⊗r)⊗A A′.

If we apply this to A′ = B, the base change morphism B ³ B ⊗A B admits a section
induced by the multiplication map, implying that our sequence is exact after we extend
scalars to B. But by assumption, B is a faithfully flat A-algebra, so Lemma 1.1.4 yields the
desired result.

Having covered the basic local information we need, the global case follows from a rather
standard gluing argument. Note that, compared to the affine case, we have to introduce a
finiteness condition here for it to work.

Theorem 1.1.10. A faithfully flat morphism f : X ³ S that is of finite presentation is a
universally effective epimorphism in the category of schemes.

Proof. Since being of finite presentation and being faithfully flat are stable under base change,
the universality is clear if we can show that such morphisms are effective epimorphisms.

We have to show that the diagram

X ×S X X S
π2

π1 f
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is exact, i.e. that there exists for every morphism z : X ³ Z with zπ1 = zπ2 a unique
factorization z′ : S ³ Z satisfying z′f = z. If X,S and Z are all affine, we are in the
situation of Lemma 1.1.9, so we have a unique factorization.

As a next step, we assume that X and S are still affine, but Z could be an arbitrary
scheme. We begin by showing that, if one exists, a factorization is unique. This only uses
the faithful flatness: Let z′1 and z′2 be two morphisms with the property z′1f = z′2f = z.
Since f is surjective, the two maps on the underlying topological space agree. We may work
locally and choose for a point s ∈ S an affine open neighborhood z′1(s) = z′2(s) ∈ V ⊆ Z
and an affine open neighborhood s ∈ U ⊆ z′−1

1 (V ) = z′−1
2 (V ). The two restricted morphisms

U ³ V ⊆ S agree, since they agree after composing with the faithfully flat (affine) morphism
f : f−1(U) ³ U , and since Γ(U,OS) ³ Γ(f−1(U),OX) is injective (cf. Lemma 1.1.9).

To show the existence of such a factorization, we only have to define it locally on S,
because of the uniqueness just proved. Let s ∈ S and x ∈ X with f(x) = s. Let z(x) ∈ V ⊆ Z
be an affine open neighborhood. Then f(z−1(V )) ⊆ S is open (cf. Corollary 1.1.7), and so
we can choose an affine open s ∈ U ⊆ f(z−1(V )).

We want to show that f−1(U) ⊆ z−1(V ), so let x1 ∈ f−1(U) and choose x2 ∈ z−1(V ) with
f(x1) = f(x2). Let x′ ∈ X óS X with π1(x

′) = x1 and π2(x
′) = x2 (to see existence of such

a point, consider a common field extension of κ(x1) and κ(x2) over κ(f(x1))) and compute

z(x1) = z(π1(x
′)) = z(π2(x

′)) = z(x2) ∈ V.

Finally, this implies that z|f−1(U) factors over the affine open V ⊆ Z, and our problem is
reduced to the already treated case where Z was also affine.

Lastly, for the general case with X,S and Z all arbitrary schemes we can still immediately
reduce to the case where S is affine. Since we assumed f to be quasi-compact, X is a finite
union of affine open subschemes

⋃n
i=1 Xi. The canonical morphism X³ :=

∐n
i=1 Xi ³ S is

clearly still faithfully flat and X³ is affine. We get the diagram

Hom(S, Z) Hom(X,Z) Hom(X ×S X,Z)

Hom(S, Z) Hom(X∗, Z) Hom(X∗
×S X∗, Z)

,

where the second row is exact by our previous step, so an easy diagram chase concludes the
proof.

1.2 Unramified morphisms

Recall that we want to define étale morphisms as flat and unramified morphisms, so we
now introduce the second of these two properties. Again, depending on one’s background,
this could be seen as a direct generalization of an already familiar concept, this time from
algebraic number theory.

While flatness is perhaps a bit hard to build an intuition for, as it is a purely algebraic
condition, unramified morphisms are a different story, even outside of their use case in number
theory, as we will see in an example later. We begin with a definition that is rather close to the
one studied in number theory, and then we develop some useful equivalent characterizations.
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Definition 1.2.1. Let X and S be schemes and let f : X ³ S be a morphism locally of
finite presentation. We say that f is unramified at a point x ∈ X iff f#

p (mf(x))OX,x = mx

(in other words: the image of mf(x) generates the ideal mx ⊆ OX,x) and the residue field
extension κ(x)/κ(f(x)) is finite separable.

We say the morphism f is unramified iff it is unramified at every point x ∈ X.

Remark. It is easy to see from this definition that any immersion is unramified.

Example. We want to explore the relation between Definition 1.2.1 and the perhaps more
common concept from number theory. Let A ⊆ B be a finite extension of DVRs and let π
and π′ be uniformizers of A and B, respectively. This situation naturally arises in number
theory when trying to determine the splitting behavior of a prime.

The induced morphism SpecB ³ SpecA is trivially unramified as long as the extension
of the fields of fractions is separable, as for example in the case where they are number fields.
Unramifiedness of this morphism hence solely depends on the maximal ideal of (π′) ⊆ B. As
B is a DVR we have πB = (π′)e ⊆ B for a unique integer e ≥ 1, called the ramification
index.

Therefore, we see that the morphism is unramified if and only if the ramification index
is e = 1, again under the assumption that the residue field extension is separable, which is
usually the case in algebraic number theory because finite fields are perfect.

We also want to illustrate the property in a more geometric situation. To do that, it will
be useful to first have a few characterizations of unramified morphisms on hand, which we
will state after preluding with a technical lemma.

Lemma 1.2.2. Let f : X ³ S be a morphism of schemes. Let s ∈ S and x ∈ Xs. Then
OXs,x

∼= OX,x ⊗OS,s
κ(s).

Proof. The question is local in nature, so we may assume that both X and S are affine, say
X = SpecB and S = SpecA. Write s =: p ⊆ A. Then q =: x ∈ Xs is a prime ideal in
Γ(Xs,OXs

) ∼= B ⊗A κ(s) ∼= (B/pB)p, and is therefore of the form (q′/pB)p ⊆ (B/pB)p for a
uniquely determined prime ideal q′ ⊆ B.

We have a canonical isomorphism

Bq ⊗Ap
κ(s) ∼= Bq/pBq

∼= (B/pB)q ∼= ((B/pB)p)q ∼= (B ⊗A κ(s))q ∼= (B ⊗A κ(s))q′ ,

where in the second to last step we use the fact that the image of an element a ∈ A \ p is
already in B \ q, because p is by assumption the preimage of q.

Proposition 1.2.3. Let f : X ³ S be a morphism locally of finite presentation. Then the
following are equivalent:

i) The morphism f is unramified.

ii) For every point s ∈ S, the fiber Xs ³ Specκ(s) is unramified.

iii) For every geometric point SpecK ∼= s̄ ³ S, the geometric fiber Xs̄ is unramified.

iv) For every point s ∈ S, the fiber Xs is isomorphic (as Specκ(s)-scheme) to a disjoint
union

∐

i∈I Spec ki, where each ki is a finite separable field extension of κ(s).
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Proof. • i) ⇐⇒ ii) : Being locally of finite presentation is stable under base change, so
the fiber is still locally of finite presentation. Let x ∈ Xs. From Lemma 1.2.2 we get
OXs,x

∼= OX,x ⊗OS,s
κ(s) ∼= OX,x /ms OX,x. This is a finite separable field extension of

κ(s) if and only if f is unramified at x.

• ii) =⇒ iv) : This may be checked on an open cover, so let SpecA ∼= U ⊆ Xs be an
affine subscheme. Then A is a finitely generated κ(s)-algebra, hence Noetherian. As
it is unramified by assumption, it is immediate that all the localizations of A at prime
ideals are finite separable field extensions of κ(s), so dimA = 0 and A is artinian. Like
any artinian ring, A is therefore isomorphic to the finite product of its localisations,
which, as we have seen, are finite separable field extensions of κ(s), completing the
argument.

• iv) =⇒ ii) : This is obvious.

• iv) =⇒ iii) : Let s ∈ S be the image of s̄. Then s̄ factors over the canonical morphism
Specκ(s) ³ S, and Xs̄

∼= Xs óSpecκ(s) s̄ ∼=
∐

i∈I Spec(ki ⊗κ(s) K) for each ki a finite
separable field extension by assumption. Keeping in mind that K is separably closed, it
is straightforward to check that ki⊗κ(s)K ∼= K [ki : κ(s)]. This implies that the geometric
fiber is a disjoint union of copies of s̄, and therefore unramified.

• iii) =⇒ ii) : We may again assume that Xs
∼= SpecA and therefore also Xs̄

∼=
Spec(A⊗κ(s)K) are affine. We already know that the explicit description of an unram-
ified morphism over a field from iv) applies, so A ⊗κ(s) K ∼= Kn as a K-algebra, for
some n ≥ 0. But this implies that A must have been an n-dimensional κ(s)-algebra,
and in particular finite and therefore an artinian ring. Then Xs is discrete and we may
further assume that A is a local artinian ring.

We have to show that A is a finite separable field extension, using that A⊗κ(s)K ∼= Kn

for some n ≥ 1 (the case n = 0 appears only when the fiber is empty). Since A has
a unique prime ideal m, every morphism A ³ K factors uniquely through A/m and
using the universal property of the tensor product, we obtain

Homκ(s)(A/m, K) ∼= Homκ(s)(A,K) ∼= HomK(A⊗κ(s) K,K) ∼= HomK(K
n, K),

so we get [A/m : κ(s)]s = n for the separable degree of A/m. This yields a chain of
inequalities

n = [A/m : κ(s)]s ≤ [A/m : κ(s)] ≤ [A : κ(s)].

But as discussed above, the dimension [A : κ(s)] of A over κ(s) is n as well, so all the
inequalities are actually equalities, implying that A ∼= A/m is a field and a separable
extension of κ(s).

Before we continue providing even more useful characterizations, we now give our example
that is more geometric in nature.
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Example. Let k be an algebraically closed field and consider the morphism of affine schemes
corresponding to

k[T ] ³ k[X, Y ]/(XY )

T -³ X + Y.

Intuitively, it maps the union of the two axes in A2
k to the affine line by assigning to a point

the respective non-zero coordinate. The origin is mapped to the origin.
We want to show that this morphism is ramified at the origin, and unramified outside of it.

The automorphism of k[X, Y ] given by X -³ X−Y and Y -³ Y shows that k[X, Y ]/(XY ) is
isomorphic, as a k[T ]-algebra, to the algebra k[T ][Y ]/(T − Y )(Y ). From this representation,
it is easy to see, using the Chinese Remainder Theorem, that the fiber at any point outside
the origin is isomorphic to Spec(k ó k) ∼= Spec k

∐

Spec k.
At the origin the fiber is Spec k[Y ]/(Y 2), and so Proposition 1.2.3 implies that our mor-

phism is unramified when restricted to the open subscheme without the origin, but not globally.

The next characterization of unramified morphisms will make it very easy to work with
them formally, as it relates this property to a property of the relative cotangent sheaf.

Proposition 1.2.4. Let f : X ³ S be a morphism locally of finite presentation and let
x ∈ X. Then the following are equivalent:

i) The morphism f is unramified at x.

ii) The cotangent sheaf Ω1
X/S vanishes at x.

iii) There is an open neighborhood x ∈ U ⊆ X such that U ⊆ X ³ X óS X is an open
immersion.

Proof. • i) =⇒ ii) : We write s := f(x). In general, we have Ω
1
X/S,x

∼= Ω
1
OX,x /OS,s

. Our
assumptions imply that the diagram

OS,s OX,x

κ(s) κ(x) ∼= OX,x ⊗OS,s
κ(s)

is co-Cartesian and that Ω1
X/S,x is a finitely generatedOX,x-module. We find Ω

1
X/S,x⊗OX,x

κ(x) ∼= Ω
1
κ(x)/κ(s)

∼= 0, as κ(x)/κ(s) is a finite separable extension. Now Nakayama’s

lemma implies Ω1
X/S,x

∼= 0.

• ii) =⇒ iii) : The question is local, so we may assume that both schemes are affine,
say X = SpecB and S = SpecA. Then the module Ω1

B/A is constructed as the quotient

I/I2 ⊆ (B ⊗A B)/I ∼= B, where I is the kernel of the multiplication map. Since B is
a finitely generated A-algebra, the ideal I is finitely generated, so Nakayama’s lemma
implies that Ix ∼= 0, as Ix/I

2
x
∼= 0 by assumption and Ix ⊆ p(B⊗AB)p, where p denotes

the prime ideal corresponding to x ∈ V (I) ∼= SpecB. But since I is finitely generated,
it has closed support and therefore vanishes on an open subset of X, implying that the
immersion is open there.
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• iii) =⇒ ii) : We continue to work in the setting from the previous implication. But
if Ix/I

2
x ñ= 0, then we definitely have Ix ñ= 0 and therefore, there cannot be an open

subset on which the restriction would be an open immersion.

• ii) =⇒ i) : Since Ω
1
X/S is locally of finite type, there is an affine open neighborhood

x ∈ U ∼= SpecA such that Ω
1
X/S|U

∼= 0, so we want to show that U ³ S is un-
ramified. Because the cotangent sheaf behaves well under base change, we may apply
Proposition 1.2.3 to assume that S ∼= SpecK for K a separably closed field.

Let m ⊆ A be a prime ideal. Since A is finitely generated over K, the field extension
κ(m)/K is finitely generated. The relative cotangent sequence of differentials immedi-
ately implies that Ω

1
κ(m)/K

∼= 0, so κ(m)/K has transcendence degree zero [Har77, II,

Theorem 8.6A.], is finite and then it also has to be separable. Therefore dimA = 0
and A is artinian, meaning we may assume it is local. We have an isomorphism
K ³ A ³ A/m, and by [Har77, II, Proposition 8.7.] we have m/m2 ∼= Ω

1
A/K ⊗B K ∼= 0,

so Nakayama’s lemma shows that m ∼= 0 and A ∼= A/m, finishing the proof.

Corollary 1.2.5. Let f : X ³ S be a morphism locally of finite presentation. Then the
following are equivalent:

i) The morphism f is unramified.

ii) We have Ω
1
X/S

∼= 0.

iii) X ³ X óS X is an open immersion.

Proof. Follows immediately from Proposition 1.2.4.

With this in mind, it is now very easy to prove the usual permanence properties for
unramified morphisms.

Corollary 1.2.6. a) A composition of two unramified morphisms is again unramified.

b) Any base change of an unramified morphism is unramified.

Proof. a) This follows immediately from Corollary 1.2.5 and the relative cotangent sequence
of differentials.

b) This follows from Corollary 1.2.5 and the stability of the cotangent sheaf under base
change.

Furthermore, we can use the condition on the relative cotangent sheaf to show that the
property of being unramified is a generic property, since the same is true for a sheaf of finite
type being zero. More precisely, we have:

Corollary 1.2.7. Let f : X ³ S be a morphism locally of finite presentation. Then the set

{x ∈ X : f is unramified at x} ⊆ X

is open.

11



Proof. By Proposition 1.2.4, this set is nothing but the complement of the support of Ω1
X/S,

and since we assumed that f is locally of finite presentation (we only need locally of finite
type), this sheaf is of finite type, and hence has closed support.

1.3 Étale Morphisms

We have been working towards a definition for étale morphisms and built a solid basis for
flat and unramified morphisms. This allows us to essentially just combine the results from
the previous two sections to already get a lot of basic facts for this section.

After having hinted at it multiple times now, we officially introduce our main definition
for this chapter for later reference and state the basic permanence properties it satisfies.

Definition 1.3.1. A morphism of schemes X ³ Y is called étale iff it is flat and unramified.

Corollary 1.3.2. a) A composition of two étale morphisms is again étale.

b) Any base change of an étale morphism is étale.

Proof. Follows from Proposition 1.1.2 and Corollary 1.2.6

One interesting way in which the two properties of being flat and being unramified interact
with one another is the following useful proposition.

Proposition 1.3.3. Let

X Y

S

f

s t

be a commutative triangle of schemes, and assume that s is étale and that t is unramified.
Then f is étale.

Proof. We work with the commutative diagram

X S

X X ×S Y Y

Y Y ×S Y

s

f

Γf

f×1

πX

πY

t

∆ ,

where Γf is the graph morphism of f and ∆ is the diagonal morphism.
It is elementary to check that both squares are Cartesian, so we can apply Corollary 1.3.2

to see that Γf (cf. Corollary 1.2.5 and note that open immersions are étale) and πY are both
étale, so their composition f is as well.

With this, we conclude our first overview of the geometry of étale morphisms, and so we
are ready to turn our attention towards the étale site, though we will still be adding more
specialized purely geometric results as we need them.
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Chapter 2

The Étale Site and Étale Cohomology

Having developed a solid understanding of étale morphisms, we now explain our reason for
doing so: The étale site and étale cohomology.

As we explained earlier, a big part of the general theory could be developed, at least in
concept, completely independently from the étale site, or any site commonly used in algebraic
geometry for that matter. But having introduced the concept of étale morphisms in the first
chapter, we will introduce it along with some key examples and distinctions from the Zariski
site, the site used for talking about sheaves on a topological space.

2.1 Sites, Presheaves and Sheaves: The General The-

ory

In this section, we introduce the abstract groundwork for generalizing the concept of sheaf
theory and sheaf cohomology on a topological space to that on a general site, which is a
much more flexible setting that is applicable also in other fields of mathematics.

The main idea is this: If X is a topological space, then a presheaf (of sets) on X is simply
a functor

F : Open(X)op ³ Set.

For it to be called a sheaf, this functor has to satisfy the so-called sheaf condition: For any
open U ⊆ X and any open cover {Ui ⊆ U}i∈I of U , the sequence

F(U)
∏

i∈I F(Ui)
∏

j,k∈I F(Uj ∩ Uk)

is exact, i.e. F(U) is the equalizer of the two possible restrictions.
The point is that this definition does not make too much use of the fact that X is a

topological space. A presheaf can be defined for any category, not just on Open(X), and
for the sheaf condition, we just need a concept equivalent to an “open” cover. This leads us
the following two definitions, first generalizing topological spaces, and then the concept of a
sheaf:

Definition 2.1.1. A site is a category C equipped with a designated class of so-called covering
families (or just covers) {ϕi : Ui ³ U}i∈I of morphisms in C, satisfying the following axioms:

13



• If ϕ : V ³ U is an isomorphism in C, then {ϕ} is a covering family (consisting of one
element).

• If {Ui ³ U}i∈I is a cover and for each i ∈ I we have a cover {Vij ³ Ui}j∈J , then the
family

∐

i∈I{Vij ³ Ui ³ U}j∈J is also a cover.

• If {Ui ³ U}i∈I is a cover and V ³ U is any morphism in C, then {Ui óU V ³ V }i∈I
is again a covering family (we implicitly assume that all relevant fiber products exist).

Definition 2.1.2. Let C be a site. A presheaf for the site C with values in Set/Ring/ModR

is a functor F : Cop ³ Set/Ring/ModR. Note that this definition has nothing to do with
the covers.

A sheaf for the site C with values in Set/Ring/ModR is a presheaf such that for any
covering family {Ui ³ U}i∈I , the sequence

F(U)
∏

i∈I F(Ui)
∏

j,k∈I F(Uj ×U Uk)

is exact.

Example. The X be a topological space. We define the site associated to X as the site having
the underlying category Open(X), the open subsets of X ordered by inclusion and that has
as covers precisely the families {Ui ⊆ U}i∈I where

⋃

i∈I Ui = U .

Remark. The classical definition of a sheaf on a space X clearly coincides with our Defini-
tion 2.1.2 of a sheaf for the site associated with X.

Apart from the fact that classical sheaf theory is a special case of the theory of sheaves
on a site, we also have our main site of interest, the étale site.

Definition 2.1.3. Let X be a locally Noetherian scheme. We define two sites associated to
X:

• The Zariski site XZar: The underlying category is the full subcategory of Sch/X consist-
ing of the open immersions, and a family {ιi : Ui ³ U}i∈I is a cover iff

⋃

i∈I ιi(Ui) = U .

• The étale site Xét: The underlying category is the full subcategory of Sch/X consisting
of étale morphisms that are of finite type, and a family {fi : Ui ³ U}i∈I is a cover iff
⋃

i∈I fi(Ui) = U .

To illustrate what we need the étale site for, we first have to develop some theory, in
particular on the category of sheaves and exact sequences.

A big part of this is done in a way that reminds us of the one for sheaves on topological
spaces if we imagine the objects of our site to be the opens of a topological space.

Definition 2.1.4. Let C be a site. We define the category P(C)A of presheaves with values in
A = Set/Ring/ModR to be the functor category Fun(Cop,A), i.e. a morphism of presheaves
is just a natural transformation. We denote by S(C)A ⊆ P(C)A the full subcategory of sheaves.

If A = ModR, we simply write S(C)R := S(C)ModR
(resp. P(C)R := P(C)ModR

). If
R = Z, we write S(C) := S(C)ModZ

(resp. P(C) := P(C)ModZ
) and call it the category of

abelian sheaves (resp. presheaves).
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One small technical difficulty arises with this definition from set theory: If our site is not
essentially small, then there is no guarantee that the category of presheaves or sheaves is
locally small. In fact, the category of presheaves of sets will never be locally small in that
case:

Lemma 2.1.5. Let C be a category. Then C is essentially small if and only if the functor
category Fun(C,Set) and C itself are both locally small.

Proof. See [FS95].

There are multiple ways of circumventing this issue. We could work with universes or,
as some references on the topic do, just ignore the problem entirely. However, we are going
to only work with essentially small sites, and so the following lemma guarantees us that our
sheaf and presheaf categories are always locally small.

Lemma 2.1.6. Let C be an essentially small category and D be a locally small category.
Then Fun(C,D) is locally small.

Proof. We may assume that C is small. For two functors F,G : C ³ D, their natural trans-
formations belong to the set

∏

A∈C

HomD(FA,GA).

This restriction also explains why our definition of the étale site (cf. Definition 2.1.3)
differs slightly from the one used for example in [Tam94]: We require our schemes to be étale
and of finite type, instead of just requiring them to be étale (and hence also locally of finite
type), because we have to ensure that our site is essentially small.

We also only define the étale site for schemes that are locally Noetherian, because this
condition ensures that all open immersions lie within our site (they are only locally of finite
type in general), which will turn out useful for applications, as open immersions are one of
the most basic examples of étale morphisms and having access to them essentially allows us
to perform all tricks familiar from the Zariski site also on the étale site.

With this out of the way, we are now ready to collect our first real categorical properties
of the category of presheaves, all of which are basic properties of functor categories in general.

Proposition 2.1.7. Let C be an essentially small site and let A = Set/Ring/ModR. We
have the following properties:

• P(C)A is locally small.

• P(C)A has all small limits and colimits, and they are computed pointwise.

• If A = ModR, then P(C)A is an abelian category satisfying AB5 and AB4*.

Proof. The first statement follows from Lemma 2.1.6, the second statement is a standard
result on functor categories and the last statement follows from the second one.
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Of course, we usually do not care too much about presheaves, and restrict our attention
only to those satisfying the sheaf property. While this subcategory could initially seem
pretty hard to study formally, one of the main results already familiar from the site Open(X)
associated to a topological space X comes in handy here: The existence of a sheafification
functor left adjoint to the inclusion.

Theorem 2.1.8. Let C be an essentially small site and let A = Set/Ring/ModR. Then
the inclusion S(C)A ↪³ P(C)A admits an exact left adjoint (−)# : P(C)A ³ S(C)A, called
sheafification.

Proof. See [Art62, Chapter II, Theorem 1.1.].

With access to this, all of the categorical properties we need and are familiar with from
working on topological spaces follow from a very formal argument, making heavy use of the
adjunction.

Corollary 2.1.9. Let C be an essentially small site and let A = Set/Ring/ModR. We have
the following properties:

• S(C)A has all small limits, and they are computed in P(C)A, i.e. pointwise.

• S(C)A has all small colimits, and they are computed by taking the colimit in P(C)A,
and then sheafifying.

• If A = ModR, then S(C)A is an abelian category satisfying AB5 and AB3*.

Proof. For the first statement, all we have to check is that the pointwise limit of sheaves still
satisfies the sheaf property from Definition 2.1.2. But this property is spelled out in terms
of a certain limit, and limits are exchangeable.

The second statement is a direct consequence of the fact that sheafification, like any left
adjoint functor, is cocontinuous.

For the last statement, in order to show that the category is abelian, all that remains to
show is that image and coimage are canonically isomorphic. But this canonical morphism is
just the sheafification of the respective morphism between the presheaf-coimage and -image,
and this is an isomorphism by Proposition 2.1.7. The fact that it satisfies AB3* is clear from
the first statement and for AB5, we only have to check the left exactness of filtered colimits
(since any colimit is always right exact). This follows from the fact that P(C)A satisfies AB5
(cf. Proposition 2.1.7), and the way colimits are computed in S(C)A (because sheafification
is exact).

We also want to generalize the concept of continuous maps between spaces: For a contin-
uous map f : X ³ Y we obtain, via taking preimages, a functor f−1 : Open(Y ) ³ Open(X)
that preserves open covers and commutes with intersections.

It is straightforward to generalize this to our setup using just these two properties, but
it should be noted that, to match our intuition coming from continuous maps, a morphism
of sites is a functor between the underlying categories in the opposite direction, which may
be a bit confusing in this purely abstract setting.

16



Definition 2.1.10. Let C and D be two sites. A morphism of sites from C to D is a functor
f : D ³ C of the underlying categories such that:

• For every cover {Ui ³ U}i∈I of D, the induced family {f(Ui) ³ f(U)}i∈I is a cover of
C.

• For every cover {Ui ³ U}i∈I of D and every morphism V ³ U is D the natural map

f(Ui óU V ) ³ f(Ui)óf(U) f(V )

is an isomorphism for all i ∈ I.

Pretty much by construction, our first example, of course, is the morphism of sites asso-
ciated to a continuous map between topological spaces.

Example. Let f : X ³ Y be a continuous map of topological spaces. Then taking preimages
defines a morphism f−1 : Open(Y ) ³ Open(X) of the associated sites.

But also in the setting more relevant to us in this paper, we get an obvious morphism of
the respective étale sites associated to a morphism of locally Noetherian schemes.

Example. Let f : X ³ Y be a morphism of locally Noetherian schemes. Then the base
change along f defines a morphism Xét ³ Yét, which we typically also denote by f . The
first condition follows from the fact that surjectivity is stable under base change (applied to
∐

i∈I Ui ³ U), and the second condition follows from the general fact that limits commute
with other limits.

Of course, defining a morphism of sites simply as a functor with some mild permanence
properties is way more flexible than just these two examples could ever hint at. A nice
application of this flexibility can be seen later in Definition 2.2.19, after having introduced
more background on the pushforward and pullback functors assigned to a morphism of sites.

From now on, we will restrict our attention only to sheaves with values in module cate-
gories, as this is our main case of interest and it lets us avoid notational clutter. Also note
that this means that in the following, all our sheaf and presheaf categories are going to be
abelian categories by Corollary 2.1.9 and Proposition 2.1.7.

To this end, fix a ring R and write for an arbitrary site C in the following P(C) :=
P(C)ModR

and S(C) := S(C)ModR
.

With this in mind, we will now define the familiar pushforward and pullback functors
associated to a morphism of sites in this setting. As before, we are more interested in the
respective functors between the sheaf categories, but first, we will go over the presheaf case
using a general result on functor categories, and only then turn our attention towards sheaves.

Proposition 2.1.11 (Kan Extension). Let f : C ³ D be a morphism of sites and assume that
D is essentially small. Then fp := (−) ◦ f : P(C) ³ P(D) admits a left adjoint f p : P(D) ³
P(C) given by

F -³

(

U -³ colim
U→fV

F(V )

)

with the obvious restriction maps, where the colimit runs over all arrows of the given form.
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Proof. See [Lan98, Chapter X, Section 3] (and dualize).

Remark. Proposition 2.1.11 has nothing to do with sites; the only reason we assume C and
D to be sites is so that we can use the earlier introduced notation for presheaves.

The fact that the pushforward and pullback functors are a pair of adjoints immediately
implies that the pushforward functor is left exact and the pullback functor is right exact.
Keeping our working example of a topological space in mind, there is, of course, no reason
to expect the pushforward functor to also be exact on the right, but the pullback functor is
exact, which would require a different argument.

However, in the present generality, this fails to be true. Luckily, we can salvage the
situation by introducing a very mild condition on the domain, which will be satisfied in all
the application relevant for us, and also explains the exactness of the pullback in the familiar
case of topological spaces.

Corollary 2.1.12. Let f : C ³ D be a morphism of essentially small sites and assume that
C has finite limits. Then the colimit defining f p is filtered and f p is exact.

Proof. Obvious.

Although the pullback of a presheaf is, in general, hard to compute explicitly, as should
be obvious from its construction, in the special case where the presheaf is representable, we
get an easy description of its pullback using the Yoneda lemma:

Proposition 2.1.13. Let f : C ³ D be a morphism of essentially small sites, let X ∈ D
be an abelian group object and consider the abelian presheaf HomD(−, X) ∈ P(D). Then
f p HomD(−, X) ∼= HomC(−, fX) (in particular, we find that fX is an abelian group object
itself).

Proof. This follows from the Yoneda lemma: For any presheaf F ∈ P(C) we have naturally

HomP(C)(f
p HomD(−, X),F) ∼= HomP(D)(HomD(−, X), fpF) ∼=

∼= fpF(X) ∼= F(f(X)) ∼= HomP(C)(HomC(−, fX),F).

Now that we have covered the preliminaries for presheaves, we want to study how these
two functors interact with the sheaf condition. Once more, the same phenomenon witnessed
for continuous maps can also be observed here:

Proposition 2.1.14. Let f : C ³ D be a morphism of essentially small sites. Then the
pushforward functor fp : P(C) ³ P(D) restricts to a functor f³ : S(C) ³ S(D).

Proof. Let F ∈ S(C). We have to show that F (f(−)) : Dop
³ ModR is a sheaf. Let

{Ui ³ U}i∈I be a cover of D. We get from Definition 2.1.10 the isomorphism

F (f(U))
∏

i∈I F (f(Ui))
∏

j,k∈I F (f(Uj ×U Uk))

F (f(U))
∏

i∈I F (f(Ui))
∏

j,k∈I F (f(Uj)×f(U) f(Uk))

∼=

and that the lower sequence is exact, as {f(Ui) ³ f(U)}i∈I is a cover of C.
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Of course, the presheaf pullback also preserving sheaves fails to be true, as we know from
topological spaces, but just as in that case, we can simply sheafify the result to get the left
adjoint to the pushforward on sheaves.

Proposition 2.1.15. Let f : C ³ D be a morphism of essentially small sites. Then the push-
forward functor f³ : S(C) ³ S(D) admits a left adjoint, given by f ³ := (f p(−))# : S(D) ³
S(C), called the pullback functor.

Proof. By combining the results from Theorem 2.1.8 and Proposition 2.1.11 we get a natural
isomorphism

HomS(C)(f
³(−),−) ∼= HomP(C)(f

p(−),−) ∼= HomP(D)(−, fp(−)) ∼= HomS(D)(−, f³(−)),

where we used Proposition 2.1.14 in the last step.

By combining two previous results, we immediately see that the pullback functor on
sheaves is exact, as long as the one on presheaves is, so, for example, under the same mild
conditions from Corollary 2.1.12.

Corollary 2.1.16. Let f : C ³ D be a morphism of essentially small sites and assume that
C has finite limits. Then the pullback functor f ³ is exact.

Proof. By Proposition 2.1.15, this functor is the composition of two functors, which are both
exact according to Theorem 2.1.8 and Corollary 2.1.12.

2.2 The Étale Site

After this short general review of sites, we are now ready to specialize our results to the étale
site and combine it with our results from the first chapter. We start by noting that all of
our results for general sites also hold for the étale and Zariski sites, as both of them have all
finite limits.

All sheaves still have, unless explicitly stated otherwise, values in ModR for some ring R.

Lemma 2.2.1. Let X be a locally Noetherian scheme. Then both the Zariski site XZar and
the étale site Xét have all finite limits.

Proof. This is obvious for XZar. The étale site Xét has a terminal object and fiber products
by Corollary 1.3.2. Therefore, it has finite products and in any category with finite products
and fiber products, we may construct the equalizer of two morphisms f, g : X ³ Y as the
pullback

eq(f, g) X

Y Y × Y

(f ;g)

∆

.

It is well known that any category with finite products and equalizers has all finite limits.

Since having finite limits was the sole condition in Corollary 2.1.16 for the pullback functor
to be exact, we get this familiar result also for the étale site.
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Corollary 2.2.2. Let X be a locally Noetherian scheme and let C be an arbitrary essentially
small site. Let f be a morphism from either the Zariski or the étale site of X to C. Then the
pullback functor on sheaves f ³ and on presheaves f p are both exact.

Proof. Follows from Lemma 2.2.1, Corollary 2.1.16 and Corollary 2.1.12.

One important concept we have for sheaves on topological spaces are stalks, and yet
they were completely absent from the general theory we developed in the first section of this
chapter. This is because, in this generality, there is no good theory of stalks on a site in the
following sense:

A stalk of a sheaf is its pullback to a “point”, and what we would want are enough of
these “points” to detect exactness, i.e. a sequence of sheaves should be exact if and only if
its pullbacks to all “points” are exact.

This is handy because, at least in topology, a sheaf on a point is easy to describe: there is
only one non-empty open and so the category of abelian sheaves on a point is equivalent, via
the global sections functor, to the category of abelian groups, where exactness is a reasonably
well understood concept, and way more hands-on than a sequence of sheaves on a more
complicated space.

This leads us to the following idea of what a “point” of a site C should be in our general
setting: a site P with a morphism P ³ C such that the global sections functor on S(P)
(exists and) is an equivalence.

While there is no hope in general to have enough of these points to detect exactness, it is
well-known that we do for the Zariski site of a scheme and, in fact, we also do for the étale
site. Note that, by Proposition 1.2.3, the étale site of a geometric point of a scheme defines
a “point” in the sense of this discussion of stalks, and so we make the following definition:

Definition 2.2.3. Let X be a locally Noetherian scheme, x ∈ X and x̄ : x̄ ³ Specκ(x) ³ X
a geometric point of X, i.e. a morphism from x̄ = SpecK to X where K is a separably closed
field. Let F be a presheaf on Xét. The étale stalk of F at x̄ is defined to be Fx̄ := (x̄pF)(x̄).

A scheme has, of course, way more geometric points than its underlying topological space.
Luckily, the stalk at a geometric point depends, up to (non-canonical) isomorphism, only on
the underlying topological point. This allows us to do the computation of stalks for only a
much smaller collection of points.

Lemma 2.2.4. We continue the notation from Lemma 2.2.4. The étale stalk of F at x is
independent, up to isomorphism, of the choice of separably closed field K.

Proof. It given by a particular colimit described in Proposition 2.1.11, namely over the
category that has as objects morphisms from x̄ to Vx̄ for some étale morphism V ³ X.
But this category is obviously equivalent, by the universal property of the fiber product, to
the category of commutative triangles

V

x̄ X

ét

,
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and as long as K is separably closed, this category does not depend on the exact choice of
K.

We have defined the étale stalk to be the global sections of the presheaf pullback to a
geometric point. The next lemma shows that we could just as well have defined it to be the
global sections of the sheaf pullback, since the result is canonically isomorphic.

Lemma 2.2.5. Let K be a separably closed field, x̄ := SpecK and let F be a presheaf on
x̄ét. Then we canonically have F(x̄) ∼= F#(x̄).

Proof. By Proposition 1.2.3, any étale morphism U ³ x̄ is a disjoint union of copies of x̄.
Keeping this in mind, it is easy to see from the universal property of sheafification that
F#(U) ∼= Fπ0(U)(U), where π0(U) is the (finite) number of copies of x̄ that U consists of.

The statement we are trying to prove is the U = x̄ special case of that general statement.

We are also used to a presheaf and its sheafification having the same stalk, and this is
also true here via a quite formal argument.

Proposition 2.2.6. Let X be a locally Noetherian scheme, let F ∈ P(Xét) be a presheaf and
let x̄ : x̄ ³ X be a geometric point. Then we have a natural isomorphism Fx̄

∼= (F#)x̄.

Proof. If f : X ³ Y denotes any morphism of essentially small sites and F is a presheaf on
Y , then we canonically have

HomS(X)((f
pF)#,−) ∼= HomP(X)(f

pF ,−) ∼= HomP(Y )(F , fp(−)) ∼=

∼= HomS(Y )(F
#, f³(−)) ∼= HomS(Y )(f

³(F#),−),

i.e. (f pF)# ∼= f ³(F#). Combining this with Lemma 2.2.5 in our specific situation, we get

Fx̄ = x̄pF(x̄) ∼= (x̄pF)#(x̄) ∼= x̄³(F#)(x̄) ∼= (x̄p(F#))#(x̄) ∼= x̄p(F#)(x̄) = (F#)x̄.

After these basic preliminaries for étale stalks, we now come to the main point of interest:
their ability to detect exact sequences.

Theorem 2.2.7. Let X be a locally Noetherian scheme and let {x̄ : x̄ ³ X}x∈X be a choice
of geometric points, one for each point of the underlying topological space of X. Then a
sequence

F ′
³ F ³ F ′′

of sheaves on Xét is exact if and only if the sequence

F ′
x̄ ³ Fx̄ ³ F ′′

x̄

is exact for each x ∈ X.

Proof. The only if is implied by Corollary 2.2.2 anyway, and for the converse see [Mil80,
Chapter II, Theorem 2.15].
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Since we have skipped over some of the tools required to effectively compute stalks, we
also want a more elementary description of exactness, and especially for a morphism of étale
sheaves to be an epimorphism.

Theorem 2.2.8. Let X be a locally Noetherian scheme and consider the sequence

0 ³ F ′ f
−³ F

g
−³ F ′′

³ 0

of étale sheaves on X. Then we have:

• The sequence is exact in S(Xét) at F
′ and F if and only if it is exact in P(Xét).

• The sequence is exact at F ′′ if and only if for each section s ∈ F ′′(U ³ X) there exists
an étale cover {Ui ³ U}i∈I and elements si ∈ F(Ui) such that g(si) = s|Ui

for all i ∈ I.

Proof. The first statement is an immediate consequence of Theorem 2.1.8.
The second statement also relies on the sheafification, because the cokernel of g is just

the sheafification of its presheaf cokernel by Corollary 2.1.9. Since we have not constructed
this functor here, we have to refer to [Mil80, Chapter II, Theorem 2.15].

Recall that in our section on flat morphisms, we have proven a rather technical condition
concerning the relation between faithfully flat morphisms and effective epimorphisms (cf.
Theorem 1.1.10). While we lacked the relevant context to explain this theorem’s usefulness
back then, we can now come back and fix that. As it turns out, on the étale site, all presheaves
represented by a scheme (not necessarily in the étale site) are actually sheaves, which will be
our first major source for examples of étale sheaves.

Note first that when we fix a scheme A, then the statement of the theorem yields an exact
sequence

Hom(S,A) Hom(X,A) Hom(X ×S X,A)
π2

π1f

,

which is to say, assuming X and S are étale schemes over some base, Hom(−, A) satisfies the
sheaf condition for the étale cover {X ³ S}.

To see that this is essentially sufficient for representable presheaves to satisfy the sheaf
condition for all covers, we just need the following preliminary result:

Proposition 2.2.9. Let X be a locally Noetherian scheme and F ∈ P(Xét). Then F is a
sheaf if and only if it satisfies the sheaf condition for covers of the form

• {Ui ³ U}i∈I , where all the Ui are open immersions,

• {V ³ U}, where V ³ U is a single surjective morphism of affine schemes.

Proof. The “only if” is clear anyway, and the converse can be found in [Tam94, Chapter II,
Lemma 3.1.1].

Corollary 2.2.10. Let X be a locally Noetherian scheme and let A ³ X be an abelian group
scheme over X. Then the abelian presheaf HomX(−, A) ∈ P(Xét) is a sheaf.
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Proof. By Proposition 2.2.9 we only have to check the sheaf condition for specific kinds of
covers. For the Zariski covers (i.e. the open immersions), the sheaf condition is the well-known
gluing of schemes. For the surjective single morphism, this is implied by Theorem 1.1.10.

Note that such a presheaf is not necessarily representable in the sense of Proposition 2.1.13,
as A was not assumed to be étale and of finite type.

However, if it is, then Proposition 2.1.13 applies and we get a nice way of computing the
pullbacks of these sheaves, in particular their stalks.

Corollary 2.2.11. Let f : X ³ Y be a morphism of locally Noetherian schemes and let A ³

Y be an abelian group scheme over Y that is étale and of finite type. Then f ³ HomYét
(−, A) ∼=

HomXét
(−, AóY X).

Proof. We only need to sheafify the according isomorphism from Proposition 2.1.13, but by
Corollary 2.2.10 the representable presheaf there is already a sheaf, and hence isomorphic to
its sheafification.

Now that we have a reasonably good understanding of representable étale sheaves, we
are finally in a good spot to introduce our first and also most important examples of étale
sheaves.

Example. Let X be a locally Noetherian scheme. The abelian étale presheaves

• Ga : U ³→ OU(U),

• Gm : U ³→ OU(U)³ and

• µn : U ³→ µn(OU(U))

are sheaves, as they are represented by

• A1
X ,

• X ×Z SpecZ[T, T−1] and

• X ×Z SpecZ[T ]/(T
n − 1)

respectively, where µn denotes the group of n-th roots of unity. Also note that the scheme
representing µn is represented by a finite étale scheme, so we can apply Corollary 2.2.11 to
easily compute its stalks: if x̄ : x̄ := SpecK → X is a geometric point, then

µn,x̄
∼= Homx̄(x̄, SpecK[T ]/(T n−1)) ∼= HomK(K[T ]/(T n−1), K) ∼= µn(K) = {a ∈ K : an = 1}.

Now that we have both some hands-on examples of étale sheaves and an initial understand-
ing of exact sequences, we can introduce one of the most important short exact sequences in
étale cohomology, and also highlight a key difference to the Zariski site.

Proposition 2.2.12. Let n ∈ N and let X be a locally Noetherian scheme such that n is
invertible in X. Then the sequence of abelian étale sheaves

0 → µn → Gm
(−)n

−−→ Gm → 0

is exact. The analogous statement for the Zariski site is false in general, even for X = A1
C

and n c= 1.
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Proof. The sequence is exact at the first two positions almost by definition, even for the
Zariski site.

The morphism Gm
(−)n

−−→ Gm is not surjective on the Zariski site for A1
C, as can easily be

seen at the (Zariski) stalk of the origin.
To see how the étale site fixes this issue, we want to use Theorem 2.2.8. Let U → X be

a finite type étale morphism and let s ∈ OU(U)³.
Let SpecAi = U ′

i ⊆ U be an open affine cover of U and let Ui → U ′
i be the affine morphism

corresponding to Ai → Ai[Xi]/(X
n
i − s|U ′

i
). We want to show that {Ui → U}i∈I is an étale

cover and the Xi ∈ OUi
(Ui)

³ satisfy the condition from Theorem 2.2.8.
All claims are obvious by construction if we can show that Ui → U ′

i is étale. It is certainly
flat, as Ai[Xi]/(X

n
i − s|U ′

i
) is a free Ai-module of rank n.

To show that it is unramified, we want to use Corollary 1.2.5. A standard computation
shows that the module of relative Kähler differentials Ω1 of this extension is isomorphic to

A[Xi]/(X
n
i − s|U ′

i
)

(Xn
i − s|U ′

i
) + (nXn−1

i )
=

A[Xi]/(X
n
i − s|U ′

i
)

(Xn
i − s|U ′

i
− Xi

n
nXn−1

i )
=

A[Xi]/(X
n
i − s|U ′

i
)

(s|U ′

i
)

∼= 0,

so we are done.

Next, we want to study how étale sheaves behave under restriction to open and closed
subschemes. First, we define a category that, in some sense, splits up the datum of a given
sheaf into a datum of sheaves on certain subschemes.

Definition 2.2.13. Let X be a locally Noetherian scheme and let i : Z → X be a closed
immersion. Denote by j : U ⊆ X the complement of i(Z). We define the category T (X)
of triples (F1),F2,Ç), where F1 ∈ S(Zét),F2 ∈ S(Uét) and Ç : F1 → i³j³F2, that has as
morphisms pairs (f1 : F1 → F ′

1, f2 : F2 → F ′
2) such that

F1 i∗j∗F2

F
′

1
i∗j∗F

′

2

φ

f1 i∗j∗f2

φ′

commutes.

The reason for introducing this category is that it is equivalent, via a rather naturally
defined functor, to the category of sheaves on X.

Theorem 2.2.14. We continue the notation from Definition 2.2.13. The functor

S(Xét) → T (X)

F ³→ (i³F , j³F ,Ç),

where Ç : i³F → i³j³j
³F is the pullback along i of the canonical morphism F → j³j

³F , is an
equivalence of categories. A sequence

(F ′′
1 ,F

′′
2 ,Ç

′′) → (F1,F2,Ç) → (F ′
1,F

′
2,Ç

′)
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is exact in T (X) if and only if the sequences

F ′′
1 → F1 → F ′

1 and F ′′
2 → F2 → F ′

2

are both exact in S(Xét).

Proof. See [Mil80, Chapter II, Theorem 3.10].

This interpretation of the category of sheaves allows us to define additional comparison
functors to or from the category of étale sheaves on a subscheme, in particular the extension
by zero functor in the special case of an open immersion.

Definition 2.2.15. Using the equivalence from Theorem 2.2.14, it is possible to define six
functors

i∗
ó−

j!ó−

S(Zét)
i∗−→ S(Xét)

j∗

−→ S(Uét)
i!
ó−

j∗
ó−

by
F1 ó ! (F1,F2,Ç) (0,F2, 0) ó! F2

F1 ³→ (F1, 0, 0) (F1,F2,Ç) ³→ F2

kerÇ ó ! (F1,F2,Ç) (i³j³F2,F2, id) ó! F2

Apart from the extension by zero functor, we will not really make use of this, and so we
note, more for the sake of illustrating its usefulness outside of this paper, the following short
exact sequence of étale sheaves.

Corollary 2.2.16. Let X be a locally Noetherian scheme, let i : Z → X be a closed immersion
and denote by j : U ⊆ X the open immersion of U := X \ i(Z). Then for each sheaf
F ∈ S(Xét), we functorially have a short exact sequence

0 → j!j
³F → F → i³i

³F → 0.

Proof. Under the equivalence from Theorem 2.2.14 this sequence corresponds to the sequence

0 → (0,F2, 0) → (F1,F2,Ç) → (F1, 0, 0) → 0.

This is the sequence that yields the long exact sequence of a subspace in (relative) singular
cohomology (cf. [Har77, Chapter III, Exercise 2.3]), and as soon as we introduce the concept
of étale cohomology, we would theoretically be able to define an analogous long exact sequence
also for the étale cohomology groups. But we will not make use of this.

We are now slowly moving towards introducing cohomology, but before we do this, we
first collect some statements on the functors between sites we have that will come in useful
later.

The next lemma is as basic as it is essential to working with universal δ-functors, and
is mainly stated here for later reference, since it is also regularly used in ordinary sheaf
cohomology.
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Lemma 2.2.17. Let F : A → B be a functor of abelian categories. Assume F admits an
exact left adjoint G : B → A. Then F preserves injectives, i.e. for each injective object
I ∈ A, the object FI ∈ B is also injective.

Proof. There is an isomorphism of functors

HomB(−, F I) ∼= HomA(G(−), I),

and by assumption, the right-hand side is a composition of exact functors, and hence itself
an exact functor.

This lemma interacts nicely with Definition 2.2.15, as we have a lot of exact adjoints
there.

Proposition 2.2.18. a) Every functor in Definition 2.2.15 is left adjoint to the functor
directly below it.

b) The functors i³, i³, j
³ and j! are exact; i! and j³ are left exact.

c) The compositions i³j!, i
!j!, i

!j³ and j³i³ are all zero.

d) The functors i³, j³, j
³ and i! preserve injective objects.

Proof. The statements a)-c) are clear by construction, d) follows immediately from the fact
that each functor has an exact left adjoint and Lemma 2.2.17.

In Definition 2.2.15 we defined, for an open immersion, the extension by zero functor,
which is also familiar from ordinary sheaf cohomology. There, an open immersion is the only
kind of morphism where we could reasonably expect an extension by zero, but on the étale
site, we have more objects in our underlying category.

We want to define the extension by zero also for them. Here, the more general setup
from Definition 2.1.10 yields a nice explanation of the, admittedly elementary, fact that the
presheaf pullback functor along an étale morphism (resp. an open immersion in the Zariski
case) preserves sheaves and is usually referred to as the restriction: It has an interpretation
as a pushforward functor along a second morphism of sites that we can only define when the
morphism of schemes is itself étale (resp. an open immersion).

The extension by zero functor will then turn out to simply be its exact left adjoint, which
exists by the general theory developed in Proposition 2.1.15.

Definition 2.2.19. Let X be a locally Noetherian scheme and let f : U → X be an étale
morphism of finite type. In addition to the usual associated morphism of sites f : Uét → Xét,
there is also the morphism of sites

f̃ : Xét → Uét

(V → U
f
−→ X) ó! (V → U).

We denote the induced pushforward functor on sheaves by (−)|U := f̃³. Concretely, if F is a
sheaf on Xét, then F|U(V → U) = F(V → X).
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It is not hard to see that f̃p ∼= f p, since the category over which the colimit defining
f pF(V → U) is taken has a final object for each V → U ∈ Uét, where F denotes an arbitrary
presheaf over Xét.

This alternate description of f p shows that in the situation at hand, f p preserves sheaves
and hence there is no need to sheafify in the definition of f ³. We also obtain a functor f! := f̃ ³

left adjoint to f ³, called extension by zero. This functor is exact by Corollary 2.2.2 and by
uniqueness of adjoints, it agrees with extension by zero functor from Definition 2.2.15 in the
special case where f is an open immersion.

Remark. Of course, there also exists the exact left adjoint f̃ p of f p, but since in the following
we will only need it once, namely to show that P(Xét) has enough injectives, we will not give
a separate name to it.

In principle, we would now be ready to introduce cohomology, but as is the case for topo-
logical spaces, there are some considerable computational benefits to working on Noetherian
schemes (or spaces), which will also be useful when computing certain cohomology groups,
and so we briefly state the two main improvements we get on Noetherian schemes. Also note
that we are always assuming our schemes to be locally Noetherian anyway, so we are now
only really assuming quasi-compactness in addition to our usual standing assumption.

Proposition 2.2.20. Let X be a Noetherian scheme. Denote by Xét(f) the site that has the
same underlying category as Xét, but has as covers only finite surjective families of morphisms
(instead of arbitrary surjective families). Then we have P(Xét(f)) = P(Xét) and S(Xét(f)) =
S(Xét).

Proof. It is clear by definition P(Xét(f)) = P(Xét), as the presheaf categories do not depend
on the choice of covers. We also have S(Xét(f)) ⊇ S(Xét), as a presheaf that satisfies the
sheaf condition for all surjective families certainl satisfies it for finite surjective families.

For the reverse inclusion, let F ∈ S(Xét(f)) and let U := {Ui → U}i∈I be an arbitrary
cover for Xét. If we assume that we have a section s ∈ F(U) such that s|Ui

= 0 for all i ∈ I,
then s = 0 because there exists a finite subcover of U (because the images of étale morphisms
are open and U is quasi-compact, as X was assumed to be Noetherian). Similarly, if we are
given sections si ∈ F(Ui) for all i ∈ I such that si|Ui×UUj

= sj |Ui×UUj
, then for each finite

subcover of U there exists a gluing s, and by the already proven uniqueness, they all agree.
But now we have s|Ui

= si, since every morphism Ui → U is part of some finite subcover.

Corollary 2.2.21. Let X be a Noetherian scheme. Then any small filtered colimit of sheaves,
computed in P(Xét), is already a sheaf; so, in particular, it is already the colimit in S(Xét)
with no need for sheafification.

Proof. Let F : I → S(Xét) be a small filtered diagram. We want to show that colim
i∈I

Fi,

computed in P(Xét), satisfies the sheaf condition. By Proposition 2.2.20 it suffices to check
finite covers {Uj → U}j∈J , but since filtered colimits preserve finite products, the sequence

0 → colim
i∈I

Fi(U) →
∏

j∈J

colim
i∈I

Fi(Uj) →
∏

i,k∈J

colim
i∈I

Fi(Uj ×U Uk)
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is isomorphic to the sequence

0 → colim
i∈I

Fi(U) → colim
i∈I

∏

j∈J

Fi(Uj) → colim
i∈I

∏

i,k∈J

Fi(Uj ×U Uk),

which is exact by the exactness of filtered colimits.

2.3 Cohomology

Now we finally come to cohomology. Having already generalized the concept of a sheaf, most
results in this section follow from the abstract general machinery also used to develop the
cohomology theory of sheaves on topological spaces, i.e. the theory of derived functors.

The one thing we need to derive additive functors (on the right) is, of course, enough
injective objects in our abelian category. As it turns out, the category of étale sheaves
admits a generator, defined in an analogous way to the usual generator on the Zariski site.

Proposition 2.3.1. Let X be a locally Noetherian scheme. Then P(Xét) and S(Xét) have
enough injectives.

Proof. We prove the statement only for S(Xét), as this proof can easily be adapted to P(Xét)
(cf. the Remark following Definition 2.2.19).

It is well known (cf. [Gro57, Theorem 1.10.1]) that it suffices to find a set of generators
for S(Xét), as we already know that it satisfies AB5 and AB3

³ from Corollary 2.1.9.
Remember that we write S(C) := S(C)ModR

. Let f : U → X ∈ Xét and denote by RU the
constant presheaf on Uét associated to R. Then the sheaf f!(R

#
U ) has the property

HomS(Xét)(f!(R
#
U ),F) ∼= HomS(Uét)(R

#
U ,F|U) ∼= HomP(Uét)(RU ,F|U) ∼=

∼= HomR(R,F(U)) ∼= F(U),

where this isomorphism is natural in F .
Since the isomorphism classes ofXét form a (small) set, we get by choosing a representative

f : U → X for each of these classes a set of generators {f!(R
#
U )}f , as when G ! F is a proper

subsheaf, then there exists an f such that G(U) ⊆ F(U) is not surjective.

With this, we can define all the familiar derived functors on the category of étale sheaves
on a locally Noetherian scheme X.

Definition 2.3.2. Let X be a locally Noetherian scheme. We have several left exact functors:

• The inclusion H0
ét : S(Xét) ⊆ P(Xét), which is left exact as it has the sheafification as

a left adjoint.

• For any object U ∈ Xét we have the section functor H0
ét(X,U ;−) := Γ(U ;−) : S(Xét) →

ModR, which is left exact as the composition of the left exact functor H0 with the exact
section functor on presheaves.

• As a special case of that, we get the global section functor H0
ét(X;−) := H0

ét(X,X;−) =

Γ(X;−) : S(Xét) → ModR associated to the identity X
id
−→ X ∈ Xét.
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Using Proposition 2.3.1, we can define the following associated derived functors:

• The cohomology presheaf H•
ét(X,−) := R•H0

ét(X,−) : S(Xét) → P(Xét).

• H•
ét(X,U ;−) := R•H0

ét(X,U ;−) : S(Xét) → ModR.

• The étale cohomology groups H•
ét(X,−) := R•H0

ét(X,−) : S(Xét) → ModR.

Usually, the only functors out of these that are actually used are the étale cohomology
groups, and for a good reason: the three universal δ-functors we defined are all related and,
in fact, we can (more or less) use the derived functors of the global sections to accurately
describe the other two, making use of the restriction functor.

Lemma 2.3.3. Let X be a locally Noetherian scheme and let j : U → X be an étale mor-
phism of finite type. Then we have canonical isomorphisms of δ-functors H•

ét(X,U ;−) ∼=
H•

ét(U ; (−)|U) ∼= H•
ét(X,−)(U).

Proof. We obviously have H0
ét(X,U ;−) ∼= H0

ét(U ; (−)|U) ∼= H0
ét(X,−)(U), so we only need to

show that H•
ét(U ; (−)|U) and H•

ét(X,−)(U) are universal δ-functors.
H•

ét(U ; (−)|U) is a δ-functor because (−)|U is exact by Definition 2.2.19, and to show uni-
versality we have to show that the H i

ét(U ; (−)|U) are effaceable for i ≥ 1 (cf. [Gro57, Propo-
sition 2.2.1]). But this is clear as (−)|U has the exact left adjoint j! from Definition 2.2.19,
and hence preserves injective objects.

For H•
ét(X,−)(U) it suffices to note that the evaluation functor evU : P(Xét) → ModR is

exact, as effacability is obvious.

Of course, we also want a relative version of the cohomology groups, also known as the
higher direct images. Again, to define them, we need nothing but the abstract theory of
derived functors.

Definition 2.3.4. Let f : X → S be a morphism of locally Noetherian schemes. The derived
functors Rif³ : S(Xét) → S(Sét) are called the higher direct images of f . Note that f³ is left
exact by Proposition 2.1.15.

Just like in the topological setting, the higher direct images are nothing but the sheafi-
fication of the pushforward of the cohomology presheaf on the domain, a result which is
interesting not just for direct computations, but will also be the main step in showing that
our generalization of flasque resolutions may be used to compute higher direct images.

Proposition 2.3.5. Let f : X → S be a morphism of locally Noetherian schemes. Then we
have a canonical isomorphism of δ-functors R•f³ ∼= (fpH

•
ét(X,−))#.

Proof. We know from Proposition 2.1.14 that f³ ∼= (fpH
0
ét(X,−))#, so again we only need

to show that (fpH
•
ét(X,−))# is a universal δ-functor.

The functor fp is exact by definition, and sheafification is exact by Theorem 2.1.8, so the
right-hand side is a δ-functor, and it is universal again by the effacability criterion [Gro57,
Proposition 2.2.1].
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As useful as injective objects are to set up the whole derived functor machinery, they
are not too useful for explicit calculations. Indeed, we showed the existence of enough
injectives in the category of étale sheaves in Proposition 2.3.1 via an abstract theorem from
Grothendieck’s Tohoku paper. As a result, we have not seen a single example of an injective
sheaf so far, and they are generally very hard to describe explicitly.

As a result of this, we need to fall back on acyclic resolutions if we want to compute the
étale cohomology of a sheaf. Therefore, our next goal will be to get our hands on a reasonably
large class of objects that are acyclic for all the derived functors we commonly use.

The basic lemma that will allow us to do so is the following:

Lemma 2.3.6. Let F : A → B be a left exact functor between two abelian categories and
assume that A has enough injectives. Let T be a class of objects in A that is stable under
isomorphism and such that:

a) for every object M ∈ A exists a monomorphism M ↪→ X with X ∈ T ,

b) whenever a direct sum M ⊕ N of two objects M,N ∈ A lies in T , then we have M ∈ T
and

c) if 0 → M ′ → M → M ′′ → 0 is an exact sequence in A with M ′,M ∈ T , then M ′′ ∈ T
and 0 → FM ′ → FM → FM ′′ → 0 is exact.

Then all injectives are in T and all objects of T are F -acyclic, allowing us to compute the
derived functors of F using T -resolutions.

Proof. Let I ∈ A be injective. Then by a), there exists a short exact sequence 0 → I → X →
X/I → 0 with X ∈ T . Because I is injective, this sequence splits and we have X ∼= I ⊕X/I,
so because of b) we also have I ∈ T .

Now let X ∈ T and choose an injective resolution 0 → X → I•. We define inductively
objects Zi such that

0 → X → I0 → Z1 → 0,

0 → Zi → I i → Zi+1 → 0

are exact. By induction and c), all the Zi are in T . Again by c), all the sequences

0 → FZi → FI i → FZi+1 → 0

are exact and so we have RiF (X) ∼= 0 for i ≥ 1.

Since, in contrast to presheaves on a topological space, we do not have a unique restriction
map between two objects on the étale site, the approach of defining flasque presheaves as the
ones who have all of their restriction maps being surjective does not work anymore, and so
we have to come up with something else.

Unfortunately, our solution is much less hands-on than in the topological setting, which
might be the reason why a different name is commonly used to refer to them.

Definition 2.3.7. Let X be a locally Noetherian scheme. We say that a sheaf F ∈ S(Xét)
is flabby iff it is H0

ét(X,−)-acyclic.
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Being acyclic for this functor easily implies the conditions from Lemma 2.3.6 also for all
other functors we care about.

Corollary 2.3.8. Let X be a locally Noetherian scheme. Then any flabby sheaf is

• H0
ét(X,−)-acyclic,

• H0
ét(X,−)-acyclic,

• H0
ét(X,U ;−)-acyclic for all U ∈ Xét,

• f³-acyclic for any morphism f : X → S to a locally noetherian scheme.

Proof. The first point is just the definition of being flabby. For the remaining points, we only
have to check that the class of flabby sheaves satisfies the conditions of Lemma 2.3.6. The
first two conditions are independent of the functor considered, and hence are always satisfied.
The third condition is implied by the long exact sequence in cohomology and Lemma 2.3.3
for the second and third point we are trying to prove, and by the long exact sequence and
Proposition 2.3.5 for the last point.

Lemma 2.3.9. Let X be a locally Noetherian scheme and let I ∈ S(Xét) be an injective
sheaf. Then I is also injective as a presheaf.

Proof. The inclusion S(Xét) ⊆ P(Xét) has an exact left adjoint, the sheafification functor
from Theorem 2.1.8, and hence preserves injectives by Lemma 2.2.17.

Another common computational tool for sheaf cohomology are spectral sequences, in
particular the Leray spectral sequence. As it turns out, it can be seen as a special case of
the spectral sequence of composed functors, another general result found in Grothendieck’s
Tohoku paper.

To apply it here, we have to show that in every case our first functor (out of the two com-
posed ones) sends injective objects to acyclics. In all cases, this is implied by the adjunctions
we have combined with Lemma 2.2.17.

Lemma 2.3.10. Let f : X → S be a morphism of locally Noetherian schemes. Then f³
preserves injectives.

Proof. Follows from Lemma 2.2.17 because f³ admits the exact left adjoint f ³ by Proposi-
tion 2.1.15 and Corollary 2.2.2.

As a result, we obtain, just like in the topological setting, the classical Leray spectral
sequence, and also the spectral sequence relating the higher direct images of two morphisms
of schemes.

Theorem 2.3.11 (Leray Spectral Sequence I). Let f : X → S be a morphism of locally
Noetherian schemes. Then for each sheaf F ∈ S(Xét) we have spectral sequences

• Hp
ét(S,R

qf³F) =⇒ Hp+q
ét (X,F) and

• Hp
ét(S,R

qf³F) =⇒ Hp+q
ét (X,F).
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Proof. We prove only the existence of the first spectral sequence as the second spectral
sequence is constructed analogously.

We have H0
ét(S, f³(−)) ∼= H0

ét(X,−) by definition of the functor f³. Since f³ preserves
injectives by Lemma 2.3.10, this spectral sequence is a special case of the Grothendieck
spectral sequence of composed functors (cf. [Gro57, Theorem 2.4.1]).

Theorem 2.3.12 (Leray Spectral Sequence II). Let X
f
−→ Y

g
−→ be two morphisms of locally

Noetherian schemes. Then, for each sheaf F ∈ S(Xét), we have a spectral sequence

Rpg³(R
qf³F) =⇒ Rp+q(gf)³F .

Proof. This is another special case of the Grothendieck spectral sequence of composed func-
tors for the same reasons as in Theorem 2.3.11.

Lemma 2.3.13. Let X be a Noetherian scheme. Then a filtered colimit of flabby sheaves is
again flabby.

Proof. We can detect flabby sheaves using Čech cohomology, which we have omitted in this
paper. Therefore, we refer to [Mil80, Chapter III, Remark 3.6].

Theorem 2.3.14. Let X be a Noetherian scheme and let F : I → S(Xét) be a small fil-
tered diagram. Then there is a canonical isomorphism of δ-functors colim

i∈I
H•

ét(X,Fi) ∼=

H•
ét(X, colim

i∈I
Fi).

Proof. We know that S(Xét) satisfies AB3
³ and has enough injectives, so Fun(I,S(Xét)) has

enough injectives by a general argument, see for example [Wei94, Exercise 2.3.7]. Both sides
are δ-functors as filtered colimits are exact, and in degree zero, the statement is implied by
Corollary 2.2.21. Hence, it suffices to show that both sides are effacable.

By Lemma 2.3.13 we can just show that an injective diagram I → S(Xét) is necessarily
composed out of injective sheaves.

Consider, for i ∈ I, the functor

Fun(I,S(Xét))
evi−→ Fun({∗},S(Xét)) ∼= S(Xét),

induced by the functor ∗ ³→ i. By Proposition 2.1.11, this has a left adjoint given by

F ³→



j ³→
⊕

HomI(j,i)

F



 ,

which is obviously exact by Proposition 2.1.7. Now Lemma 2.2.17 implies that evi preserves
injective objects, and so we are done.

2.4 The Étale Cohomology of Curves

Now that we have developed all of the relevant theory, let us come to an example. We ulti-
mately want to compute the étale cohomology groups of a smooth projective and connected
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curve over an algebraically closed field. As it turns out, the result is very similar to the one
we get when computing the singular cohomology of such a curve over C, interpreted as a
Riemann surface, at least for finite coefficients.

But before that, we want to briefly illustrate the case of what happens on an arbitrary
field.

Theorem 2.4.1. Let k be a field and choose a separable closure k̄. Then, for each abelian
sheaf F the étale stalk at x̄ := Spec k̄ has a canonical structure of a discrete Gal(k̄/k)-module,
and this induces an equivalence of categories.

Under this equivalence, the global sections functor corresponds to the (global) invariants
functor, and so the theory of étale cohomology on a field is equivalent to its Galois cohomology.

Proof. By Definition 2.2.3 we have Fx̄
∼= colim

x̄→X
F(X) ∼= colim

k⊆k′⊆k̄
F(Spec k′), where the second

colimit is taken over all finite subextensions that are Galois over k, as this subcategory is
cofinal. There is an obvious G := Gal(k̄/k)-action on that last colimit, and it is discrete by
construction as a colimit over obviously discrete G-modules.

We write implicitly F(A) for F(SpecA) and define a functor in the opposite direction:
For a discrete G-module M , define FM as the functor

∏

i

ki ³→
∏

i

MGal(k̄/ki)

with the obvious restriction maps. It is easy to see that composing them in one way is
isomorphic to the identity on discrete G-modules, and so we only compute explicitly the
other possible composition, as this computation depends on the sheaf condition.

We have to check that F(k′) → F
Gal(k̄/k′)
x̄

∼= colim
k′⊆k0⊆k̄

F(Spec k0)
Gal(k̄/k′) is an isomor-

phism, i.e. we have to show that for each finite Galois extension k′ ⊆ k0 we have F(k′) ∼=
F(Spec k0)

Gal(k̄/k′). This is the sheaf condition of F on the one-element cover {Spec k0 →
Spec k′}:

0 → F(k′) → F(k0)
∆−

∏
σ
σ

−−−−−→
∏

Gal(k0/k′)

F(k0)

is exact, where ∆ denotes the diagonal map, so F(k′) is exactly the subgroup of elements x
such that σx = x for all σ ∈ Gal(k0/k

′).
The statement on global sections is clear.

Now let us come to the case of a normal projective (and irreducible) curve X over an
algebraically closed field k. Denote by η : Specκ(X) → X the generic point, and by |X| the
set of closed points, in one-to-one correspondence with X(k).

Our first objective will be to compute the cohomology groups of Gm.

Lemma 2.4.2. We have

H i
ét(X,Gm) ∼=











k³ if i = 0

Pic(X) if i = 1

0 if i ≥ 2.
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Proof. The sequence

0 → Gm,X → η³Gm,η →
⊕

x∈|X|

x³Zx → 0

is exact. The only interesting part is surjectivity anyway, and this we can show using Theo-
rem 2.2.8 and only Zariski opens.

For the long exact sequence in étale cohomology, we see that it suffices to show that
H i

ét(X, η³Gm,η) ∼= H i
ét(X,

⊕

x∈|X| x³Zx)
∼= 0 for i ≥ 1, as the we would have H1

ét(X,Gm) as
the cokernel of the degree map

κ(X)³ →
⊕

x∈|X|

Z,

a common definition of the Picard group, at least for sufficiently smooth schemes. Note that
we are implicitly using Corollary 2.2.21 to compute the global sections of the direct sum.

Étale cohomology commutes with the direct sum by Theorem 2.3.14, and for each x ∈ |X|
we have

H i
ét(X, x³Zx)

∼= H i
ét(x,Zx)

∼= H i(k,Z) ∼= 0

as x is a closed immersion, and hence x³ is exact by Proposition 2.2.18 and preserves injectives
by Lemma 2.3.10. The last two isomorphisms follow from Theorem 2.4.1 and the fact that k
is algebraically closed.

For η³Gm,η, we want to use the Leray Spectral Sequence I, so we begin by computing the
higher direct images of η. By Proposition 2.3.5, they are described as the sheafification of
the presheaf

U ³→ H i
ét(U ×X Specκ(X),Gm),

which vanishes for i ≥ 1 because κ(X) has transcendence degree 1 over k, and Tsen’s theorem
from Galois cohomology (cf. [NSW08, Corollary 6.5.5]). Therefore, we have, as before,

H i
ét(X, η³Gm) ∼= H i

ét(Specκ(X),Gm) ∼= H i(κ(X),κ(X)³) ∼= 0

for i ≥ 1, again because of Tsen’s theorem. This finishes our proof.

With this, the computation of the cohomology groups we are interested in is a breeze:

Theorem 2.4.3. Let n ∈ N such that chark " n. Then

H i
ét(X,µn) ∼=



















µn(k) if i = 0

Pic0(X)[n] if i = 1

Z/nZ if i = 2

0 if i ≥ 3.

Note that we have (non-canonical) isomorphisms µn(k) ≈ Z/nZ and Pic(X)[n] ≈ (Z/nZ)2g,
where g is the genus of X. This mirrors the result we get for a surface of genus g in singular
cohomology as µn ≈ Z/nZ

X
on X, again non-canonically.
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Proof. By assumption, n is invertible in X, so by Proposition 2.2.12 we get a short exact
sequence of étale sheaves

0 → µn → Gm
(−)n

−−→ Gm → 0.

Lemma 2.4.2 and the long exact sequence imply our result, at least after noting that there
is an exact sequence

0 → Pic0(X) → Pic(X)
deg
−−→ Z → 0

and applying the 5-lemma.
For the fact that Pic0(X)

n
−→ Pic0(X) is surjective and that ker(Pic0(X)

n
−→ Pic0(X)) ≈

(Z/nZ)2g we refer to [BG06, Section 8.7].
The isomorphism µn ≈ Z/nZ

X
is given by choosing a primitive n-th root of unity, as can

be seen by considering stalks.
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Chapter 3

Main Theorems

In this section we collect, mainly without proofs, some of the main theorems we will be using
later on. Most of them do not hold for all sheaves, so we begin by discussing restrictions on
the sheaves we will be working with.

3.1 Finiteness Conditions

The first and most basic restriction we introduce is that of being torsion. Note that, by
definition, an abelian group A is torsion if and only if each element in it is annihilated by
some positive integer n, or, phrased in a more categorical way,

colim
n

A[n] ∼=
⋃

n

A[n] = A,

where A[n] denotes the kernel of multiplication by n, which is, by definition, the set of all
elements killed by n.

This condition generalized immediately to the category of sheaves, but, due to the rather
explicit description we have for colimits of sheaves, there is also a second equivalent condition,
which in practice is easier to check.

Lemma 3.1.1. Let X be a locally Noetherian scheme and let F be an abelian sheaf on Xét.
Then the following conditions are equivalent:

i) The canonical monomorphism colim
n

F [n] → F is surjective, hence an isomorphism.

Here, the colimit is taken over the natural numbers, partially ordered by divisibility and
F [n] denotes the kernel of multiplication by n.

ii) F is isomorphic to the sheafification of a presheaf that takes values in torsion abelian
groups.

Proof. i) =⇒ ii) : The subsheaves F [n] take values in torsion abelian groups by construc-
tion, and since that presheaf colimit is computed pointwise, the colimit colim

n
F [n] computed

in presheaves also takes values in torsion abelian groups. The sheaf colimit is just the sheafi-
fication of this presheaf.
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ii) =⇒ i) : Let F ′ be an abelian presheaf with values in torsion abelian groups such
that (F ′)# ∼= F . Then

F ∼= (F ′)# ∼= (colim
n

F ′[n])# ∼= colim
n

(F ′[n]#) ∼= colim
n

(F ′#[n]) ∼= colim
n

F [n].

Definition 3.1.2. Let X be a locally Noetherian scheme and let F be an abelian sheaf on
Xét. We say that F is a torsion sheaf iff it satisfies one (and hence both) of the equivalent
conditions of Lemma 3.1.1.

Note that by Corollary 2.2.21, a sheaf on a Noetherian site is torsion if and only if it takes
values in torsion abelian groups.

As the condition is stated via a canonical morphism being an isomorphism, it can be
checked on stalks.

Proposition 3.1.3. Let X be a locally Noetherian scheme and let F be a sheaf on Xét. Then
F is torsion if and only if all of its stalks are torsion groups.

Proof. We have to check when the canonical morphism colim
n

F [n] → F is an isomorphism.

This can be checked on stalks by Theorem 2.2.7, and since the pullback functor preserves
colimits (it has a right adjoint) as well as kernels (cf. Corollary 2.2.2), the induced map on
stalks is

colim
n

(Fx̄)[n] → Fx̄,

which is an isomorphism if and only if the stalk at x̄ is a torsion group.

On a Noetherian scheme, we have the following nice coherence result for the cohomology
groups:

Corollary 3.1.4. Let X be a Noetherian scheme and let F be a torsion sheaf on Xét. Then
the étale cohomology groups Hq

ét(X,F) are torsion groups for all q ≥ 0.

Proof. By Theorem 2.3.14 we haveHq
ét(X,F) ∼= colim

n
Hq

ét(X,n F), so we may assume nF = F .

But then multiplication by n equals the zero map, and the same is therefore true on the
cohomology groups, concluding the proof.

Being torsion is the main technical condition that gets most of the important theorems to
work, but to relate sheaves to continuous representations of certain profinite groups, some-
thing we will obviously need in our last chapter, we need a way stronger and more specialized
condition.

The result will ultimately come from the general theory of finite étale coverings and the
étale fundamental group, so our goal is to classify the abelian sheaves represented by finite
étale group schemes. We begin with the following definition.

Definition 3.1.5. Let X be a locally Noetherian scheme and let A be an abelian group. The
sheafification of the constant presheaf U ³→ A is called the constant sheaf associated to A and
denoted by AX . An arbitrary sheaf F on Xét is called locally constant iff there exists a cover
{Ui → X}i∈I such that F|Ui

is isomorphic to some constant sheaf for each i ∈ I.
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This property is, of course, preserved by taking the pullback.

Lemma 3.1.6. Let f : X → Y be a morphism of locally Noetherian sheaves. Let A be
an abelian group and let F be a locally constant sheaf on Yét. Then f ³AY is canonically
isomorphic to AX and f ³F is again locally constant.

Proof. The first statement is implied by the Yoneda lemma:

HomS(Xét)(f
³AY ,−) ∼= HomS(Yét)(AY , f³(−)) ∼= HomP(Yét)(∆(A), f³(−)) ∼=

∼= HomAb(A,Γ(Y, f³(−))) ∼= HomAb(A,Γ(X,−)) ∼= HomS(Xét)(AX ,−),

where ∆ denotes the constant functor U ³→ A.
The second statement follows from the first: if {Ui → Y }i∈I is a cover on Yét with the

property that F|Ui
is constant for each i ∈ I, then {Ui ×Y X → X}i∈I is a cover of Xét such

that (f ³F)|Ui×Y X
∼= f ³(F|Ui

) is constant for each i ∈ I.

The second definition we need to classify the sheaves represented by finite étale group
schemes is obviously necessary (cf. Corollary 2.2.11): It has to have finite stalks.

Definition 3.1.7. Let X be a locally Noetherian scheme and let F be an abelian étale sheaf.
We say that F is finite iff all of its étale stalks are finite groups.

The combination of these two properties turns out to be just the thing we need, via a
descent argument.

Proposition 3.1.8. Let X be a locally Noetherian scheme and let F be an abelian étale
sheaf. Then F is locally constant and finite if and only if it is represented by a group scheme
over X that is finite and étale.

Proof. See [Mil80, Chapter V, Proposition 1.1].

Definition 3.1.9. Let X be a locally Noetherian scheme. An abelian étale sheaf on X is called
lisse or smooth iff it satisfies one and hence both equivalent properties from Proposition 3.1.8.

To relate this to representations of profinite groups, we need the étale fundamental group.
We only collect the main results that we will need here, see [Len08] for a nice exposition on
it.

Theorem 3.1.10. Let X be a connected scheme equipped with a geometric point x̄. Then
the automorphism group πét

1 (X, x̄) of the functor

HomX(x̄,−) : FÉt/X → set,

where FÉt/X denotes the category of finite étale maps (usually called étale coverings, as
they are automatically surjective) over X, is a profinite group and the canonical factorization
of that functor over the category πét

1 (X, x̄)-set of finite sets with a πét
1 (X, x̄)-action is an

equivalence of categories.
If x̄′ denotes a second geometric point of X, then there is an isomorphism πét

1 (X, x̄) →
πét
1 (X, x̄′), unique up to inner automorphism.
If Y is a second connected scheme and f : X → Y is a morphism of schemes, then the

isomorphism of functors HomY (f(x̄),−) ∼= HomX(x̄, X ×Y −) induces a continuous homo-
morphism of profinite groups πét

1 (X, x̄) → πét
1 (Y, f(x̄)), turning πét

1 (−,−) into functor from
pointed connected schemes to profinite groups.
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Proof. See [Len08].

The equivalence of categories extends to an equivalence of the categories of abelian group
objects, and so we find:

Theorem 3.1.11. Let X be a connected locally Noetherian scheme with a geometric point
x̄. Then we have an equivalence of categories

{F ∈ S(Xét) : F lisse} 0 {Commutative group objects in FÉt} 0

0 {Commutative group objects in πét
1 (X, x̄)} 0 πét

1 (X, x̄)-mod,

where the last category denotes the category of finite πét
1 (X, x̄)-modules. The first equivalence

is given by the Yoneda embedding, and the second one is the one induced by Theorem 3.1.10.
Note that, by construction and Corollary 2.2.11, the underlying abelian group of the rep-

resentation associated to a lisse sheaf F is nothing but its étale stalk Fx̄.
This, of course, also extends to an equivalence of the full subcategories of objects killed by

an integer n to obtain

{F ∈ S(Xét)Z/nZ : F lisse} 0 πét
1 (X, x̄)-modZ/nZ,

where the second category denotes the category of finite Z/nZ-modules with a πét
1 (X, x̄)-action.

Proof. Obvious by what we have done so far.

Now that we have the connection to representations, we just have to quickly introduce one
more condition, the usefulness of which will only really become apparent when we introduce
l-adic sheaves later in this chapter.

Definition 3.1.12. Let X be a Noetherian scheme and let F be an abelian étale sheaf on X.
We say that F is constructible iff there is a finite jointly surjective family of locally closed
subschemes j : Y → X such that F|Y := j³F is locally constant and finite for each of the
subschemes.

Note that any lisse sheaf is trivially constructible, and any constructible sheaf is auto-
matically torsion by Proposition 3.1.3.

Proposition 3.1.13. Let X be a Noetherian scheme. As they are in particular finite, con-
structible sheaves are torsion sheaves. A torsion sheaf is constructible if and only if it is a
Noetherian object (i.e. satisfies the ascending chain condition for subsheaves) in the (abelian)
category of all torsion sheaves.

Proof. See [FK88, Chapter I, Proposition 4.8].

3.2 The Proper Base Change Theorem

One of the most important results, both for explicit computations of higher direct images
and also to define, for example, cohomology with compact support, is the proper base change
theorem, which relates the higher direct images of a proper map to that of its base change
along some second morphism of schemes.

The comparison morphism can be defined for an arbitrary commutative square, a fact
that we will also be using later on.
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Theorem 3.2.1 (Proper Base Change Theorem). Let

X
′

S
′

X S

π
′

f ′ f

π

be a commutative square of locally Noetherian schemes. Then there exists a canonical mor-
phism of δ-functors f ³(R•π³(−)) → R•π′

³(f
′³(−)), which, if the square is Cartesian and π is

proper, is even an isomorphism on the subcategory of abelian torsion sheaves.

Proof. We only construct the base change morphism, for the proof that it is an isomorphism
under the stated hypothesis, see [SGAIV73].

As f ³(R•π³(−)) is a universal δ-functor (obviously, R•π³(−) is one, and f ³ is exact), it
suffices to construct a morphism in degree zero, and this we do via a sequence of adjunction
formulas:

Giving a morphism
f ³π³ → π′

³f
′³

is equivalent to giving a morphism

π³ → f³π
′
³f

′³ ∼= π³f
′
³f

′³,

and there we have the canonical morphism π³(id
can
−−→ f ′

³f
′³), finishing the construction.

The most common form in which we use Theorem 3.2.1 is to compute stalks of higher
direct images:

Corollary 3.2.2. Let f : X → S be a proper morphism of locally Noetherian schemes and let
x̄ be a geometric point of S. Then there is a canonical isomorphism of δ-functors R•f³(−)x̄ ∼=
H•

ét(Xx̄, (−)|Xx̄
).

Proof. Immediate from Theorem 3.2.1.

Now we want to see how we use this to define cohomology, or higher direct images, with
compact (proper) support. First, we need the following definition:

Definition 3.2.3. Let π : X → S be a morphism of schemes. We say that π is compactifiable
iff there exists a scheme X as well as an open immersion j : X ↪→ X and a proper morphism
π̄ : X → S such that the resulting triangle

X X

S

j

π π̄

commutes.

Since this condition could be very hard to check from scratch, we note that such a com-
pactification exists under quite general circumstances.
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Theorem 3.2.4 (Nagata). Let f : X → S be a separated morphism of finite type to a quasi-
compact and quasi-separated scheme S. Then f is compactifiable.

Proof. See [Sta25, Tag 0F3T].

The reason this preliminary definition is simple: Even though the usual definition of direct
images with compact support from algebraic topology technically generalizes by using the
left exact functor that assignes to a sheaf its subsheaf of sections that have proper support,
but its derived functors give the wrong result in general, see [FK88, Chapter 8] for a nice
example of this fact.

However, for a compactifiable topological space, there is a separate definition that works,
and as it turns out, this definition also generalizes nicely to our setting and gives the “right”
result.

Since it depends, a priori, on the chosen compactification, we first show that this is in
fact not the case.

Proposition 3.2.5. Let π : X → S be a compactifiable morphism of locally Noetherian
schemes and let X1 and X2 be two compactifications. Then, for each q ≥ 0, there is a
natural isomorphism Hq

ét(X1, (j1)!F) ∼= Hq
ét(X2, (j2)!F), where F is a torsion sheaf.

Proof. Note that the canonical map X → X1 ×S X2 is a quasi-compact immersion, so there
is a closed immersion such that X is isomorphic to an open subset of it, and so, by replacing
X1 by that closed immersion, we may assume that there is a morphism f : X1 → X2 such
that the obvious diagram commutes.

Such a morphism is automatically proper, so we want to apply the proper base change
theorem (note that (j1)!, as an exact left adjoint, preserves colimits and kernels, and hence
torsion sheaves) and Definition 2.2.15 to show that f³(j1)! ∼= (j2)! and Rif³(j!(−)) ∼= 0 for
i ≥ 1, as the result then follows from Theorem 2.3.12. It is easy to show that the sheaves
Rif³(j1)!(F) vanish on X2 \X, so we focus on the inclusion X ↪→ X2.

We work in the diagram

X f−1(X) X1

X X2

j′
1 i

f ′ f

j2

.

Then f ′ is separated as the base change of the separated morphism f , and so we find that j′1
is proper by cancellation. This implies that f−1(X) splits (over X) into a disjoint union of

X and some other (proper) X-scheme Y
y
−→ X.

Now we have S((X
∐

Y )ét) 0 S(Xét)×S(Yét) and via a standard argument for universal
δ-functors R•f ′

³(−,−) ∼= R• id³(−)⊕R•y³(−).
Under this equivalence, the functor (j′1)! sends a sheaf F to (F , 0), so Theorem 3.2.1

applied to the Cartesian square in our diagram and Definition 2.2.15 yield the isomorphisms
mentioned above.

41



Definition 3.2.6. Let π : X → S be a compactifiable morphism of locally Noetherian schemes.
We define for a torsion sheaf F the i-th higher direct image with compact support Riπ!F :=
Riπ³(j!F), where j : X ↪→ X ′ denotes an open S-immersion into a proper S-scheme as in
Definition 3.2.3. This is well-defined by Proposition 3.2.5.

There is also a version of the proper base change theorem for these higher direct images
with compact support. It holds for any compactifiable morphism, and, in particular, for a
proper morphism we just get back Theorem 3.2.1.

Theorem 3.2.7 (Proper Base Change Theorem II). Let

X
′

S
′

X S

π
′

f ′ f

π

be a Cartesian square of locally Noetherian schemes and assume that π is compactifiable.
Then π′ is compactifiable and there is a canonical isomorphism of δ-functors f ³(R•π!(−)) ∼=
R•π′

!(f
′(−)) (for abelian torsion sheaves).

Proof. Both properness and open immersions are preserved by base change, so we get the
diagram

X
′

X ′ S
′

X X S

f ′

j′ π̄
′

f̄ f

j π̄ ,

where both lines are compactifications of π and π′ respectively, and all squares are Cartesian.
It is elementary to check that j!f̄

³ ∼= f ′³j′! , by checking that they have isomorphic right
adjoints. By combining this with the old version of the proper base change theorem Theo-
rem 3.2.1, we get

f ³(R•π̄!(−)) = f ³(R•π̄³(j!(−))) ∼= R•π̄′
³(f̄

³(j!(−))) ∼= R•π̄′
³(j

′
!(f

′³(−))) = R•π̄′
!(f

′³(−)).

We also record, without proof, the trace mapping for later use in Deligne’s construction.

Theorem 3.2.8. For each finite morphism π : X → S of locally Noetherian schemes there
exists, for all étale sheaves F on X, a canonical morphism Trπ : π³π

³F → F that is natural
in F and, assuming that it is of constant rank n, has the property that the composition

F
can
−−→ π³π

³F
Trπ−−→ F

is just multiplication by n.
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This assignment is stable under base change in the following sense: Let

X
′

S
′

X S

π
′

f ′ f

π

be a Cartesian square of locally Noetherian schemes and let F be a torsion sheaf. Then the
diagram

π
′

∗
π
′∗f ∗

F π
′

∗
f ′∗

π
∗
F f ∗

π∗π
∗
F

f ∗
F

Tr
π
′

∼= ∼=

f∗
Trπ

commutes.

Proof. See [SGAIV73, Exposé XVII, Théorème 6.2.3].

3.3 Definition of l-adic cohomology

Fix for the whole section a prime number l ∈ N.
Our ultimate goal is to construct a representation on an l-adic number field, but so far

we only really have a good cohomology theory for torsion sheaves, and they tend to give
cohomology groups which are also torsion, cf. Corollary 3.1.4. This means that such a
cohomology group will certainly not admit a vector space structure over any characteristic
zero field.

The trick we employ to fix this issue is to go to a limit of such groups, in a similar way
to how we construct the l-adic integers Zl.

Definition 3.3.1. Let X be a Noetherian scheme and let l be a prime number. An l-adic
sheaf F on Xét is a projective system

F1 F2 F3 . . . Fn Fn+1 . . .

of constructible abelian étale sheaves on X such that for each n ≥ 1 the given morphism

induces an isomorphism Fn

∼=
ó− Fn+1/(l

nFn+1). Note that this implies that for each n ≥ 1,
the sheaf Fn

∼= Fn+1/(l
nFn+1) is killed by ln, so all the Fn are torsion sheaves.

We say that an l-adic sheaf F is constant or lisse iff each of the Fn is (since each of the
components is finite by definition, being lisse is the same as being locally constant).

A morphism of two l-adic sheaves F and G is a morphism of the two diagrams {Fn}n≥1

and {Gn}n≥1, i.e. a system of morphisms {ϕn : Fn → Gn}n≥1 that makes all the obvious
squares commute.

This gives us a well-defined and abelian category of l-adic sheaves on X.
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The reason for this definition is that, although the limit of such systems exists by Corol-
lary 2.1.9, simply taking its cohomology does not yield desirable results for us. Instead, we
define the cohomology of such a system in a slightly different way.

Definition 3.3.2. Let X be a Noetherian scheme, let l be a prime number and let F be an l-
adic sheaf. We define the i-th étale cohomology groups of F to be H i

ét(X,F) := lim
n
H i

ét(X,Fn).

This makes H i
ét(X,F) into a functor via the obvious action on morphisms.

As the group H i
ét(X,Fn) is killed by ln, it is a Z/lnZ-module, and the cohomology group

H i
ét(X,F) := lim

n
H i

ét(X,Fn) has a canonical Zl := lim
n

Z/lnZ-module structure.

In the same way, we can define the stalk of F at some geometric point x̄ as the Zl-module
Fx̄ := lim

n
Fn,x̄.

There is also a way to make sense out of l-adic higher direct images. The problem is that
while the pullback functor is exact and hence preserves the defining property of an l-adic
sheaf, the same is not true for even the usual direct image functor, and so we have to restrict
ourselves to a small class of sheaves: constructible l-adic sheaves.

Theorem 3.3.3. Let f : X → S be a morphism of locally Noetherian schemes. Then, for
all constructible l-adic sheaves F the naive (i.e. pointwise) higher direct images Rif³F are
constructible l-adic sheaves.

If f is compactifiable, then the same is true for the sheaves Rif!F .

Proof. See [SGAV77].

To get from a finitely generated Zl-module to a finite-dimensional Ql-vector space, we
can simply extend scalars to Ql. Categorically, this has the effect of killing precisely those
modules that are torsion, i.e. that are killed by some power of l.

This property is obviously stable under extensions, kernels and cokernels, and so it forms
a thick Serre subcategory, and the category of finite-dimensional Ql-vector spaces can be
defined as the Serre quotient category of finitely generated Zl-modules modulo its torsion
objects. This interpretation is useful, as it extends nicely to more general abelian categories.

Definition 3.3.4. Let X be a Noetherian scheme. We define the category of Ql-sheaves as
the quotient of l-adic (or from now on: Zl-) sheaves modulo its thick Serre subcategory of
Zl-sheaves killed by a power of l.

This property is obviously preserved by any additive functor, and so we get by the universal
property of the Serre quotient functors Rif³, R

if!, H
i
ét(X,−) etc. defined also on Ql-sheaves.

Morally speaking, if a statement is true for (torsion) étale sheaves, then an equivalent
statement is also true for Zl- and Ql-sheaves, by assembling it via the limit and localization.

Of particular relevance for us: the proper base change theorem and the connection be-
tween representations of the fundamental group and lisse sheaves. Because the correct state-
ment is a bit less obvious for the second case compared to the first one, we state it separately.

Theorem 3.3.5. Let X be a connected locally Noetherian scheme, equipped with a geometric
point x̄. Then we have equivalences of categories

{lisse Zl-sheaves} 0

{

continuous πét
1 (X, x̄)-representations

of finitely generated Zl-modules

}
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and, via going to the respective quotient categories,

{lisse Ql-sheaves} 0

{

continuous πét
1 (X, x̄)-representations

of finite-dimensional Ql-vector spaces

}

.

The underlying Zl-module (resp. Ql-vector space) of the representation associated to a lisse
Zl-sheaf (resp. Ql-vector space) is again given by the stalk at x̄ as defined in Definition 3.3.2
(resp. the extension of scalars along Ql thereof).

Proof. This follows, for the most part, from assembling the statement component-wise from
Theorem 3.1.11 and a limit argument, and then studying the respective Serre quotients for
the second equivalence, see [SGAV77, Exposé VI, 1.2.4] and [SGAV77, Exposé VI, 1.4.2] for
details.
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Chapter 4

Deligne’s Construction of the Galois

Representation attached to a Modular

Form

We want to explain how all of this theory we have developed allows us to construct certain
Galois representations with good properties.

The goal is to show that there exists, for each normalized eigenform f ∈ Sk(Γ1(N),χ) of
level N ≥ 5, weight k ≥ 2, and where χ : (Z/NZ)³ → C³ is some character, a 2-dimensional,
l-adic Galois representation

ρf,l : Gal(Q/Q) → Gl2(Kf,l)

over some finite extension Kf,l/Ql, such that ρf,l is unramified away from N and l, and that
ρf,l(ϕp) satisfies the polynomial equation 1−ap(f)X + pk−1χ(p)X2 = 0 for any prime p " Nl,
where ϕp ∈ Gal(Q/Q) denotes any relative Frobenius element for p.

To do this, we follow the same general strategy that Eichler and Shimura followed to show
the weight k = 2 case. Fix for the whole chapter the level N ≥ 5, the weight k ≥ 2 and let
l " N be a prime number.

4.1 The General Strategy

We will construct a universal representation (independent of the eigenform f), using The-
orem 3.3.5, that will turn out to have a module structure over the Ql-algebra TN ⊗Z Ql,
making it into a free module of rank 2 over that ring. Here, TN ⊆ EndC(Sk(N)) denotes the
Hecke algebra over Z.

After showing that this module structure is compatible with the action of Gal(Q/Q), any
choice of basis will give us a representation

Gal(Q/Q) → Gl2(TN ⊗Z Ql),

and, as in the weight k = 2 case there is, for each normalized eigenform f ∈ Sk(Γ1(N),χ),
a finite extension Kf,l/Ql and a surjection TN ⊗Z Ql ! Kf,l such that Tn ³→ an(f) and
*n〉 ³→ χ(n). For a detailed construction of this step, see [DS16, Chapter 9, Section 5].
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The problem is hence reduced to understanding the Hecke and diamond operators in
TN ⊗Z Ql. As in the weight k = 2 case, the universal elliptic curve is heavily involved in our
construction, and so we begin with the following two definitions.

Definition 4.1.1. Let S be a scheme. An elliptic curve over S is a proper and smooth S-
scheme f : E → S with a distinguished section 0 ∈ E(S) such that all geometric fibers are
elliptic curves (in the usual sense). It is canonically isomorphic to its own relative Picard
scheme Pic0E/S, and hence has the structure of a commutative S-group scheme whose unit is
the chosen section 0.

For a natural number n ≥ 1, we denote by En the kernel of the multiplication by n
endomorphism of E/S. It is a finite and flat S-scheme.

Definition 4.1.2. Let f : E → S be an elliptic curve and assume that f is a morphism of
Z[ 1

n
]-schemes. A level n structure on E/S is an S-isomorphism

αn : Z/nZ
2

S

∼=
−→ En.

As it turns out, there is a universal elliptic curve with level n structure, in the following
sense:

Theorem 4.1.3. Let n ≥ 3. Then the functor

Sch/Z[
1

n
] → Set

S ³→ {E/S elliptic curve with level n structure αn}/ ∼=

is representable by an affine smooth curve Mn/Z[
1
n
], which admits a smooth compactification

Mn/Z[
1
n
] such that Mn \Mn is finite and étale over Z[ 1

n
].

Proof. See [Del71].

With this in mind, we are ready to define our universal representation. Note that for a
compactifiable morphism f of locally Noetherian schemes

X X

S

j

π π̄

,

there is a canonical morphism of δ-functors R•π! → R•π³, constructed on the level of derived
categories as Rπ! = (Rπ̄³)j! = Rπ̄³Rj! → Rπ̄³Rj³ = Rπ³. Therefore, for each i ≥ 0, we get a
functor given by the image of this natural morphism Rif̃ := im(Rif! → Rif³).

Denote by a the structure morphism of the modular curve MN/Z[
1
N
] and by f : E → MN

the universal elliptic curve over it. Consider the l-adic sheaf Fk,l := Symk−2R1f³Zl on MN ,
where Zl denotes the lisse l-adic sheaf

Z/lZ
E
ó Z/l2Z

E
ó Z/l3Z

E
ó . . .
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on E.
It follows from general theory (cf. [Del71]) that the sheaves Fk,l, R

1a³(Fk,l) and R1a!(Fk,l)
are all lisse on SpecZ[ 1

Nl
]. Therefore, R1ã(Fk,l) is also lisse away from l and hence gives,

by Theorem 3.3.5, a continuous πét
1 (SpecZ[

1
Nl
],Q)-representation on the finite-dimensional

Ql-vector space Wl := R1ã(Fk,l)Q ⊗Ql.

As explained in [Len08], the group πét
1 (SpecQ,Q) is canonically isomorphic to Gal(Q/Q),

and the morphism SpecQ → SpecZ[ 1
Nl
] induces a surjection Gal(Q/Q) ! πét

1 (SpecZ[
1
Nl
],Q),

identifying the latter group with the Galois group Gal(M/Q), where M is the maximal
extension of Q unramified away from N and l.

This shows that Wl is actually a Galois representation, and it is unramified away from
N and l by construction. Next, we want to show that there is a natural TN ⊗Z Ql-module
action on it.

4.2 The Action of the Hecke Algebra

Now that we have a Galois representation, we need to understand how the Hecke algebra
acts on it. First, note that we have the following alternative description for the underlying
vector space of Wl.

Proposition 4.2.1. We have a canonical isomorphism of finite-dimensional Ql-vector spaces

Wl
∼= H̃1

ét(MN ⊗Q,Fk,l)⊗Zl
Ql

∼= H̃1(Man

N , Symk−2 R1f³Q)⊗Q Ql,

where H̃1
ét(MN ⊗ Q,−) denotes the functor R1f̃ associated to the morphism f : MN ⊗ Q →

SpecQ just like above and H̃1(Man

N ,−) denotes the image of H1
c (M

an

N ,−) → H1(Man

N ,−) in
singular cohomology.

Proof. The first isomorphism follows from the Proper Base Change Theorem II 3.2.7, and the
second isomorphism follows from a standard comparison result between singular cohomology
and étale cohomology with constructible coefficients, see for example [FK88, Chapter I,
Section 11].

We know that the Hecke algebra TN ⊗Z Q acts on H̃1(Man
N , Symk−2 R1f³Q), and Deligne

showed that we have an isomorphism of TN ⊗Z C-modules

H̃1(Man
N , Symk−2 R1f³Q)⊗Q C ∼= Sk(N)⊕ Sk(N),

the so-called Shimura isomorphism.
This shows (using the q-expansion) that H̃1(Man

N , Symk−2 R1f³Q)⊗QC is a free TN ⊗ZC-

module of rank 2, and hence H̃1(Man
N , Symk−2 R1f³Q) is a free TN ⊗Z Q-module of rank

2.
By extending scalars to TN ⊗ZQl, we obtain the promised module structure on the vector

space Wl. Our last goal for this section is to show that the action of TN ⊗ZQl and Gal(Q/Q)
commute.

It obviously suffices to check this for Hecke operators Tp, where p is a prime, and the
diamond operators. Categorically speaking, the condition of commuting with the Galois
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action is saying that we have an endomorphism in the category of Gal(Q/Q)-representations.
Using the correspondence Theorem 3.3.5, we therefore have to show that our endomorphisms
on the stalk Wl lift to endomorphisms of the Ql-sheaf R

1ã(Fk,l).
Unfortunately, this construction requires some heavy arithmetic geometry as well as an

explicit description of the Shimura isomorphism, which is why we will only outline the strat-
egy here. We begin with the following definition for the diamond operators. In the following,
let p " N denote a prime.

Definition 4.2.2. We denote by Ip : MN → MN the automorphism defined by the automor-
phism of functors (E,αN) ³→ (E,αN · p). It acts on R1ã(Fk,l) via

I³p : R
1ã(Fk,l) = R1ã(Symk−2 R1f³Zl)

I∗p
−→ R1ã(I³p (Sym

k−2 R1f³Zl)) ∼= R1ã(Symk−2 R1f³Zl),

where the last isomorphism is induced by the Proper Base Change Theorem II 3.2.7.

The construction for the Hecke operators Tp involves another moduli problem:

Proposition 4.2.3. Let p " N be a prime number. Then the functor

Sch/Z[
1

N
] → Set

associating to a scheme S the set of isomorphism classes of commutative diagrams of S-
schemes

Z/NZ
2

S

EN FN

E F

α α
′

ϕ

,

where ϕ : E → F is a p-isogeny of relative elliptic curves and α,α′ are isomorphisms, is
represented by a Z[ 1

N
]-scheme MN,p. The morphisms q1 : MN,p → MN and q2 : MN,p → MN

corresponding to the morphisms of functors assigning to each diagram as above the elliptic
curve E → S with level N structure α and F → S with level N structure α′ respectively are
both finite.

Proof. See [Del71].

While we could (like Deligne in [Del71]) use the scheme MN,p to construct the desired lift
of the operator Tp, it turns out that its normalization also works, and is better suited for
computations. Therefore (and since we do not prove it here anyway) we define the lift of Tp

directly with the normalization, but not before collecting some useful facts on it.
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Consider the two commutative diagrams

Z/NZ
2

EN E
(p)
N

E E(p)

α α
(p)

F

Z/NZ
2

E
(p)
N EN

E(p) E

α
(p)

p
α

V

of MN ⊗ Fp-schemes, where E is the universal elliptic curve pulled back, F is the relative
Frobenius and V is its dual (induced by the contravariant functor Pic0

−/MN⊗Fp
), called the

“Verschiebung”.
They induce by Proposition 4.2.3 two morphisms Φ1 and Φ2 from MN⊗Fp to MN,p, which

together induce a morphism

Φ : MN ⊗ Fp

û

MN ⊗ Fp → MN,p ⊗ Fp.

For the two morphisms q1, q2 : MN,p ⊗ Fp → MN ⊗ Fp from Proposition 4.2.3 we find

q1 ◦ Φ = id
û

(I−1
p ◦ F )

q2 ◦ Φ = F
û

id,

where F denotes the absolute Frobenius of MN ⊗ Fp.

Proposition 4.2.4. i) Denote by M ′
N,p → MN,p the normalization of MN,p. The mor-

phisms q′1, q
′
2 : M

′
N,p → MN induced by composition with q1, q2 are still finite and flat.

ii) The morphism Φ can be factored through a surjective morphism

Φ
′ : MN ⊗ Fp

û

MN ⊗ Fp → M ′
N,p ⊗ Fp.

Proof. See [Del71].

With this out of the way, we now come to the construction of Tp as an endomorphism of
R1ãFk,l.

Consider the commutative diagram

E1 E2

E M
′

N,p E

MN MN

u

ϕ

v

f q′
1

q′
2

f

,

where f is the universal elliptic curve over MN and u, v,ϕ are all induced by the universal
diagram over MN,p and the base change along its normalization. Note that both the left and
the right square are Cartesian.
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Theorem 4.2.5. Denote for each compactifiable Z[ 1
N
]-scheme X the higher direct image

(resp. the higher direct image with compact support and its image under the canonical map)
by R•a³(X,−) (resp. R•a!(X,−) and R•ã(X,−)) along the structure morphism of X/Z[ 1

N
].

Note that, despite the notation, there is no reason to assume that the functors R•ã(X,−)
form a δ-functor.

Then the Hecke operator Tp : Wl → Wl is modeled by the endomorphism

R1ã(MN , Sym
k−2(R1f³Zl))

q′∗
1−→ R1ã(MN,p, q

′³
1 Symk−2(R1f³Zl)) ∼=

∼= R1ã(M ′
N,p, Sym

k−2(R1v³Zl)) ∼= R1ã(M ′
N,p, Sym

k−2(id³ R1v³Zl))
ϕ
∗

−→

ϕ
∗

−→ R1ã(M ′
N,p, Sym

k−2(R1u³ϕ
³Zl)) ∼= R1ã(M ′

N,p, Sym
k−2(R1u³Zl)) ∼=

∼= R1ã(MN,p, q
′³
2 Symk−2(R1f³Zl))

q′
2∗−→ R1ã(MN , Sym

k−2(R1f³Zl)),

meaning that this endomorphism induces Tp on Wl. Here, ϕ
³ is the map induced by the base

change morphism from Theorem 3.2.1 and q′2³ denotes the trace mapping induced by the finite
flat map q′2 (cf. Theorem 3.2.8).

Similarly, the endomorphism I³p from Definition 4.2.2 is identified with the diamond op-
erator *p〉 : Wl → Wl.

Proof. See [Del71].

4.3 Generalizing the Eichler-Shimura Relation

Now that we have our 2-dimensional Galois representation over TN ⊗Q Ql, we want to prove
the promised polynomial relation for the Frobenius. As in the weight k = 2 case, this is done
by investigating how the construction behaves under reduction modulo p.

Our main aim is to prove the following theorem.

Theorem 4.3.1 (Deligne). As before, let M/Q be the maximal extension unramified away
from N and l, let ϕp be a relative Frobenius element for a prime p " Nl in Gal(M/Q) and
denote by F : Wl → Wl the endomorphism ϕ−1

p . There is a canonically defined l-adic scalar
product on Wl, and we denote by V the transpose of F via that scalar product.

Then we have
Tp = F + I³pV , FV = V F = pk−1

and hence
1− TpX + I³pp

k−1X2 = (1− FX)(1− I³pV X).

In particular, ϕp is a zero of that last polynomial.

Fix a prime p " Nl and choose an algebraic closure Fp/Fp. We want to understand the
restriction T̃p := Tp| SpecFp

of the Hecke operator. First, note that the restriction

R1ã(MN , Sym
k−2(R1f³Zl))| SpecFp

is again locally constant by Lemma 3.1.6, and hence corresponds to some continuous l-adic
πét
1 (SpecFp,Fp)-representation.
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Lemma 4.3.2. Let f : X → Y be a morphism of connected locally Noetherian schemes, let
x̄ → X be a geometric point and let F be a lisse Ql-sheaf. Then the πét

1 (X, x̄)-representation
corresponding under Theorem 3.3.5 to f ³F is the representation

πét
1 (X, x̄)

f∗
−→ πét

1 (Y, f(x̄)) → AutQl
(Ff(x̄)),

where the latter representation is the one corresponding to F under Theorem 3.3.5.

Proof. By construction, it suffices to prove the corresponding result for lisse Z/lnZ-sheaves.
In that case, there is, by Proposition 3.1.8, a finite étale scheme G/Y such that F ∼=

HomY (−, G). Therefore, we have f ³F ∼= HomX(−, G ×Y X) (cf. Corollary 2.2.11) and the
statement is clear by the construction of f³ : π

ét
1 (X, x̄) → πét

1 (Y, f(x̄)) in [Len08].

There is an isomorphism between πét
1 (SpecZ[

1
Nl
],Q) ∼= Gal(M/Q) and πét

1 (SpecZ[
1
Nl
],Fp),

unique up to inner automorphism. It is clear by construction that πét
1 (SpecFp,Fp) →

πét
1 (SpecZ[

1
Nl
],Fp) sends the Frobenius in πét

1 (SpecFp,Fp) ∼= Gal(Fp/Fp) to an absolute
Frobenius element in Gal(M/Q).

Therefore, to prove the sum decomposition of Tp in Theorem 4.3.1, we can consider its
restriction T̃p to SpecFp. Note that by Theorem 3.2.7 and Theorem 3.2.8, the endomorphism
T̃p is constructed in an analogous way to Theorem 4.2.5, with the whole diagram base changed
to Fp. We begin with the following rather general lemma.

Lemma 4.3.3. Let S be a Noetherian scheme, and assume we have four compactifiable S-
schemes X, Y, Z1 and Z2. Let F be a Zl-sheaf on X and G a Zl-sheaf on Y . Assume we have
a commutative diagram of S-schemes and two morphisms of sheaves

y∗
1
G x∗

1
F y∗

2
G x∗

2
F

Z1 Z2

X Y

z1 z2

x1

y1

f

x2

y2

such that f ³z2 = z1, the morphisms to Y are proper and the ones to X are finite flat. Lastly,
assume that for each geometric point x̄ → Z2, the multiplicity of x̄ in the fiber x−1

2 (x2(x̄)) is
equal to the sum of multiplicities of points ȳ ∈ f−1(x̄) in their respective fibers x−1

1 (x1(ȳ)).
Then, the diagram

Riã(Y,G) Riã(Z1, y
∗

1
G) Riã(Z1, x

∗

1
F) Riã(X,F)

Riã(Y,G) Riã(Z2, y
∗

2
G) Riã(Z2, x

∗

2
F) Riã(X,F)

y∗
1 z1 x1∗

y∗
2 z2

f∗

x2∗

f∗

commutes, where x1³ and x2³ denote the respective trace maps.

Proof. Commutativity of the first two squares is obvious, and the commutativity of the last
one relies on the construction of the trace map, so we refer to [Del71].
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It is here where the model for Tp using the normalization of MN comes in handy, as it
allows us to combine the last lemma with Proposition 4.2.4 to obtain a decomposition of Tp

into a sum of certain endomorphisms.

Corollary 4.3.4. The restriction T̃p is given by the sum of endomorphisms defined, as in
Theorem 4.2.5, by the two diagrams (implicitly over Fp)

E E
(p)

E MN E

MN MN

FE/MN

f F f

and

(I−1
p )∗E(p)

E

E MN E

MN MN

V

f I−1
p ◦F f

.

Proof. This is an immediate application of Lemma 4.3.3 to the diagram

Mn ⊗ Fp

∐
Mn ⊗ Fp M

′

n,p
⊗ Fp

Mn ⊗ Fp Mn ⊗ Fp

Φ
′

q
′

1

q
′

2

after noting that by Proposition 4.2.4 we have

q′1 ◦ Φ
′ = id

û
(I−1

p ◦ F )

q′2 ◦ Φ
′ = F

û
id,

so we only have to check the conditions for Lemma 4.3.3. The pullback Φ
³(ϕ³) (cf. Theo-

rem 4.2.5) is computed using the fact that the base change morphism is stable under compo-
sition (cf. [SGAIV73, Expose XII, Proposition 4.4]) and the condition on the multiplicities
of geometric points is in [Del71].

This turns out to be just the decomposition we were looking for in Theorem 4.3.1:
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Proposition 4.3.5. The endomorphism F , defined as in Theorem 4.2.5 by the diagram

E E
(p)

E MN E

MN MN

FE/MN

f F f

,

is the inverse of the Frobenius ϕp ∈ Gal(Fp/Fp).
The diagram

(I−1
p )∗E(p)

E

E MN E

MN MN

V

f I−1
p ◦F f

defines the composition I³p ◦ V , where V is the transpose of F with respect to the l-adic
inner product mentioned in Theorem 4.3.1 and Ip∗ denotes the automorphism defined in
Definition 4.2.2 (restricted to SpecFp).

Furthermore, we have FV = V F = pk−1.

Proof. As in Proposition 4.2.1, we may view R1ã(MN , Sym
k−2(R1f³Zl))| SpecFp

as the coho-

mology group H̃1
ét(MN ⊗Fp,Fk,l)⊗Zl

Ql, and therefore we can refer to [SGAV77, Exposé XV,
Section 2, n◦3] for the computation of F .

For the second endomorphism, the l-adic inner product and the relation FV = V F = pk−1

we refer to [Del71] directly.

This concludes the proof of Theorem 4.3.1. Combining all of our results, we have proved:

Theorem 4.3.6. Let k ≥ 2, let N ≥ 5 and let f ∈ Sk(Γ1(N),χ) be a normalized eigenform,
where χ : (Z/NZ)³ → C³ is some character. Then there is a 2-dimensional l-adic Galois
representation

ρf,l : Gal(Q/Q) → Gl2(Kf,l),

where Kf,l is an appropriate l-adic number field, such that ρf,l is unramified away from Nl,
and such that for any prime p " Nl, any relative Frobenius ϕp ∈ Gal(Q/Q) satisfies the
equation

1− ap(f)ρf,l(ϕp) + pk−1χ(p)ρf,l(ϕp)
2 = 0.
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