Asmussen, S. Subexponential asymptotics for stochastic processes: extremal behavior, stationary distributions and first passage probabilities. Ann. Appl. Probab. 8 (1998), no. 2, 354-374. Bingham, N. H.; Goldie, C. M.; Teugels, J. L. Regular variation. Cambridge University Press, Cambridge, 1987. Brandt, A. The stochastic equation Yn+1 = AnYn + Bn with stationary coefficients. Adv. in Appl. Probab. 18 (1986), no. 1, 211-220. Breiman, L. On some limit theorems similar to the arc-sin law. (Russian) Teor. Verojatnost. i Primenen. 10 (1965), 351-360; translation in Theor. Probability Appl. 10(1965), 323-331. Cai, J.; Tang, Q. Lp transform and asymptotic ruin probability in a perturbed risk model. Stochastic Process. Appl. (2004), to appear. Chistyakov, V. P. A theorem on sums of independent positive random variables and its applications to branching random processes. (Russian) Teor. Verojatnost. i Primenen 9 (1964), 710-718; translation in Theory Prob. Appl. 9 (1964), 640-648. Chover, J.; Ney, P.; Wainger, S. Functions of probability measures. J. Analyse Math. 26 (1973a), 255-302. Chover, J.; Ney, P.; Wainger, S. Degeneracy properties of subcritical branching processes. Ann. Probability 1 (1973b), 663-673. Cline, D. B. H.; Samorodnitsky, G. Subexponentiality of the product of independent random variables. Stochastic Process. Appl. 49 (1994), no. 1, 75-98. Davis, R.; Resnick, S. Extremes of moving averages of random variables from the domain of attraction of the double exponential distribution. Stochastic Process. Appl. 30 (1988), no. 1, 41-68. Embrechts, P. A property of the generalized inverse Gaussian distribution with some applications. J. Appl. Probab. 20 (1983), no. 3, 537-544. Embrechts, P.; Klüppelberg, C.; Mikosch, T. Modelling extremal events for insurance and finance. Springer-Verlag, Berlin, 1997. Frolova, A.; Kabanov, Y.; Pergamenshchikov, S. In the insurance business risky investments are dangerous. Finance Stoch. 6 (2002), no. 2, 227-235. Geluk, J. L.; de Haan, L. Regular variation, extensions and Tauberian theorems. Amsterdam, 1987. Goldie, C. M. Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1 (1991), no. 1, 126-166. de Haan, L. On regular variation and its application to the weak convergence of sample extremes. Amsterdam, 1970. Kalashnikov, V.; Konstantinides, D. Ruin under interest force and subexponential claims: a simple treatment. Insurance Math. Econom. 27 (2000), no. 1, 145-149. Kalashnikov, V.; Norberg, R. Power tailed ruin probabilities in the presence of risky investments. Stochastic Process. Appl. 98 (2002), no. 2, 211-228. Klüppelberg, C. Subexponential distributions and characterizations of related classes. Probab. Theory Related Fields 82 (1989), no. 2, 259-269. Klüppelberg, C.; Mikosch, T. Large deviations of heavy-tailed random sums with applications in insurance and finance. J. Appl. Probab. 34 (1997), no. 2, 293-308. Klüppelberg, C.; Stadtmüller, U. Ruin probabilities in the presence of heavy-tails and interest rates. Scand. Actuar. J. (1998), no. 1, 49-58. Konstantinides, D.; Tang, Q.; Tsitsiashvili, G. Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails. Insurance Math. Econom. 31 (2002), no. 3, 447-460. Ng, K. W.; Tang, Q.; Yan, J.; Yang, H. Precise large deviations for the prospective-loss process. J. Appl. Probab. 40 (2003), no. 2, 391-400. Norberg, R. Ruin problems with assets and liabilities of diffusion type. Stochastic Process. Appl. 81 (1999), no. 2, 255-269. Nyrhinen, H. On the ruin probabilities in a general economic environment. Stochastic Process. Appl. 83 (1999), no. 2, 319-330. Nyrhinen, H. Finite and infinite time ruin probabilities in a stochastic economic environment. Stochastic Process. Appl. 92 (2001), no. 2, 265-285. Paulsen, J. On Cramér-like asymptotics for risk processes with stochastic return on investments. Ann. Appl. Probab. 12 (2002), no. 4, 1247-1260. Resnick, S. I. Extreme values, regular variation, and point processes. Springer-Verlag, New York, 1987. Rogozin, B. A. On the constant in the definition of subexponential distributions. (Russian) Teor. Veroyatnost. i Primenen. 44 (1999), no. 2, 455-458; translation in Theory Probab. Appl. 44 (2000), no. 2, 409-412. Rogozin, B. A.; Sgibnev, M. S. Banach algebras of measures on the line with given asymptotics of distributions at infinity. (Russian) Sibirsk. Mat. Zh. 40 (1999), no. 3, 660-672; translation in Siberian Math. J. 40 (1999), no. 3, 565-576. Sgibnev, M. S. On the distribution of the maxima of partial sums. Statist. Probab. Lett. 28 (1996), no. 3, 235-238. Sundt, B.; Teugels, J. L. Ruin estimates under interest force. Insurance Math. Econom. 16 (1995), no. 1, 7-22. Sundt, B.; Teugels, J. L. The adjustment function in ruin estimates under interest force. Insurance Math. Econom. 19 (1997), no. 2, 85-94. Tang, Q. The ruin probability of a discrete time risk model under constant interest rate with heavy tails. Scand. Actuar. J. (2004), no. 3, 229-240. Tang, Q.; Tsitsiashvili, G. Precise estimates for the ruin probability infinite horizon in a discrete-time model with heavy-tailed insurance and financial risks. Stochastic Process. Appl. 108 (2003), no. 2, 299-325. Teugels, J. L. The class of subexponential distributions. Ann. Probability 3 (1975), no.6, 1000-1011. Tsitsiashvili, G. Quality properties of risk models under stochastic interest force. Inform. Process. 2 (2002), no. 2, 264-268. Vervaat, W. On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. in Appl. Probab. 11 (1979), no. 4, 750-783. Yang, H. Non-exponential bounds for ruin probability with interest effect included. Scand. Actuar. J. (1999), no. 1, 66-79.