[1] F. Ihlenburg, I. Babuska and S. Sauter, Reliablity of finite element method for the numerical computation of waves, Adv Eng Software 28 (1997), pp. 417–424. [2] F. Ihlenburg, The medium-frequency range in computational acoustics: practical and numerical aspects, J Comput Acoust 11 (2003) (2), pp. 175–193. [3] C. Farhat, P. Wiedemann-Goiran and R. Tezaur, A discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of short wave exterior Helmholtz problems on unstructured meshes, Wave Motion 39 (2004), pp. 307–317. [4] I. Harari and F. Magoules, Numerical investigations of stablized finite element computations for acoustics, Wave Motion 39 (2004), pp. 339–349. [5] T. Koike, H. Wada and T. Kobayashi, Modeling of the human middle ear using the finite-element method, J Acoust Soc Am 111 (2002) (3), pp. 1306–1317. [6] R. Tezaur, A. Macedo, C. Farhat and R. Djellouli, Three-dimensional finite element calculations in acoustic scattering using arbitrarily shaped convex artificial boundary, Int J Numer Meth Eng 53 (2002), pp. 1461–1476. [7] F.-C. Lee and W.-H. Chen, On the acoustic absorption of multi-layer absorbers with different inner structures, J Sound Vib 259 (2003) (4), pp. 761–777. [8] M.L. Munjal, Analysis and design of mufflers – an overview of research at Indian Institute of Science, J Sound Vib 211 (1998) (3), pp. 425–433. [9] S. Bilawchuk and K.R. Fyfe, Comparison and implementation of the various numerical method used for calculating transmission loss in silencer systems, Appl Acoust 64 (2003), pp. 903–916. [10] T.W. Wu, C.Y.R. Cheng and P. Zhang, A direct mixed-body boundary element method for packed silencers, J Acoust Soc Am 111 (2002) (6), pp. 2566–2572. [11] M.L. Munjal, Acoustics of ducts and ufflers, Wiley–Interscience, New York (1987). [12] T.W. Wu and G.C. Wan, Muffler performance studies using a direct mixed-body boundary element method and a three-point method for evaluating transmission loss, ASME Trans, J Vib Acoust 118 (1996), pp. 479–484. [13] J.W. Sullivan and M.J. Crocker, Analysis of concentric-tube resonators having unpartitioned cavities, J Acoust Soc Am 64 (1978), pp. 207–215. [14] M.E. Delany and E.N. Bazley, Acoustical properties of fibrous materials, Appl Acoust 3 (1970), pp. 105–116. [15] J.F. Allard, Propagation of sound in porous media, Elsevier Applied Science, London (1993). [16] H. Utsuno, T. Tanak, T. Fujikawa and A.F. Seybert, Transfer function method for measuring characteristic impedance and propagation constant of porous materials, J Acoust Soc Am 86 (1989), pp. 637–643. [17] In: L.L. Beranek and I.L. Vér, Editors, Noise and vibration control engineering, Wiley–Interscience, New York (1992). [18] In: C.M. Harris, Editor, Handbook of noise control, McGraw-Hill, New York (1957). [19] J.W. Sullivan, A method of modeling perforated tube muffler components, I. Theory, J Acoust Soc Am 66 (1979), pp. 772–778. [20] J.W. Sullivan, A method of modeling perforated tube muffler components, II. Applications, J Acoust Soc Am 66 (1979), pp. 779–788. [21] M.L. Munjal and M.G. Prasad, On plane wave propagation in a uniform pipe in the presence of a mean flow and a temperature gradient, J Acoust Soc Am 80 (1986), pp. 1501–1506. [22] K.S. Peat, The transfer matrix of a uniform duct with a linear temperature gradient, J Sound Vib 123 (1988), pp. 43–53. [23] I. Harari and T.J.R. Hughes, A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics, Comput Meth Appl Mech Eng 97 (1992), pp. 77–102. [24] K. Nakajima and H. Okuda, Parallel iterative solvers with localized ILU preconditioning for unstructured grids on workstation clusters, Int J Comput Fluid Dyn 12 (1999), pp. 315–322. [25] W. Gropp, E. Lusk and A. Skjellum, Using MPI: portable parallel programming with the message-passing interface, MIT Press, Cambridge (MA) (1994). [26] A.H. Stroud, A fifth degree integration formula for the n-simplex, SIAM J Numer Anal 6 (1969), pp. 90–98. [27] O.Z. Mehdizadeh and M. Paraschivoiu, Investigation of a two-dimensional spectral element method for Helmhotz’s equation, J Comput Phys 189 (2003), pp. 111–129. [28] R. Kechroud, A. Soulaimani, Y. Saad and S. Gowada, Preconditioning techniques for the solution of the Helmholtz equation by the finite element method, Math Comput Simulat 65 (2004), pp. 303–321. [29] A. Mazzia and G. Pini, Numerical performance of preconditioning techniques for the solution of complex sparse linear systems, Commun Numer Meth Eng 19 (2003), pp. 37–48. [30] M. Malhotra, R.W. Freund and P.M. Pinsky, Iterative solution of multiple radiation and scattering problems in structural acoustics using a block quasi-minimal residual algorithm, Comput Methods Appl Mech Eng 146 (1997), pp. 173–196. [31] L.L. Thompson and P.M. Pinsky, Complex wavenumber Fourier analysis of the P-version finite element method, Comput Mech 13 (1994), pp. 255–275. [32] S. Dey, Evaluation of p-FEM approximations for mid-frequency elasto-acoustics, J Comput Acoust 11 (2003) (2), pp. 195–225. [33] H. Kardestuncer, Finite element handbook, McGraw-Hill, New York (1987). [34] N. Kikuchi, Finite element methods in mechanics, Cambridge University Press, New York (1986). [35] O.C. Zienkiewicz, The finite element method (5th ed.), Butterworth–Heinemann, Oxford (2000). [36] K. Wang, S.-B. Kim, J. Zhang, K. Nakajima and H. Okuda, Global and localized parallel preconditioning techniques for large scale solid earth simulations, Future Gener Comput Syst 19 (2003) (4), pp. 443–456.