1.Lowell GH, Ballou WR, Smith LF, Wirtz RA, Zollinger WD, Hockmeyer WT: Proteosome-lipopeptide vaccines: enhancement of immunogenicity for malaria CS peptides. Science 1988, 240:800-802. 2.Lowell GH, Smith LF, Seid RC, Zollinger WD: Peptides bound to proteosomes via hydrophobic feet become highly immunogenic without adjuvants. J Exp Med 1988, 167:658-663. 3.Bayer EA, Belaich JP, Shoham Y, Lamed R: The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 2004 , 58:521-554. 4.Conrado RJ, Varner JD, DeLisa MP: Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy. Curr Opin Biotechnol 2008 , 19:492-499. 5.Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD: Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 2009 , 27:753-759. PubMed 6.Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002 , 66:506-577. 7.Schwarz WH: The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 2001 , 56:634-649. 8.Kruus K, Lua AC, Demain AL, Wu JH: The anchorage function of CipA (CelL), a scaffolding protein of the Clostridium thermocellum cellulosome. Proc Natl Acad Sci USA 1995 , 92:9254-9258. 9.Leibovitz E, Beguin P: A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA. J Bacteriol 1996 , 178:3077-3084. 10.Lemaire M, Ohayon H, Gounon P, Fujino T, Beguin P: OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope. J Bacteriol 1995 , 177:2451-2459. 11.Kosugi A, Amano Y, Murashima K, Doi RH: Hydrophilic domains of scaffolding protein CbpA promote glycosyl hydrolase activity and localization of cellulosomes to the cell surface of Clostridium cellulovorans. J Bacteriol 2004 , 186:6351-6359. 12.Garcia-Campayo V, Beguin P: Synergism between the cellulosome-integrating protein CipA and endoglucanase CelD of Clostridium thermocellum. J Biotechnol 1997 , 57:39-47. 13.Zverlov VV, Klupp M, Krauss J, Schwarz WH: Mutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS1447, and implications for cellulase synergism on crystalline cellulose. J Bacteriol 2008 , 190:4321-4327. 14.Lynd LR, van Zyl WH, McBride JE, Laser M: Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 2005 , 16:577-583. 15.Lu Y, Zhang YH, Lynd LR: Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Natl Acad Sci USA 2006 , 103:16165-16169. 16.Miron J, Ben-Ghedalia D, Morrison M: Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J Dairy Sci 2001 , 84:1294-1309. 17.Bayer EA, Kenig R, Lamed R: Adherence of Clostridium thermocellum to cellulose. J Bacteriol 1983 , 156:818-827. 18.Ng TK, Weimer TK, Zeikus JG: Cellulolytic and physiological properties of Clostridium thermocellum. Arch Microbiol 1977 , 114:1-7. 19.Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R, Shoham Y, Belaich JP: Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. J Biol Chem 2002 , 277:49621-49630. 20.Fierobe HP, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, Belaich JP, Bayer EA: Design and production of active cellulosome chimeras. Selective incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem 2001 , 276:21257-21261. 21.Fierobe HP, Mingardon F, Mechaly A, Belaich A, Rincon MT, Pages S, Lamed R, Tardif C, Belaich JP, Bayer EA: Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. J Biol Chem 2005 , 280:16325-16334. 22.Mingardon F, Chanal A, Tardif C, Bayer EA, Fierobe HP: Exploration of new geometries in cellulosome-like chimeras. Appl Environ Microbiol 2007 , 73:7138-7149. 23.Murashima K, Kosugi A, Doi RH: Synergistic effects on crystalline cellulose degradation between cellulosomal cellulases from Clostridium cellulovorans. J Bacteriol 2002 , 184:5088-5095. 24.Perret S, Casalot L, Fierobe HP, Tardif C, Sabathe F, Belaich JP, Belaich A: Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824. J Bacteriol 2004 , 186:253-257. PubMed Abstract | Publisher 25.Sabathe F, Soucaille P: Characterization of the CipA scaffolding protein and in vivo production of a minicellulosome in Clostridium acetobutylicum. J Bacteriol 2003 , 185:1092-1096. 26.Ito J, Kosugi A, Tanaka T, Kuroda K, Shibasaki S, Ogino C, Ueda M, Fukuda H, Doi RH, Kondo A: Regulation of the display ratio of enzymes on the Saccharomyces cerevisiae cell surface by the immunoglobulin G and cellulosomal enzyme binding domains. Appl Environ Microbiol 2009 , 75:4149-4154. 27.Tsai SL, Oh J, Singh S, Chen R, Chen W: Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 2009 , 75:6087-6093. 28.Lilly M, Fierobe HP, van Zyl WH, Volschenk H: Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae. FEMS Yeast Res 2009 , 9:1236-1249. 29.Wen F, Sun J, Zhao H: Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76:1251-1260. 30.Petrov K, Urshev Z, Petrova P: L+-lactic acid production from starch by a novel amylolytic Lactococcus lactis subsp. lactis B84. Food Microbiol 2008 , 25:550-557. 31.Hernandez I, Molenaar D, Beekwilder J, Bouwmeester H, van Hylckama Vlieg JE: Expression of plant flavor genes in Lactococcus lactis. Appl Environ Microbiol 2007 , 73:1544-1552. 32.Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermudez-Humaran LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE, et al.: Protein secretion in Lactococcus lactis : an efficient way to increase the overall heterologous protein production. Microb Cell Fact 2005 , 4:2. 33.Narita J, Okano K, Kitao T, Ishida S, Sewaki T, Sung MH, Fukuda H, Kondo A: Display of alpha-amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch. Appl Environ Microbiol 2006 , 72:269-275. 34.Zhang YH, Lynd LR: Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J Bacteriol 2005 , 187:99-106. 35.Dieye Y, Hoekman AJ, Clier F, Juillard V, Boot HJ, Piard JC: Ability of Lactococcus lactis to export viral capsid antigens: a crucial step for development of live vaccines. Appl Environ Microbiol 2003 , 69:7281-7288. 36.Dieye Y, Usai S, Clier F, Gruss A, Piard JC: Design of a protein-targeting system for lactic acid bacteria. J Bacteriol 2001 , 183:4157-4166. 37.Miyoshi A, Poquet I, Azevedo V, Commissaire J, Bermudez-Humaran L, Domakova E, Le Loir Y, Oliveira SC, Gruss A, Langella P: Controlled production of stable heterologous proteins in Lactococcus lactis. Appl Environ Microbiol 2002 , 68:3141-3146. 38.Ribeiro LA, Azevedo V, Le Loir Y, Oliveira SC, Dieye Y, Piard JC, Gruss A, Langella P: Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl Environ Microbiol 2002 , 68:910-916. 39.Langella P, Le Loir Y: Heterologous protein secretion in Lactococcus lactis: a novel antigen delivery system. Braz J Med Biol Res 1999 , 32:191-198. 40.Atsumi S, Hanai T, Liao JC: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008 , 451:86-89. 41.Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S: Metabolic engineering of a pentose M\metabolism pathway in ethanologenic Zymomonas mobilis. Science 1995 , 267:240-243. 42.Wu CH, Mulchandani A, Chen W: Versatile microbial surface-display for environmental remediation and biofuels production. Trends Microbiol 2008 , 16:181-188. 43.Rittmann D, Lindner SN, Wendisch VF: Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 2008 , 74:6216-6222. 44.Lee SK, Chou H, Ham TS, Lee TS, Keasling JD: Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 2008 , 19:556-563. 45.Rogers PL, Jeon YJ, Lee KJ, Lawford HG: Zymomonas mobilis for fuel ethanol and higher value products. Adv Biochem Eng Biotechnol 2007 , 108:263-288. 46.Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD: Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559-562. 47.Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR: Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA 2008 , 105:13769-13774. 48.de Vos WM: Gene expression systems for lactic acid bacteria. Curr Opin Microbiol 1999 , 2:289-295. 49.Bermudez-Humaran LG, Cortes-Perez NG, Le Loir Y, Alcocer-Gonzalez JM, Tamez-Guerra RS, de Oca-Luna RM, Langella P: An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant lactococci. J Med Microbiol 2004 , 53:427-433. 50.Leenhouts K, Buist G, Kok J: Anchoring of proteins to lactic acid bacteria. Antonie Van Leeuwenhoek 1999 , 76:367-376. 51.Gerngross UT, Romaniec MP, Kobayashi T, Huskisson NS, Demain AL: Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol Microbiol 1993 , 8:325-334. 52.Lytle B, Myers C, Kruus K, Wu JH: Interactions of the CelS binding ligand with various receptor domains of the Clostridium thermocellum cellulosomal scaffolding protein, CipA. J Bacteriol 1996 , 178:1200-1203. 53.Murashima K, Kosugi A, Doi RH: Solubilization of cellulosomal cellulases by fusion with cellulose-binding domain of noncellulosomal cellulase engd from Clostridium cellulovorans. Proteins 2003 , 50:620-628. 54.Bermudez-Humaran LG, Langella P, Miyoshi A, Gruss A, Guerra RT, Montes de Oca-Luna R, Le Loir Y: Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl Environ Microbiol 2002 , 68:917-922. 55.Avall-Jaaskelainen S, Lindholm A, Palva A: Surface display of the receptor-binding region of the Lactobacillus brevis S-layer protein in Lactococcus lactis provides nonadhesive lactococci with the ability to adhere to intestinal epithelial cells. Appl Environ Microbiol 2003 , 69:2230-2236. 56.Cortes-Perez NG, Azevedo V, Alcocer-Gonzalez JM, Rodriguez-Padilla C, Tamez-Guerra RS, Corthier G, Gruss A, Langella P, Bermudez-Humaran LG: Cell-surface display of E7 antigen from human papillomavirus type-16 in Lactococcus lactis and in Lactobacillus plantarum using a new cell-wall anchor from lactobacilli. J Drug Target 2005 , 13:89-98. 57.Lindholm A, Smeds A, Palva A: Receptor binding domain of Escherichia coli F18 fimbrial adhesin FedF can be both efficiently secreted and surface displayed in a functional form in Lactococcus lactis. Appl Environ Microbiol 2004 , 70:2061-2071. 58.Piard JC, Hautefort I, Fischetti VA, Ehrlich SD, Fons M, Gruss A: Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. J Bacteriol 1997 , 179:3068-3072. 59.Raha AR, Varma NR, Yusoff K, Ross E, Foo HL: Cell surface display system for Lactococcus lactis: a novel development for oral vaccine. Appl Microbiol Biotechnol 2005 , 68:75-81. 60.Ramasamy R, Yasawardena S, Zomer A, Venema G, Kok J, Leenhouts K: Immunogenicity of a malaria parasite antigen displayed by Lactococcus lactis in oral immunisations. Vaccine 2006 , 24:3900-3908. 61.Yang Z, Liu Q, Wang Q, Zhang Y: Novel bacterial surface display systems based on outer membrane anchoring elements from the marine bacterium Vibrio anguillarum. Appl Environ Microbiol 2008 , 74:4359-4365. 62.Terzaghi BE, Sandine WE: Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 1975 , 29:807-813. 63.Sambrook J, Russell DW: Molecular cloning: a laboratory manual. 3rd edition. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press; 2001. 64.Wang WK, Wu JH: Structural features of the Clostridium thermocellum cellulase SS gene. Appl Biochem Biotechnol 1993 , 39-40:149-158. 65.Holo H, Nes IF: High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 1989 , 55:3119-3123. 66.Sorvig E, Gronqvist S, Naterstad K, Mathiesen G, Eijsink VG, Axelsson L: Construction of vectors for inducible gene expression in Lactobacillus sakei and L plantarum. FEMS Microbiol Lett 2003 , 229:119-126. 67.Steidler L, Viaene J, Fiers W, Remaut E: Functional display of a heterologous protein on the surface of Lactococcus lactis by means of the cell wall anchor of Staphylococcus aureus protein A. Appl Environ Microbiol 1998 , 64:342-345. 68.Axelsson L, Lindstad G, Naterstad K: Development of an inducible gene expression system for Lactobacillus sakei. Lett Appl Microbiol 2003 , 37:115-120. 69.Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 1985 , 33:103-119