[1] J. Rabaey, Low Power Design Essentials. Springer, 2009. [2] K. Zhang, Embedded Memories for Nano-Scale VLSIs. Springer, 2009. [3] A. Pavlov and M. Sachdev, CMOS SRAM Circuit Design and Parametric Test in Nano-Scaled Technologies. New York, USA: Springer, 2008. [4] S. Rusu, S. Tam, H. Muljono, J. Stinson, D. Ayers, J. Chang, R. Varada, M. Ratta, S. Kottapalli, and S. Vora, “A 45 nm 8-core enterprise Xeon R processor,” Solid-State Circuits, IEEE Journal of, vol. 45, no. 1, pp. 7 –14, jan. 2010. [5] International Technology Roadmap for Semiconductors, Semiconductor Industry Association, 2009. [Online]. Available: http://www.itrs.net [6] R. Krishnarnurthy, A. Alvandpour, V. De, and S. Borkar, “High-performance and low-power challenges for sub-70 nm microprocessor circuits,” in Custom Integrated Circuits Conference, 2002. Proceedings of the IEEE 2002, 2002, pp. 125 – 128. [7] C. Kenyon, A. Kornfeld, K. Kuhn, M. Liu, A. Maheshwari, W. Shih, S. Sivakumar, G. Taylor, P. VanDerVoorn, and K. Zawadzki, “Managing process variation in Intel’s 45nm CMOS technology,” Intel Technology Journal, vol. 12, no. 2, pp. 93–109, June 2008. [Online]. Available: http://www.intel.com/technology/itj/2008/v12i2/3-managing/1-abstract.htm [8] H. Yamauchi, “A discussion on SRAM circuit design trend in deeper nanometerscale technologies,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 18, no. 5, pp. 763 –774, may 2010. [9] Y. Ye, F. Liu, M. Chen, S. Nassif, and Y. Cao, “Statistical modeling and simulation of threshold variation under random dopant fluctuations and line-edge roughness,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. PP, no. 99, pp. 1 –10, 2010. [10] S. Nassif, “Modeling and analysis of manufacturing variations,” in Custom Integrated Circuits, 2001, IEEE Conference on., 2001, pp. 223 –228. 125 [11] R. Montanes, J. de Gyvez, and P. Volf, “Resistance characterization for weak open defects,” Design & Test of Computers, IEEE, vol. 19, no. 5, pp. 18–26, Sep-Oct 2002. [12] J. M. Rabaey, A. Chandrakasan, , and B. Nikolic, Digital Integrated Circuits- A Design Perspective, Second Edition. Prentice-Hall, 2003. [13] L. Chang, R. Montoye, Y. Nakamura, K. Batson, R. Eickemeyer, R. Dennard, W. Haensch, and D. Jamsek, “An 8T-SRAM for variability tolerance and lowvoltage operation in high-performance caches,” Solid-State Circuits, IEEE Journal of, vol. 43, no. 4, pp. 956 –963, april 2008. [14] N. Verma and A. Chandrakasan, “A 65nm 8T sub-Vt SRAM employing senseamplifier redundancy,” in Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International, 11-15 2007, pp. 328 –606. [15] I. J. Chang, J.-J. Kim, S. Park, and K. Roy, “A 32 kb 10t sub-threshold SRAM array with bit-interleaving and differential read scheme in 90 nm CMOS,” Solid- State Circuits, IEEE Journal of, vol. 44, no. 2, pp. 650 –658, feb. 2009. [16] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits,” Proceedings of the IEEE, vol. 91, no. 2, pp. 305–327, Feb 2003. [17] Predictive Technology Model. [Online]. Available: http://ptm.asu.edu/ [18] F. Hamzaoglu, K. Zhang, Y. Wang, H. Ahn, U. Bhattacharya, Z. Chen, Y.-G. Ng, A. Pavlov, K. Smits, and M. Bohr, “A 3.8 GHz 153 Mb SRAM design with dynamic stability enhancement and leakage reduction in 45 nm high-k metal gate CMOS technology,” Solid-State Circuits, IEEE Journal of, vol. 44, no. 1, pp. 148–154, Jan. 2009. [19] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Circuit and microarchitectural techniques for reducing cache leakage power,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 12, no. 2, pp. 167–184, Feb. 2004. [20] H. Hanson, M. Hrishikesh, V. Agarwal, S. Keckler, and D. Burger, “Static energy reduction techniques for microprocessor caches,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 11, no. 3, pp. 303–313, June 2003. [21] A. Agarwal, H. Li, and K. Roy, “A single-Vt low-leakage gated-ground cache for deep submicron,” Solid-State Circuits, IEEE Journal of, vol. 38, no. 2, pp. 319–328, Feb 2003. [22] J. Chang, M. Huang, J. Shoemaker, J. Benoit, S.-L. Chen, W. Chen, S. Chiu, R. Ganesan, G. Leong, V. Lukka, S. Rusu, and D. Srivastava, “The 65-nm 16- MB shared on-die L3 cache for the dual-core Intel Xeon processor 7100 series,” Solid-State Circuits, IEEE Journal of, vol. 42, no. 4, pp. 846–852, April 2007. 126 [23] H. Mizuno and T. Nagano, “Driving source-line cell architecture for sub-1-V highspeed low-power applications,” Solid-State Circuits, IEEE Journal of, vol. 31, no. 4, pp. 552 –557, apr 1996. [24] C. Kim and K. Roy, “Dynamic Vt SRAM: a leakage tolerant cache memory for low voltage microprocessors,” in Low Power Electronics and Design, 2002. ISLPED ’02. Proceedings of the 2002 International Symposium on, 2002, pp. 251 – 254. [25] Y. Wang, H. J. Ahn, U. Bhattacharya, Z. Chen, T. Coan, F. Hamzaoglu, W. Hafez, C.-H. Jan, P. Kolar, S. Kulkarni, J.-F. Lin, Y.-G. Ng, I. Post, L. Wei, Y. Zhang, K. Zhang, and M. Bohr, “A 1.1 Ghz 12 μ A/Mb-leakage SRAM design in 65 nm ultra-low-power CMOS technology with integrated leakage reduction for mobile applications,” Solid-State Circuits, IEEE Journal of, vol. 43, no. 1, pp. 172–179, Jan. 2008. [26] T.-H. Kim, J. Liu, and C. Kim, “A voltage scalable 0.26 V, 64 kb 8T SRAM with Vmin lowering techniques and deep sleep mode,” Solid-State Circuits, IEEE Journal of, vol. 44, no. 6, pp. 1785–1795, June 2009. [27] J. Tschanz, S. Narendra, Y. Ye, B. Bloechel, S. Borkar, and V. De, “Dynamic sleep transistor and body bias for active leakage power control of microprocessors,” Solid-State Circuits, IEEE Journal of, vol. 38, no. 11, pp. 1838 – 1845, nov. 2003. [28] A. Nourivand, C. Wang, and M. Omair Ahmad, “An adaptive sleep transistor biasing scheme for low leakage SRAM,” in Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on, 27-30 2007, pp. 2790 –2793. [29] Y. Meng, T. Sherwood, and R. Kastner, “Exploring the limits of leakage power reduction in caches,” ACM Trans. Archit. Code Optim., vol. 2, no. 3, pp. 221– 246, 2005. [30] M. Sharifkhani and M. Sachdev, “Segmented virtual ground architecture for lowpower embedded SRAM,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 15, no. 2, pp. 196 –205, feb. 2007. [31] K.-S. Min, K. Kanda, and T. Sakurai, “Row-by-row dynamic source-line voltage control (RRDSV) scheme for two orders of magnitude leakage current reduction of sub-1-V-VDD SRAM’s,” in Low Power Electronics and Design, 2003. ISLPED ’03. Proceedings of the 2003 International Symposium on, Aug. 2003, pp. 66–71. [32] E. Seevinck, F. List, and J. Lohstroh, “Static-noise margin analysis of MOS SRAM cells,” Solid-State Circuits, IEEE Journal of, vol. 22, no. 5, pp. 748–754, Oct 1987. [33] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. Vijaykumar, “Gated-Vdd: a circuit technique to reduce leakage in deep-submicron cache memories,” Low 127 Power Electronics and Design, 2000. ISLPED ’00. Proceedings of the 2000 International Symposium on, pp. 90–95, 2000. [34] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling of failure probability and statistical design of SRAM array for yield enhancement in nanoscaled CMOS,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 24, no. 12, pp. 1859–1880, Dec. 2005. [35] A. Pavlov, M. Sachdev, and J. De Gyvez, “Weak cell detection in deep-submicron SRAMs: A programmable detection technique,” Solid-State Circuits, IEEE Journal of, vol. 41, no. 10, pp. 2334–2343, Oct. 2006. [36] J. Segura, A. Keshavarzi, J. Soden, and C. Hawkins, “Parametric failures in CMOS ICs - a defect-based analysis,” in Test Conference, 2002. Proceedings. International, 2002, pp. 90–99. [37] K. Agarwal and S. Nassif, “Characterizing process variation in nanometer CMOS,” in DAC ’07: Proceedings of the 44th annual Design Automation Conference. New York, NY, USA: ACM, 2007, pp. 396–399. [38] K. Bowman, S. Duvall, and J. Meindl, “Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration,” Solid-State Circuits, IEEE Journal of, vol. 37, no. 2, pp. 183 –190, feb 2002. [39] P. Stolk, F. Widdershoven, and D. Klaassen, “Modeling statistical dopant fluctuations in MOS transistors,” Electron Devices, IEEE Transactions on, vol. 45, no. 9, pp. 1960 –1971, sep. 1998. [40] A. Bhavnagarwala, X. Tang, and J. Meindl, “The impact of intrinsic device fluctuations on CMOS SRAM cell stability,” Solid-State Circuits, IEEE Journal of, vol. 36, no. 4, pp. 658–665, Apr 2001. [41] H. Qin, Y. Cao, D. Markovic, A. Vladimirescu, and J. Rabaey, “SRAM leakage suppression by minimizing standby supply voltage,” Quality Electronic Design, 2004. Proceedings. 5th International Symposium on, pp. 55–60, 2004. [42] J. Wang, A. Singhee, R. Rutenbar, and B. Calhoun, “Statistical modeling for the minimum standby supply voltage of a full SRAM array,” in Solid State Circuits Conference, 2007. ESSCIRC 2007. 33rd European, Sept. 2007, pp. 400–403. [43] A. Kumar, H. Qin, P. Ishwar, J. Rabaey, and K. Ramchandran, “Fundamental data retention limits in SRAM standby - experimental results,” in Quality Electronic Design, 2008. ISQED 2008. 9th International Symposium on, March 2008, pp. 92–97. [44] ——, “Fundamental bounds on power reduction during data-retention in standby SRAM,” in Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on, May 2007, pp. 1867–1870. 128 [45] H. Qin, A. Kumar, K. Ramchandran, J. Rabaey, and P. Ishwar, “Error-tolerant SRAM design for ultra-low power standby operation,” in ISQED ’08: Proceedings of the 9th international symposium on Quality Electronic Design. Washington, DC, USA: IEEE Computer Society, 2008, pp. 30–34. [46] S. Hamdioui and A. Van De Goor, “An experimental analysis of spot defects in SRAMs: realistic fault models and tests,” Test Symposium, 2000. (ATS 2000). Proceedings of the Ninth Asian, pp. 131–138, 2000. [47] A. Singhee and R. Rutenbar, “Statistical blockade: Very fast statistical simulation and modeling of rare circuit events and its application to memory design,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 28, no. 8, pp. 1176–1189, Aug. 2009. [48] R. Kanj, R. Joshi, and S. Nassif, “Mixture importance sampling and its application to the analysis of SRAM designs in the presence of rare failure events,” in Design Automation Conference, 2006 43rd ACM/IEEE, 0-0 2006, pp. 69–72. [49] L. Ding and P. Mazumder, “The impact of bit-line coupling and ground bounce on cmos sram performance,” in VLSI Design, 2003. Proceedings. 16th International Conference on, jan. 2003, pp. 234 – 239. [50] J. Yang, B. Wang, Y. Wu, and A. Ivanov, “Fast detection of data retention faults and other SRAM cell open defects,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 25, no. 1, pp. 167–180, Jan. 2006. [51] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, S. Borri, and M. Hage- Hassan, “Resistive-open defects in embedded-SRAM core cells: analysis and march test solution,” Test Symposium, 2004. 13th Asian, pp. 266–271, Nov. 2004. [52] T. Mak, D. Bhattacharya, C. Prunty, B. Roeder, N. Ramadan, J. Ferguson, and J. Yu, “Cache RAM inductive fault analysis with fab defect modeling,” Test Conference, 1998. Proceedings., International, pp. 862–871, Oct 1998. [53] A. van de Goor and Z. Al-Ars, “Functional memory faults: a formal notation and a taxonomy,” VLSI Test Symposium, 2000. Proceedings. 18th IEEE, pp. 281–289, 2000. [54] W. Pei, W.-B. Jone, and Y. Hu, “Fault modeling and detection for drowsy SRAM caches,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 26, no. 6, pp. 1084–1100, June 2007. [55] P. Embrechts, T. Mikosch, and C. Kl¨uppelberg, Modelling Extremal Events: For Insurance and Finance. London, UK: Springer-Verlag, 1997. 129 [56] H. Qin, Y. Cao, D. Markovic, A. Vladimirescu, and J. Rabaey, “SRAM leakage suppression by minimizing standby supply voltage,” in ISQED ’04: Proceedings of the 5th International Symposium on Quality Electronic Design. Washington, DC, USA: IEEE Computer Society, 2004, pp. 55–60. [57] S. Ghosh, S. Mukhopadhyay, K. Kim, and K. Roy, “Self-calibration technique for reduction of hold failures in low-power nano-scaled SRAM,” in DAC ’06: Proceedings of the 43rd annual Design Automation Conference. New York, NY, USA: ACM, 2006, pp. 971–976. [58] A. Nourivand, A. Al-Khalili, and Y. Savaria, “Aggressive leakage reduction of SRAMs using error checking and correcting (ECC) techniques,” in Circuits and Systems, 2008. MWSCAS 2008. 51st Midwest Symposium on, 10-13 2008, pp. 426 –429. [59] A. Singhee, J. Wang, B. Calhoun, and R. Rutenbar, “Recursive statistical blockade: An enhanced technique for rare event simulation with application to SRAM circuit design,” in VLSI Design, 2008. VLSID 2008. 21st International Conference on, jan. 2008, pp. 131 –136. [60] A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical timing analysis for intra-die process variations with spatial correlations,” in Computer Aided Design, 2003. ICCAD-2003. International Conference on, Nov. 2003, pp. 900–907. [61] A. Agarwal, B. Paul, S. Mukhopadhyay, and K. Roy, “Process variation in embedded memories: failure analysis and variation aware architecture,” Solid-State Circuits, IEEE Journal of, vol. 40, no. 9, pp. 1804 – 1814, sept. 2005. [62] J. Hennessy and D. Patterson, Computer Architecture - A Quantitative Approach, 3rd Edition. San Mateo, CA: Morgan Kaufmann, 2003. [63] C. Stapper and H.-S. Lee, “Synergistic fault-tolerance for memory chips,” Computers, IEEE Transactions on, vol. 41, no. 9, pp. 1078–1087, Sep 1992. [64] C. L. Chen and M. Y. Hsiao, “Error-correcting codes for semiconductor memory applications: a state-of-the-art review,” IBM J. Res. Dev., vol. 28, no. 2, pp. 124–134, 1984. [65] R. A. Fisher and L. H. C. Tippett, “Limiting forms of the frequency distribution of the largest or smallest member of a sample,” Proceedings of the Cambridge Philosophical Society, vol. 44, no. 1, pp. 180–190, Apr. 1928. [66] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan, and V. De, “Adaptive body bias for reducing impacts of die-to-die and withindie parameter variations on microprocessor frequency and leakage,” Solid-State Circuits, IEEE Journal of, vol. 37, no. 11, pp. 1396–1402, Nov 2002. 130 [67] J. Tschanz, S. Narendra, R. Nair, and V. De, “Effectiveness of adaptive supply voltage and body bias for reducing impact of parameter variations in low power and high performance microprocessors,” Solid-State Circuits, IEEE Journal of, vol. 38, no. 5, pp. 826–829, May 2003. [68] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Reduction of parametric failures in sub-100-nm SRAM array using body bias,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 27, no. 1, pp. 174–183, Jan. 2008. [69] M. Khellah, D. Somasekhar, Y. Ye, N. S. Kim, J. Howard, G. Ruhl, M. Sunna, J. Tschanz, N. Borkar, F. Hamzaoglu, G. Pandya, A. Farhang, K. Zhang, and V. De, “A 256-Kb dual-VCC SRAM building block in 65-nm CMOS process with actively clamped sleep transistor,” Solid-State Circuits, IEEE Journal of, vol. 42, no. 1, pp. 233 –242, jan. 2007. [70] Y.Wang, U. Bhattacharya, F. Hamzaoglu, P. Kolar, Y.-G. Ng, L.Wei, Y. Zhang, K. Zhang, and M. Bohr, “A 4.0 GHz 291 Mb voltage-scalable SRAM design in a 32 nm high-k + metal-gate CMOS technology with integrated power management,” Solid-State Circuits, IEEE Journal of, vol. 45, no. 1, pp. 103 –110, jan. 2010. [71] S. Ghosh, S. Mukhopadhyay, K. Kim, and K. Roy, “Self-calibration technique for reduction of hold failures in low-power nano-scaled sram,” in Design Automation Conference, 2006 43rd ACM/IEEE, 0-0 2006, pp. 971–976. [72] N. Mojumder, S. Mukhopadhyay, J.-J. Kim, C.-T. Chuang, and K. Roy, “Selfrepairing SRAM using on-chip detection and compensation,” Very Large Scale Integration (VLSI) Sy