Patterns of space use provide key insights into how animals exploit local resources and are linked to both the fitness and distribution of individuals. We studied territory size, mobility, and foraging behavior of young-of-the-year Atlantic salmon Salmo salar in relation to several key environmental factors in Catamaran Brook, New Brunswick, Canada. The 50 study fish were all multiple central-place foragers (i.e., alternated among several sit-and-wait foraging stations) and showed great variability in territory size and the total distance traveled within the territories. Territory size increased with the mean distance traveled between consecutive foraging stations, the number of stations visited, and the mean foraging radius. Fish also varied greatly in how much of the total travel distance was associated with foraging at a station (14.8–91.8%) versus switching among stations (4.6–84.3%). As predicted, fish in slow-flowing waters, where drifting prey were scarce, used larger multiple central-place territories than individuals in faster, more productive waters. Interestingly, however, the most mobile fish did not inhabit slow-running waters as predicted but were found at intermediate (optimal) water current velocities. Hence, our study suggests that among some multiple central-place foragers, increased mobility may not only serve to increase prey encounter rate but may reflect an attempt to patrol territories in favorable habitats. Further studies are needed to determine the generality and the ultimate benefits of multiple central-place space use among stream-dwelling fish and other animals.