American Society of Civil Engineers (ASCE), (2000). Prestandard and Commentary for the Seismic Rehabilitation of Buildings, prepared for the SAC Joint Venture, published by the Federal Emergency Management Agency, FEMA-356, Washington, D.C. Aguero, A., Izvernari, C. and Tremblay, R., (2006). Modelling of the Seismic Response of Concentrically Braced Steel Steel Frames using the OpenSees Analysis Environment. International Journal of Advanced Steel Construction, 2, 3, pp 242-274. Agureo, A., Izvernari, C. and Tremblay, R., (2005). Numerical Comparison and Optimization of Force and Displacement Based Elements for the Analysis of the Inelastic Cyclic Response of Steel Bracing Members. Advances in Steel Structure, Vol. II, 1235-1240. Applied Technology Council, (1992). Guidelines for Cyclic Seismic Testing of Components of Steel. Structures, ATC-24, Redwood City, CA. Archambault, M.H., (1995). Etude du comportement seismique des contreventements ductile en X avec profiles tubulaires en acier. Rapport No. EPM/GCS-1995-09 Ecole Polytechnique, Montreal. Astaneh-Asl, A., Goel, S.C. and Hanson, R.D., (1985). Cyclic Out-ofPlane Buckling of Double-Angle Bracing. Journal of Structural Engineers, ASCE, 111, pp. 1135-1153. Baker, J. W., (2009). The conditional mean spectrum: A tool for ground motion selection, ASCE Journal of Structural Engineering (in press.) Broderick B.M., Elghazouli, AY, Goggins, J., (2008). Earthquake testing and response analysis of concentrically-braced sub-frames, Journal of Constructional Steel Research, Vol 64, Issus9. Bruneau, M., Engelhardt, M., Filiatrault, A., Goel, S. C., Itani, A., Hajjar, J., Leon, R., Ricles, J., Stojadinovic, B. and Uang, C.-M., (2005). Review of selected recent research on US seismic design and retrofit strategies for steel structures. Progress in Structural Engineering and Materials, 7:103–114. doi:10.1002/pse.192. Canadian Standard Association. (2009), CAN/CSA-S16-09 Limit States Design of Steel Structures. Canadian Standard Association, Toronto, ON. De Sousa, R. M., (2000). Force-Based Finite Element for Large Displacement Inelastic Analysis of Frames PhD Thesis, University of California, Berkeley. Dicleli, M. and Mehta, A., (2007). Simulation of Inelastic Cyclic Buckling Behaviour of Steel Box Sections. Computer & Structures Journal pp. 446-457. Federal Emergency Management Agency (FEMA), (2000). Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA-356, Washington, D.C. Gioncu, V. and Tirca, L., (1996). Rotation Capacity of Rectangular Hollow Section Beams. 7th International Symposium on Tubular Structures, Miskolc, Hungary. International Code Council, (2000). International Building Code, Falls Church, Virginia. Ikeda, K. and Mahin, S., (1984). A Refined Physical Theory Model for Predicting the Seismic Behaviour of Braced Steel Frames. Report no. UCB/EERC-84/12, Earthquake Engineering Research Center, Univ. of California, Berkeley, Ca. International Conference of Building Officials (ICBO). (2001). California Building Code, Whittier, California. Izvernari, C. (2007). The seismic behaviour of steel braces with large sections, Master Thesis. Génie Civil. Département des Génies Civil, Géologique et des Mines. École Polytechnique de Montréal, Canada. Avril. Lacerte, M and Tremblay, R., (2007). Making Use of Brace Overstrength to Improve the Seismic Response of Multi-Storey Split-X Concentrically Braced Steel Frames. Canadian Journal of Civil Engineering. Leon R.T., Yang C. S., (2003). Special Inverted-V-braced Frames with Suspended Zipper Struts. International Workshop on Steel and Concrete Composite Construction, IWSCCC, National Center for Research on Earthquake, Taipei, Taiwan. Leowardi, S. and Walpole, W., (1996). Performance of Steel Brace Members. Report no. ISSN 0110-3326, Univ. of Cantenbury, New Zealand. Mazzoni, S., McKenna, F., Scott, M., Fenves, G. et al., (2007). OpenSees User Manual, http://opensees.berkeley.edu/OpenSees/manuals/usermanual/OpenSeesCommandLanguageManual.pdf. Menegotto, M. and Pinto, P.E., (1973). Method of analysis for Cyclic Loaded R.C. Plane Frame Including Changes in Geometry and Non-elastic Behaviour of Elements under Combined Normal Force and Bending. Proc. IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted On by Well Defined Repeated Loads, pp. 15-22. McKenna, F., (1997). Object Oriented Finite Element Analysis: Frameworks for Analysis Algorithms and Parallel Computing. Ph.D. Thesis, Department of Civil Engineering, University of California, Berkeley, CA. McKenna, F. and Fenves, G.L., (2004). Open System for Earthquake Engineering Simulation (OpenSees). Pacific Earthquake Engineering Research Center (PEER), University of California, Berkeley, CA. (http://opensees.berkeley.edu/index.html) Nouri G.R, H. Imani Kalesar, Zahra Ameli, (2009). The Applicability of the Zipper Strut to Seismic Rehabilitation of Steel Structures. World Academy of Science, Engineering and Technology. Prakash, V., G.A. Powell, and S. Campbell, (1993). DRAIN-2DX Base Program Description and User Guide. Department of Civil Engineering. University of California. Berkeley, California. Shaback, B., and Brown, T., (2003). Behaviour of Square Hollow Structural Steel Braces with End Connections under Reversed Cyclic Axial Loading. Canadian Journal of Civil Engineering, 30 (4) pp. 745-753. Tremblay, R., Archambault, M.-H., and Filiatrault. A., (2003). Seismic Response of Concentrically Braced Steel Frames Made with Rectangular Hollow Bracing Members. ASCE Journal of Structural Engineering 129 (12), pp. 1626-1636. Tremblay, R., (2002). Inelastic Seismic Response of Steel Bracing Members. Journal of Constructional Steel Research, 58, pp. 665-701 Tremblay, R., Tirca L.. (2003). Behaviour and design of multi-story zipper concentrically braced steel frames for the mitigation of soft-story response. In: Proceedings of the conference on behaviour of steel structures in seismic areas. 2003. p. 471-7. Tirca L., Tremblay R., (2004). Influence of building height and ground motion type on the seismic behaviour of zipper concentrically braced steel frames. 13th World Conference on Earthquake Engineering. 2004. Paper No. 2894. Uriz, P., Filippou, F.C., and Mahin, S., (2008). Model for Cyclic Inelastic Buckling of Steel Braces, Journal of Structural Engineering, ASCE, pp. 619-628. Uriz, P. and Mahin, S., (2008). Toward Earthquake Resistant Design of Concentrically Braced Steel Frame Structures. PEER 2008/08 report Uriz, P. and Mahin, S., (2004). Seismic Performance Assessment of Concentrically Braced Steel Frames. Proc. 13th World Conference on Earthquake Eng., Vancouver, BC., Paper No. 1639. Uriz, P., and Mahin, S. A., (2004). Seismic Vulnerability Assessment of Concentrically Braced Steel Frames. International Journal of Steel Structures, 4(4), 239-248. Walpole, W. and Leowardi, S., (1995). The behaviour of brace members under cycling loading. Structural Stability and Design, Kitipornchai, Hancock & Brandford (eds), 1995 Balkema, ISBN 90 5410 582 8. Yang, C. S., (2006). Analytical and Experimental Study of Concentrically Braced Frames with Zipper Struts. PhD thesis, Georgia Institute of Technology. Yang, C.-S., Leon, R.T., and DesRoches, R., 2008. Pushover Test and Analysis of a Braced Frame with Suspended Zipper Struts, ASCE Journal of Structural Engineering. Yang, T. Y., Moehle, J. P., and Stojadinovic B., (2009). Performance Evaluation of Innovative Steel Braced Frames. Pacific Earthquake Engineering Research Center. Denaya Hinds, K., Walsh, K., Hill, M., Abdullah, M., (2007). Analytical Studies of The Suspended Zipper Frame & Control Devices. Proceedings of the 2007 earthquake Engineering Symposium for Young Researchers. Ziemia, R.D., (2010). Guide to Stability Design Criteria for Metal Structure, sixth edition, Wiley-Interscience, New York.