1.Sharp P. M., Averof M., Lloyd A. T., Matassi G., Peden J. F.DNA sequence evolution: the sounds of silence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1995;349:241-247. 2.Lobry J. R.Influence of genomic G + C content on average amino-acid composition of proteins from 59 bacterial species. Gene 1997;205:309-316. 3.Singer G. A., Hickey D. A.Nucleotide bias causes a genomewide bias in the amino acid composition of proteins. Mol. Biol. Evol. 2000;17:1581-1588. 4.Lobry J. R.Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol. 1996;13:660-665. 5.Sueoka N.Two aspects of DNA base composition: G + C content and translation-coupled deviation from intra-strand rule of A = T and G = C. J. Mol. Evol. 1999;49:49-62. 6.Perna N. T., Kocher T. D.Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995;41:353-358. 7.Mrázek J., Karlin S.Strand compositional asymmetry in bacterial and large viral genomes. Proc. Natl. Acad. Sci. USA 1998;95:3720-3725. 8.McLean M. J., Wolfe K. H., Devine K. M.Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J. Mol. Evol. 1998;47:691-696. 9.Rocha E. P. C., Danchin A., Viari A.Universal replication biases in bacteria. Mol. Microbiol. 1999;32:11-16. 10.Lafay B., Lloyd A. T., McLean M. J., Devine K. M., Sharp P. M., Wolfe K. H.Proteome composition and codon usage in spirochaetes: species-specific and DNA strand-specific mutational biases, Nucleic Acids Res. 1999;27:1642-1649. 11.Foster P. G., Jermiin L. S., Hickey D. A.Nucleotide composition bias affects amino acid content in proteins coded by animal mitochondria. J. Mol. Evol. 1997;44:282-288. 12.Le T. H., McManus D.P., Blair D.Codon usage and bias in mitochondrial genomes of parasitic platyhelminthes. Korean J. Parasitol. 2004;42:159-167. 13.McManus D. P., Le T. H., Blair D.Genomics of parasitic flatworms. Int. J. Parasitol. 2004;34:153-158. 14.Rocha E. P., Danchin A.Ongoing evolution of strand composition in bacterial genomes. Mol. Biol. Evol. 2001;18:1789-1799. 15.Rocha E. P., Touchon M., Feil E. J.Similar compositional biases are caused by very different mutational effects. Genome Res. 2006;16:1537-1547. 16.Faith J. J., Pollock D. D. Likelihood analysis of asymmetrical mutation bias gradients in vertebrate mitochondrial genomes. Genetics 2003;165:735-745. 17.Niu D. K., Lin K., Zhang D.Y.Strand compositional asymmetries of nuclear DNA in eukaryotes. J. Mol. Evol. 2003;57:325-334. 18.Touchon M., Arneodo A., d'Aubenton-Carafa Y., Thermes C.Transcription-coupled and splicing-coupled strand asymmetries in eukaryotic genomes. Nucleic Acids Res. 2004;32:4969-4978. 19.Hassanin A.Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol. Phylogenet. Evol. 2006;38:100-116. 20.Jones M., Gantenbein B., Fet V., Blaxter M.The effect of model choice on phylogenetic inference using mitochondrial sequence data: lessons from the scorpions. Mol. Phylogenet. Evol. 2007;43:583-595. 21.Knight R. D., Freeland S. J., Landweber L. F.A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. Genome Biol. 2001;2. RESEARCH0010. 22.Wang H. C., Singer G. A., Hickey D. A.Mutational bias affects protein evolution in flowering plants. Mol. Biol. Evol. 2004;21:90-96. 23.Touchon M., Nicolay S., Arneodo A., d'Aubenton-Carafa Y., Thermes C.Transcription-coupled TA and GC strand asymmetries in the human genome. FEBS Lett. 2003;555:579-582. 24.Touchon M., Nicolay S., Audit B., Brodie E. B., d'Aubenton-Carafa Y., Arneodo A., Thermes C.Replication-associated strand asymmetries in mammalian genomes: toward detection of replication origins. Proc. Natl. Acad. Sci. USA 2005;102:9836-9841.