[1] J. P. Powers, “An Introduction to fiber optic systems,” 2nd Edition, McGraw-Hill Companies Inc. 1997 [2] J. E. Bowers and Y. G.Wey, High-speed photodetectors. In M. Bass, editor, “Handbook of Optics: Fundamentals, Techniques and Design”, McGraw-Hill Inc., 2nd edition (1995). [3] J. Savoj, and B. Razavi, “High speed CMOS Circuits for Optical Receivers,” Kluwer Academic Publishers, Massachusettes 2001 [4] Sima Dimitrijev, “Understanding Semiconductor Devices”, Oxford university press, 2000. [5] I. Song, “Multi Gb/s CMOS Transimpedance Amplifier with Integrated photodetector for Optical interconnects,” Ph.D thesis ,Georigia institute of technology, Nov 2004 [6] S. E. Miller and I. P. Kaminow, “Optical fiber telecommunications II,” Academic Press, 1988 [7] P. E. Green, Jr., “Fiber Optic Networks,” Prentice-Hall, 1993 [8] Niloy K. Dutta and Qiang Wang, “ Semiconductor Optical Amplifiers”, World Scientific Publishing Co. Ltd 2006 [9] B. Wilson, Z. Ghassemlloy, and I. Darwazeh, “Analog Optical Fiber Communication,” IEE Press, 1995. [10] Telcordia, “Synchronous Optical Network (SONET) Transport Systems: Common Generic Criteria,” GR-253, Issue 3, 2000. [11] SONNET Software, High frequency electromagnetic software [Online]. Available: http://www.sonnetusa.com/ [12] R. Ballart and Y. Ching, “SONET: Now it’s the standard optical network,” IEEE Communication Mag., pp. 9-15, 1989. [13] ADN2820 Transimpedance amplifier Datasheet, Analog Devices Company, Available at: http://www.analog.com/en/index.html [14] P. Green Jr., “Fiber Optic Networks,” Prentice Hall, 1993. [15] M.B. Das, “Optoelectronic detectors and receivers: speed and sensitivity limits,” Conference on Optoelectronic and Microelectronic Materials Devices, pp. 15-22, 1999. [16] Yi-Ju Chen, Monuko du Plessis, “An integrated 0.35 um CMOS optical receiver with clock and data recovery circuit”, Microelectrocnis Journal Elsevier, pages 985-992, 2006 [17] P. Bhattacharya, “Semiconductor Optoelectronic Devices,” Prentice Hall, 1997. [18] B. Razavi, “Prospects of CMOS Technology for High-Speed Optical Communication Circuits,” , IEEE Journal of Solid-State Circuits, vol. 37, no. 9, pp. 1135-1145, 2002. [19] J. Palais, “Fiber Optic Communication 4th Ed,” Prentice Hall, 1998. [20] M. Hossain and A. Chan Carusone, “Multi-Gb/s Bit-by-Bit Receiver Architectures for 1-D Partial Response Channels,” IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 270-279, January 2010 [21] E. Sackinger, “ Broadband Circuits for Optical Fiber Communication” John Wiley and Sons, 2005 [22] S. Kasap, “Optoelectronics and Photonics: Principles and Practices,” Prentice Hall, 2000 [23] N. Grote and H. Venghaus, “Devices for Optical Communication Systems,” Telos Press, 2001 [24] B. Razavi, “A 622-Mb/s 4.5-pA/ Hz CMOS Transimpedance Amplifier” IEEE International Solid-State Circuits Conference Digest of Technical Papers, pages 162-163, Feb 2000 [25] F. Chien and Y. Chan, “Bandwidth Enhancement of TIA by a Capacitive-peaking Design,” IEEE Journal of Solid-State Circuits, vol. 34, no. 8, pp. 1167-1170, 1999. [26] C. Cuo, C. Hsiao, S. Yang, and Y. Chan, “2 Gbit/s TIA Fabricated by 0.35 um CMOS Technologies,” Electronics Letters, vol. 37, no. 19, pp. 1158-1160, 2001. [27] A. Tanabe, M. Soda, Y. Nakahara, T. Tamura, K. Yoshida, and A. Furukawa, “A Single-chip 2.4-Gb/s CMOS Optical Receiver IC with Low Substrate Cross-talk Preamplifier,” IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 2148- 2158, 1998. [28] T. Yoon and B. Jalali, “Front-end CMOS Chipset for Fiber-based Gigabit Ethernet,” IEEE Symposium on VLSI Circuits Digest of Technical Papers, pp. 188-191, 1998. [29] Sung Min Park, and Hoi-Jun Yoo, “1.25-Gb/s Regulated Cascode CMOS Transimpedance Amplifier for Gigabit Ethernet Applications”, IEEE Journal of Solid-State Circuits ,vol. 39, NO. 1, Jan 2004 [30] S. S. Mohan, M. Hershenson, S. Boyd, and T.H.Lee, “Bandwidth Extension in CMOS with Optimized On-Chip Inductors” IEEE J. of Solid-State Circuits, vol 35,No 3, pp 346-355, Mar2000 [31] S.M. Rezaul Hasan, “Design of a Low-Power 3.5-GHz Broadband CMOS Transimpedance Amplifier for Optical Transceiver” IEEE Transaction on circuits and systems, vol.52, No.6, June 2005 [32] C. Kromer et al, “A low-power 20-GHz 52-dBOhms Transimpedance Amplifier in 80-nm CMOS” IEEE J. of Solid-State Circuits, vol 39, No 6, pp 885-894 , June2004 [33] S. Mohan, M. Hershenson, S. Boyd, T. H. Lee “Simple accurate expressions for Planar Inductors,”IEEE journal of Solid state circuits, October 1999 [34] J.-D Jin, and S. H. Hsu, “40-Gb/s Transimpedance Amplifier in 0.18-um CMOS Technology,” European solid state circuits conference, 2006, pp.520-523 [35] C.-H. Wu, C.-H.Lee, W.-S. Chen, and S.-I. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique” IEEE J. of Solid-State Circuits, vol 40, pp.548-552, Feb2005 [36] B. Analui, “Signal Integrity Issues in High speed wireline links,” Ph.D thesis, Caltech 2005 [37] B. Analui, and A. Hajimiri, “Bandwidth enhancement for transimpedance amplifier,” IEEE J. of Solid-state Circuits, vol.39, pp. 2334-2340, Dec 2003 [38] B. Analui, and A Hajimiri “Multi-Pole Bandwidth enhancement technique for Transimpedance amplifiers,” Proceeding of the ESSCIRC 2002 [39] T. Chalvatzis, K. Yau, R. Aroca, P. Schvan, M. Yang, and S. P. Voinigescu, “Low-Voltage Topologies for 40-Gb/s Circuits in Nanoscale CMOS” IEEE Journal of solid state circuits, vol. 42, NO.7, pp. 1564-1573, July 2007 [40] Y.-T Lin, H.-C Chen, T. Wang, Y.-S Lin, and S.-S Lu, “3-10GHz Ultra-Wideband Low-Noise Amplifier Utilizing Miller Effect and Inductive Shunt-Shunt Feedback Technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 9, Sept. 2007 [41] A. Sedra, and K. Smith, “Microelectronic Circuits” Fifth Edition, Oxford University Press 2004 [42] B. Razavi, “Fundamentals of Microelectronics”, John Wiley and Sons, INC , 2006 [43] R. Raut, O. Ghasemi, “A Power Efficient Wide Band Transimpedance Amplifier in sub-micron CMOS Integrated Circuit Technology,” IEEE joint NEWCAS/TAISA conference 2008, Montreal, Canada [44] O. Ghasemi, R. Raut, and G. Cowan, “A Low Power Transimpedance Amplifier Using Inductive Feedback approach in 90nm CMOS,” IEEE International Symposium on Circuits and Systems (ISCAS) 2009, Taipei, Taiwan [45] B. Razavi “Design of Analog CMOS Integrated Circuits” Preliminary Edition, Mcgraw-Hill 2000 [46] M. Ingels and M. Steyaert “Integrated CMOS Circuits for Optical Communication” Springer 2004 [47] Ogata Katsuhiko “Modern Control Engineering” Englewood cliffs, N.J Prentice-Hall 1970 [48] Ali Niknejad “Analysis, Design, and Optimization of Spiral Inductors and Transformers for Si RF ICs” M.A.Sc Thesis, College of Engineering, University of California at Berkeley [49] O. Ghasemi, R. Raut, and G. Cowan, “Complex Conjugate Pole Analysis for Bandwidth Extension of Transimpedance Amplifiers,” IEEE Midwest symposium on Circuits and Systems (MWSCAS) 2011, Seoul, Korea [50] O. Ghasemi, “Bandwidth Extension for Transimpedance Amplifiers,” Photodiodes-World Activities in 2011, chapter 7, INTECH Publishing, Publishing date: 2011-07-29 [51] W. Chen, and C. Lu, “Design and Analysis of A 2.5-Gbps Optical Receiver Analog Front- End in a 0.35-mm Digital CMOS technology”, IEEE Trans. Circuits and Systems - Regular Papers, 2006, 53, (4), pp. 977 - 983. [52] K. Han, J. Gil, S.-S. Song, J. Han and H.Shin et al., “Complete high-frequency thermal noise modeling of short-channel MOSFETs and design of 5.2-GHz low noise amplifier,” IEEE J. Solid-State Circuits, vol. 40,no. 3, pp.726-735, Mar 2005 [53] K. Han, H. Shin, and K. Lee, “Analytical drain thermal noise current model valid for deep submicron MOSFETs,” IEEE Trans. Electron Devices, vol. 51, no. 2, pp. 261-269, Feb. 2004 [54] H. Darabi, and A. Abidi, “Noise in RF-CMOS Mixers: A Simple Physical Model”, IEEE Trans. on Solid State Circuits, vol. 35, no.1, pp. 15-25, Jan. 2000. [55] A.K. Peterson, K. Kiziloglu, T. Yoon, F. Williams, Jr., M.R. Sander, “Front-end CMOS chipset for 10 Gb/s communication,” IEEE RFIC Sym. Dig, June 2003 [56] O. Ghasemi, “Double zero pole cancellation for bandwidth extension of transimpedance amplifiers,” Journal of Circuits, Systems, and computers, JCSC vol. 21, No. 3 [57] H-M. Hsu, T-H. Lee and J-S. Huang, “Ultra-wide-band low noise amplifier using inductive feedback in 90nm CMOS technology,” ISCAS 2010 [58] H-H. Hsieh, P-Y. Wu, C-P. Jou, F-L. Hsueh G-W. Huang, “60 GHz high- gain low noise amplifiers with a common gate inductive feedback in 65nm CMOS,” ISCAS 2011 [59] A. Chan Carusone, H. Yasotharan, T. Kao, “CMOS Technology Scaling Considerations for Multi Gbps Optical Receivers with Integrated Photodetectors,” IEEE Journal of Solid-State Circuits, August 2011 [60] T. Shuo-Chun Kao, F. A. Musa and A. Chan Carusone “A 5-Gbps CMOS Optical Receiver with Integrated Spatially Modulated Light Detector and Equalization” IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 2844 – 2857, November 2010 [61] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics Magazine, vol. 38, no. 8, April 1965 [62] G. E. Moore, “No Exponential Is Forever: But “Forever” Can Be Delayed,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, (ISSCC'03), pp. 20-23, Feb. 2003 [63] T. Wong, Fundamentals of Distributed Amplification, first edition, Artech House, Boston, 1993. [64] A. V. Krishnamoorthy, and K. W. Goossen. Optoelectronic-VLSI: Photonics Integrated with VLSI Circuits. IEEE J. Selected Topics in Quantum Electronics, pages 899-912, Nov 1998. [65] D. A. B. Miller. Dense Two-Dimensional Integration of Optoelectronics and Electronics for Interconnections. Conference of SPIE's Symp. on Photonics West, Optoelectronics, January 1998 [66] A. M. Moloney, “A CMOS Monolithically Integrated Photo-receiver Incorporating an Avalanche Photodiode”, PhD thesis, University College Cork, Ireland. Apr 2003 [67] S. M. Sze, “The Physics of Semiconductor Devices”, New York: Wiley, 1981 [68] Nicholas Zicka, “High Speed Optical receviers in nanometer CMOS”, M.Eng Thesis McGill University, April 2009 [69] T. Shuo-Chun Kao, F. A. Musa and A. Chan Carusone “A 5-Gbps CMOS Optical Receiver with Integrated Spatially Modulated Light Detector and Equalization” IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 2844 – 2857, November 2010 [70] Tony Chan Carusone, Hemesh Yasotharan, Tony Kao, “ Multi-GBPS Optical Receivers with CMOS Integrated Photodetectors” Integrated systems laboratory, University of Toronto Februray 2, 2011 [71] S. Donati, “Devices, Circuits, and Application,” Prentice Hall, 2000. [72] T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,” 2nd edition Cambridge 2004 [73] G. D. Vendelin, A. M. Pavio, and U. L. Rohde, “Microwave Circuit Design Using Linear and Nonlinear Techniques”, John Wiley & Sons, Inc., 1990. [74] D. M. Pozar, “Microwave Engineering” Second edition, John Wiley and Sons, Inc, 1998 [75] C. Lin, “Optoelectronic Technology and Lightwave Communication Systems,” Van Nostrand Reinhold, 1998. [76] W. Chen, “Theory and Design of Broadband Matching Networks,” Pergamon Press, Oxford, 1976 [77] ASITIC (Simulation of Spiral Inductors and Transformers), Wireless Research Center, Berkeley, http://formosa.eecs.berkeley.edu/~niknejad/asitic.html [78] A. Abidi, “Gigahertz Transresistance Amplifiers in Fine Line NMOS,” IEEE Journal of Solid-State Circuits, vol. 19, no. 6, pp. 986-994, Dec. 1984 [79] G. P. Agrawal, Fiber-Optic Communication Systems, second edition, Wiley-Interscience, 1997