[1] Batah, F.S.M., Ramanathan, T.V. and Gore, S.D. (2008). The efciency of modifed Jack-knife and ridge type regression estimators: A comparison. Surveys in Mathematics and its Applications, 3 111-122. [2] Crouse, R.H., Jin, C. and Hanumara, R.C. (1995). Unbiased ridge estimation with prior information and ridge trace. Communications in Statistics{Theory and Methods, 24(9) 2341-2354. [3] Farrar, D.E. and Glauber, R.R. (1967). Multicollinearity in regression analysis: The problem revisited. The Review of Economics and Statistics, 49(1) 92-107. [4] Farebrother, R.W. (1976). Further results on the mean square error of ridge regression. Journal of Royal Statistical Society, B38 248-250. [5] Firinguetti, L. (1989). A simulation study of ridge regression estimators with auto- correlated errors. Communications in Statistics{Simulation and Computation, 18(2) 673-702. [6] Gruber, M.H.J. (1991). The efficiency of Jack-knife and usual ridge type estimators: A comparison. Statistics and Probability Letters, 11 49-51. [7] Gruber, M.H.J. (1998). Improving Efficiency by Shrinkage: The James-Stein and Ridge Regression Estimators. New York: Marcell Dekker. [8] Hinkley, D.V. (1977). Jack-knifing in unbalanced situations. Technometrics, 19(3) 285- 292. [9] Hoerl, A.E. and Kennard, R.W. (1970). Ridge regression: Biased estimation for non- orthogonal problems. Technometrics, 20 69-82. [10] Hoerl, A.E., Kennard, R.W. and Baldwin, K. (1975). Ridge regression: Some simula- tions. Communications in Statistics{Theory and Methods, 4 105-123. [11] McDonald, G.C. and Galarneau, D.I. (1975). A Monte-Carlo evaluation of some Ridge- type estimators. Journal of the American Statistical Association, 70 407-416. [12] Miller, R.G. (1974a). The Jack-knife: A Review. Biometrika, 61 1-15. [13] Miller, R.G. (1974b). An unbalanced Jack-knife. Annals of Statistics, 2 880-891. [14] Nomura, M. (1988). On the almost unbiased ridge regression estimator. Communications in Statistics{Simulation and Computation, 17 729-743.