This thesis describes the design, development, analysis and control of an autonomous Quadrotor Uninhabited Aerial Vehicle (UAV) that is controlled using a novel approach for multirate sampled-data systems. This technique uses three feedback loops: one loop for attitude, another for velocity and a third loop for position, yielding a piece-wise affine system. Appropriate control actions are also computed at different rates. It is shown that this technique improve the system's stability under sampling rates that are significantly lower than the ones required with more classical approaches. The control strategy, that uses sensor data that is sampled at different rates in different nodes of a network, is also applied to a ground wheeled vehicle. Simulations and experiments show very smooth tracking of set-points and trajectories at a very low sampling frequency, which is the main advantage of the new technique.