Improving the indoor air quality (IAQ) is considered an important issue in building science. Applying gaseous air cleaning devices to purify the air is an effective way to reduce the levels of gaseous contaminants and have a positive influence on IAQ. However, there is a lack of an acceptable approach to study the performance of these devices for non-industrial buildings. In this study, a methodology was developed to evaluate the removal performance of gaseous filters. A full-scale experimental apparatus was set up and a series of experiments were carried out to calibrate the system. These tests quantitatively validated the reliability of experimental set-up. Furthermore, it was applied to study the performance of four sorptive filters; a coconut shell-based and a coal-based virgin granular activated carbon (GAC), an impregnated GAC and a blend of virgin GAC and impregnated activated alumina. These filters were ranked based on their effectiveness for removing toluene. The test showed that the virgin GACs had better performance in removing toluene. The 50% breakthrough time of bituminous coal based virgin GAC was 40% and 50% higher than the impregnated GAC and the mixed GAC with activated alumina, respectively. Also, the results indicated that the coconut shell-based GAC has a better removal performance than the coal-based one. On the other hand, the resistance of these filters against desorption was characterized by measuring their retentivity. For cross-comparison of the retentivity among the tested filters, a novel analysis method was developed. The coconut shell-based GAC showed the strongest resistance against desorption