1 F. Bagarello, J. Math. Phys. 50, 023531 (2010). 2 F. Bagarello, J. Math. Phys. 51, 023531 (2010). 3 F. Bagarello, J. Phys. A 43, 175203 (2010). 4 F. Bagarello, Examples of pseudo-bosons in quantum mechanics, Phys. Lett. A, in press. 5 D.A. Trifonov, Pseudo-boson coherent and Fock states, quant-ph/0902.3744. 6 S. T. Ali and F. Bagarello, J. Math Phys. 49, (2008). 7 R. Banerjee and P. Mukherjee, J. Phys. A 35, 5591 (2002). 8 S. Kuru, A. Tegmen, and A. Vercin, J. Math. Phys. 42, 3344 (2001); S. Kuru, B. Demircioglu and M. Onder, and A. Vercin, J. Math. Phys. 43, 2133 (2002); K. A. Samani and M. Zarei, Ann. Phys. 316, 466 (2005). 9 F. Bagarello, Phys. Lett. A. 372, 6226 (2008); F. Bagarello, J. Phys. A. 42, 075302 (2009); F. Bagarello, J. Math. Phys. 50, 043509 (2009). 10 A. Mostafazadeh, e-print arXiv:quant-ph/0810.5643; C. Bender, Rep. Progr. Phys., 70, 947 (2007). 11 S. T. Ali, J.-P. Antoine, and J.-P. Gazeau, Coherent States, Wavelets and Their Generalizations (Springer-Verlag, New York, 2000). 12 J.-P. Gazeau, Coherent States in Quantum Physics (Wiley-VCH, Berlin, 2009). 13 J. P. Antoine and F. Bagarello, “Localization Properties and Wavelet-Like Orthonormal Bases for the Lowest Landau Level”, in Advances in Gabor Analysis, edited by H. G. Feichtinger and T. Strohmer (Birkh¨auser, Boston, 2003). 14 S. T. Ali, F. Bagarello, and G. Honnouvo, J. Phys. A 43, 105202 (2010). 15 R. Young, An Introduction to Nonharmonic Fourier Series (Academic, New York, 1980). 16 O. Christensen, An Introduction to Frames and Riesz Bases (Birkh¨auser, Boston, 2003). 17 H. Feshbach and Y. Tikochinsky, N.Y. Acad. Sci., 38, 44 (1977). 18 F. Bagarello, Phys. Lett. A 374, 3823 (2010). 19 Recall that a set of vectors φ1, φ2, φ3, . . . , is a Riesz basis of a Hilbert space H, if there exists a bounded operator V, with bounded inverse, on H, and an orthonormal basis of H, ϕ1, ϕ2, ϕ3, . . . , such that φj = Vϕj , for all j = 1, 2, 3, . . . .