Abdennadher, S., & Schlenker, H. (1999). INTERDIP-an interactive constraint based nurse scheduler. Proceedings of the Eleventh Conference on Innovative Applications of Artificial Intelligence, Menlo Park, CA, 838-843 Aickelin, U., & Dowsland, K. A. (2001). Exploiting problem structure in a genetic algorithm approach to a nurse rostering problem. Journal of Scheduling 3(3), 139-153 An, B., Lesser, V., Irwin, D., & Zink, M. (2010). Automated negotiation with decommitment for dynamic resource allocation in cloud computing. Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, 981–988 Azaiez, M. N., & Sharif, S. (2005). A 0-1 goal programming model for nurses cheduling. Computers and Operations Research 32(3), 491-507 Bailey, R. N., Garner, K. M., & Hobbs, M. F. (1997). Using Simulated Annealing and Genetic Algorithms to Solve Staff Scheduling Problems. Asia-Pacific Journal of Operational Research 14(2), 27-43 Bannock, G., Baxter, R. E., & Reese, R. (1982). The Penguin Dictionary of Economics. Penguin Books, Ltd., Harmondsworth, Middlesex England Becker, M., & Hans, C. (2006). Artificial Software Agents as Representatives of Their Human Principals in Operating-Room-Team-Forming. Multi-agnet Engineering International Handbooks on Information Systems, 221-237 Berger, S., & Bierwirth, C. (2010). Solutions to the request reassignment problem in collaborative carrier networks. Transportation research Part E,Volume 46,No.5, 627-638 Burke, E. K., Elliman, D. G., & Weare, R. F. (1995). A hybrid genetic algorithm for highly constrained timetabling problems. Proceedings of the 6th International Conference on Genetic Algorithms, Pittsburgh, USA,Morgan Kaufmann, Los Altos, CA, 605-610 Burke, E. K., & Newall, J. P. (1999). A multi-stage evolutionary algorithm for the timetable problem. IEEE Transactions on Evolutionary Computation 3 (1), 63–74 Burke, E. K., Newall, J. P., & Weare, R. F. (1996). A memetic algorithm for University exam timetabling. Burke and Ross, 241-250 Burke, E. K., Newall, J. P., & Weare, R. F. (1998). Initialisation strategies and diversity in evolutionary timetabling. Evolutionary Computation 6 (1), 81-103 (special issue on Scheduling) Crawford, E., & Veloso, M. (2004). Mechanism Design for Multi-Agent Meeting Scheduling Including Time Preferences, Availability, and Value of Presence. Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT) Davidsson, P., Henesey, L., Ramstedt, L., T¨ornquist, J., & Wernstedt, F. (2005). An analysis of agent-based approaches to transport logistics. Transportation Research, Part C, 13, 255–271 Davis, L. (1985). Job shop scheduling with genetic algorithms. Proc. 1st int. Conf. on Genetic algorithms and their Applications, Pittsburgh, PA, 130-140 Demeester, P., Souffriau, W., De Causmaecker, P., & Vanden Berghe, G. (2010). A hybrid tabu search algorithm for automatically assigning patients to beds. Artif. Intell. Med. 48(1), 61–70 Dowsland, K. (1998). Nurse scheduling with tabu search andstrategic oscillation. European Journal of Operational Research 106 (2–3), 393–407 Fischer, K., Müller J. P. and Pischel, M. (1995).Cooperative transportation scheduling: an application domain for DAI. Journal of Applied Artificial Intelligence Franzin, M. S., Freuder, E. C., & Rossi, F. (2002). Multi-agent meeting scheduling with preferences: efficiency, privacy loss, and solution quality. American Association for Artificial Intelligence AAAI Gagliano, R. A., Fraser, M. D., & Schaefer, M. E. (1995). Auction allocation of computing resources. Communications of the ACM, 38 (6), 88–102 Garg, S., and Buyya, R. (2011). Market-Oriented Resource Management and Scheduling: A Taxonomy and Survey, Cooperative Networking 277-306, M. S. Obaidat and S. Misra (eds), ISBN: 978-0-470-74915-9, Wiley Press, New York, USA Ghaemi, M.,Vakili, M., & Aghagolzadeh, A. (2007). Using a genetic algorithm optimizer tool to solve university timetable scheduling problem. 9th international symposium on signal processing and its Application Gomber, P., Schmidt, C., Weinhardt, C. (1997). Elektronische Märkte für die dezentrale Transportplanung, Wirschaftsinformatik 39(2),137-145 Grano, M., Medeiros, D. J., & Eitel, D. (2009). Accommodating individual preferences in nurse scheduling via auctions and optimization. Health Care Manage Science, Volume 12,228-242 Groothuis, S., & Merode, G. (2001). Simulation as decision tool for capacity planning. Journal of Computer Methods and Programs in Biomedicine 66 , 139–151 Gueret, C., Jussien, N., Boizumault, P., & Prins, C. (1995). Building University Timetables Using Constraint Logic Programming. Proc. of the 1st Int. Conf. on the Practice and Theory of Automated Timetabling, 393- 408 Gujo, O., Schwind, M., & Vykoukal, J. (2009). A combinatorial intra-enterprise exchange for logistics services. Information systems and e-business management,Volume 7,No 4,447-471 Gunawan, A., Ming, K., & Poh, K. (2007). Solving the teacher assignment-course scheduling problem by hybrid Algorithm. International journal of Computer, information and system science and engineering, 1(2),139-141 Hancock, W.M., & Walter, P. F. (1984). The use of admissions simulation to stabilize ancillary workloads. Simulation journals, 88-94 Hannebauer, M., & Muller, S. (2001). Distributed Constraint Optimization for Medical Appointment Scheduling. Proceedings of the fifth international conference on autonomous agents,139 -140 Harvey, J. (1998). Service quality: A tutotial. Journal of Operations Management 16(5), 583-597 Hassine, A. B., Defago, X., & Ho, T. B. (2004). Agent-Based Approach to Dynamic Meeting Scheduling Problems. Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems,Volume 3, 1132 -1139 Henz M., & Wurtz J. (1995). Using Oz for college timetabling. Proceedings of the 1st Int. Conference on the Practice and Theory of Automated Timetabling, 283- 296 Hertz, A. (1991). Tabu Search for Large Scale Timetabling Problems. European Journal of Operational Research 54, 39-47 Hertz, A. (1992). Finding a Feasible Course Schedule Using Tabu Search. Discrete Applied Mathematics 35(3), 255-270 Ho, Ch., & Lau, H. (1999). Evaluating the impact of operating conditions on the performance of appointment scheduling rules in service systems. European Journal of Operational Research 112 ,542-553 Hosseini, H., Hoey, J., & Cohen, R. (2011). Multi-Agent Patient Scheduling Through Auctioned Decentralized MDPs. Proceedings of the 6th InformsWorkshop on Data Mining and Health Informatics Hur, D., Mabert, V. A., & Bretthauer, K. M.(2004). Real-time work schedule adjustment decisions: An investigation and evaluation. Production and Operations Management 13(4), 322 Jack, E. P., & Powers, T. L. (2004). Volume flexible strategies in health services: A research framework. Production and Operations Management 13(3), 230 Jaumard, B., Semet, F., & Vovor, T. (1998). A generalized linear programming model for nurse scheduling. European Journal of Operational Research 107(1),1-18 Jennings, N. R. (2001). An agent-based approach for building complex software systems. Communications of the ACM, 44(4),35- 41 Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. American Association for the Advancement of Science New Series, Vol. 220, No. 4598., 671-680 Kotler, P., & Keller, K. (2006). Marketing management, Twelfth edition. Prentice-Hall, Upper Saddle River, New Jersey Krajewska, M. A., & Kopfer, H. (2006a). Profit sharing approaches for freight forwarders: An overview”, Proceedings of the 5th International Conference on Modern Trends in Logistics,157-161 Krajewska, M. A., & Kopfer, H. (2006b). Collaborating freight forwarding enterprises, request allocation and profit sharing. OR spectrum, Volume 28, No2, 301-317 Krishna, A., & Ünver, M. U. (2007). Improving the Efficiency of Course Bidding at Business Schools: An Experimental Study. Marketing Science, forthcoming Kwon, R. H., Lee, C., & Ma, Z. (2005). An integrated combinatorial auction mechanism for truckload transportation procurement. Technical Report, Mechanical and Industrial Engineering, the University of Toronto, Ontario, Canada Lang, N., Moonen, H. M., Srour, F. J., & Zuidwijk, R. A. (2008). Multi Agent Systems in Logistics: A Literature and State-of-the art Review. ERIM Report Series, Reference No. ERS-2008-043-LIS Meisels, A., & Kaplansky, E. (2003). Scheduling Agents – Distributed Timetabling Problems. Lecture Notes in Computer Science, Practice and Theory of automated timetabling IV,Volume 2740/2003, 166-177 Modi, P.,Veloso, M., Smith, S. F., & Oh, J. (2004). CMRadar: A Personal Assistant Agent for Calendar Management. Lecture Notes in Computer Science, LNCS 3508,169–181 Paechter, B., Cumming, A., & Luchian, H., (1995). The use of local search suggestion lists for improving the solution of timetabling problems with evolutionary algorithms. Proceedings of the AISB Workshop on Evolutionary Computing, Sheffield, England. Paechter, B., Cumming, A., Norman, M. G., & Luchian, H. (1996). Extensions to a memetic timetabling system. The Practice and Theory of Automated Timetabling, volume 1153 of Lecture Notes in Computer Science. Springer Verlag, 251–265 Paulussen, T. O., Jennings, N. R., Decker, K. S., & Heinzl, A. (2003). Distributed patient scheduling in Hospital. Coordination and Agent Technology in Value Networks, GITO Pearce, D. W. (1981). The dictionary of modern economics. The MIT Press, Cambridge, Massachusetts Petrovic, D., Morshed, M., & Petrovic, S. (2011). Multi-objective genetic algorithms for scheduling of radiotherapy treatments for categorized cancer patients. Journal of Expert Systems with Applications,38(6), 6994-7002 Pinedo, M.L (2009). Planning and scheduling in manufacturing and services (2nd ed.). Springer, New York. doi: 10.1007/978-1-4419-0910-7 Sampson, S. E. & Froehle, C. M. (2006). Foundations and implications of a proposed unified services theory. Production and Operations Management, 329-343 Sampson, S. E. (2001). Understanding service businesses: Applying principles of the unified services theory (2nd ed.). John Wiley & Sons, New York, New York Schönberger, J. (2005). Operational Freight Carrieer Planning. Springer, Berlin Schönsleben P., Hieber R. (2004). Gestaltung von effizienten Wertschöpfungspartnerschaften im Supply Chain Management. Busch A., Dangelmaier W., Integriertes Supply Chain Management, Wiesbaden. Sheffi, Y. (2004). Combinatorial Auctions in the Procurement of Transportation services. Interfaces,Volume.34 , 245-252 Shen, W., Wang, L., & Hao, Q. (2006). Agent-based distributed manufacturing process planning and scheduling : a state-of-the-art survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 36(4), 563-577 Sim, K. M. (2012). Complex and Concurrent Negotiations for Multiple Interrelated e-Markets. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, PP(99), doi: 10.1109/TSMCB.2012.2204742, 1-16 Singh, A., & Malhotra, M. (2012). Agent Based Framework for Scalability in Cloud Computing. International Journal of Computer Science & Engineering Technology (IJCSET), 3(4), 41-45 Song, J., & Regan, A. C. (2003). An Auction Based Collaborative Carrier Network.Technical report: UCI-ITS-WP-03-6, Institute of Transportation Studies, University of California, Irvine Sönmez, T., & Ünver, U. (2007). Course Bidding at Business Schools. Retrieved from http://ssrn.com/abstract=1079525 2007 Wainer, J., Ferreira, P., & Constantino, E. R. (2007). Scheduling meetings through multi-agent negotiations. Decision Support Systems 44, 285–297 Wall, B. M. (1996). A Genetic Algorithm for Resource-Constrained Scheduling, Ph.D. thesis, Massachusetts institute of technology Wang, C. (2007). Economic Models for Decentralized Scheduling. Ph.D thesis. University of Western Ontario. Wang, W., & Gupta, D. (2011). Adaptive Appointment Systems with Patient Preferences. Manufacturing and Service Operations Management 13(3), 373-389 Wemmerlov, U. (1990). A taxonomy for service processes and its implications for system design. International Journal of Service Industry Management 1(3), 13–27 Wolski, R., Plank, J. S., Brevik, J., & Bryan, T. (2001). Analyzing market-based resource allocation strategies for the computational grid. International Journal of High Performance Computing Applications, 15 (3), 258-281 Zaman, S., & Grosu, D. (2011). Combinatorial Auction-Based Dynamic VM Provisioning and Allocation in Clouds. IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom),107-114 Zhiming, Z. (2011). A Two-stage Scheduling Approach of Operation Rooms Considering Uncertain Operation Time. International Conference on Information Science and Technology,Nanjing, Jiangsu, China 250. doi: 10.1115/DETC2011-48263