[1] O. Abul, F. Bonchi, M. Nanni, Never walk alone: uncertainty for anonymity in moving objects databases, in: Proc. of the 24th IEEE International Conference on Data Engineering, pp. 376–385, 2008. [2] C.C. Aggarwal, On k-anonymity and the curse of dimensionality, in: Proc. of the 31st International Conference on Very Large Data Bases, pp. 901–909, 2005. [3] C.C. Aggarwal, P.S. Yu, A condensation approach to privacy preserving data mining, in: Proc. of the 9th International Conference on Extending Database Technology, pp. 183–199, 2004. [4] D. Burdick, M. Calimlim, J. Gehrke, MAFIA: a maximal frequent itemset algorithm for transactional databases, in: Proc. of the 17th IEEE International Conference on Data Engineering, pp. 443–452, 2001. [5]C. Dwork, Differential privacy, in: Proc. of the 33rd International Colloquium on Automata, Languages and Programming, pp. 1–12, 2006. [6]B.C.M. Fung, K. Al-Hussaeni, M. Cao, Preserving RFID data privacy, in: Proc. of the 3rd Annual IEEE International Conference on RFID, pp. 200–207, 2009. [7]B.C.M. Fung, M. Cao, B.C. Desai, H. Xu, Privacy protection for RFID data, in: Proc. of the 24th ACM Symposium on Applied Computing, pp. 1528–1535, 2009. [8]B.C.M. Fung, K. Wang, R. Chen, P.S. Yu Privacy-preserving data publishing: a survey of recent developments ACM Computing Surveys, 42 (4) (2010), pp. 14:1–14:53 [9] B.C.M. Fung, K. Wang, P.S. Yu Anonymizing classification data for privacy preservation IEEE Transactions on Knowledge and Data Engineering, 19 (5) (2007), pp. 711–725 [10] G. Ghinita, Y. Tao, P. Kalnis, On the anonymization of sparse high-dimensional data, in: Proc. of the 24th IEEE International Conference on Data Engineering, pp. 715–724, 2008. [11]F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli, Trajectory pattern mining, in: Proc. of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 330–339, 2007. [12]Y. He, J.F. Naughton, Anonymization of set-valued data via top-down, local generalization, in: Proc. of the 35th International Conference on Very Large Data Bases, pp. 934–945, 2009. [13]S. Kisilevich, L. Rokach, Y. Elovici, B. Shapira Efficient multidimensional suppression for k-anonymity IEEE Transactions on Knowledge and Data Engineering, 22 (3) (2010), pp. 334–347 [14]J.-G. Lee, J. Han, X. Li, H. Gonzalez, Traclass: trajectory classification using hierarchical region-based and trajectory-based clustering, in: Proc. of the 34th International Conference on Very Large Data Bases, pp. 1081–1094, 2008. [15]J.-G. Lee, J. Han, K.-Y. Whang, Trajectory clustering: a partition-and-group framework, in: Proc. of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 593–604, 2007. [16]K. LeFevre, D.J. DeWitt, R. Ramakrishnan, Mondrian multidimensional k-anonymity, in: Proc. of the 22nd IEEE International Conference on Data Engineering, pp. 25, 2006. [17]T. Li, N. Li, Injector: mining background knowledge for data anonymization, in: Proc. of the 24th IEEE International Conference on Data Engineering, pp. 446–455, 2008. [18]T. Li, N. Li, On the tradeoff between privacy and utility in data publishing, in: Proc. of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 517–526, 2009. [19]X. Li, J. Han, S. Kim, Motion-alert: automatic anomaly detection in massive moving objects, in: Proc. of IEEE International Conference on Intelligence and Security Informatics, pp. 166–177, 2006. [20]X. Li, J. Han, J.-G. Lee, H. Gonzalez, Traffic density-based discovery of hot routes in road networks, in: Proc. of the 10th International Symposium on Spatial and Temporal Databases, pp. 441–459, 2007. [21]A. Machanava, J. Gehrke, M. Gotz, Data publishing against realistic adversaries, in: Proc. of the 35th International Conference on Very Large Data Bases, pp. 790–801, 2009. [22]A. Machanavajjhala, D. Kifer, J. Gehrke, M. Venkitasubramaniamℓ-diversity: privacy beyond k-anonymity ACM Transactions on Knowledge Discovery from Data, 1 (1) (2007) [23]N. Matatov, L. Rokach, O. Maimon Privacy-preserving data mining: a feature set partitioning approach Information Sciences, 180 (4) (2010), pp. 2696–2720 [24]N. Mohammed, B.C.M. Fung, M. Debbabi, Walking in the crowd: anonymizing trajectory data for pattern analysis, in: Proc. of the 18th ACM Conference on Information and Knowledge Management, pp. 1441–1444, 2009. [25]N. Mohammed, B.C.M. Fung, M. Debbabi, Preserving privacy and utility in RFID data publishing, Technical Report 6850, Concordia University, Montreal, Canada, September 2010. [26]N. Mohammed, B.C.M. Fung, P.C.K. Hung, C.K. Lee, Anonymizing healthcare data: a case study on the blood transfusion service, in: Proc. of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1285–1294, 2009. [27]M. O’Halloran, M. Glavin, RFID patient tagging and database system, in: Proc. of the International Conference on Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies, pp. 162, 2006. [28]M.-P. Pelletier, M. Trepanier, C. Morency, Smart card data in public transit planning: a review, Technical Report CIRRELT-2009-46, Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation, 2009. [29]R.G. Pensa, A. Monreale, F. Pinelli, D. Pedreschi, Pattern-preserving k-anonymization of sequences and its application to mobility data mining, in: Proc. of the 1st International Workshop on Privacy in Location-Based Applications, 2008. [30]P. Samarati, L. Sweeney, Generalizing data to provide anonymity when disclosing information, in: Proc. of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 188, 1998. [31]M. Terrovitis, N. Mamoulis, Privacy preservation in the publication of trajectories, in: Proc. of the 9th International Conference on Mobile Data Management, pp. 65–72, 2008. [32]M. Terrovitis, N. Mamoulis, P. Kalnis, Privacy-preserving anonymization of set-valued data, in: Proc. of the 34th International Conference on Very Large Data Bases, pp. 115–125, 2008. [33]M. Utsunomiya, J. Attanucci, N. Wilson Potential uses of transit smart card registration and transaction data to improve transit planning Transportation Research Record: Journal of the Transportation Research Board (1971) (2006), pp. 119–126 [34]K. Wang, B.C.M. Fung, P.S. Yu Handicapping attacker’s confidence: an alternative to k-anonymization Knowledge and Information Systems, 11 (3) (2007), pp. 345–368 [35] D. Wegener, D. Hecker, C. Korner, M. May, M. Mock, Parallelization of r-programs with gridr in a gps-trajectory mining application, in: Proc. of the 1st Ubiquitous Knowledge Discovery Workshop in conjunction with European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 2008. [36]R.C.W. Wong, J. Li, A.W.C. Fu, K. Wang (α, k)-anonymous data publishing Journal of Intelligent Information Systems, 33 (2) (2009), pp. 209–234 [37] X. Xiao, Y. Tao, Personalized privacy preservation, in: Proc. of the 2006 ACM SIGMOD International Conference on Management of Data, pp. 229–240, 2006. [38] Y. Xu, B.C.M. Fung, K. Wang, A.W.C. Fu, J. Pei, Publishing sensitive transactions for itemset utility, in: Proc. of the 8th IEEE International Conference on Data Mining, pp. 1109–1114, 2008. [39] Y. Xu, K. Wang, A.W.C. Fu, P.S. Yu, Anonymizing transaction databases for publication, in: Proc. of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 767–775, 2008. [40] R. Yarovoy, F. Bonchi, L.V.S. Lakshmanan, W.H. Wang, Anonymizing moving objects: How to hide a MOB in a crowd? in: Proc. of the 12th International Conference on Extending Database Technology, pp. 72–83, 2009.