One of the main issues in modern supply chain management is the recovery of value from the end of life (EOL) or defective products by re-manufacturing, reassembly, re-use and recycling. Despite the fact that reverse logistics would impose extra amount of complexity to the supply chain, it has captured a lot of attention as it is possible to recycle the materials where there are limited resources. Through reverse logistics companies will be able to minimize the overall production costs through reclaiming the unsold or defective products’ values which in turn may lead to more productivity and growth, and more importantly reverse logistics may improve the quality of end products by finding the faults of the system and the points which directly or indirectly affect the ultimate product. However, a number of challenges arise with reverse logistics; integration of the whole supply chain including both inbound activities and outbound activities, creating incentives for return and reuse, huge amount of inspections and imposed complexity to the supply chain as a whole since the number of partners may increase. On the other hand, technologies such as barcodes, radio frequency identification (RFID), global positioning system (GPS), etc, have made it easier to cope with the aforementioned challenges and complexities of reverse supply chains. In this thesis, our goal is to examine the potential of radio frequency identification (RFID) technology on dis-assembly operations of aircraft at the End of Life using system dynamics simulation. In particular, a case study on how RFID technology affects the time of dis-assembly of a single helicopter has been conducted in cooperation with Bell Helicopters. The proposed System dynamics simulation model is developed using “AnyLogic”. The results of our study show that employing RFID technology will lead to a reduction in total dis-assembly time of a helicopter. However, bringing motivations to the market to employ RFID technology in industries and developing trust in the promising benefits and results will require more challenging planning and managerial activities. Keywords: Reverse logistics (RL), RFID, aviation industry, end of life products (EOL), System Dynamics simulation