[1] Aarset, M. V.(1987). How to identify bathtub hazard rate, IEEE Trans. Reliability R-36, 106-108. [2] Barlow, Richard E. and Campo, R. (1975). Total time on test processes and applications to failure data analysis. In Reliability and fault tree analysis (Eds.: R.E. Barlow, J. B. Fussell and N. D. Singpurwalla), SIAM, Philadelphia, 451–481. [3] Bergman, B. and Klefsjo, B. (1984). The total time on test concept and its use in reliability theory., Operations Research 32, 596-606. [4] Bergman, B. and Klefsjo, B. (1985). Burn-in models and TTT transforms. Qual. and Reliab. Int. 1, 125-130. [5] Bourguignon, M., Silva, R.B. and Cordeiro, G.M. (2014). The Weibull-G Family of Probability Distributions. J. Data Sc. 12, 53–68. [6] Burnham, K.P. and Anderson, D.R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed.), Springer-Verlag, Berlin. [7] Chen, Z. (2000). A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Stat. & Prob. Lett. 49, 155-161. [8] Davison, A.C. and Hinkley, D.V. (1997). Bootstrap Methods and Their Application, Cambridge University Press, London. [9] Efron, B. and Tibshirani, R. (1985). Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures fo Statistical Accuracy, Statistical Science 1, 54-77. [10] Friemer, M., Mudholkar, G.S., Kollia, G. and Lin, C.T. (1988). A study of the generalized Tukey lambda family, Commun. Statist.-Theory Meth. 17(10), 3547-3567. [11] Friemer, M., Mudholkar, G.S., Kollia, G. and Lin, C.T. (1989). Extremes, extreme spacings and outliers in the Tukey andWeibull families, Commun. Statist.-Theory Meth. 18(11), 4261-4274. [12] Gupta, R.D. and Kundu, D. (1999). Generalized exponential distributions. Austr. NZ. Jour. Stat. 41, 17–188. [13] Gupta, R.C., Gupta, P.L. and Gupta, R.D. (1998). Modeling failure time data by Lehman alternatives. Comm. Statist. Theory – Methods 27, 887-904. [14] Gurvich, M.R., DiBenedetto, A.T. and Ranade, S.V. (1997). A new statistical distribution for characterizing the random strength of brittle materials. Journal of Materials Science 32, 2559–2564. [15] Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, Vol. 1 (2nd Ed.), Wiley, New York. [16] Marshall, A.W. and Olkin, I. (1997). A new method for adding a parameter to a family of distributions with applications to exponential and Weibull families. Biometrika 84, 641–652. [17] Mudholkar, G.S. and Hutson, A.D. (1996). The exponentiated weibull family: some properties and a flood data application, Commun. Statist.-Theory Meth. 25, 3059-3083. [18] Mudholkar, G.S., Kollia, G.D. (1994). Generalized Weibull family: a structural analysis. Comm. Statist. Theory – Methods 23, 1149–1171. [19] Mudholkar, G.S., Kollia, G.D., Lin, C.T. and Patel, K.R. (1991). A graphical procedure for comparing goodness-of-fit tests. J. Roy. Statist. Soc. Ser. B 53, 221– 232. [20] Mudholkar, G.S. and Srivastava, D.K. (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Trans. Reliab. 42, 209-302. [21] Mudholkar, G.S., Srivastava, D.K. and Kollia, G.D. (1996). A generalization of the Weibull distribution with application to the analysis of survival data. J. Amer. Statist. Assoc. 91, 1575-1583. [22] Murthy, D.N.P., Xie, M. and Jiang, R. (2003). Weibull Models, Hoboken, NJ, USA. [23] Nadarajah, S. (2009). Bathtub-shaped failure rate functions. Qual. Quant. 43, 855–863. [24] Nadarajah, S., Cordeiro, G.M. and Ortega, E.M.M. (2013). The exponentiated Weibull distribution: A survey. Stat. Papers 54, 839-877. [25] Nadarajah, S. and Kotz, S. (2006). The exponentiated type distributions. Acta Appl. Math. 92, 97–111. [26] Pappas, V., Adamaidis, K. and Loukas, S. (2012). A family of lifetime distributions. Int. J. Qual., Stat. Rel. 2012, Article ID: 760-687. [27] Parzen, E. (1979). Nonparametric statistical data modelling. Journal of the American Statistical Association 74, 105–131. [28] Rajarshi, S. and Rajarshi, M.B. (1988). Bathtub distributions: A review. Comm. Stat. – Theor. Methods 17, 2597–2621. [29] Schuster, E.F. (1984). Classification of probability laws by tail behavior. Jour. Amer. Statist. Assoc. 79, 936-939. [30] Smith, R.M. and Bain, L.J.(1975). An exponential power life-testing distribution. Comm. Statist. 4, 469-481. [31] Tang, Y., Xie, M. and Goh, T.N. (2003). Statistical Analysis of a Weibull Extension Model. Comm. Statist. Theory – Methods 32, 913–928. [32] Weibull, W. (1951). A statistical distribution function of wide applicability. J. Appl. Mech.-Trans. ASME 18, 293–297. [33] Xie, M., Tang, Y. and Goh, T.N. (2002). A modified Weibull extension with bathtub failure rate function. Reliab. Eng. System Saf. 76,279–285. [34] Zografos, K. and Balakrishnan, N. (2009). On families of beta- and generalized gamma-generated distributions and associated inference. Statistical Methodology 6, 344-362.