Milling is used widely as an efficient machining process in a variety of industrial applications, such as the complex surface machining and removing large amounts of material. Flutes make up the main part of the solid end-mill, which can significantly affect the tool’s life and machining quality in milling processes. The traditional method for end-mill flutes design is using try-errors based on cutting experiments with various flute parameters which is time- and resources-consuming. Hence, modeling the flutes of end-mill and simulating the cutting processes are crucial to improve the efficiency of end-mill design. Generally, in industry, the flutes are ground by CNC grinding machines via setting the position and orientation of grinding wheel to guarantee the designed flute parameters including rake angle, relief angle, flute angle and core radius. However, in previous researches, the designed flute profile was ground via building a specific grinding wheel with a free-form profile in in the grinding processes. And the free-form grinding wheel will greatly increase the manufacturing cost, which is too complicated to implement in practice. In this research, the flute-grinding processes were developed with standard grinding wheel via 2-axis or 5-axis CNC grinding operations. For the 2-axis CNC flute-grinding processes, the flute was modelled via calculating the contact line between the grinding wheel and cutters. The flute parameters in terms of the dimension and configuration of grinding wheel were expressed explicitly, which can be used to planning the CNC programming. For the 5-axis CNC flute-grinding processes, the flute was obtained with a cylinder grinding wheel via setting the wheel’s position and orientation rather than dressing the dimension of grinding wheel. In this processes, optimization method was used to determine the wheel’s position and orientation and evaluating the machined flute parameters. Beside, based on the proposed flute model, various conditions for grinding wheel’s setting were discussed to avoid interference of flute profile. A free-form flute profile is consequently generated in its grinding processes. However, in the end-mill design, the flute profile is simplified with some arcs and lines to approximate the CAD model of end-mills, which would introduce errors in the simulation of cutting processes. Based on the proposed flute-grinding methods, a solid flute CAD model was built and a CAD/CAM/CAE integration approach for the end-mill was carried out to predict the cutting forces and tool deflection. And also, the prediction results with various methods are verified to demonstrate the advantage of proposed approach. This work lays a foundation of integration of CAD/CAM/CAE for the end-mill design and would benefit the industry efficiently.