[1] Goldsborough, R. Counterfeit Coin Detection. http://rg.ancients.info/guide/counterfeits.html, 2013. [2] Inksure Technologies. Coin Anti-Counterfeiting. http://www.inksure.com/banknotesecurity/ 254-coin-anti-counterfeiting, 2014. [3] The Royal Mint, UK. £1 Counterfeit Coins. http://www.royalmint.com/discover/uk-coins/counterfeit-one-pound-coins. [4] Australian Federal Police. Policing: Counterfeit Currency. http://www.afp.gov.au/policing/ counterfeit-currency. [5] Wikipedia. Currency Detector. https://en.wikipedia.org/wiki/Currency_detector. [6] Ultra Electronics Forensic Technology Ltd. IBIS BULLETTRAX-3D: The Only System to Automatically Image & Compare 3D images of Fired Bullets, 2009. [7] Ultra Electronics Forensic Technology Ltd. IBIS BULLETTRAX-3D: Benefits of Combining 2D and 3D Image, 2009. [8] Sun, K., Feng, B.-Y., Atighechian, P., Levesque, S., Sinnott, B. & Suen, C. Y. Detection of Counterfeit Coins Based on Shape and Letterings Features (in press). Proceedings of 28th ISCA International Conference on Computer Applications in Industry and Engineering, San Diego, USA, Oct. 2015. [9] Reisert, M., Ronneberger, O., Burkhardt, H. A Fast and Reliable Coin Recognition System. Proceedings of 29th DAGM Symposium, vol. 4731, pp. 415-424, Heidelberg, Germany, Sep.12-14, 2007. [10] Tsai, D.M., Chiang, C.H. Rotation-Invariant Pattern Matching Using Wavelet Decomposition. Pattern Recognition Letters, vol. 23, pp. 191-201. Jan. 2002. [11] Wei, K.P., He, B., Wang, F., Zhang, T., & Ding Q.J. A Novel Method for Classification of Ancient Coins Based on Image Textures. Proceedings of the Second Workshop on Digital Media and Its Application in Museum & Heritage, pp. 63-66, 2007. [12] Shen, L., Jia, S., Ji, Z., Chen, W.S. Extracting Local Texture Features for Image-based Coin Recognition. IET Image Processing, vol. 5, pp. 394-401, Aug. 2011. [13] Huber, R., Ramoser, H., Mayer, K., Penz, H., Rubik, M. Classification of Coins Using An Eigen-space Approach. Pattern Recognition Letters, vol. 26, pp. 61-75, Jan. 2005. [14] Nolle, M., Penz, H., Pubik, M., Mayer, K., Hollander, I., Geanec, R. A New Coin Recognition and Sorting System. Proceedings of the 7th International Conference on Digital Image Computing Techniques and Applications, pp. 329-338, Sydney, Australia, Dec. 2003. [15] Bremananth, R., Balaji, B., Sankari, M., Chitra, A. A New Approach To Coin Recognition Using Neural Pattern Analysis. Proceedings of IEEE INDICON, pp. 366–370, India, Dec. 2005. [16] Reisert, M., Ronneberger, O., Burkhardt, H. An Efficient Gradient Based Registration Technique for Coin Recognition. Proceedings of the MUSCLE CIS Coin Competition Workshop, pp. 19–31, Berlin, German, Sep. 2006. [17] Van der Maaten, L. J. P., Postma, E. O. Towards Automatic Coin Classification. Digital Cultural Heritage - Essential for Tourism, Oestereichische Computer Gesellschaft, pp. 19–26, 2006. [18] Modi, S., Bawa, S. Automated Coin Recognition System using ANN. International Journal of Computer Applications, vol.26, pp. 13-18, Jul. 2011. [19] Van der Maaten, L. J. P., Boon, P. J. COIN-O-MATIC: A Fast System for Reliable Coin Classification. Proceedings of the MUSCLE CIS Coin Competition Workshop, Berlin, German, pp. 7–17, 2006. [20] Takacs, G., Chandrasekhar, V., Tsai S.S., Chen, D., Grzeszczuk, R., Girod, B. Fast Computation of Rotation-Invariance Image Features by an Approximate Radial Gradient Transform. IEEE Trans Image Process, vol. 22, pp. 2970-2982. Aug. 2013. [21] Feng, B.-Y., Sun, K., Atighechian, P., Suen, C.Y. Computer Recognition and Evaluation of Coins, in press, Chen, C.H. (ed.). Handbook of Pattern Recognition and Computer Vision, 5th Edition for World Scientific Publishing Publication, January 2016. [22] Hough, P.V.C. A Method and Means for Recognizing Complex Patterns, U.S. Patent 3,069,654, Dec. 1962. [23] Duda, R.O., Hart, P.E. Use of Hough Transformation to Detect Lines and Curves in Pictures. Communications of the ACM, vol. 15, pp. 11-15, Jan. 1972. [24] Otsu, N. A Thresholding Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, SMC-9, vol. 9, pp. 62-66, Jan. 1979. [25] Niblack, W. An Introduction to Digital Image Processing. Strandberg Publishing Company, Birkeroed, Denmark, 1985. [26] Connected components Labeling. http://homepages.inf.ed.ac.uk /rbf/HIPR2 /label.htm, 2003. [27] Ntirogiannis, K., Gatos, B., Pratikakis, I. A Modified Adaptive Logical Level Binarization Technique for Historical Document Images. Proceedings of the 10th International Conference on Document Analysis and Recognition, IEEE Computer Society, Barcelona, Spain, pp.1171-1175, 2009. [28] Rafael C.G., Richard E.W. Digital Image Processing, 3rd edition, pp. 628-638, Prentice Hall, 2007. [29] Jain, A.k. Data Clustering : 50 Years Beyond K-Means. Pattern recognition letters, issue. 31, pp. 651-666, 2010. [30] Asano, T., Bhattacharya, B., Keil, M., and Yao F. Clustering algorithms based on minimum and maximum spanning trees. Proceedings of the 4th Annual Symposium on Computational Geometry, Urbana Champaign, USA, pp. 252–257, 1988. [31] Preparata, F., Shamos, M. Computational Geometry: An Introduction. Springer-Verlag, New York, USA, 1985. [32] Zahn, C.T. Graph-theoretical Methods for Detecting and Describing Gestalt Clusters. IEEE Transactions on Computers, vol. C-20, pp. 68-86, Jan. 1971. [33] Grygorash, O., Zhou, Y., Jorgensen, Z. Minimum Spanning Tree Based Clustering Algorithms. Proceedings of the 18th International Conference on Tools with Artificial Intelligence, Washington D.C., USA, pp. 73-81, Nov. 2006. [34] Cormen, T.H., Leiserson, C., Rivest, R.L., Stein, C. Introduction to Algorithms, 3rd edition. The MIT press, Cambridge Massachusetts, USA, 2009. [35] Kruskal, J. On the Shortest Spanning Subtree and the Traveling Salesman Problem. Proceedings of the American Mathematical Society, vol. 7, pp. 48–50, 1956. [36] Xu, Y., Olman, V. and Xu, D. Minimum spanning trees for gene expression data clustering. Genome Informatics, vol. 12, pp. 24–33, 2001. [37] Loncaric, S. A Survey of Shape Analysis Techniques. Pattern Recognition, vol. 31, pp. 983-1001, 1998. [38] Materka, A., Strzelecki, M. Texture Analysis Methods – A Review. Institute of Electronics, Lodz, Poland, 1998. [39] Tuytelaars, T., Mikolajczyk, K. Local Invariant Feature Detectors: A Survey. Foundations and Trends in Computer Graphics and Vision, vol. 3, pp. 177-280, Jan. 2008. [40] D. Chetverikov and J. Matas. Periodic Textures as Distinguished Regions for Wide-Baseline Stereo Correspondence. In Proceedings of the 2nd International Workshop on Texture Analysis and Synthesis, Copenhagen, Denmark, pp. 25–30, 2002. [41] Dorko, G., Schmid, C. Selection of Scale Invariant Neighborhoods for Object Class Recognition. Proceedings of the 9th International Conference on Computer Vision, Nice, France, pp. 634–640, Oct. 2003. 
 [42] Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L. A Comparison of Affine Region Detectors. International Journal of Computer Vision, vol. 65, pp. 43–72, 2005. [43] Forssen, P.-E., Lowe, D.G. Shape Descriptors for Maximally Stable Extremal Regions. Proceedings of IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, pp. 1-8, Oct. 2007. [44] Matas, J., Chum, O., Urban, M., Pajdla, T. Robust Wide Baseline Stereo from Maximally Stable Extremal Regions. Image and Vision Computing, vol. 22, pp. 761-767, Sep. 2004. [45] S. Obdrzalek, Matas, J. Object Recognition Using Local Affine Frames on Maximally Stable Extremal Regions. Toward Category-Level Object Recognition, vol. 4170, pp. 83-104, 2006. [46] Forssen, P.-E. Maximally Stable Colour Regions for Recognition and Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, Minnesota, USA, Jun. 2007. [47] Donoser, M., Bischof, H. Efficient Maximally Stable Extremal Region (MSER) Tracking. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 553-560, New York, USA, Jun. 2006.