Pollen tubes are polarly growing plant cells that are able to respond to a combination of chemical, mechanical, and electrical cues during their journey through the flower pistil in order to accomplish fertilization. How signals are perceived and processed in the pollen tube is still poorly understood and evidence for electrical guidance, in particular, is vague and highly contradictory. To generate reproducible experimental conditions for ex vivo pollen cell cultures, here we present a low-cost, reusable Electrical Lab-on-a-Chip (ELoC) for investigating the influence of electric fields on growing cells. Viability of pollen growth using a structured microfluidic network is first investigated and validated. Then the integration of microelectrodes into the device is addressed in detail. Characterization of the pollen growth medium conductivity and simulation of the ELoC electrical configuration were carried out to define the experimental conditions. Reusability of the microdevice is achieved by structuring the design into two separate rebondable modules: a microfluidic module and a microelectrode module. Two experimental approaches were realized: a batch design for exposing simultaneously a large number of cells to a global electric field, and a single-cell design in which a localized electric field is applied to individual cells. Extensive batch results indicate that DC fields were inhibitory above 6 V/cm. However, switching to AC fields re-established pollen tube growth at frequencies above 100 mHz, suggesting a significant role of the medium conductivity in controlling the cellular response. Unlike macroscopic open-assay experimental setups, single-cell tests further indicate no reorientation of pollen tube growth, suggesting that previously reported tropic behavior was caused by ion movement in the substrate rather than by a direct effect of the electric field on the cell.