[1] J. H. Winters, R. D. Gitlin, and S. Kasturia, “Reducing the effects of transmission impairments in digital fiber optic systems,” IEEE Commun. Mag., vol. 31, no. 6, pp. 68-76, Jun. 1993. [2] T. Terahara, T. Naito, N. Shimojoh, T. Chikarna and M. Suyama, “85 Gbit/s WDM transmission of 16 5.3 Gbit/s RZ data signals over 7931 km using accurate gain-equalisation and precompensation of group-velocity-dispersion,” Electron. Lett., vol.33, no. 7, pp. 603-605, Mar. 1997. [3] R. A. de A. Lima, M. C. R. Carvalho, and L. F. M. Conrado, “Digital optical transmission links with in-line erbium doped fiber amplifier chains,” IEEE MTT-S Int. Microw. Symp., vol. 1, pp. 374-378, Aug. 1997. [4] H. Asada, T. Yamada, N. A. Rabou, H. Ikeda, and Y. Shimodaira, “Optical fiber digital transmission of multiplexed video and audio signals suitable for multimedia applications,” IEEE Trans. Consum. Electron., vol. 44, no. 2, pp. 273-279, May 1998. [5] R. E. Schuh, E. Sundberg, B. Verri, and T. Arkner, “Penalty free simultaneous 1 Gbit/s digital and GSM-1800 radio signal transmission over 600 m multimode fibre using 850 nm VCSEL sources,” IEEE Int. Symp. Pers. Indoor Mobile Radio Commun., vol. 5, pp. 2274-2276, Sept. 2002. [6] J. Yu, X. Zhou, M. F. Huang, Y. Shao, D. Qian, T. Wang, M. Cvijetic, P. Magill, L. Nelson, M. Birk, S. Ten, H. B. Mathew, and S. K. Mishra, “17 Tb/s (161×114 Gb/s) PolMux-RZ-8PSK transmission over 662 km of ultra-low loss fiber using C-band EDFA amplification and digital coherent detection,” European Conf. Opt. Commun., Sept. 2008. [7] D. van den Borne, V. A. J. M. Sleiffer, M. S. Alfiad, S. L. Jansen, and T. Wuth, “POLMUX-QPSK modulation and coherent detection: The challenge of long-haul 100G transmission,” European Conf. Opt. Commun., Sept. 2009. [8] K.-I. Kitayama, A. Maruta, and Y. Yoshida, “Digital Coherent Technology for Optical Fiber and Radio-Over-fiber Transmission Systems,” J. Lightw. Technol., vol. 32, no. 20, pp.3411-3420, Mar. 2014. [9] G. Raybon, A. Adamiecki, S. Randel, and P. J. Winzer, “Single-carrier and dual-carrier 400-Gb/s and 1.0-Tb/s transmission systems,” Opt. Fiber Commun. Conf. Expo., Mar. 2014. [10] M. G. Larrode and A. M. J. Koonen, “All-Fiber Full-Duplex Multimode Wavelength-Division-Multiplexing Network for Radio-Over-Multimode-Fiber Distribution of Broadband Wireless Services,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 1, pp. 248-255, Jan. 2008. [11] N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, “A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility,” J. Lightw. Technol., vol. 27, no. 12, pp. 1957-1967, May 2009. [12] C.-T. Lin, J. Chen, P.-C. Peng, C.-F. Peng, W.-R. Peng, B.-S. Chiou, and S. Chi, “Hybrid Optical Access Network Integrating Fiber-to-the-Home and Radio-Over-Fiber Systems,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 610-612, Apr. 2007. [13] G. Kalfas and N. Pleros, “An Agile and Medium-Transparent MAC Protocol for 60 GHz Radio-Over-Fiber Local Access Networks,” J. Lightw. Technol., vol. 28, no. 16, pp. 2315-2326, Mar. 2010. [14] F. Brendel, J. Poette, B. Cabon, T. Zwick, F. Van Dijk, F. Lelarge, and A. Accard, “Chromatic Dispersion in 60 GHz Radio-Over-Fiber Networks Based on Mode-Locked Lasers,” J. Lightw. Technol., vol. 29, no. 24, pp. 3810-3816, Oct. 2011. [15] T. P. C. de Andrade, N. L. S. da Fonseca, L. B. Oliveira, and O. C. Branquinho, “MAC protocols for wireless sensor networks over radio-over-fiber links,” IEEE Int. Conf. Commun., pp. 254-259, Jun. 2012. [16] A. Haddad, E. A. Doumith, and M. Gagnaire, “Impairment-aware radio-over-fiber control plane for LTE antenna backhauling,” IEEE Int. Conf. Commun., pp. 2816-2821, Jun. 2012. [17] Y. Yang, F. Li, C. Lim, and A. Nirmalathas, “Radio-over-fiber technologies for future mobile backhaul supporting cooperative base stations,” IEEE MTT-S Int. Microw. Symp., Jun. 2013. [18] G. S. D. Gordon, M. J. Crisp, R. V. Penty, T. D. Wilkinson, and I. H. White, “Feasibility Demonstration of a Mode-Division Multiplexed MIMO-Enabled Radio-Over-Fiber Distributed Antenna System,” J. Lightw. Technol., vol. 32, no. 20, pp. 3521-3528, Mar. 2014. [19] M. Morant, J. Prat, and R. Llorente, “Radio-Over-Fiber Optical Polarization-Multiplexed Networks for 3GPP Wireless Carrier-Aggregated MIMO Provision,” J. Lightw. Technol., vol. 32, no. 20, pp. 3721-3727, Apr. 2014. [20] J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission,” Electron. Lett., vol. 33, issue 6, pp. 512-513, Mar. 1997. [21] G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Techn., vol. 45, issue 8, pp. 1410–1415, Aug. 1997. [22] G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems,” Electron. Lett., vol. 33, no. 1, pp. 74-75, Jan. 1997. [23] A. Bjarklev, T. Rasmussen, O. Lumholt, K. Rottwitt, and M. Helmer, “Optimal design of single-cladded dispersion-compensating optical fibers,” Opt. Lett., vol. 19, issue 7, pp. 457–459, Apr. 1994. [24] A. J. Antos and D. K. Smith, “Design and characterization of dispersion compensating fiber based on the LP01 mode,” J. Lightw. Technol., vol. 12, issue 10, pp. 1739–1745, Oct. 1994. [25] K. Nishimura, R. Inohara, M. Tsurusawa, and M. Usami, “80 Gbit/s wavelength conversion using MQW electro-absorption modulator in delayed-interferometric configuration,” Electron. Lett., vol. 39, no. 10, pp. 792–794, May 2003. [26] C. Sui, B. Hraimel, X. Zhang, L. Wu, Y. Shen, K. Wu, T. Liu, T. Xu and Q. Nie, “Impact of electro-absorption modulator integrated laser on MB-OFDM ultra-wideband signals over fiber systems,” J. Lightw. Technol., vol.28, no24. pp. 3548-3555, Nov. 2010. [27] S. Højfeldt and J.Mørk, “Modeling of carrier dynamics in quantum-well electroabsorption modulators,” IEEE J. Sel. Topics in Quantum Electron., vol. 8, no. 6, pp. 1265-1276, Nov. 2002. [28] T. Mori and H. Kawaguchi, “Characteristics of nondegenerate four-wave mixing in electro-absorption modulator,” Appl. Phys. Lett., vol. 85, no. 6, pp. 869–871, Aug. 2004. [29] H. Kuwatsuka, T. Simoyama, and H. Ishikawa, “Enhancement of third-order nonlinear optical susceptibilities in compressively strained quantum wells under the population inversion condition,” IEEE J. Quantum Electron., vol. 35, no. 12, pp. 1817–1825, Dec. 1999. [30] A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R.Dall’Ara, G.Guekos, and K. J. Vahara, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 952–954, Jul. 1997. [31] E. S. Awad, P. S. Cho, and J. Goldhar, “Simultaneous four-wave mixing and cross-absorption modulation inside a single EAM for high-speed optical demultiplexing and clock recovery,” IEEE Photon. Technol. Lett., vol. 17, no. 7, pp. 1534-1536, Jun. 2005. [32] C. S. Park, C. K. Oh, C. G. Lee, D.-H. Kim, and C. S. Park, “A photonic up-converter for a WDM radio-over-fiber system using cross-absorption modulation in an EAM,” IEEE Photon. Technol. Lett., vol. 17, no. 9, pp. 1950-1952, Sept. 2005. [33] C. S. Park, Y. Guo, Y. K. Yeo, Y. Wang, L. C. Ong, and S. Kato, “Fiber-Optic 60-GHz Wireless Downlink Using Cross-Absorption Modulation in an EAM,” IEEE Photon. Technol. Lett., vol. 20, no. 8, pp. 557-559, Apr. 2008. [34] Q. Lin and G. P. Agrawal, “Vector theory of cross-phase modulation: role of nonlinear polarization rotation,” IEEE J. Quantum Electron., vol. 40, no. 7, pp. 958-964, Jul. 2004. [35] G. Meloni, A. Bogoni, and L. Poti, “Real-time ps-resolution optical sampler based on XPM-induced polarization rotation in 1-meter-long bismuth oxide fibre,” European Conf. Opt. Commun., vol. 1, pp. 63-64, Sept. 2005. [36] J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-gb/s nonreturn-to-zero signal using cross-phase-Modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 1041-1135, Jan. 2006. [37] R. Zhu, B. Hraimel, and X. Zhang, “Analysis of simultaneous photonic frequency downconversion and optical subcarrier modulation in an electroabsorption modulator,” J. Lightw. Technol., vol. 30, no. 3, pp. 344–354, Feb. 2012. [38] A. Georgiadis, “Gain, phase, imbalance, and phase noise effects on error vector magnitude,” IEEE Trans. Veh. Technol., vol. 53, no. 2, pp. 443-449, Mar. 2004. [39] R. B. Ellis and M. H. Capstick, “Feedback control of a linearised Mach-Zehnder modulator for SCM applications,” High Freq. Postgraduate Student Colloq., pp. 33-38, Sept. 1996. [40] G. C. Wilson, T. H. Wood, M. Gans, J. L. Zyskind, J. W. Sulhoff, J. E. Johnson, T. Tanbun-Ek, and P. A. Morton, “Predistortion of electroabsorption modulators for analog CATV systems at 1.55 μm,” J. Lightw. Technol., vol. 15, no. 9, pp. 1654-1662, Sept. 1997. [41] H. Matsubara, K. Ishihara, N. Miyadai, and T. Nojima, “A Novel 3rd-and-5th-Order Predistortion Circuit for 2 GHz Band W-CDMA Amplifier,” Asia-Pacific Microw. Conf., Dec. 2007. [42] A. Katz, R. Gray, and R. Dorval, “Truly wideband linearization,” IEEE Microw. Mag., vol. 10, no. 7, pp. 20-27, Dec. 2009. [43] Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A Novel Analog Broadband RF Predistortion Circuit to Linearize Electro-Absorption Modulators in Multiband OFDM Radio-Over-Fiber Systems,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3327-3335, Sept. 2010. [44] B. Hraimel and X. Zhang, “Low-cost broadband predistortion-linearized single-drive x-cut Mach–Zehnder modulator for radio-over-fiber systems,” IEEE Photon. Technol. Lett., vol. 24, no. 18, pp. 1571–1573, Sept. 2012. [45] B.-H. Son, K.-J. Kim, Y. Li, C.-I. Park, and Y.-W. Choi, “Simple electrical predistortion method using Schottky diode for radio-over-fiber systems,” IEEE Photon. Technol. Lett., vol. 27, no. 8, pp. 907–910, Apr. 2015. [46] R. Sadhwani and B. Jalali, “Adaptive CMOS predistortion linearizer for fiber-optic links,” J. Lightw. Technol., vol. 21, no. 12, pp. 3180-3193, Dec. 2003. [47] T.-Y. Huang, Y.-H. Lin, and H. Wang, “A K-band adaptive-bias power amplifier with enhanced linearizer using 0.18-μm CMOS process,” IEEE MTT-S Int. Microw. Symp., May 2015. [48] Y.-H. Chen, K.-Y. Kao, C.-Y. Chao, and K.-Y. Lin, “A 24 GHz CMOS power amplifier with successive IM2 feed-forward IMD3 cancellation,” IEEE MTT-S Int. Microw. Symp., May 2015. [49] L. Ding and G. T. Zhou, “Effects of even-order nonlinear terms on predistortion linearization,” IEEE Digit. Signal Process. Workshop, Oct. 2002. [50] R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital Processing and a dual-drive Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 714-716, Mar. 2005. [51] L. C. Vieira, N. J. Gomes, A. Nkansah, and F. Van Dijk, “Behavioral modeling of radio-over-fiber links using memory polynomials,” Int. Topical Meeting Microw. Photon., pp. 85-88, Oct. 2010. [52] L. C. Vieira, N. J. Gomes, and A. Nkansah, “An experimental study on digital predistortion for radio-over-fiber links,” Asia Commun. Photon. Conf. Exhibition, pp. 126-127, Dec. 2010. [53] Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, H. Zhang, and I. T. Monroy, “Digital predistortion of 75-110 GHz W-band frequency multiplier for fiber wireless short range access systems,” European Conf. Opt. Commun., Sept. 2011. [54] Z. Liu, M. A. Violas, and N. B. Carvalho, “Transmission of four channels SCM over fiber and nonlinear compensation for RSOA external modulators,” IEEE GLOBECOM Workshops, pp. 147-151, Dec. 2011. [55] A. Awoye, M. S. Leeson, and R. J. Green, “Neural network based adaptive predistortion for radio over fiber links,” Int. Conf. Transparent Opt. Netw., Jul. 2012. [56] D. Lam, A. M. Fard, and B. Jalali, “Digital broadband linearization of analog optical links,” IEEE Photon. Conf., pp. 370-371, Sept. 2012. [57] O. Omomukuyo, M. P. Thakur, and J. E. Mitchell, “Experimental demonstration of digital predistortion for linearization of Mach-Zehnder modulators in direct-detection MB-OFDM ultra-wideband over fiber systems,” Asia Commun. Photon. Conf., Nov. 2012. [58] Y. Zhao, L. Deng, X. Pang, X. Yu, X. Zheng, H. Zhang, and I. T. Monroy, “Digital predistortion of 75-110 GHz W-band frequency multiplier for fiber wireless short range access systems,” Opt. Exp., vol. 19, no. 26, pp. B18-B25, Dec. 2012. [59] Y. Pei, K. Xu, J. Li, A. Zhang, Y. Dai, Y. Ji, and J. Lin, “Complexity-reduced digital predistortion for subcarrier multiplexed radio over fiber systems transmitting sparse multi-band RF signals,” Opt. Exp., vol. 21, no. 3, pp. 3708-3714, Feb. 2013. [60] Y. Zhang, J. Li, H. Chen, C. Yin, Y. Dai, F. Yin, and K. Xu, “Clip-and-Filter-Based Crest Factor Reduction and Digital Predistortion for WLAN-Over-Fiber Links,” IEEE Photon. Technol. Lett., vol. 26, no. 23, pp. 2315-2318, Sept. 2014. [61] C. H. Lee, V. Postoyalko, and T. O’Farrell, “Enhanced performance of RoF link for cellular mobile systems using postdistortion compensation,” IEEE Int. Symp. Pers. Indoor Mobile Radio Commun., pp. 2772-2776, Sept. 2004. [62] J. Basak and B. Jalali, “Photodetector linearization using adaptive electronic post-distortion,” Opt. Fiber Commun. Conf. Expo., Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC), vol. 4, Mar. 2005. [63] R. Duan, K. Xu, J. Dai, Q. Lv, Y. Dai, J. Wu, and J. Lin, “Digital linearization technique for IMD3 suppression in intersity-modulated analog optical links,” Int. Topical Meeting Microw. Photon., Asia Pacific Microw. Photon. (MWP/APMP), pp. 234-237, Oct. 2011. [64] R. Duan, K. Xu, J. Dai, Y. Cui, J. Wu, Y. Li, Y. Dai, and J. Li, “Linearity improvement based on digital signal processing in intensity-modulated analog optical links incorporating photonic frequency downconversion,” Opt. Fiber Commun. Conf. Expo., Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC), JW2A, Mar. 2012. [65] P. Li, R. Shi, M. Chen, H Chen, S. Yang, and S. Xie, “Linearized photonic if downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” Int. Topical Meeting Microw. Photon. (MWP), pp. 68-71, Sept. 2012. [66] X. Xie, Y. Dai, K. Xu, J. Niu, Y. Li, R. Wang, Y. Ji, and J. Lin, “Digital nonlinearities compensation based on forward distortion information acquisition in channelized RF photonic links,” Int. Topical Meeting Microw. Photon. (MWP), pp. 88-91, Sept. 2012. [67] Y. Pei, J. Li, K. Xu, Y. Dai, Y. Ji, and J. Lin, “Digital multi-channel post-linearization for uplink in multi-band radio-over-fiber systems,” Opt. Fiber Commun. Conf. Expo., Mar. 2014. [68] C. Yu, A. Zhu, “Single feedback loop-based digital predistortion for linearizing concurrent multi-band transmitters,” IEEE MTT-S Int. Microw. Symp. (IMS), Jun. 2014. [69] L. M. Johnson and H. V. Roussell, “Reduction of intermodulation distortion in interferometric optical modulators,” Opt. Lett., vol. 13, issue 10, pp. 928-930, 1988. [70] L. M. Johnson and H. V. Roussell, “Linearization of an interferometer modulator at microwave frequencies by polarization mixing,” IEEE Photon. Technol. Lett., vol. 2, issue 11, pp. 810-811, Nov. 1990. [71] B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photon. Technol. Lett., vol. 19, no. 10, pp. 729-731, May. 2007. [72] B. Masella, B. Hraimel, and X. Zhang, “Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach-Zehnder modulator,” J. Lightw. Technol., vol. 27, no. 15, pp. 3034–3041, Aug. 2009. [73] B. Hraimel, X. Zhang, W. Jiang, K. Wu, T. Liu, T. Xu, Q. Nie, and K. Xu, “Experimental demonstration of mixed-polarization to linearize electro-absorption modulators in radio-over-fiber links,” IEEE Photon. Technol. Lett., vol. 23, no. 4, pp. 230-232, Feb. 2011. [74] B. Hraimel and X. Zhang, “Performance improvement of radio-over fiber links using mixed-polarization electro-absorption modulators,” IEEE Trans. Microw. Theory Techn., vol. 59, issue 12, pp. 3239–3248, Dec. 2011. [75] B. Hraimel and X. Zhang, “Characterization and compensation of AM-AM and AM-PM distortion in mixed polarization radio over fiber systems,” IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012. [76] B. Hraimel, X. Zhang, T. Liu, T. Xu, Q. Nie, and D. Shen, “Performance enhancement of an OFDM ultra-wideband transmission-over-fiber link using a linearized mixed-polarization single-drive x-cut Mach-Zehnder modulator,” IEEE Trans. Microw. Theory Techn., vol. 60, issue 10, pp. 3328–3338, Oct. 2012. [77] X. Chen, W. Li, and J. Yao, “Microwave photonic link with improved dynamic range using a polarization modulator,” IEEE Photon. Technol. Lett., vol. 25, no. 14, pp. 1373-1376, Jun. 2013. [78] Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Exp., vol. 21, no. 20, pp. 23433-23440, Oct. 2013. [79] D. H. Jeon, H. D. Jung, and S. K. Han, “Mitigation of dispersion-induced effects using SOA in analog optical transmission,” IEEE Photon. Technol. Lett., vol. 14, issue 8, pp. 1166-1168, Aug. 2002. [80] J. Palaci, J. Herrera, and J. Marti, “EAM-SOA based millimeter-wave frequency up-conversion for radio-over-fiber applications,” Int. Topical Meeting Microw. Photon. (MWP), Oct. 2009. [81] B. Hraimel and X. Zhang, “Suppression of radio over fiber system nonlinearity using a semiconductor optical amplifier and mixed polarization,” Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC), OTHR2, Mar. 2013. [82] D. J. M. Sabido, IX, M. Tabara, T. K. Fong, C. L. Lu, and L. G. Kazovsky, “Improving the dynamic range of a coherent am analog optical link using a cascaded linearized modulator,” IEEE Photon. Technol. Lett., vol. 7, no. 7, pp. 813-815, Jul. 1995. [83] W. K. Burns, “Linearized optical modulator with fifth order correction,” J. Lightw. Technol., vol. 13, no. 8, pp. 1724–1727, Aug. 1995. [84] J. D. Farina, B. R. Higgins, and J. P. Farina, “New linearization technique for analog fiber-optic links,” Opt. Fiber Commun., pp. 283-285, Mar. 1996. [85] G. E. Betts and F. J. O’Donnell, “Microwave analog optical links using suboctave linearized modulators,” IEEE Photon. Technol. Lett., vol. 8, no. 9, pp. 1273-1275, Sept. 1996. [86] E. I. Ackerman, “Broad-band linearization of a Mach–Zehnder electrooptic modulator,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 12, pp. 2271-2279, Dec. 1999. [87] A. Karim and J. Devenport, “High dynamic range microwave photonic links for RF signal transport and RF-IF conversion,” J. Lightw. Technol., vol. 26, no. 15, pp. 2718–2724, Aug. 2008. [88] D. Marpaung, C. Roeloffzen, and W. van Etten, “Push-pull modulated analog photonic link with enhanced SFDR,” Int. Topical Meeting Microw. Photon., Oct. 2009. [89] V. R. Pagan, B. M. Haas, and T. E. Murphy, “Linearized electrooptic microwave downconversion using phase modulation and optical filtering,” Opt. Exp., vol. 19, no. 2, pp. 883-895, Jan. 2011. [90] J. Dai, K. Xu, R. Duan, Y. Cui, J. Wu, and J. Lin, “Optical linearization for intensity-modulated analog links employing equivalent incoherent combination technique,” Int. Topical Meeting Microw. Photon., Asia Pacific Microw. Photon. (MWP/APMP), pp. 230-233, Oct. 2011. [91] Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in rof links employing parallel modulators,” IEEE Photon. Technol. Lett., vol. 24, no. 14, pp. 1173-1175, Apr. 2012. [92] H. Zhang, S. Pan, M. Huang, and X. Chen, “Linear analog photonic link based on cascaded polarization modulators,” Asia Commun. Photon. Conf., Nov. 2012. [93] F. Wei, S. Li, X. Zheng, H. Zhang, and B. Zhou, “Improvement of optically generated adjacent channel interference in RoF systems,” IEEE Photon. Technol. Lett., vol. 25, no. 12, pp. 1137-1140, May 2013. [94] K. K. Loi, J. H. Hodiak, X. B. Mei, C. W. Tu, and W. S. C. Chang, “Linearization of 1.3-μm MQW electroabsorption modulators using an all-optical frequency-insensitive technique,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 964-966, Jul. 1998. [95] B. M. Hass, V. J. Urick, J. D. McKinney, and T. E. Murphy, “Dual-wavelength linearization of optical-modulated analog microwave signals,” J. Lightw. Technol., vol. 26, no. 15, pp. 2748–2753, Aug. 2008. [96] Z. Wu, K. Xu, J. Niu, Q. Lv, Y. Dai, and J. Lin, “Third-order intermodulation distortion improvement radio-over-fiber link using dual-wavelength intensity modulation,” High Speed Intell. Commun. Forum, May 2012. [97] T. Iwai, K. Sato, and K. Suto, “Reduction of dispersion-induced distortion in SCM transmission systems by using predistortion-linearized MQW-EA modulators,” J. Lightwave Technol., vol. 15, issue 2, pp. 169–178, Feb. 1997. [98] C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 2181-2187, May 2006. [99] C. Lim, A. Nirmalathas, K.-L. Lee, D. Novak, and R. Waterhouse, “Intermodulation distortion improvement for fiber–radio applications incorporating OSSB+C modulation in an optical integrated-access environment,” J. Lightw. Technol., vol. 25, no. 6, pp. 1602-1612, Jun. 2007. [100] A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, “Highly linear integrated optical transmitter for subcarrier multiplexed systems,” IEEE Photon. Technol. Lett., vol. 21, no. 7, pp. 438-440, Feb. 2009. [101] S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett., vol. 22, no. 24, pp. 1775-1777, Sept. 2010. [102] A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett., vol. 23, no. 1, pp. 24-26, Nov. 2010. [103] Q. Lv, K. Xu, Y. Dai, Y. Li, J. Wu, and J. Lin, “Nonlinear intermodulation distortion suppression in digital photonic link using polarization modulator,” Int. Topical Meeting Microw. Photon., Asia Pacific Microw. Photon. (MWP/APMP), pp. 262-265, Oct. 2011. [104] G Zhang, S Li, X Zheng, H Zhang, B Zhou, and P Xiang, “Dynamic range improvement strategy for Mach-Zehnder modulators in microwave/millimeter-wave RoF links,” Opt. Exp., vol. 20, no. 15, pp. 17214-17219, Jul. 2012. [105] W. Li and J. Yao, “Dynamic range improvement of a microwave photonic link based on bi-directional use of a polarization modulator in a Sagnac loop,” Opt. Exp., vol. 21, no. 13, pp. 15692-15697, Jul. 2013. [106] Z. Chen, L. Yan, W. Pan, B. Luo, X. Zou, Y. Guo, H. Jiang, and T. Zhou, “SFDR enhancement in analog photonic links by simultaneous compensation for dispersion and nonlinearity,” Opt. Exp., vol. 21, no. 18, pp. 20999-21009, Aug. 2013. [107] R. Zhu, X. Zhang, B. Hraimel, D. Shen, and T. Liu, “Broadband Predistortion Circuit Using Zero Bias Diodes for Radio over Fiber Systems,” IEEE Photon. Technol. Lett., vol. 25, no. 21, pp. 2101-2104, Nov. 2013. [108] R. Zhu and X. Zhang, “Broadband Predistortion Circuit Design for Electro-Absorption Modulator in Radio over Fiber System,” Opt. Fiber Commun. Conf. Expo., Mar. 2014. [109] R. Zhu, Z. Xuan, and X. Zhang, “Novel broadband analog predistortion circuit for radio-over-fiber systems,” IEEE MTT-S Int. Microw. Symp., May 2015. [110] R. Zhu and X. Zhang, “Linearization of radio-over-fiber systems by using two lasers with different wavelengths,” IEEE MTT-S Int. Microw. Symp., Jun. 2014.