The US General Service Administration (GSA) 2013 Guidelines specify the procedures and the minimum requirements for the design and evaluation of the new and existing buildings against progressive collapse due to an instantaneous removal of vertical load bearing elements (i.e., columns). The objective of this study is to assess the modeling parameters for reinforced concrete (RC) beams specified in the GSA 2013. Three types of RC buildings located in high, moderate and low seismic zones in Canada are designed according to the 2010 edition of the National Building Code of Canada. They were designed to have ductile, moderately ductile, and conventional seismic force resisting system (SFRS). In total, 27 three-dimensional finite element models are developed using ABAQUS by considering the design variables, such as span length, depth of the section, and the reinforcement ratio. Nonlinear pushdown analyses are conducted by increasing the vertical displacement at the location where the column is removed. The bending moment at the critical section of the beams is monitored throughout the analysis. Based on the analysis results, moment-rotation curve for beam for each type of the building is proposed. In addition, it is found out in the study that the detailing of the seismic design has significant effect on the progressive collapse resistance.