[1] Stadtfeld, H. J., Nov. 2001, Cutting tool for producing gears by Face hobbing, US Patent, Patent No.: US 6,311,590 B1. [2] CNN Tech Heroes: http://advertisementfeature.cnn.com/tech-heroes/archive/hermann-stadtfeld/ [3] Fan, Q., 2005 Computerized Modeling and Simulation of Spiral Bevel and Hypoid Gears Manufactured by Gleason Face Hobbing Process, ASME J. Mech. Des., v 128, n 6, p 1315-1327 , DOI: 10.1115/1.2337316.. [4] Shih, Y., Fong, Z. and Lin,G.C.Y., 2007, Mathematical model for a universal face hobbing hypoid gear generator, ASME J. Mech. Des., 129(1), pp. 38-47. DOI: 10.1016/j.cja.2013.05.005. [5] Vimercati, M., 2007 ,Mathematical Model for Tooth Surfaces Representation of Face-Hobbed Hypoid Gears and Its Application to Contact Analysis and Stress Calculation, Mechanism and Machine Theory, 42(6), pp. 668–690. DOI: 10.1016/j.mechmachtheory.20. [6] http://www.thirdwavesys.com/research-and-development/. [7] Radzevich, S. P., 2010, Gear Cutting Tools: Fundamentals of Design and Computation, CRC Press. [8] http://www.gleason.com/products/148/119/pentac, [Online]. [9] Brecher, C., Klocke, F., Brumm, M. and Hardjosuwito A., 2013, Simulation Based Model for Tool Life Prediction in Bevel Gear Cutting, Computer Aided Engineering, DOI 10.1007/s11740-012-0439-x. [10] Brecher, C., Klocke, F., Brumm, M. and Hardjosuwito A., 2013, Analysis and Optimization of Bevel Gear Cutting Processes by Means of Manufacturing Simulation Simulation & Modeling Methodologies, Technologies & Appl., AISC 197, pp. 271–284. DOI: 10.1. [11] Brecher, C., Klocke, F., Schröder, T. and Rütjes, U., 2008, Analysis and Simulation of Different Manufacturing Processes for Bevel Gear Cutting, Journal of Advanced Mechanical Design Systems and Manufacturing, DOI: 10.1299/jamdsm.2.165.. [12] Klein, A., 2007, A Spiral Bevel and Hypoid Gear Tooth Cutting with Coated Carbide Tools, Dissertation RWTH Aschen. ISBN 978-3-8322-6192-4.. [13] Klocke, F., Schröder and T. and Klein, A., 2006, Tool Life and Productivity Improvement through Cutting Parameter Setting and Tool Design in High-Speed Bevel Gear Tooth Cutting, Gear Technology, pp. 40-49.. [14] Klocke, F., Brumm, M. and Herzhoff, S., 2012, Influence of Gear Design on Tool Load in Bevel Gear Cutting, 5th CIRP Conference on High Performance Cutting. DOI: 10.1016/j.procir.2012.04.010. [15] Stadtfeld, H. J., 2014, Gleason Bevel Gear Technology: The Science of Gear Engineering and Modern Manufacturing Methods for Angular Transmissions, Chap. 2, 7 and 10, The Gleason Works, Rochester, NY. ISBN: 978-0-615-96492-8. [16] Usui, E, Shirakashi, S., Kitagawa, T., Analytical Prediction of Tool Wear, Wear, 100, 1984, 129–151. doi: 10.1016/0043-1648(84)90010-3.. [17] Habibi, M., Chen, Z.C., 2016, A Semi-analytical Approach to Un-deformed Chip Boundary Theory and Cutting Force Prediction in Face-hobbing, Computer Aided Design, 73, pp. 53-65, doi: 10.1016/j.cad.2015.12.001.. [18] Habibi, M., Chen, Z.C., 2015, An Accurate and Efficient Approach to Un-deformed Chip Geometry in Face-hobbing and its Application in Cutting Force Prediction, ASME Journal of Mechanical Design, 138(2):023302-023302-11, doi: 10.1115/1.4032090.. [19] Habibi, M., Chen, Z.C., 2015, A New Approach to Blade Design with Constant Rake and Relief Angles for Face-hobbing of Bevel Gears, ASME Journal of Manufacturing Science and Engineering, 138(3):031005-031005-16, doi: 10.1115/1.4030936.. [20] Habibi, M., Chen, Z.C., 2016, Machining Setting Optimization for Formate® Face-hobbing of Bevel Gears with the Tool Wear Constraint, ASME Journal of Mechanical Design, Submitted.. [21] Fan, Q., 2007, Enhanced algorithms of contact simulation for hypoid gear drives produced by face-milling and face-hobbing processes, ASME J. Mech. Des., 129(1), pp. 31-37. DOI: 10.1115/1.2359475. [22] Shih, Y., 2012, Mathematical Model for Face-Hobbed Straight Bevel Gears, ASME J. Mech. Des., 134(9), pp. 1-11. DOI: 10.1115/1.4007151. [23] Habibi, M., Arezoo, B., Vahebinojedeh*, M., 2011, Tool Deflection and Geometrical Error Compensation by Tool Path Modification, International Journal of Machine Tools and Manufacture, 51 (6), pp. 439-449, doi:10.1016/j.ijmachtools.2011.01.009.. [24] Vahebinojedeh*, M., Habibi, M., Arezoo, B., 2011, Tool Path Accuracy Enhancement through Geometrical Error Compensation, International Journal of Machine Tools and Manufacture, 51 (6), pp. 471-482, doi:10.1016/j.ijmachtools.2011.02.005.. [25] Karunakaran, K.P., Shringi, R., 2008, A solid –based off-line adaptive controller for feed rate scheduling for milling process , Journal of Materials Processing Technology, 204(1-3), pp 384-396. [26] Oliver, J.H., Goodman, E.D., 1990, Direct dimensional NC verification, Computer Aided Design, 22( 1), pp 3–9. [27] Park, J. W., Shin, Y. H., Chung, Y. C., 2005, Hybrid cutting simulation via discrete vector model, Computer-Aided Design, 37( 4), pp 419–430. [28] Maeng, S.R., Baek, N., Shin, S.Y., Choi, B.K., 2003, A z-map update method for linearly moving tools, Computer Aided Design, 35( 11), pp 995–1009. [29] Spence, A., Altintas, Y., 1994, A solid modeler based milling process simulation and planning system, ASME Journal of Engineering for Industry, 116(1), pp 61–69. [30] Roth, D., Ismail, F., Bedi, S., 2003, Mechanistic modeling of the milling process using an adaptive depth buffer, Computer Aided Design, 30(8), pp 1-17. [31] Feng, H.Y., Menq, L.M., Chai, H., Hang, Z.L., 1995, The prediction of dimensional error for sculptured surface production using the ball-end milling process, International Journal of Machine Tools & Manufacture, 35( 8), pp 1149-1169. [32] Mounayri, H.E.I., Spence, A.D., Elbestwani, M.A., 1998, Milling process simulation-a generic solid modeller based paradigm, ASME Journal of Manufacturing Science and Engineering , 120(2), pp 213-221. [33] Habibi, M., Feb. 2010, Geometrical and tool deflection error compensation of 3-axis CNC machine tools by g-code modification, M.Sc. thesis, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. [34] Nikolaos, T., Aristomenis, A., 2012, CAD-based calculation of cutting force components in gear hobbing, ASME Journal of Manufacturing Science and Engineering, 134, pp 031009(1-8). [35] Vasilis, D., Nectarios, V., Aristomenis, A., 2007, Advanced computer aided design simulation of gear hobbing by means of three-dimensional kinematics modeling, ASME Journal of Manufacturing Science and Engineering, 129, pp 911-918. [36] Dimitriou, V., Antoniadis, A., 2009, CAD-based simulation of the hobbing process for the manufacturing of spur and helical gears, The International Journal of Advanced Manufacturing Technology, 41(3-4), pp 347-357. [37] Altintas, Y., 2012, Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, Chap. 2, Cambridge University Press, Cambridge, UK. ISBN: 9781107001480. [38] Engin, S., Altintas, Y., 2001, Mechanics and dynamics of general milling cutters. Part I: helical end mills, International Journal of Machine Tools & Manufacture, 41(15), pp 2195–2212. [39] Soori, M., Arezoo, B., Habibi, M., 2015, Tool Deflection Error of Three-axis CNC Milling Machines, Monitoring and Minimizing by a Virtual Machining System, ASME Journal of Manufacturing Science and Engineering, doi:10.1115/1.4032393.. [40] Soori, M., Arezoo, B., Habibi, M., 2014, Virtual Machining Considering Dimensional, Geometrical and Tool Deflection Errors in Three-axis CNC Milling Machines, Journal of Manufacturing Systems, 33(4), pp. 498-507, doi:10.1016/j.jmsy.2014.04.007.. [41] Soori, M., Arezoo, B., Habibi, M., 2013, Dimensional and Geometrical Errors of Three-axis CNC Milling Machines in Virtual Machining System, Computer Aided Design, 45 (11), pp. 1306-1313, doi:10.1016/j.cad.2013.06.002.. [42] Watanabe T. A, 1986, Model-Based Approach to Adaptive Control Optimization in Milling. ASME. J. Dyn. Sys., Meas., Control.;108(1), pp. 56-64. doi:10.1115/1.3143743.. [43] Litvin, F.L. and Gutman, Y., 1981, Methods of Synthesis and Analysis for Hypoid Gear-Drives of ‘‘Formate’’ and ‘‘Helixform’’, Part 1, 2, and 3 , ASME J. Mech. Des. 103 (1), pp. 83-113. doi:10.1115/1.3254891. [44] Wasif, M., 2012 A New Approach to CNC Programming for Accurate Multi-axis Face-Milling of Hypoid Gears, Ph.D. Dissertation, Concordia University, Montreal, Canada.. [45] Fan, Q., 2005 Computerized Modeling and Simulation of Spiral Bevel and Hypoid Gears Manufactured by Gleason Face Hobbing Process, ASME J. Mech. Des., v 128, n 6, p 1315-1327 , DOI: 10.1115/1.2337316.. [46] Schrock, D.J., Kang, D., Bieler, T.R. and Kwon P., 2014, Phase Dependent Tool Wear in Turning Ti-6Al-4V Using Polycrystalline Diamond and Carbide Inserts, ASME J. Manuf. Sci. Eng. 136(4). DOI: 10.1115/1.4027674. [47] Wang, X. and Kwon P.Y., 2014, WC/Co Tool Wear in Dry Turning of Commercially Pure Aluminium, ASME J. Manuf. Sci. Eng., 136(3). DOI: 10.1115/1.4026514. [48] Braglia, M. and Castellano, D., Diffusion Theory Applied to Tool-Life Stochastic Modeling Under a Progressive Wear Process, ASME J. Manuf. Sci. Eng. 136(3). DOI: 10.1115/1.4026841. [49] Attanasio, A., Ceretti, E., Giardini, C. and Cappellini, C., Tool Wear in Cutting Operations: Experimental Analysis and Analytical Models, ASME J. Manuf. Sci. Eng., 135(5). DOI: 10.1115/1.4025010. [50] Bhushan, R.K., Multiresponse Optimization of Al Alloy-SiC Composite Machining Parameters for Minimum Tool Wear and Maximum Metal Removal Rate, ASME J. Manuf. Sci. Eng., 135(2). DOI: 10.1115/1.4023454. [51] Vasilis, D., Nectarios, V., Aristomenis, 2007, A., Advanced computer aided design simulation of gear hobbing by means of three-dimensional kinematics modeling, ASME Journal of Manufacturing Science and Engineering, 129, pp 911-918. [52] Dimitriou, V., Antoniadis, A., 2009 CAD-based simulation of the hobbing process for the manufacturing of spur and helical gears, The International Journal of Advanced Manufacturing Technology, 41(3-4), pp. 347-357. DOI 10.1007/s00170-008-1465-x. [53] Antoniadis, A., 2012, Gear Skiving—CAD Simulation Approach, Computer Aided Design, 44(7), pp. 611–616. DOI:10.1016/j.cad.2012.02.003. [54] Wang, M., Ken, T., Du, S., Xi, L., Tool Wear Monitoring of Wiper Inserts in Multi-Insert Face Milling Using Three-Dimensional Surface Form Indicators. ASME. J. Manuf. Sci. Eng. 2015;137(3):031006-031006-8. doi:10.1115/1.4028924. [55] Li, B., A review of tool wear estimation using theoretical analysis and numerical simulation technologies, International Journal of Refractory Metals and Hard Materials, Volume 35, November 2012, Pages 143-151, ISSN 0263-4368, doi: 10.1016/j.ijrmhm.2012.0. [56] Yen, Y., Söhner, J., Lilly, B., Altan, T, Estimation of tool wear in orthogonal cutting using the finite element analysis, Journal of Materials Processing Technology, Volume 146, Issue 1, 15 February 2004, Pages 82-91, ISSN 0924-0136, doi: 10.1016/S0924-0. [57] Attanasio, A.A., Ceretti, E.E., Giardini, C.C., Cappellini, C.C., Tool Wear in Cutting Operations: Experimental Analysis and Analytical Models. ASME. J. Manuf. Sci. Eng. 2013;135(5):051012-051012-11. doi:10.1115/1.4025010. [58] Kuttolamadom, M.A, Laine, M.M., Kurfess, T.R., On the Volumetric Assessment of Tool Wear in Machining Inserts With Complex Geometries—Part 1: Need, Methodology, and Standardization. ASME. J. Manuf. Sci. Eng. 2012;134(5):051002-051002-8. doi:10.1115/1.4007. [59] Kuttolamadom, M.A., Laine, M.M., Kurfess, T.R., Burger, U., Bryan, A. On the Volumetric Assessment of Tool Wear in Machining Inserts With Complex Geometries—Part II: Experimental Investigation and Validation on Ti-6Al-4V. ASME. J. Manuf. Sci. Eng. 2012;134. [60] Binder, M., Klocke, F., Lung, D., Tool wear simulation of complex shaped coated cutting tools, Wear, Volumes 330–331, May–June 2015, Pages 600-607, ISSN 0043-1648, doi:10.1016/j.wear.2015.01.015. [61] Islam, C., Lazoglu, I., Altintas, Y., A Three-Dimensional Transient Thermal Model for Machining. ASME. J. Manuf. Sci. Eng. 2015;138(2):021003-021003-17. doi:10.1115/1.4030305. [62] Ding, H., Shin, Y.C., A Metallo-Thermomechanically Coupled Analysis of Orthogonal Cutting of AISI 1045 Steel. ASME. J. Manuf. Sci. Eng. 2012;134(5):051014-051014-12. doi:10.1115/1.4007464. [63] Ivester, R. W., Kennedy, M., Davies, M., Stevenson, R., Thiele, J., Furness, R., and Athavale, S., 2000, Assessment of Machining Models: Progress Report, Mach. Sci. Technol., 4(3), pp. 511–538. [64] Lalwani, D. I., Mehta, N. K., and Jain, P. K., 2009, Extension of Oxley’s Predictive Machining Theory for Johnson and Cook Flow Stress Model, J. Mater. Process. Technol., 209(12–13), pp. 5305–5312. [65] Karpat, Y., and Ozel, T., 2006, Predictive Analytical and Thermal Modeling of Orthogonal Cutting Process—Part I: Predictions of Tool Forces, Stresses, and Temperature Distributions, ASME J. Manuf. Sci. Eng., 128(2), pp. 435–444. [66] Iqbal, S. A., Mativenga, P. T., and Sheikh, M. A., 2007, Characterization of Machining of AISI 1045 Steel Over a Wide Range of Cutting Speeds. Part 1: Investigation of Contact Phenomena, Proc. Inst. Mech. Eng., Part B, 221, pp. 909–916. [67] http://www.malinc.com/products/cutpro/ (retrieved orthogonal cutting parameters) [68] http://hygears.com/ (calculated face-hobbing machine settings)