Alagusundaramoorthy, P., Harik, I., & Choo, C. (2006). Structural behavior of FRP composite bridge deck panels. Journal of Bridge Engineering, 11(4), 384-393. Alberdi, R., Przywara, J., & Khandelwal, K. (2013). Performance evaluation of sandwich panel systems for blast mitigation. Engineering Structures, 56, 2119-2130. Allen, H. (1969). Analysis and design of structural sandwich panels: Pergamon Press, Oxford, London, England Army, T. (1990). TM 5-1300. Structures to Resist the Effects of Accidental Explosions. Arora, H., Hooper, P., & Dear, J. (2012). The effects of air and underwater blast on composite sandwich panels and tubular laminate structures. Experimental mechanics, 52(1), 59-81. AUTODYN, A. (2014). Interactive Non-Linear Dynamic Analysis Software, Version 15, User’s Manual. SAS IP Inc. Aviles, F., & Carlsson, L. A. (2006). Three-dimensional finite element buckling analysis of debonded sandwich panels. Journal of composite materials, 40(11), 993-1008. Bahei-El-Din, Y. A., Dvorak, G. J., & Fredricksen, O. J. (2006). A blast-tolerant sandwich plate design with a polyurea interlayer. International Journal of Solids and Structures, 43(25), 7644-7658. Baker W.E., C. P. A., Westine P.S., Kulesz J.J., Strehlow R.A. (1983). Explosion Hazards and Valuation. New York, USA: Elsevier Scientific Publishing Company. Baker, W. E. (1973). Explosions in air: University of Texas Press. Birnbaum, N. K., Francis, N. J., & Gerber, B. I. (1999). Coupled techniques for the simulation of fluid-structure and impact problems. Computer Assisted Mechanics and Engineering Sciences, 6(3-4), 295-311. Boni, T. L., & de Almeida, S. F. M. (2008). Laterally supported sandwich panels subjected to large deflections—Part 1: Test apparatus design and experimental results. Thin-walled structures, 46(4), 413-422. Boni, T. L., & de Almeida, S. F. M. (2008). Laterally supported sandwich panels subjected to large deflections: Part 2: FE analyses and model validation. Thin-walled structures, 46(4), 423-434. Børvik, T., Burbach, A., Langberg, H., & Langseth, M. (2008). On the ballistic and blast load response of a 20ft ISO container protected with aluminium panels filled with a local mass—Phase II: Validation of protective system. Engineering Structures, 30(6), 1621-1631. Bulson, P. S. (2002). Explosive loading of engineering structures: CRC Press. Century Dynamics, I. (2005). SPH User Manual and Tutorial for AUTODYN Interactive Nonlinear Dynamic Analysis Software. San Ramon, California, U.S.A. Chang, W.-S., Ventsel, E., Krauthammer, T., & John, J. (2005). Bending behavior of corrugated-core sandwich plates. Composite structures, 70(1), 81-89. Chen, A., & Davalos, J. (2003). Bending strength of honeycomb FRP sandwich beams with sinusoidal core geometry. Paper presented at the Proceedings of the fourth Canadian-International Composites Conference, CANCOM 2003. Conrath, E. J., Krauthammer, T., Marchand, K., A., Mlakar, P., F. and Structural Engineering Institute. (1999). Structural Design for Physical Security: American Society of Civil Engineers. Cui, X., Zhao, L., Wang, Z., Zhao, H., & Fang, D. (2012). Dynamic response of metallic lattice sandwich structures to impulsive loading. International Journal of Impact Engineering, 43, 1-5. Cytec. (2016). Material Specification FM 300 Epoxy Film Adhesive Data Sheet. Davalos, J. F., Qiao, P., Xu, X. F., Robinson, J., & Barth, K. E. (2001). Modeling and characterization of fiber-reinforced plastic honeycomb sandwich panels for highway bridge applications. Composite structures, 52(3), 441-452. Davidson, J. S., Dawson, H., Fisher, J., Gasulla, E., Ghosh, S. K., Hoemann, J., ... & Schroder, J. W. (2014). PCI Design Handbook: Appendix A: Blast-resistant design of precast, prestressed concrete components. PCI Journal. Davies, J. (1993). Sandwich panels. Thin-walled structures, 16(1), 179-198. Dharmasena, K., Queheillalt, D., Wadley, H., Dudt, P., Chen, Y., Knight, D., . . . Deshpande, V. (2010). Dynamic compression of metallic sandwich structures during planar impulsive loading in water. European Journal of Mechanics-A/Solids, 29(1), 56-67. DoD, U. (2002). Design and analysis of hardened structures to conventional weapons effects: UFC 3-340-01. DoD, U. (2008). Structures to Resist the Effects of Accidental Explosions. US DoD, Washington, DC, USA: UFC 3-340-02. Dusenberry, D. O. (Ed.). (2010). Handbook for blast-resistant design of buildings. J. Wiley. Dvorak, G. J., & Bahei-El-Din, Y. A. (2005). Enhancement of blast resistance of sandwich plates Sandwich Structures 7: Advancing with Sandwich Structures and Materials (pp. 107-116): Springer. Fan, H., Meng, F., & Yang, W. (2007). Sandwich panels with Kagome lattice cores reinforced by carbon fibers. Composite structures, 81(4), 533-539. Fleck, N., & Deshpande, V. (2004). The resistance of clamped sandwich beams to shock loading. Journal of Applied Mechanics, 71(3), 386-401. Gibson, L. J., & Ashby, M. F. (1997). Cellular solids: structure and properties: Cambridge university press. Goel, M. D., Matsagar, V. A., Marburg, S., & Gupta, A. K. (2012). Comparative performance of stiffened sandwich foam panels under impulsive loading. Journal of Performance of Constructed Facilities, 27(5), 540-549. Hahn, Y., & Kikuchi, N. (2005). Mixed shell element for seven‐parameter formulation. International journal for numerical methods in engineering, 64(1), 95-124. Hahn, Y. (2005). Development of a mixed shell element for 7-parameter formulation and identification methods of lowest eigenvalues. University of Michigan. Hayhurst, C. J., Clegg, R. A., Livingstone, I., & Francis, N. J. (1996). The application of {SPH} techniques in {AUTODYN-2D} to ballistic impact problems. He, M., & Hu, W. (2008). A study on composite honeycomb sandwich panel structure. Materials & Design, 29(3), 709-713. Hoemann, J. M. (2007). Experimental evaluation of structural composites for blast resistant design. University of Missouri--Columbia. Hyde, D. (1992). ConWep - Application of TM 5-1300. Paper presented at the U.S Army Engineer Waterways Experiment Station, Vicksburg, MA, USA. Jackson, M., & Shukla, A. (2011). Performance of sandwich composites subjected to sequential impact and air blast loading. Composites Part B: Engineering, 42(2), 155-166. Jacob, G. C., Fellers, J. F., Simunovic, S., & Starbuck, J. M. (2002). Energy absorption in polymer composites for automotive crashworthiness. Journal of composite materials, 36(7), 813-850. Ji, H. S., Song, W., & Ma, Z. J. (2010). Design, test and field application of a GFRP corrugated-core sandwich bridge. Engineering Structures, 32(9), 2814-2824. Kalny, O., & Peterman, R. J. (2005). Performance investigation of a fiber reinforced composite honeycomb deck for bridge applications. Karagiozova, D., Nurick, G., & Langdon, G. (2009). Behaviour of sandwich panels subject to intense air blasts–Part 2: Numerical simulation. Composite structures, 91(4), 442-450. Kingery, C. N., & Bulmash, G. (1984). Air blast parameters from TNT spherical air burst and hemispherical surface burst: Ballistic Research Laboratories. Kujala, P., & Klanac, A. (2005). Steel sandwich panels in marine applications. Brodogradnja, 56(4), 305-314. Laine, L., & Sandvik, A. (2001). Derivation of mechanical properties for sand. Paper presented at the Proceedings of the 4th Asia-Pacific Conference on Shock and impact loads on structures, CI-Premier PTE LTD, Singapore. Langdon, G., Karagiozova, D., von Klemperer, C., Nurick, G., Ozinsky, A., & Pickering, E. (2013). The air-blast response of sandwich panels with composite face sheets and polymer foam cores: experiments and predictions. International Journal of Impact Engineering, 54, 64-82. Langdon, G., von Klemperer, C., Rowland, B., & Nurick, G. (2012). The response of sandwich structures with composite face sheets and polymer foam cores to air-blast loading: preliminary experiments. Engineering Structures, 36, 104-112. Lee, D. K., & O’Toole, B. J. (2004). Energy absorbing sandwich structures under blast loading. In 8th International LS-DYNA Users Conference. Pgs (pp. 8-13). Li, X., Wang, Z., Zhu, F., Wu, G., & Zhao, L. (2014). Response of aluminium corrugated sandwich panels under air blast loadings: Experiment and numerical simulation. International Journal of Impact Engineering, 65, 79-88. Liang, Y., Spuskanyuk, A. V., Flores, S. E., Hayhurst, D. R., Hutchinson, J. W., McMeeking, R. M., & Evans, A. G. (2007). The response of metallic sandwich panels to water blast. Journal of Applied Mechanics, 74(1), 81-99. Liu, T., Deng, Z., & Lu, T. (2006). Design optimization of truss-cored sandwiches with homogenization. International Journal of Solids and Structures, 43(25), 7891-7918. Meraghni, F., Desrumaux, F., & Benzeggagh, M. (1999). Mechanical behaviour of cellular core for structural sandwich panels. Composites Part A: Applied Science and Manufacturing, 30(6), 767-779. Mori, L., Queheillalt, D., Wadley, H., & Espinosa, H. (2009). Deformation and failure modes of I-core sandwich structures subjected to underwater impulsive loads. Experimental mechanics, 49(2), 257-275. Nayak, S., Singh, A., Belegundu, A., & Yen, C. (2013). Process for design optimization of honeycomb core sandwich panels for blast load mitigation. Structural and Multidisciplinary Optimization, 47(5), 749-763. Pamla, V. (2007). The pioneer phase of building with glass-fibre reinforced plastics (GFRP) 1942 to 1980. Thesis submitted to Architectural history institute, Design Faculty, Germany. Petras, A., & Sutcliffe, M. (1999). Indentation resistance of sandwich beams. Composite structures, 46(4), 413-424. Petras, A., & Sutcliffe, M. (2000). Indentation failure analysis of sandwich beams. Composite structures, 50(3), 311-318. Plantema, F. J. (1966). Sandwich construction: Wiley, New York. Rathbun, H., Radford, D., Xue, Z., He, M., Yang, J., Deshpande, V., . . . Evans, A. (2006). Performance of metallic honeycomb-core sandwich beams under shock loading. International Journal of Solids and Structures, 43(6), 1746-1763. Reis, E. M., & Rizkalla, S. H. (2008). Material characteristics of 3-D FRP sandwich panels. Construction and Building Materials, 22(6), 1009-1018. Shukla, A., Ravichandran, G., & Rajapakse, Y. (2010). Dynamic failure of materials and structures: Springer. Smith, P. D., & Hetherington, J. G. (1994). Blast and ballistic loading of structures: Digital Press. Solomos, V. K. a. G. (2013). Calculation of Blast Loads for Application to Structural Components: European Commission Joint Research Centre Institute for the Protection and Security of the Citizen. Steeves, C. A., & Fleck, N. A. (2004). Material selection in sandwich beam construction. Scripta materialia, 50(10), 1335-1339. Su, H., & McConnell, J. (2011). Influences of Material Properties on Energy Absorption of Composite Sandwich Panels under Blast Loads. Journal of Composites for Construction. Tekalur, S. A., Bogdanovich, A. E., & Shukla, A. (2009). Shock loading response of sandwich panels with 3-D woven E-glass composite skins and stitched foam core. Composites Science and Technology, 69(6), 736-753. Theobald, M., Langdon, G., Nurick, G., Pillay, S., Heyns, A., & Merrett, R. (2010). Large inelastic response of unbonded metallic foam and honeycomb core sandwich panels to blast loading. Composite structures, 92(10), 2465-2475. Thompsett, D., Walker, A., Radley, R., & Grieveson, B. (1995). Design and construction of expanded polystyrene embankments: practical design methods as used in the United Kingdom. Construction and Building Materials, 9(6), 403-411. Thomsen, O. T., & Frostig, Y. (1997). Localized bending effects in sandwich panels: photoelastic investigation versus high-order sandwich theory results. Composite structures, 37(1), 97-108. Vinson, J. R. (2001). Sandwich structures. Applied Mechanics Reviews, 54(3), 201-214. Wadley, H., Dharmasena, K., Chen, Y., Dudt, P., Knight, D., Charette, R., & Kiddy, K. (2008). Compressive response of multilayered pyramidal lattices during underwater shock loading. International Journal of Impact Engineering, 35(9), 1102-1114. Wadley, H. N. (2006). Multifunctional periodic cellular metals. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 364(1838), 31-68. Xue, Z., & Hutchinson, J. W. (2003). Preliminary assessment of sandwich plates subject to blast loads. International Journal of Mechanical Sciences, 45(4), 687-705. Xue, Z., & Hutchinson, J. W. (2004). A comparative study of impulse-resistant metal sandwich plates. International Journal of Impact Engineering, 30(10), 1283-1305. Yan, L., Han, B., Yu, B., Chen, C., Zhang, Q., & Lu, T. (2014). Three-point bending of sandwich beams with aluminum foam-filled corrugated cores. Materials & Design, 60, 510-519. Yang, Y., Fallah, A., Saunders, M., & Louca, L. (2011). On the dynamic response of sandwich panels with different core set-ups subject to global and local blast loads. Engineering Structures, 33(10), 2781-2793. Yazici, M., Wright, J., Bertin, D., & Shukla, A. (2014). Experimental and numerical study of foam filled corrugated core steel sandwich structures subjected to blast loading. Composite structures, 110, 98-109. Yun, S.-H., & Park, T. (2013). Multi-physics blast analysis of reinforced high strength concrete. KSCE Journal of Civil Engineering, 17(4), 777-788. Zhang, J., Qin, Q., & Wang, T. (2013). Compressive strengths and dynamic response of corrugated metal sandwich plates with unfilled and foam-filled sinusoidal plate cores. Acta Mechanica, 224(4), 759-775. Zhang, P., Liu, J., Cheng, Y., Hou, H., Wang, C., & Li, Y. (2015). Dynamic response of metallic trapezoidal corrugated-core sandwich panels subjected to air blast loading–An experimental study. Materials & Design, 65, 221-230. Zhou, G., Hill, M., & Hookham, N. (2007). Investigation of parameters governing the damage and energy absorption characteristics of honeycomb sandwich panels. Journal of Sandwich Structures and Materials, 9(4), 309-342. Zhou, X., & Hao, H. (2008). Prediction of airblast loads on structures behind a protective barrier. International Journal of Impact Engineering, 35(5), 363-375. Zukas, J. (2004). Introduction to hydrocodes: Elsevier.