[1] OECD and IEA, “Key World Energy Statistics,” IEA Publishing, Paris, 2015. [2] Natural Resources Canada, “Energy Fact Book,” 2015-2016. [3] Global Wind Energy Council, “Global Wind Report - Annual Market Update,” Brussles, 2015. [4] World Wind Energy Association, J.-D. Pitteloud, and S. Gsanger, “Small Wind World Report,” Tokyo, 2016. [5] Reve, “Siemens Provides 157 Wind Turbines for Three Wind Power Projects in South Africa.” [Online]. Available: http://www.evwind.es/2015/02/18/siemens-provides-157-wind-turbines-for-three-wind-power-projects-in-south-africa/50574. [Accessed: 23-Jul-2016]. [6] Québec en Saisons, “Découvrez les secrets de «Éole Cap-Chat».” [Online]. Available: http://www.quebecensaisons.com/ete2009/eole_cap_chat.php. [Accessed: 23-Jul-2016]. [7] R. D, “Vertical Axis Wind Turbine Installed in P-Town.” [Online]. Available: http://www.alternativeconsumer.com/2009/06/30/vertical-axis-wind-turbine-installed-in-p-town/. [Accessed: 23-Jul-2016]. [8] Quiet Revolution, “The qr6 Vertical Axis Wind Turbine.” [Online]. Available: http://www.quietrevolution.com/. [Accessed: 23-Jul-2016]. [9] Wind Harvest International, “WHI 70 kW.” [Online]. Available: http://www.windharvest.com/. [Accessed: 23-Jul-2016]. [10] P. Kozak, “Effects of Unsteady Aerodynamics on Vertical-Axis Wind Turbine Performance,” MS Thesis, Dept. of Mech. and Aero. Eng., Illinois Institute of Technology, Chicago, Ill., 2014. [11] S. Eriksson, H. Bernhoff, and M. Leijon, “Evaluation of different turbine concepts for wind power,” Renewable Sustainable Energy Rev., vol. 12, no. 5, pp. 1419–1434, 2008. [12] R. Guillo, “Darrieus vertical axis wind turbine.” [Online]. Available: http://www.ecosources.info/en/topics/Darrieus_vertical_axis_wind_turbine. [Accessed: 02-Feb-2016]. [13] E. Hau, Renewable Energy, Fundamental, Technology, Applications and Economics, Berlin Heidelberg. Springer-Verlag, 2006. [14] Gamma Energy, “Teoria delle turbine eoliche.” [Online]. Available: http://www.gammaenergy.it/eolico/teoria-delle-turbine.html. [Accessed: 07-Jul-2016]. [15] I. Paraschivoiu, Wind Turbine Design with Emphasis on Darrieus Concept. Montreal: Presse Internationales Polytechniques, 2002. [16] S. N. Zadeh, M. Komeili, and M. Paraschivoiu, “Mesh Convertence Study for 2-D Straight-Blade Vertical Axis Wind Turbine Simulations and Estimation for 3-D Simulations,” Can. Scociety Mech. Eng., vol. 38, no. 4, pp. 487–504, 2014. [17] ANSYS Inc., 2011. ANSYS FLUENT 14.0 User’s Guide, URL: www.fluent.com. [18] X. Jin, G. Zhao, K. Gao, and W. Ju, “Darrieus vertical axis wind turbine: Basic research methods,” Renewable Sustainable Energy Rev., vol. 42, pp. 212–225, 2015. [19] F. L. Ponta, J. J. Seminara, and A. D. Otero, “On the aerodynamics of variable-geometry oval-trajectory Darrieus wind turbines,” Renewable Energy, vol. 32, no. 1, pp. 35–56, 2007. [20] F. L. Ponta and L. I. Lago, “Analysing the suspension system of variable-geometry oval-trajectory (VGOT) Darrieus wind turbines,” Energy Sustain. Dev., vol. 12, no. 2, pp. 5–16, 2008. [21] T. Kinsey and G. Dumas, “Computational Fluid Dynamics Analysis of a Hydrokinetic Turbine Based on Oscillating Hydrofoils,” ASME J. Fluids Eng., vol. 134, no. 2, p. 021104, 2012. [22] T. Kinsey and G. Dumas, “Three-Dimensional Effects on an Oscillating-Foil Hydrokinetic Turbine,” ASME J. Fluids Eng., vol. 134, no. 7, p. 071105, 2012. [23] T. Kinsey, G. Dumas, G. Lalande, J. Ruel, a. Méhut, P. Viarouge, J. Lemay, and Y. Jean, “Prototype testing of a hydrokinetic turbine based on oscillating hydrofoils,” Renewable Energy, vol. 36, no. 6, pp. 1710–1718, 2011. [24] É. Gauthier, T. Kinsey, and G. Dumas, “Impact of blockage on the hydrodynamic performance of oscillating-foils hydrokinetic turbines,” vol. 138, no. 9, p. 091103, 2016. [25] P. Delafin, T. Nishino, L. Wang, A. Kolios, and T. Bird, “Comparison of RANS CFD and lower-order aerodynamic models for 3D Vertical Axis Wind Turbines,” Eur. Wind Energy Conf. Exhib., 2015. [26] M. H. Mohamed, A. M. Ali, and A. A. Hafiz, “CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter,” Eng. Sci. Technol. an Int. J., vol. 18, no. 1, pp. 1–13, 2015. [27] W. Yamazaki and Y. Arakawa, “Inexpensive airfoil shape optimization for vertical axis wind turbine and its validation,” J. Fluid Sci. Technol., vol. 10, no. 2, 2015. [28] Q. Xiao, W. Liu, and A. Incecik, “Flow control for VATT by fixed and oscillating flap,” Renewable Energy, vol. 51, pp. 141–152, 2013. [29] Y. C. Lim, W. T. Chong, and F. B. Hsiao, “Performance investigation and optimization of a vertical axis wind turbine with the omni-direction-guide-vane,” Procedia Eng., vol. 67, pp. 59–69, 2013. [30] W. T. Chong, A. Fazlizan, S. C. Poh, K. C. Pan, W. P. Hew, and F. B. Hsiao, “The design, simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane,” Appl. Energy, vol. 112, pp. 601–609, 2013. [31] R. Gosselin, G. Dumas, and M. Boudreau, “Parametric study of H-Darrieus vertical-axis turbines using uRANS simulations,” 21st Annu. Conf. CFD Soc. Canada, vol. 178, 2013. [32] F. Balduzzi, A. Bianchini, R. Maleci, G. Ferrara, and L. Ferrari, “Critical issues in the CFD simulation of Darrieus wind turbines,” Renewable Energy, vol. 85, pp. 419–435, 2016. [33] P. Chatterjee and R. N. Laoulache, “Performance Modeling of Ducted Vertical Axis Turbine Using Computational Fluid Dynamics,” Mar. Technol. Soc. J., vol. 47, no. 4, 2013. [34] A. Untaroiu, H. G. Wood, P. E. Allaire, and R. J. Ribando, “Investigation of Self-Starting Capability of Vertical Axis Wind Turbines Using a Computational Fluid Dynamics Approach,” J. Sol. Energy Eng., vol. 133, no. 4, p. 041010, 2011. [35] M. R. Castelli, A. Englaro, and E. Benini, “The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD,” Energy, vol. 36, no. 8, pp. 4919–4934, 2011. [36] M. R. Castelli, G. Pavesi, L. Battisti, E. Benini, and G. Ardizzon, “Modeling Strategy and Numerical Validation for a Darrieus Vertical Axis Micro-Wind Turbine,” Int. Mech. Eng. Congr. Expo., vol. Vol. 7, no. IMECE2010–39548, pp. 409 – 418, 2010. [37] F. Trivellato and M. Raciti Castelli, “On the Courant-Friedrichs-Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis,” Renewable Energy, vol. 62, pp. 53–62, 2014. [38] M. H. Mohamed, “Performance investigation of H-rotor Darrieus turbine with new airfoil shapes,” Energy, vol. 47, no. 1, pp. 522–530, 2012. [39] R. Howell, N. Qin, J. Edwards, and N. Durrani, “Wind tunnel and numerical study of a small vertical axis wind turbine,” Renewable Energy, vol. 35, no. 2, pp. 412–422, 2010. [40] H. Beri and Y. Yao, “Effect of Camber on Airfoil on Self Starting of Vertical Axis Wind Turbine,” J. Environ. Sci. Technol., vol. 4, no. 3, pp. 302–312, 2011. [41] B. Yang and C. Lawn, “Fluid dynamic performance of a vertical axis turbine for tidal currents,” Renewable Energy, vol. 36, no. 12, pp. 3355–3366, 2011. [42] T. Maître, E. Amet, and C. Pellone, “Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments,” Renewable Energy, vol. 51, pp. 497–512, 2013. [43] S. Lain and C. Osorio, “Simulation and evaluation of a straight-bladed darrieus-type cross flow marine turbine,” J. Sci. Ind. Res. (India)., vol. 69, no. 12, pp. 906–912, 2010. [44] A. Rossetti and G. Pavesi, “Comparison of different numerical approaches to the study of the H-Darrieus turbines start-up,” Renewable Energy, vol. 50, pp. 7–19, 2013. [45] C. J. S. Ferreira, H. Bijl, G. van Bussel, and G. van Kuik, “Simulating Dynamic Stall in a 2D VAWT: Modeling strategy, verification and validation with Particle Image Velocimetry data,” J. Phys. Conf. Ser., vol. 75, p. 012023, 2007. [46] J. McNaughton, F. Billard, and a. Revell, “Turbulence modelling of low Reynolds number flow effects around a vertical axis turbine at a range of tip-speed ratios,” J. Fluids Struct., vol. 47, pp. 124–138, 2014. [47] R. Lanzafame, S. Mauro, and M. Messina, “2D CFD modeling of H-Darrieus Wind Turbines using a transition turbulence model,” Energy Procedia, vol. 45, pp. 131–140, 2014. [48] M. S. Siddiqui, N. Durrani, and I. Akhtar, “Quantification of the effects of geometric approximations on the performance of a vertical axis wind turbine,” Renewable Energy, vol. 74, pp. 661–670, 2015. [49] M. R. Castelli, A. D. Monte, M. Quaresimin, and E. Benini, “Numerical evaluation of aerodynamic and inertial contributions to Darrieus wind turbine blade deformation,” Renewable Energy, vol. 51, pp. 101–112, 2013. [50] S. M. Salim and S. C. Cheah, “Wall y + Strategy for Dealing with Wall-bounded Turbulent Flows,” Int. MultiConference Eng. Comput. Sci., vol. II, 2009. [51] K. M. M. Almohammadi, D. B. B. Ingham, L. Ma, and M. Pourkashan, “Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine,” Energy, vol. 58, pp. 483–493, 2013. [52] T. Lee and Y. Y. Su, “Surface Pressures Developed on an Airfoil Undergoing Heaving and Pitching Motion,” ASME J. Fluids Eng., vol. 137, no. 5, pp. 1–11, 2015. [53] J. Dacles-Mariani, G. G. Zilliac, J. S. Chow, and P. Bradshaw, “Numerical Simulations of a Wingtip Vortex in the Near Field,” AIAA J., vol. 33, no. 9, pp. 1561–1568, 1995. [54] J. Dacles-Mariani, D. Kwark, and G. G. Zilliac, “On numerical errors and turbulence modeling in tip vortex flow prediction,” Int. J. Numer. Methods Fluids, vol. 30, pp. 65–82, 1999. [55] ANSYS Inc., 2011. ANSYS FLUENT 14.0 Theory Guide, URL: www.fluent.com. [56] M. F.R., “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32–8, no. 8, pp. 1598–1605, 1994. [57] F. R. Menter, M. Kuntz, and R. Langtry, “Ten Years of Industrial Experience with the SST Turbulence Model,” Turbul. Heat Mass Transf. 4, vol. 4, pp. 625–632, 2003. [58] F. R. Menter, R. B. Langtry, S. R. Likki, Y. B. Suzen, P. G. Huang, and S. Völker, “A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation,” J. Turbomach., vol. 128, no. 3, pp. 413–422, 2004. [59] R. B. Langtry, F. R. Menter, S. R. Likki, Y. B. Suzen, P. G. Huang, and S. Völker, “A Correlation-Based Transition Model Using Local Variables—Part II: Test Cases and Industrial Applications,” J. Turbomach., vol. 128, no. 3, p. 423, 2006. [60] I. Paraschivoiu, Aérodynamique Subsonique. Montreal Canada: Ed. École Polytechnique, 1998. [61] G. Naccache and M. Paraschivoiu, “Two Dimensional Flow Simulations of a Dual Axis Wind Turbine,” in EIC Climate Change Technology Conference, 2015. [62] P. J. Roache, “Perspective: A method for Uniform Reporting of Grid Refinement Studies,” ASME J. Fluids Eng., vol. 158, pp. 109–121, 1993. [63] W. A. Timmer, “Two-dimensional low-Reynolds number wind tunnel results for airfoil NACA 0018,” Wind Eng., vol. 32, no. 6, pp. 525–537, 2009. [64] M. S. Selig and J. J. Guglielmo, “High-Lift Low Reynolds Number Airfoil Design,” J. Aircr., vol. 34, no. 1, pp. 72–79, 1997. [65] A. J. Fiedler and S. Tullis, “Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine,” Wind Eng., vol. 33, no. 3, pp. 237–246, 2009.