Recent decades have witnessed an increase in the transportation infrastructure damage caused by natural disasters such as earthquakes, high winds, floods, as well as man-made disasters. Such damages result in a disruption to the transportation infrastructure network; hence, limit the post-disaster relief operations. This led to the exigency of developing and using effective deployable bridge systems for rapid post-disaster mobility while minimizing the weight to capacity ratio. Recent researches for assessments of mobile bridging requirements concluded that current deployable metallic bridge systems are prone to their service life, unable to meet the increase in vehicle design loads, and any trials for the structures’ strengthening will sacrifice the ease of mobility. Therefore, this research focuses on developing a lightweight deployable bridge system using composite laminates for lightweight bridging in the aftermath of natural disaster. The research investigates the structural design optimization for composite laminate deployable bridge systems, as well as the design, development and testing of composite sandwich core sections that act as the compression bearing element in a deployable bridge treadway structure. The thesis is organized into two parts. The first part includes a new improved particle swarm meta-heuristic approach capable of effectively optimizing deployable bridge systems. The developed approach is extended to modify the technique for discrete design of composite laminates and maximum strength design of composite sandwich core sections. The second part focuses on developing, experimentally testing and numerically investigating the performance of different sandwich core configurations that will be used as the compression bearing element in a deployable fibre-reinforced polymer (FRP) bridge girder. The first part investigated different optimization algorithms used for structural optimization. The uncertainty in the effectiveness of the available methods to handle complex structural models emphasized the need to develop an enhanced version of Particle Swarm Optimizer (PSO) without performing multiple operations using different techniques. The new technique implements a better emulation for the attraction and repulsion behavior of the swarm. The new algorithm is called Controlled Diversity Particle Swarm Optimizer (CD-PSO). The algorithm improved the performance of the classical PSO in terms of solution stability, quality, convergence rate and computational time. The CD-PSO is then hybridized with the Response Surface Methodology (RSM) to redirect the swarm search for probing feasible solutions in hyperspace using only the design parameters of strong influence on the objective function. This is triggered when the algorithm fails to obtain good solutions using CD-PSO. The performance of CD-PSO is tested on benchmark structures and compared to others in the literature. Consequently, both techniques, CD-, and hybrid CD-PSO are examined for the minimum weight design of large-scale deployable bridge structure. Furthermore, a discrete version of the algorithm is created to handle the discrete nature of the composite laminate sandwich core design. The second part focuses on achieving an effective composite deployable bridge system, this is realized through maximizing shear strength, compression strength, and stiffness designs of light-weight composite sandwich cores of the treadway bridge’s compression deck. Different composite sandwich cores are investigated and their progressive failure is numerically evaluated. The performance of the sandwich cores is experimentally tested in terms of flatwise compressive strength, edgewise compressive strength and shear strength capacities. Further, the cores’ compression strength and shear strength capacities are numerically simulated and the results are validated with the experimental work. Based on the numerical and experimental tests findings, the sandwich cores plate properties are quantified for future implementation in optimized scaled deployable bridge treadway.