A combined theoretical and numerical study of liquid jet deformation discharged perpendicularly into a subsonic transverse gas flow is carried out. Near-field trajectory of the jet is determined from an analytical approach for momentum flux ratios up to 100. Force balance on liquid element is analyzed in free stream direction assuming that surface tension and viscous forces are small compared to the aerodynamic force acting on the liquid column. Mass shedding from jet surface and liquid evaporation are neglected; therefore, the jet cross-sectional area and the jet velocity are invariable. A logarithmic correlation for the trajectory of elliptical liquid jets is proposed that takes into account the liquid to gas momentum ratio and drag coefficient. The changes in freestream properties and the gas velocity are incorporated in terms of the drag coefficient. In the numerical part, the drag coefficients of elliptical profiles with various aspect ratios are formulated based on the gas Reynolds number using a two dimensional model. The trajectories of elliptical jets with various aspect ratios are calculated based on the obtained drag coefficients. It is shown that the jets with lower aspect ratios penetrate more into the crossflow. Furthermore, the deformation of a circular liquid jet subject to a gaseous crossflow is simulated using a three dimensional model. Volume of Fluid method is employed to capture the interface between the two phases and the first moment of closure is used to model Reynolds stresses in Reynolds Averaged Navier-Stokes equations. The deformations of the jet cross-section as the jet penetrates into the crossflow are illustrated. It is shown that the model is capable of resolving the Counter-rotating Vortex Pair (CVP) formed downstream of the jet.