[1] Arrazola P J, Garay A, Iriarte L M, Armendia M, Marya S and Le Maître F 2009 Machinability of titanium alloys (Ti6Al4V and Ti555.3) J. Mater. Process. Technol. 209 2223–30 [2] Chan H Y and Shiue R K 2003 Study of brazing Ti–6Al–4V and TZM alloy using pure silver J. Mater. Sci. Lett. 22 1659–63 [3] Izui H and Suezawa Y 1989 Study on Ti–6Al–4V alloy brazed with Ag–5Al–0.5 Mn filler metal Weld. Int. 3 954–9 [4] Chang S Y, Tsao L C, Lei Y H, Mao S M and Huang C H 2012 Brazing of 6061 aluminum alloy/Ti–6Al–4V using Al–Si–Cu–Ge filler metals J. Mater. Process. Technol. 212 8–14 [5] Boyer R R 1996 An overview on the use of titanium in the aerospace industry Mater. Sci. Eng. A 213 103–14 [6] Chang C T, Du Y C, Shiue R K and Chang C S 2006 Infrared brazing of high-strength titanium alloys by Ti–15Cu–15Ni and Ti–15Cu–25Ni filler foils Mater. Sci. Eng. A 420 155–64 [7] Chang C T, Wu Z Y, Shiue R K and Chang C S 2007 Infrared brazing Ti–6Al–4V and SP-700 alloys using the Ti–20Zr–20Cu–20Ni braze alloy Mater. Lett. 61 842–5 [8] Shapiro A E and Flom Y A 2007 Brazing of titanium at temperatures below 800 °C: review and prospective applications DVS-Berichte 243 254–67 [9] Schwartz M M 1987 Brazing (Materials Park, OH: ASM International) [10] Shafiei A, Abachi P, Dehghani K and Pourazarang K 2010 On the formation of intermetallics during the furnace brazing of pure titanium to 304 stainless steel using Ag (30–50%)–Cu filler metals Mater. Manuf. Process. 25 1333–40 [11] López V H and Kennedy A R 2006 Flux-assisted wetting and spreading of Al on TiC J. Colloid Interface Sci. 298 356–62 [12] Milner D R 1958 A survey of the scientific principles related to wetting and spreading Br. Weld. J. 5 90–105 [13] Leon C A, Lopez V H, Bedolla E and Drew R A L 2002 Wettability of TiC by commercial aluminum alloys J. Mater. Sci. 37 3509–14 [14] Amore S, Ricci E, Borzone G and Novakovic R 2008 Wetting behaviour of lead-free Sn-based alloys on Cu and Ni substrates Mater. Sci. Eng. A 495 108–12 [15] Blake T D and Ruschak K J 1979 A maximum speed of wetting Nature 282 489–91 [16] Chatain D and Carter W C 2004 Spreading of metallic drops Nat. Mater. 3 843–5 [17] Liu G W, Valenza F, Muolo M L, Qiao G J and Passerone A 2009 Wetting and interfacial behavior of Ni–Si alloy on different substrates J. Mater. Sci. 44 5990–7 [18] Li J-G 1994 Wetting of ceramic materials by liquid silicon, aluminium and metallic melts containing titanium and other reactive elements: a review Ceram. Int. 20 391–412 [19] Ambrose J C and Nicholas M G 1996 Wetting and spreading of nickel–phosphorus brazes: detailed real time observations of spreading on iron–chromium substrates Mater. Sci. Technol. 12 72–80 [20] Chatain D 2008 Anisotropy of wetting Annu. Rev. Mater. Res. 38 45–70 [21] Hitchcock S J, Carroll N T and Nicholas M G 1981 Some effects of substrate roughness on wettability J. Mater. Sci. 16 714–32 [22] Komolafe B and Medraj M 2014 Progress in wettability study of reactive systems J. Metall. 2014 1–14 [23] Liu C C, Ou C L and Shiue R K 2002 The microstructural observation and wettability study of brazing Ti–6Al–4V and 304 stainless steel using three braze alloys J. Mater. Sci. 37 2225–35 [24] Chan H Y, Liaw D W and Shiue R K 2004 The microstructural observation of brazing Ti–6Al–4V and TZM using the BAg-8 braze alloy Int. J. Refract. Met. Hard Mater. 22 27–33 [25] Shiue R K, Wu S K, Chen Y T and Shiue C Y 2008 Infrared brazing of Ti50Al50 and Ti–6Al–4V using two Ti-based filler metals Intermetallics 16 1083–9 [26] Ganjeh E, Sarkhosh H, Bajgholi M E, Khorsand H and Ghaffari M 2012 Increasing Ti–6Al–4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys Mater. Charact. 71 31–40 [27] Chang C T and Shiue R K 2005 Infrared brazing Ti–6Al–4V and Mo using the Ti–15Cu–15Ni braze alloy Int. J. Refract. Met. Hard Mater. 23 161–70 [28] Chung T, Kim J, Bang J, Rhee B and Nam D 2012 Microstructures of brazing zone between titanium alloy and stainless steel using various filler metals Trans. Nonferr. Met. Soc. China 22 639–44 [29] Hong I-T and Koo C-H 2006 Microstructural evolution and shear strength of brazing C103 and Ti–6Al–4V using Ti–20Cu–20Ni–20Zr (wt.%) filler metal Int. J. Refract. Met. Hard Mater. 24 247–52 [30] Liu L 2011 Automated measurement of contact angles for sessile droplets using Matlab image and analysis library (online) (www.ecf.utoronto.ca/~liuwei12/resources/WardReport.pdf) (Accessed: 9 March 2017) [31] Yin L, Murray B T, Su S, Sun Y, Efraim Y, Taitelbaum H and Singler T J 2009 Reactive wetting in metal–metal systems J. Phys.: Condens. Matter 21 1–11 [32] ASM International 1992 Alloy Phase Diagrams vol 3 (Materials Park, OH: ASM International) [33] Gupta K P 2000 The Cu–Ni–Zr system (copper–nickel–zirconium) J. Phase Equilib. 21 553–61 [34] Arroyave R, Eagar T W and Kaufman L 2003 Thermodynamic assessment of the Cu–Ti–Zr system J. Alloys Compd. 351 158–70 [35] Lee D-M, Sun J-H, Shin S-Y, Bae J-C and Lee C-H 2008 Improvement of glass forming ability of Cu–Ni–Zr–Ti alloys by substitution of Hf and Nb Mater. Trans. 49 1486–9 [36] Bhagawath P, Prabhu K N and Satyanarayan W 2013 Wetting behavior of reactive and non-reactive wetting of liquids on metallic substrates Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 73 29 [37] Yin L, Murray B T and Singler T J 2006 Dissolutive wetting in the Bi–Sn system Acta Mater. 54 3561–74 [38] Yin L, Meschter S J and Singler T J 2004 Wetting in the Au–Sn system Acta Mater. 52 2873–88 [39] Yin L, Chauhan A and Singler T J 2008 Reactive wetting in metal/metal systems: dissolutive versus compound-forming systems Mater. Sci. Eng. A 495 80–9 [40] Lee J G, Kim G H, Lee M K and Rhee C K 2010 Intermetallic formation in a Ti–Cu dissimilar joint brazed using a Zr-based amorphous alloy filler Intermetallics 18 529–35 [41] Dezellus O, Hodaj F, Rado C, Barbier J N and Eustathopoulos N 2002 Spreading of Cu–Si alloys on oxidized SiC in vacuum: experimental results and modelling Acta Mater. 50 979–91 [42] Landry K and Eustathopoulos N 1996 Dynamics of wetting in reactive metal/ceramic systems: linear spreading Acta Mater. 44 3923–32 [43] Eustathopoulos N 2005 Progress in understanding and modeling reactive wetting of metals on ceramics Curr. Opin. Solid State Mater. Sci. 9 152–60 [44] Dezellus O, Hodaj F and Eustathopoulos N 2002 Chemical reaction-limited spreading: the triple line velocity versus contact angle relation Acta Mater. 50 4741–53 [45] Dezellus O, Hodaj F and Eustathopoulos N 2003 Progress in modelling of chemical-reaction limited wetting J. Eur. Ceram. Soc. 23 2797–803 [46] Dezellus O and Eustathopoulos N 2010 Fundamental issues of reactive wetting by liquid metals J. Mater. Sci. 45 4256–64 [47] Warren J A, Boettinger W J and Roosen A R 1998 Modeling reactive wetting Acta Mater. 46 3247–64 [48] Stephens J J and Weil S K 2006 Brazing and soldering Proc. 3rd Int. Brazing and Soldering Conf. (San Antonio, Texas, USA) pp 1–413 [49] Protsenko P, Terlain A, Traskine V and Eustathopoulos N 2001 The role of intermetallics in wetting in metallic systems Scr. Mater. 45 1439–45 [50] Kandlikar S G and Steinke M E 2002 Contact angles and interface behavior during rapid evaporation of liquid on a heated surface Int. J. Heat Mass Transf. 45 3771–80 [51] He B, Lee J and Patankar N A 2004 Contact angle hysteresis on rough hydrophobic surfaces Colloids Surf. A 248 101–4