1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics 4, 83–91 (2010). 2. M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Reports. 41, 1–416 (2001). 3. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Advanced Materials 25, 3264–3294 (2013). 4. E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 13, 189–193 (2006). 5. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007). 6. T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano. 8, 1086–1101 (2014). [CrossRef] 7. Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nature Photonics 10, 227–238 (2016). 8. S. Jang, E. Hwang, Y. Lee, S. Lee, and J. H. Cho, “Multifunctional Graphene Optoelectronic Devices Capable of Detecting and Storing Photonic Signals,” Nano Lett. 15, 2542–2547 (2015). 9. Y. Zhao and Y. Zhu, “Graphene-based hybrid films for plasmonic sensing,” Nanoscale. , 7, 14561–14576 (2015). 10. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photonics 6, 737–748 (2012). 11. Q. Bao and K. P. Loh, “Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices,” ACS Nano. 2, 3677–3694 (2012). 12. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nature Nanotechnology 6, 630–634 (2011). 13. A. A. Shylau, S. M. Badalyan, F. M. Peeters, and A. P. Jauho, “Electron polarization function and plasmons in metallic armchair graphene nanoribbons,” Phys. Rev. B 91, 205444 (2015). 14. D. R. Andersen and H. Raza, “Collective modes of massive Dirac fermions in armchair graphene nanoribbons,” J. Phys. Condens. Matter 25, 045303 (2013). 15. L. Brey and H. A. Fertig, “Elementary electronic excitations in graphene nanoribbons,” Phys. Rev. B 75, 125434 (2007). 16. C. E. P. Villegas, M. R. S. Tavares, G. Q. Hai, and P. Vasilopoulos, “Plasmon modes and screening in double metallic armchair graphene nanoribbons,” Phys. Rev. B 88, 165426 (2013). 17. M. Bagheri and M. Bahrami, “Plasmons in spatially separated double-layer graphene nanoribbons,” J. Appl. Phys. 115, 174301 (2014). 18. H. Bruus and K. Flensberg, Introduction to Many-Body Quantum Theory in Condensed Matter Physics (Oxford University, 2004). 19. Y. Wang and D. R. Andersen, “First-principles study of the terahertz third-order nonlinear response of metallic armchair graphene nanoribbons,” Phys. Rev. B 93, 235430 (2016). 20. Y-W Son, M. L. Cohen, and S. G. Louie, “Energy Gaps in Graphene Nanoribbons,” Phys. Rev. Lett. 97, 216803 (2006). [CrossRef] 21. G. Seol and J. Guo, “Bandgap opening in boron nitride confined armchair graphene nanoribbon,” Appl. Phys. Lett. 98, 143107 (2011). 22. G. Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L. P. Biro, and L. Tapaszto, “Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons,” Nature 514, 608–611 (2014) 23. F. J. G. Abajo, “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics. 1, 135–152 (2014). 24. D. N. Basov, M. M. Fogler, A. Lanzara, Feng Wang, and Y. Zhang, “Colloquium: Graphene spectroscopy,” Rev. Mod. Phys. 86, 959 (2014). 25. Gradshteyn and Ryzhik, Tables of Integrals, Series, and Products (Academic, 2014). 26. M. Tas, Dielectric Formulation of One-Dimensional Electron Gas (Wiley, 2004). 27. V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H. Castro Neto, “Electron-Electron Interactions in Graphene: Current Status and Perspectives,” Rev. Mod. Phys. 84, 1067 (2011). 28. B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8, 318 (2006). 29. S. Xiao, X. Zhu, B.H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11, 117801 (2016). 30. Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9, 093791 (2015). 31. T. Stauber, “Plasmonics in Dirac systems: from graphene to topological insulators,” J. Phys.: Cond. Matter. 26, 123201 (2014). 32. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photonics 6, 749–758 (2012). 33. A. Politano and G. Chiarello, “Plasmon modes in graphene: status and prospect,” Nanoscale 6, 10927–10940 (2014). 34. S. A. Mikhailov and D. Beba, “Nonlinear broadening of the plasmon linewidth in a graphene stripe,” New Journal of Physics. 14, 115024 (2012). 35. W. Wang and J. M. Kinaret, “Plasmons in graphene nanoribbons: Interband transitions and nonlocal effects,” Phys. Rev. B 87, 195424 (2013). 36. J. H. Strait, P. Nene, W. M. Chan, C. Manolatou, S. Tiwari, and F. Rana, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87, 241410 (2013). 37. G. F. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University, 2005)