Agrafiotis, C., Roeb, M., Schmucker, M., & Sattler, C. (2015). Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat. Part 2: Redox Oxide-coated Porous Ceramic Structures as Integrated Thermochemical Reactors/Heat Exchangers. Solar Energy, 114, 440-458. Anastasovski, A. (2017). Design of Heat Storage Units for use in repeatable Time Slices. Applied Thermal Engineering, 112, 1590-1600. Bartl, J., & Baranek, M. (2004). Emissivity of Aluminum and its Importance for Radiometric Measurement. Measurements of Physical Quantities, 4, 31-36 Beltran, J. I., Wang, J., Montero-Chacon, F., & Cui, Y. (2017). Thermodynamic Modelling of Nitrate Materials for Hybrid Thermal Energy Storage: Using Latent and Sensible Mechanisms. Solar Energy, 155, 154-166. Cengel, Y., & Boles, M. (2004). Thermodynamics, An Engineering Approach, 5th Edition. McGraw-Hill. Cengel, Y., & Boles, M. (2009). Heat and Mass Transfer A Practical Approach. McGraw-Hill. CERAM Research. (2016). http://www.azom.com/article.aspx?ArticleID=1630. Retrieved from azom.com: http://www.azom.com/article.aspx?ArticleID=1630 Colbert, M., Ribeiro, F., & Treglia, G. (2014). Atomistic Study of Porosity Impact on Phonon Driven Thermal Conductivity. Journal of Applied Physics, 115, 034902 - 034902.10 125 Criado, Y., Alonso, M., & Anxionnaz-Minvielle, Z. (2014). Conceptual Process Design of a CaO/Ca(OH)2 Thermochemical Energy Storage System Using Fluidized Bed Reactors. Applied Thermal Engineering, 73 (1), 1087 - 1094 Dayan, J., Lynn, S., & Foss, A. (1979). Evaluation of a Sulfur Oxide Chemical Heat Storage Process for a Steam Solar Electric Plant. U.S. Department of Energy. De Luca, F., Ferraro, V., & Marinelli, V. (2015). On the Performance of CSP Oil-Cooled Plants, With and Without Heat Storage in Tanks of Molten Salts. Energy, 230-239. Dincer, I., & Rosen, M. A. (2011). Thermal Energy Storage Systems and Applications. Chichester: Wiley. energyplus.net. (2016). (World Meteoroligical Organization) Retrieved 2016, from https://energyplus.net/weather Entegris Inc. (2013). Properties and Characteristics of Graphite. Billerica: Entegris, Inc. Frazzica, A., Manzan, M., Sapienza, A., Freni, A., Toniato, G., & Restuccia, G. (2016). Experimental Testing of a Hybrid Sensible-Latent Heat System for Domestic Hot Water Applications. Applied Energy, 183, 1157-1167. Halikia, I., Zoumpoulakis, L., Christodoulou, E., & Prattis, D. (2001). Kinetic Study of the Thermal Decomposition of Calcium Carbonate by Isothermal Methods of Analysis. The European Journal of Mineral Processing and Environmental Protection, 1, 89 - 102 Hawes, D. W. (1991). Latent Heat Storage in Concrete. Thesis (M.A.Sc.), Montreal: Concordia University. 126 Herrmann, U., Kelly, B., & Price, H. (2004). Two-Tank Molten Salt Storage for Parabolic Trough Solar Power Plants. Energy, 29 (5/6), 883 - 893 http://graphiteenergy.com/graphite.php. (n.d.). Retrieved from graphiteenergy.com: http://graphiteenergy.com/graphite.php IEA-ETSAP and IRENA. (2013). Thermal Energy Storage Technology Brief. IEA-ETSAP and IRENA. International Energy Agency. (2017, 06 15). Retrieved from International Energy Agency: https://www.iea.org/statistics/monthlystatistics/monthlyelectricitystatistics/ Jensen, L. (2013). topsil.com. Retrieved 02 07, 2017, from http://www.topsil.com/media/123122/hitran_application_note_october2013.pdf Jessup, R. S. (1938). Heats of Combustion of Diamond and Graphite. US National Bureau of Standards. Johansen, J. B., Englmair, G., Dannemand, M., Kong, W., Fan, J., Dragsted, J., . . . Furbo, S. (2016). Laboratory testing of Solar Combi System with Compact Long Term PCM Heat Storage. Energy Procedia, 91, 330-337. Kalaiselvam, S. (2014). Thermal Energy Storage Technologies for Sustainability. Oxford: Elsevier. Karim Lee, A. (2014). Application of PCM to Shift and Shave Peak Demand: Parametric Studies. Thesis (M.A.Sc.), Montreal: Concordia University. 127 Khalifa, A., Tan, L., Mahoney, D., Date, A., & Akbarzadeh, A. (2016). Numerical Analysis of Latent Heat Thermal Energy Storage Using Miniature Heat Pipes: A Potential Enhancement for CSP Plant Development. Applied Thermal Engineering, 108, 93-103. Liu, F., Wang, J., & Qian, X. (2017). Integrating Phase Change Materials Into Concrete Through Microencapsulation Using Cenospheres. Cement and Concrete Composites, 80, 317-325. Lovegrove, K., & Luzzi, A. (1996). Endothermioc Reactors for an Ammonia Based Thermo- Chemical Solar Energy Storage and Transport System. Solar Energy, 76, 361-371. Ma, Z., Yang, W.-W., Yuan, F., Jin, B., & He, Y.-L. (2017). Investigation on the Thermal Performance of a High-Temperature Latent Heat Storage System. Applied Thermal Engineering, 122, 579-592. Merriam-Webster Dictionary. (2016). http://www.merriamwebster. com/dictionary/sensible%20heat. Retrieved from www.merriam-webster.com. Mikron Instrument Company. (2016). Retrieved from http://wwweng. lbl.gov/~dw/projects/DW4229_LHC_detector_analysis/calculations/emissivity2.pdf Miliozzi, A., Liberatore, R., Creszenzi, T., & Veca, E. (2015). Experimental Analysis of Heat Transfer in Passive Latent Heat Thermal Energy Storage Systems for CSP Plants. Energy Procedia, 82, 730-736. Mira-Hernandez, C. F., & Garimella, S. (2014). Numerical Simulation of Single and Dual Media Thermocline Tanks for Energy Storage in Concentrating Solar Power Plants. Energy Procedia, 49, 916-926. 128 Mostafavi, S. S., Taylor, R. A., Nithyanandam, K., & Shafiei Ghazani, A. (2017). Annual Comparative Performance and Cost Analysis of High Temperature, Sensible Thermal Energy Storage Systems Integrated with a Concentrated Solar Power Plant. Solar Energy, 153, 153-172. Nepustil, U., Laing-Nepustil, D., Lodemann, D., Sivabalan, R., & Hausmann, V. (2016). High Temperature Latent Heat Storage with Direct Electrical Charging - Second Generation Design. Energy Procedia, 99, 314-320. N'Tsoukpoe, K. E., Osterland, T., Opel, O., & Ruck, W. K. (2016). Cascade Thermochemical Storage with Internal Condensation Heat Recovery for Better Energy and Exergy Efficiencies. Applied Energy, 181, 562-574. Obermeier, J., Sakellariou, K., Tsongidis, N., Baciu, D., Charalambopoulou, G., Steriotis, T., . . . Arlt, W. (2017). Material Development and Assessment of an Energy Storage Concept Based on the CaO-looping Process. Solar Energy, 150, 298-309. Page, D. (1991). The Industrial Graphite Engineering Handbook. Cornell University: UCAR Carbon Co. Paksoy, H. O. (2007). Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design. Adana: NATA Science Series. Pan, Z., & Zhao, C. (2017). Gas-Solid Thermochemical Heat Storage Reactors for High- Temperature Applications. Energy, 130, 155-173. Parker, R., & Jenkins, C. (1961). A Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity. Journal of Applied Physics, 32 (9), 1679-1684. 129 Paskevicius, M., Sheppard, K., Williamson, C., & Buckley, C. (2015). Metal Hydride Thermal Heat Storage Prototype for Concentrating Solar Thermal Power. Energy, 88, 469-477. Renewable Energy and Climate Change Program, SAIC Canada. (2013). Compact Thermal Energy Technology Assessment Report. Ottawa. Sakellariou, K. G., Karagiannakis, G., Criado, Y. A., & Konstandopoulos, A. G. (2015). Calcium Oxide Based Materials for Thermochemical Heat Storage in Concentrated Solar Power Plants. Solar Energy, 122, 215-230. Scalat, S. G. (1996). Full Scale Thermal Performance of Latent Heat Storage in PCM Wallboard. Thesis (M.A.Sc), Montreal: Concordia University. Schmidt, M., Robkopf, C., Afflerbach, S., Gortz, B., Kowald, T., Linder, M., & Trettin, R. (2015). Investigations of Nano-Coated Calcium Hydroxide Cycled in a Thermochemical Heat Storage. Energy Conservation and Management, 97, 94-102. Schroeder, D. (2000). An Introduction to Thermal Physics (p. 28). San Francisco: Addison Wesley Longman. Strohle, S., Haselbacher, A., Jovanovic, Z., & Steinfeld, A. (2017). Upgrading Sensible-Heat Storage with a Thermochemical Storage Section Operated at Variable Pressure: An Effective Way Toward Active Control of the Heat-Transfer Fluid Outflow Temperature. Applied Energy, 196, 51-61. Tao, Y., Lin, C., & He, Y. (2015). Preparation and Thermal Properties Characterization of Carbonate Salt/Carbon Nanomaterial Composite Phase Change Material. Energy Conversion and Management, 97, 103-110. 130 Tescari, S., Agrafiotis, C., Breuer, S., de Oliviera, L., Puttkamer, M., Roeb, M., & Sattler, C. (2014). Thermochemical Solar Energy Storage Via Redox Oxides: Materials and Reactor/Heat Exchanger Concepts. Proceedings of the SolarPACES 2013 International Conference, 49, 1034-1043. Tiskatine, R., Oaddi, R., Ait El Cadi, R., Bazgaou, A., Bouirden, L., Aharoune, A., & Ihlal, A. (2017). Suitability and Characteristics of Rocks for Sensible Heat Storage in CSP Plants. Solar Energy Materials and Solar Cells, 169, 245-257. UCAR Carbon Company Inc. (1991). Typical Room-Temperature Properties of Graphite. In The Industrial Graphite Engineering Handbook (p. 4.06). Vincenti, W., & Kruger, C. (1967). Introduction to Physical Gas Dynamics. Malabar, Krieger Publishing Company. Wikimedia Commons. (2017). Retrieved January 30, 2017, from https://commons.wikimedia.org/wiki/File:Solar_Spectrum.png Williams, D. R. (2016). Sun Fact Sheet. Retrieved from NASA Goddard Space Flight Center: https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html World Energy Outlook. (2016). International Energy Agency. Retrieved 02 11, 2017, from http://www.worldenergyoutlook.org/resources/energydevelopment/energyaccessdatabase/ Yan, J., Zhao, C., & Pan, Z. (2017). The Effect of CO2 on Ca(OH)2 and Mg(OH)2 Thermochemical Heat Storage Systems. Energy, 124, 114-123. 131 Yan, T., Wang, R. Z., Li, T. X., Wang, L., & Ishugah, F. (2015). A Review of Promising Candidate Reactions for Chemical Heat Storage. Renewable and Sustainable Energy Reviews, 43, 13-31. Zauner, C., Hengstberger, F., Morzinger, B., Hofmann, R., & Walter, H. (2017). Experimental Characterization and Simulation of a Hybrid Sensible-Latent Heat Storage. In Applied Energy, 189, 506-519.