[1] M. Kallio, The elastic and damping properties of magnetorheological elastomers: VTT Technical Research Centre of Finland, 2005. [2] M. Behrooz, X. Wang, and F. Gordaninejad, “Modeling of a new semi-active/passive magnetorheological elastomer isolator,” Smart Materials and Structures, vol. 23, no. 4, pp. 045013, 2014. [3] J. Yang, H. Du, W. Li, Y. Li, J. Li, S. Sun, and H. Deng, “Experimental study and modeling of a novel magnetorheological elastomer isolator,” Smart Materials and Structures, vol. 22, no. 11, pp. 117001, 2013. [4] M. Norouzi, S. M. S. Alehashem, H. Vatandoost, Y. Q. Ni, and M. M. Shahmardan, “A new approach for modeling of magnetorheological elastomers,” Journal of Intelligent Material Systems and Structures, 2015. [5] M. Behrooz, X. Wang, and F. Gordaninejad, “Performance of a new magnetorheological elastomer isolation system,” Smart Materials and Structures, vol. 23, no. 4, pp. 045014, 2014. [6] Z. Yang, C. Qin, Z. Rao, N. Ta, and X. Gong, “Design and analyses of axial semi-active dynamic vibration absorbers based on magnetorheological elastomers,” Journal of Intelligent Material Systems and Structures, 2014. [7] W. Li, K. Kostidis, X. Zhang, and Y. Zhou, "Development of a force sensor working with MR elastomers.", Advanced Intelligent Mechatronics, pp. 233-238, 2009. [8] H. Böse, R. Rabindranath, and J. Ehrlich, “Soft magnetorheological elastomers as new actuators for valves,” Journal of Intelligent Material Systems and Structures, 2012. [9] G. Hu, M. Guo, W. Li, H. Du, and G. Alici, “Experimental investigation of the vibration characteristics of a magnetorheological elastomer sandwich beam under non-homogeneous small magnetic fields,” Smart materials and structures, vol. 20, no. 12, pp. 127001, 2011. [10] L. Davis, “Model of magnetorheological elastomers,” Journal of Applied Physics, vol. 85, no. 6, pp. 3348-3351, 1999. [11] H. Böse, and R. Röder, "Magnetorheological elastomers with high variability of their mechanical properties.", Journal of Physics, vol 149, no. 1, p. 012090, 2009. [12] F. Gordaninejad, X. Wang, and P. Mysore, “Behavior of thick magnetorheological elastomers,” Journal of Intelligent Material Systems and Structures, vol. 23, no. 9, pp. 1033-1039, 2012. [13] Vincent J, Staten, "Magnetic fluid clutch and brake," U.S. Patent 2,573,065, 1951. [14] Z. Rigbi, and L. Jilkén, “The response of an elastomer filled with soft ferrite to mechanical and magnetic influences,” Journal of Magnetism and Magnetic Materials, vol. 37, no. 3, pp. 267-276, 1983. [15] M. R. Jolly, J. D. Carlson, B. C. Muñoz, and T. A. Bullions, “The Magnetoviscoelastic Response of Elastomer Composites Consisting of Ferrous Particles Embedded in a Polymer Matrix,” Journal of Intelligent Material Systems and Structures, vol. 7, no. 6, pp. 613-622, 1996. [16] R. J. Mark, J. D. Carlson, and C. M. Beth, “A model of the behaviour of magnetorheological materials,” Smart Materials and Structures, vol. 5, no. 5, pp. 607, 1996. [17] L. Yancheng, L. Jianchun, L. Weihua, and D. Haiping, “A state-of-the-art review on magnetorheological elastomer devices,” Smart Materials and Structures, vol. 23, no. 12, pp. 123001, 2014. [18] V. Hossein, N. Mahmood, A. Seyed Masoud Sajjadi, and K. S. Stoyan, “A novel phenomenological model for dynamic behavior of magnetorheological elastomers in tension–compression mode,” Smart Materials and Structures, vol. 26, no. 6, pp. 065011, 2017. [19] J. D. Carlson, and M. R. Jolly, “MR fluid, foam and elastomer devices,” Mechatronics, vol. 10, no. 4–5, pp. 555-569, 2000. [20] W. Li, X. Zhang, and H. Du, "Magnetorheological elastomers and their applications," Advances in Elastomers I, pp. 357-374: Springer, 2013. [21] J. M. Ginder, M. E. Nichols, L. D. Elie, and S. M. Clark, "Controllable-stiffness components based on magnetorheological elastomers.", Proceedings-SPIE The international Society For Optical Engineering, pp. 418-425, 2000. [22] A. A. Lerner, and K. A. Cunefare, “Performance of MRE-based vibration absorbers,” Journal of Intelligent Material Systems and Structures, 2007. [23] N. Hoang, N. Zhang, W. Li, and H. Du, “Development of a torsional dynamic absorber using a magnetorheological elastomer for vibration reduction of a powertrain test rig,” Journal of Intelligent Material Systems and Structures, vol. 24, no. 16, pp. 2036-2044, 2013. [24] S. Sun, Y. Chen, J. Yang, T. Tian, H. Deng, W. Li, H. Du, and G. Alici, “The development of an adaptive tuned magnetorheological elastomer absorber working in squeeze mode,” Smart Materials and Structures, vol. 23, no. 7, pp. 075009, 2014. [25] S. Sun, H. Deng, J. Yang, W. Li, H. Du, and G. Alici, “Performance evaluation and comparison of magnetorheological elastomer absorbers working in shear and squeeze modes,” Journal of Intelligent Material Systems and Structures, 2015. [26] H.-x. Deng, and X.-l. Gong, “Application of magnetorheological elastomer to vibration absorber,” Communications in Nonlinear Science and Numerical Simulation, vol. 13, no. 9, pp. 1938-1947, 2008. [27] H.-x. Deng, X.-l. Gong, and L.-h. Wang, “Development of an adaptive tuned vibration absorber with magnetorheological elastomer,” Smart materials and structures, vol. 15, no. 5, pp. N111, 2006. [28] X.-M. Dong, Y. Miao, C.-R. Liao, and W.-M. Chen, “A new variable stiffness absorber based on magneto-rheological elastomer,” Transactions of Nonferrous Metals Society of China, vol. 19, pp. s611-s615, 2009. [29] J. M. Ginder, W. F. Schlotter, and M. E. Nichols, "Magnetorheological elastomers in tunable vibration absorbers.", Proc. SPIE. vol. 4331, no. 1, pp. 103-110, 2001. [30] S. Sun, H. Deng, J. Yang, W. Li, H. Du, G. Alici, and M. Nakano, “An adaptive tuned vibration absorber based on multilayered MR elastomers,” Smart Materials and Structures, vol. 24, no. 4, pp. 045045, 2015. [31] B. Kavlicoglu, B. Wallis, H. Sahin, and Y. Liu, "Magnetorheological elastomer mount for shock and vibration isolation.", Active and Passive Smart Structures and Integrated Systems, pp. 79770Y, 2011. [32] Y. Li, J. Li, W. Li, and B. Samali, “Development and characterization of a magnetorheological elastomer based adaptive seismic isolator,” Smart Materials and Structures, vol. 22, no. 3, pp. 035005, 2013. [33] Y. Li, J. Li, T. Tian, and W. Li, “A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control,” Smart Materials and Structures, vol. 22, no. 9, pp. 095020, 2013. [34] Y. Yu, Y. Li, J. Li, and X. Gu, “A hysteresis model for dynamic behaviour of magnetorheological elastomer base isolator,” Smart Materials and Structures, vol. 25, no. 5, pp. 055029, 2016. [35] T. Shiga, A. Okada, and T. Kurauchi, “Magnetroviscoelastic behavior of composite gels,” Journal of Applied Polymer Science, vol. 58, no. 4, pp. 787-792, 1995. [36] J. M. Ginder, M. E. Nichols, L. D. Elie, and J. L. Tardiff, "Magnetorheological elastomers: properties and applications.", Proc. SPIE. vol.3675, pp. 131-138, 1999. [37] M. Lokander, and B. Stenberg, “Performance of isotropic magnetorheological rubber materials,” Polymer Testing, vol. 22, no. 3, pp. 245-251, 2003. [38] X. Gong, X. Zhang, and P. Zhang, “Fabrication and characterization of isotropic magnetorheological elastomers,” Polymer testing, vol. 24, no. 5, pp. 669-676, 2005. [39] C. Bellan, and G. Bossis, “Field dependence of viscoelastic properties of MR elastomers,” International Journal of Modern Physics B, vol. 16, no. 17n18, pp. 2447-2453, 2002. [40] M. Farshad, and A. Benine, “Magnetoactive elastomer composites,” Polymer testing, vol. 23, no. 3, pp. 347-353, 2004. [41] P. R. von Lockette, J. Kadlowec, and J.-H. Koo, "Particle mixtures in magnetorheological elastomers (MREs).", Proc. SPIE. vol.6170, 2006. [42] I. Agirre-Olabide, J. Berasategui, M. J. Elejabarrieta, and M. M. Bou-Ali, “Characterization of the linear viscoelastic region of magnetorheological elastomers,” Journal of Intelligent Material Systems and Structures, pp. 1045389X13517310, 2014. [43] J. M. GINDER, S. M. CLARK, W. F. SCHLOTTER, and M. E. NICHOLS, “MAGNETOSTRICTIVE PHENOMENA IN MAGNETORHEOLOGICAL ELASTOMERS,” International Journal of Modern Physics B, vol. 16, no. 17n18, pp. 2412-2418, 2002. [44] M. Lokander, and B. Stenberg, “Improving the magnetorheological effect in isotropic magnetorheological rubber materials,” Polymer Testing, vol. 22, no. 6, pp. 677-680, 2003. [45] A. B. a. S. Awietjan, "Microstructure and Properties of Magnetorheological Elastomers," Advanced Elastomers - Technology, Properties and Applications: InTech, 2012. [46] K. Danas, S. Kankanala, and N. Triantafyllidis, “Experiments and modeling of iron-particle-filled magnetorheological elastomers,” Journal of the Mechanics and Physics of Solids, vol. 60, no. 1, pp. 120-138, 2012. [47] S.-H. Eem, H.-J. Jung, and J.-H. Koo, “Modeling of magneto-rheological elastomers for harmonic shear deformation,” IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 3080-3083, 2012. [48] M. Lokander, “Performance of magnetorheological rubber materials”, Diss. Fiber-och polymerteknologi, 2004. [49] G. Stepanov, S. Abramchuk, D. Grishin, L. Nikitin, E. Y. Kramarenko, and A. Khokhlov, “Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers,” Polymer, vol. 48, no. 2, pp. 488-495, 2007. [50] A.-M. Albanese, and K. A. Cunefare, "Properties of a magnetorheological semi-active vibration absorber.", Proc. SPIE, vol. 5052, pp. 36-43, 2003. [51] M. Kallio, T. Lindroos, S. Aalto, E. Järvinen, T. Kärnä, and T. Meinander, “Dynamic compression testing of a tunable spring element consisting of a magnetorheological elastomer,” Smart Materials and Structures, vol. 16, no. 2, pp. 506, 2007. [52] W. Fletcher, and A. Gent, “Nonlinearity in the dynamic properties of vulcanized rubber compounds,” Rubber Chemistry and Technology, vol. 27, no. 1, pp. 209-222, 1954. [53] A. Payne, and R. Whittaker, “Low strain dynamic properties of filled rubbers,” Rubber chemistry and technology, vol. 44, no. 2, pp. 440-478, 1971. [54] E. Galipeau, and P. P. Castañeda, “A finite-strain constitutive model for magnetorheological elastomers: magnetic torques and fiber rotations,” Journal of the Mechanics and Physics of Solids, vol. 61, no. 4, pp. 1065-1090, 2013. [55] Y. Shen, M. F. Golnaraghi, and G. Heppler, “Experimental research and modeling of magnetorheological elastomers,” Journal of Intelligent Material Systems and Structures, vol. 15, no. 1, pp. 27-35, 2004. [56] M. Al Janaideh, “Generalized Prandtl-Ishlinskii hysteresis model and its analytical inverse for compensation of hysteresis in smart actuators,” PhD Thesis, Concordia University, Montreal, Quebec, Canada, 2009. [57] W. Li, Y. Zhou, and T. Tian, “Viscoelastic properties of MR elastomers under harmonic loading,” Rheologica acta, vol. 49, no. 7, pp. 733-740, 2010. [58] W. J. Choi, “Dynamic analysis of magnetorheological elastomer configured sandwich structures,” Doctoral Thesis, School of Engineering Sciences, University of Southampton, 2009. [59] J.-T. Zhu, Z.-D. Xu, and Y.-Q. Guo, “Magnetoviscoelasticity parametric model of an MR elastomer vibration mitigation device,” Smart Materials and Structures, vol. 21, no. 7, pp. 075034, 2012. [60] M. Al Janaideh, S. Rakheja, and C.-Y. Su, “An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control,” IEEE/ASME Transactions on mechatronics, vol. 16, no. 4, pp. 734-744, 2011. [61] P. Ge, and M. Jouaneh, “Tracking control of a piezoceramic actuator,” IEEE Transactions on control systems technology, vol. 4, no. 3, pp. 209-216, 1996. [62] Y.-K. Wen, “Method for random vibration of hysteretic systems,” Journal of the engineering mechanics division, vol. 102, no. 2, pp. 249-263, 1976. [63] D. Hughes, and J. T. Wen, “Preisach modeling of piezoceramic and shape memory alloy hysteresis,” Smart materials and structures, vol. 6, no. 3, pp. 287, 1997. [64] K. Kuhnen, “Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach,” European journal of control, vol. 9, no. 4, pp. 407-418, 2003. [65] X. Tan, and H. K. Khalil, "Control of unknown dynamic hysteretic systems using slow adaptation: Preliminary results.", American Control Conference, ACC'07. IEEE, pp. 3294-3299, 2007. [66] F. Preisach, “Über die magnetische Nachwirkung,” Zeitschrift für Physik A Hadrons and Nuclei, vol. 94, no. 5, pp. 277-302, 1935. [67] M. Brokate, and J. Sprekels, Hysteresis and phase transitions: Springer Science & Business Media, 2012. [68] M. A. Krasnosel'skii, and A. V. Pokrovskii, Systems with hysteresis: Springer Science & Business Media, 2012. [69] M. Al Janaideh, C.-Y. Su, and S. Rakheja, “Development of the rate-dependent Prandtl–Ishlinskii model for smart actuators,” Smart Materials and Structures, vol. 17, no. 3, pp. 035026, 2008. [70] R. V. Iyer, and X. Tan, “Control of hysteretic systems through inverse compensation,” IEEE Control Systems, vol. 29, no. 1, pp. 83-99, 2009. [71] S. K. De, and J. R. White, Rubber Technologist's Handbook: Rapra Technology Limited, 2001. [72] P. Zając, J. Kaleta, D. Lewandowski, and A. Gasperowicz, “Isotropic magnetorheological elastomers with thermoplastic matrices: structure, damping properties and testing,” Smart Materials and Structures, vol. 19, no. 4, pp. 045014, 2010. [73] International Standards, "ISO 1827: Rubber, vulcanized or thermoplastic - Determination of shear modulus and adhesion to rigid plates - Quadruple-shear methods," 2011. [74] International Standards, "ISO 4664-1: Rubber, vulcanized or thermoplastic - Determination of dynamic properties . Part 1: General guidance," 2011. [75] "ASTM D5992-96(2011), Standard Guide for Dynamic Testing of Vulcanized Rubber and Rubber-Like Materials Using Vibratory Methods," 2006. [76] Z. Yang, T. Johansen, H. Bratsberg, G. Helgesen, and A. Skjeltorp, “Potential and force between a magnet and a bulk Y1Ba2Cu3O7-δ superconductor studied by a mechanical pendulum,” Superconductor Science and Technology, vol. 3, no. 12, pp. 591, 1990. [77] J. Camacho, and V. Sosa, “Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry,” Revista mexicana de física E, vol. 59, no. 1, pp. 8-17, 2013. [78] M. Rendek, and A. Lion, “Amplitude dependence of filler-reinforced rubber: Experiments, constitutive modelling and FEM – Implementation,” International Journal of Solids and Structures, vol. 47, no. 21, pp. 2918-2936, 2010/10/15/, 2010. [79] V. V. Sorokin, E. Ecker, G. V. Stepanov, M. Shamonin, G. J. Monkman, E. Y. Kramarenko, and A. R. Khokhlov, “Experimental study of the magnetic field enhanced Payne effect in magnetorheological elastomers,” Soft Matterials, vol. 10, no. 43, pp. 8765-8776, 2014. [80] V. S. Molchanov, G. V. Stepanov, V. G. Vasiliev, E. Y. Kramarenko, A. R. Khokhlov, Z. D. Xu, and Y. Q. Guo, “Viscoelastic properties of magnetorheological elastomers for damping applications,” Macromolecular Materials and Engineering, vol. 299, no. 9, pp. 1116-1125, 2014. [81] H. An, S. J. Picken, and E. Mendes, “Nonlinear rheological study of magneto responsive soft gels,” Polymer, vol. 53, no. 19, pp. 4164-4170, 2012. [82] A. Fuchs, Q. Zhang, J. Elkins, F. Gordaninejad, and C. Evrensel, “Development and characterization of magnetorheological elastomers,” Journal of Applied Polymer Science, vol. 105, no. 5, pp. 2497-2508, 2007. [83] M. Rakotondrabe, “Bouc–Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators,” IEEE Transactions on Automation Science and Engineering, vol. 8, no. 2, pp. 428-431, 2011. [84] X. Q. Ma, S. Rakheja, and C.-Y. Su, “Development and Relative Assessments of Models for Characterizing the Current Dependent Hysteresis Properties of Magnetorheological Fluid Dampers,” Journal of Intelligent Material Systems and Structures, vol. 18, no. 5, pp. 487-502, 2007. [85] C.-Y. Su, Q. Wang, X. Chen, and S. Rakheja, “Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis,” IEEE Transactions on automatic control, vol. 50, no. 12, pp. 2069-2074, 2005. [86] O. Aljanaideh, M. Al Janaideh, S. Rakheja, and C.-Y. Su, “Compensation of rate-dependent hysteresis nonlinearities in a magnetostrictive actuator using an inverse Prandtl–Ishlinskii model,” Smart Materials and Structures, vol. 22, no. 2, pp. 025027, 2013. [87] C. Visone, "Hysteresis modelling and compensation for smart sensors and actuators.", Journal of Physics, vol. 138. no.1, p. 012028, 2008.