J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, F. Bray Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 Int. J. Cancer, 136 (5) (2015), pp. E359-86 R.L. Siegel, K.D. Miller, A. Jemal Cancer statistics, 2016 CA Cancer J. Clin., 66 (1) (2016), pp. 7-30 D.K. Wysowski, J.P. Freiman, J.B. Tourtelot, M.L. Horton 3rd Fatal and nonfatal hepatotoxicity associated with flutamide Ann. Intern. Med., 118 (11) (1993), pp. 860-864 D.G. McLeod Tolerability of nonsteroidal antiandrogens in the treatment of advanced prostate cancer Oncologist, 2 (1) (1997), pp. 18-27 D.G. McLeod, E.D. Crawford, E.P. DeAntoni Combined androgen blockade: the gold standard for metastatic prostate cancer Eur. Urol., 32 (Suppl. 3) (1997), pp. 70-77 L.F. Bjeldanes, J.Y. Kim, K.R. Grose, J.C. Bartholomew, C.A. Bradfield Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin Proc. Natl. Acad. Sci. U. S. A., 88 (21) (1991), pp. 9543-9547 K. Abdelbaqi, N. Lack, E.T. Guns, L. Kotha, S. Safe, J.T. Sanderson Antiandrogenic and growth inhibitory effects of ring-substituted analogs of 3,3′-diindolylmethane (ring-DIMs) in hormone-responsive LNCaP human prostate cancer cells Prostate, 71 (13) (2011), pp. 1401-1412 A.A. Goldberg, V.I. Titorenko, A. Beach, K. Abdelbaqi, S. Safe, J.T. Sanderson Ring-substituted analogs of 3,3′-diindolylmethane (DIM) induce apoptosis and necrosis in androgen-dependent and independent prostate cancer cells Investig. New Drugs, 32 (1) (2014), pp. 25-36 A.A. Goldberg, H. Draz, D. Montes-Grajales, J. Olivero-Verbel, S.H. Safe, J.T. Sanderson 3,3′-Diindolylmethane (DIM) and its ring-substituted halogenated analogs (ring-DIMs) induce differential mechanisms of survival and death in androgen-dependent and -independent prostate cancer cells Genes Cancer, 6 (5–6) (2015), pp. 265-280 C.W. Wang, D.J. Klionsky The molecular mechanism of autophagy Mol. Med., 9 (3–4) (2003), pp. 65-76 D. Glick, S. Barth, K.F. Macleod Autophagy: cellular and molecular mechanisms J. Pathol., 221 (1) (2010), pp. 3-12 E. White The role for autophagy in cancer J. Clin. Invest., 125 (1) (2015), pp. 42-46 S.Y. Yang, M.C. Winslet Dual role of autophagy in colon cancer cell survival Ann. Surg. Oncol., 18 (Suppl. 3) (2011), p. S239 C.B. Blackadar Historical review of the causes of cancer World J Clin Oncol., 7 (1) (2016), pp. 54-86 N. Mizushima, T. Yoshimori, Y. Ohsumi The role of Atg proteins in autophagosome formation Annu. Rev. Cell Dev. Biol., 27 (2011), pp. 107-132 T.E. Hansen, T. Johansen Following autophagy step by step BMC Biol., 9 (2011), p. 39 J. Kim, M. Kundu, B. Viollet, K.L. Guan AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 Nat. Cell Biol., 13 (2) (2011), pp. 132-141 G. Hu, Y. Wei, Y. Kang The multifaceted role of MTDH/AEG-1 in cancer progression Clin. Cancer Res., 15 (18) (2009), pp. 5615-5620 X. Shi, X. Wang The role of MTDH/AEG-1 in the progression of cancer Int. J. Clin. Exp. Med., 8 (4) (2015), pp. 4795-4807 S.K. Bhutia, T.P. Kegelman, S.K. Das, B. Azab, Z.Z. Su, S.G. Lee, D. Sarkar, P.B. Fisher Astrocyte elevated gene-1 induces protective autophagy Proc. Natl. Acad. Sci. U. S. A., 107 (51) (2010), pp. 22243-22248 S.K. Bhutia, T.P. Kegelman, S.K. Das, B. Azab, Z.Z. Su, S.G. Lee, D. Sarkar, P.B. Fisher Astrocyte elevated gene-1 activates AMPK in response to cellular metabolic stress and promotes protective autophagy Autophagy, 7 (5) (2011), pp. 547-548 B.K. Yoo, D. Chen, Z.Z. Su, R. Gredler, J. Yoo, K. Shah, P.B. Fisher, D. Sarkar Molecular mechanism of chemoresistance by astrocyte elevated gene-1 Cancer Res., 70 (8) (2010), pp. 3249-3258 J. Srivastava, A. Siddiq, L. Emdad, P.K. Santhekadur, D. Chen, R. Gredler, X.N. Shen, C.L. Robertson, C.I. Dumur, P.B. Hylemon, N.D. Mukhopadhyay, D. Bhere, K. Shah, R. Ahmad, S. Giashuddin, J. Stafflinger, M.A. Subler, J.J. Windle, P.B. Fisher, D. Sarkar Astrocyte elevated gene-1 promotes hepatocarcinogenesis: novel insights from a mouse model Hepatology, 56 (5) (2012), pp. 1782-1791 Y. Gong, H. Sohn, L. Xue, G.L. Firestone, L.F. Bjeldanes 3,3′-Diindolylmethane is a novel mitochondrial H(+)-ATP synthase inhibitor that can induce p21(Cip1/Waf1) expression by induction of oxidative stress in human breast cancer cells Cancer Res., 66 (9) (2006), pp. 4880-4887 D. Chen, S. Banerjee, Q.C. Cui, D. Kong, F.H. Sarkar, Q.P. Dou Activation of AMP-activated protein kinase by 3,3′-diindolylmethane (DIM) is associated with human prostate cancer cell death in vitro and in vivo PLoS One, 7 (10) (2012), Article e47186 P.K. Kandala, S.K. Srivastava Regulation of macroautophagy in ovarian cancer cells in vitro and in vivo by controlling glucose regulatory protein 78 and AMPK Oncotarget, 3 (4) (2012), pp. 435-449 M. Zou, W. Zhu, L. Wang, L. Shi, R. Gao, Y. Ou, X. Chen, Z. Wang, A. Jiang, K. Liu, M. Xiao, P. Ni, D. Wu, W. He, G. Sun, P. Li, S. Zhai, X. Wang, G. Hu AEG-1/MTDH-activated autophagy enhances human malignant glioma susceptibility to TGF-beta1-triggered epithelial-mesenchymal transition Oncotarget, 7 (11) (2016), pp. 13122-13138 X. Liu, D. Wang, H. Liu, Y. Feng, T. Zhu, L. Zhang, B. Zhu, Y. Zhang Knockdown of astrocyte elevated gene-1 (AEG-1) in cervical cancer cells decreases their invasiveness, epithelial to mesenchymal transition, and chemoresistance Cell Cycle, 13 (11) (2014), pp. 1702-1707 N. Kikuno, H. Shiina, S. Urakami, K. Kawamoto, H. Hirata, Y. Tanaka, R.F. Place, D. Pookot, S. Majid, M. Igawa, R. Dahiya Knockdown of astrocyte-elevated gene-1 inhibits prostate cancer progression through upregulation of FOXO3a activity Oncogene, 26 (55) (2007), pp. 7647-7655 H.J. Lee, D.B. Jung, E.J. Sohn, H.H. Kim, M.N. Park, J.H. Lew, S.G. Lee, B. Kim, S.H. Kim Inhibition of hypoxia inducible factor alpha and astrocyte-elevated gene-1 mediates cryptotanshinone exerted antitumor activity in hypoxic PC-3 cells Evidence-based Complementary and Alternative Medicine: eCAM, 2012 (2012), p. 390957 X. Ge, S. Yannai, G. Rennert, N. Gruener, F.A. Fares 3,3′-Diindolylmethane induces apoptosis in human cancer cells Biochem. Biophys. Res. Commun., 228 (1) (1996), pp. 153-158 M. Nachshon-Kedmi, F.A. Fares, S. Yannai Therapeutic activity of 3,3′-diindolylmethane on prostate cancer in an in vivo model Prostate, 61 (2) (2004), pp. 153-160 M. Nachshon-Kedmi, S. Yannai, F.A. Fares Induction of apoptosis in human prostate cancer cell line, PC3, by 3,3′-diindolylmethane through the mitochondrial pathway Br. J. Cancer, 91 (7) (2004), pp. 1358-1363 J.P. Sedelaar, J.T. Isaacs Tissue culture media supplemented with 10% fetal calf serum contains a castrate level of testosterone Prostate, 69 (16) (2009), pp. 1724-1729 G.P. Dimri What has senescence got to do with cancer? Cancer Cell, 7 (6) (2005), pp. 505-512 M. Lee, J.S. Lee Exploiting tumor cell senescence in anticancer therapy BMB Rep., 47 (2) (2014), pp. 51-59 J.A. Ewald, J.A. Desotelle, G. Wilding, D.F. Jarrard Therapy-induced senescence in cancer J. Natl. Cancer Inst., 102 (20) (2010), pp. 1536-1546 A. Gibadulinova, M. Pastorek, P. Filipcik, P. Radvak, L. Csaderova, B. Vojtesek, S. Pastorekova Cancer-associated S100P protein binds and inactivates p53, permits therapy-induced senescence and supports chemoresistance Oncotarget, 7 (16) (2016), pp. 22508-22522 J. Tato-Costa, S. Casimiro, T. Pacheco, R. Pires, A. Fernandes, I. Alho, P. Pereira, P. Costa, H.B. Castelo, J. Ferreira, L. Costa Therapy-induced cellular senescence induces epithelial-to-mesenchymal transition and increases invasiveness in rectal cancer Clin. Colorectal Cancer, 15 (2) (2016) (170-178 e3)