[1] K. Kailasanath, Recent developments in the research on pulse detonation engines, AIAA Journal 41 (2003) 145-159. [2] A.J. Higgins, Ram accelerators: outstanding issues and new directions, Journal of propulsion and power 22 (2006) 1170-1187. [3] P. Wokanski, Detonative propulsion, Proceedings of the Combustion Institute 34(1) (2013) 125-158. [4] E.M. Braun, F.K. Lu, D.R. Wilson, J.A. Camberos, Airbreathing rotating detonation wave engine cycle analysis, Aerospace Science and Technology 27 (2013) 201-208. [5] E.P. Gross, Hydrodynamics of a superfluid condensate, Journal of Mathematical Physics 4(2) (1963) 195-207. [6] D.T. Pratt, J.W. Humphrey, D.E. Glenn, Morphology of standing oblique detonation waves, Journal of Propulsion and Power 7(5) (1991) 837-845. [7] S.A. Ashford, G. Emanuel, Wave angle for oblique detonation waves, Shock Waves 3(4) (1994) 327-329. [8] G. Emanuel, D.G. Tuckness, Steady, oblique, detonation waves, Shock Waves 13(6) (2004) 445-451. [9] C. Li, K. Kailasanath, E.S. Oran, Detonation structures behind oblique shocks, Physics of Fluids 6(4) (1994) 1600-1611. [10] L.F. Figueira Da Silva, B. Deshaies, Stabilization of an oblique detonation wave by a wedge: a parametric numerical study, Combustion and Flame 121(1) (2000) 152-166. [11] M.V. Papalexandris, A numerical study of wedge-induced detonations, Combustion and Flame 120(4) (2000) 526-538. [12] H.H. Teng, Z.L. Jiang, On the transition pattern of the oblique detonation structure, Journal of Fluid Mechanics 713 (2012) 659-669. [13] J.Y. Choi, E.J.R. Shin, I.S. Jeung, Unstable combustion induced by oblique shock waves at the non-attaching condition of the oblique detonation wave, Proceedings of the Combustion Institute 32(2) (2009) 2387-2396. [14] H.H. Teng, Z.L. Jiang, H.D. Ng, Numerical study on unstable surfaces of oblique detonations, Journal of Fluid Mechanics 744 (2014) 111-128. [15] Y. Liu, D. Wu, S. Yao, J. Wang, Analytical and numerical investigations of wedge-induced oblique detonation waves at low inflow Mach number, Combustion Science and Technology 187(6) (2015) 843-856. [16] Y. Liu, X. Han, S. Yao, J. Wang, A numerical investigation of the prompt oblique detonation wave sustained by a finite-length wedge, Shock waves 26(6) (2016) 729-739. [17] S. Bhattrai, H. Tang, Formation of near-Chapman–Jouguet oblique detonation wave over a dual-angle ramp, Aerosp. Sci. Technol 63 (2017) 1-8. [18] M.J. Grismer, J.M. Powers, Numerical predictions of oblique detonation stability boundaries, Shock Waves 6(3) (1996) 147-156. [19] M.Y. Gui, B.C. Fan, G. Dong, Periodic oscillation and fine structure of wedge-induced oblique detonation waves, Acta Mechanica Sinica 27(6) (2011) 922-928. [20] J.Y. Choi, D.W. Kim, I.S. Jeung, F. Ma, V. Yang, Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation, Proceedings of the Combustion Institute 31(2) (2007) 2473-2480. [21] J. Verreault, A.J. Higgins, R.A. Stowe, Formation of transverse waves in oblique detonations, Proceedings of the Combustion Institute 34(2) (2013) 1913-1920. [22] H. Teng, H.D. Ng, K. Li, C Luo, Z Jiang, Evolution of cellular structures on oblique detonation surfaces, Combustion and Flame 162(2) (2015) 470-477. [23] D.R. Wilson, F.K. Lu, H. Kim, R. Munipalli, Analysis of a pulsed normal detonation wave engine concept, AIAA paper 2001-1784, 2001. [24] R. Munipalli, V. Shankar, D.R. Wilson, H. Kim, F.K. Lu, P.E. Hagseth, A pulse detonation based multimode engine concept, AIAA paper 2001-1786, 2001. [25] F.K. Lu, H.Y. Fan, D.R. Wilson, Detonation waves induced by a confined wedge, Aerosp. Sci. Technol 10 (2006) 679-685. [26] H.Y. Fan, F.K. Lu, Numerical modelling of oblique shock and detonation waves induced in a wedged channel, Proc. IMechE Part G: J. Aerospace Engineering 222 (2008) 687-703. [27] J.L. Cambier, H. Adelman,G.P. Menees, Numerical simulations of an oblique detonation wave engine, Journal of Propulsion and Power 6(3) (1990) 315-323. [28] V.V. Vlasenko, V.A. Sabel'nikov, Numerical simulation of inviscid flows with hydrogen combustion behind shock waves and in detonation waves, Combustion, Explosion, and Shock Waves 31(3) (1995) 376-389. [29] G. Fusina, J.P. Sislian, B. Parent, Formation and stability of near Chapman-Jouguet oblique detonation waves, AIAA Journal 43(7) (2005) 1591-1604. [30] B. Zhang, H.D. Ng, J.H.S. Lee, The critical tube diameter and critical energy for direct initiation of detonation in C2H2/N2O/Ar mixtures, Combustion and Flame 159(9) 2012 2944-2953. [31] B. Zhang, N. Mehrjoo, H.D. Ng, et al., On the dynamic detonation parameters in acetylene-oxygen mixtures with varying amount of argon dilution, Combustion and Flame 161(5) 2014 1390-1397. [32] B. Zhang, C.H. Bai, Methods to predict the critical energy of direct detonation initiation in gaseous hydrocarbon fuels -An overview, Fuel 117 (2014) 294-308. [33] B. Zhang, The influence of wall roughness on detonation limits in hydrogen–oxygen mixture, Combustion and Flame 169 (2016) 333-339. [34] J.P. Sislian, R. Dudebout, J. Schumacher, M. Islam, and T. Redford, Incomplete Mixing and Off-Design Effects of Shock-Induced Combustion Ramjet Performance, Journal of Propulsion and Power 16 (2000) 41-48. [35] Y. Zhang, J. Gong, T. Wang, Numerical study on initiation of oblique detonations in hydrogen–air mixtures with various equivalence ratios, Aerospace Science and Technology 49 (2016) 130-134. [36] J.H.S. Lee, The Detonation Phenomenon. New York: Cambridge University Press, 2008. [37] K. Iwata, S. Nakaya, M. Tsue, Numerical investigation of the effects of nonuniform premixing on shock-induced combustion, AIAA Journal 54(5) (2016) 1682-1692. [38] K. Iwata, S. Nakaya, M. Tsue, Wedge-stabilized oblique detonation in an inhomogeneous hydrogen-air mixture, Proceedings of the Combustion Institute 36(2) (2017) 2761-2769. [39] T. Wang, Y. Zhang, H. Teng, Z. Jiang, H. Ng, Numerical study of oblique detona-tion wave initiation in a stoichiometric hydrogen–air mixture, Physics of Fluids 27 (2015) 096101. [40] C. Li, K. Kailasanath, E.S. Oran, Effects of boundary layers on oblique detonation structures, AIAA paper 93-0450, l993. [41] B.J. McBride, M.J. Zehe, S. Gordon, NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species, Report No. 2002-211556, NASA/TP, 2002. [42] M. Sun, K. Takayama, Conservative smoothing on an adaptive quadrilateral grid, Journal of Computational Physics 150 (1999) 143-180. [43] E.F. Toro, Riemann solvers and numerical methods for fluid dynamics (Second ed). Berlin: Springer, 1999. [44] R. J. Kee, F.M. Rupley, E. Meeks, J.A. Miller, Chemkin-II: a fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. UC-405, SAND96-8216, Sandia National Laboratories. 1989. [45] P.N. Brown, G.D. Byrne, A.C. Hindmarsh, VODE, A Variable-Coefficient ODE Solver, SIAM J. Sci. Stat. Comput. 10 (1989) 1038-1051. [46] R. Dudebout, J.P. Sislian, R. Oppitz, Numerical simulation of hypersonic shock-induced combustion ramjets, Journal of Propulsion and Power 14 (1998) 869–879. [47] D.C. Alexander, J.P. Sislian, B. Parent, Hypervelocity fuel/air mixing in mixed-compression inlets of shcramjets, AIAA Journal 44 (2006) 2145–2155. [48] H. Teng, Y. Zhang, Z. Jiang, Numerical investigation on the induction zone structure of the oblique detonation waves, Computer and Fluids 95 (2014) 127–131.