A.W.J.W. Tepper, L. Bubacco, G.W. Canters Structural Basis and Mechanism of the Inhibition of the Type-3 Copper Protein Tyrosinase from Streptomyces antibioticusby Halide Ions J. Biol. Chem., 277 (2002), pp. 30436–30444 E.I. Solomon, D.E. Heppner, E.M. Johnston, J.W. Ginsbach, J. Cirera, M. Qayyum, M.T. Kieber-Emmons, C.H. Kjaergaard, R.G. Hadt, L. Tian Copper Active Sites in Biology Chem. Rev., 114 (2014), pp. 3659–3853 R.L. Osborne, J.P. Klinman Insights into the Proposed Copper-Oxygen Intermediates that Regulate the Mechanism of Reactions Catalyzed by Dopamine β-Monooxygenase, Peptidylglycine α-Hydroxylating Monooxygenase, and Tyramine β-Monooxygenase, Copper-Oxygen Chemistry Inc, John Wiley & Sons (2011), pp. 1–22 M.J. Langton, C.J. Serpell, P.D. Beer Anion Recognition in Water: Recent Advances from a Supramolecular and Macromolecular Perspective Angew. Chem., Int. Ed., 55 (2016), pp. 1974–1987 J.-N. Rebilly, B. Colasson, O. Bistri, D. Over, O. Reinaud Biomimetic cavity-based metal complexes Chem. Soc. Rev., 44 (2015), pp. 467–489 N. Le Poul, Y. Le Mest, I. Jabin, O. Reinaud Supramolecular Modeling of Mono-copper Enzyme Active Sites with Calix[6]arene-based Funnel Complexes Acc. Chem. Res., 48 (2015), pp. 2097–2106 A. Brugnara, F. Topic, K. Rissanen A.d.l. Lande, B. Colasson, O. Reinaud, Selective recognition of fluoride anion in water by a copper(ii) center embedded in a hydrophobic cavity Chem. Sci., 5 (2014), pp. 3897–3904 L. Chaloner, M.S. Askari, A. Kutteh, S. Schindler, X. Ottenwaelder Formation and Reactivity of a Biomimetic Hydroperoxocopper(II) Cryptate Eur. J. Inorg. Chem., 2011 (2011), pp. 4204–4211 L. Chaloner, A. Khomutovskaya, F. Thomas, X. Ottenwaelder Supramolecular control of monooxygenase reactivity in a copper(ii) cryptate Dalton Trans., 45 (2016), pp. 11109–11119 B. Sarkar, P. Mukhopadhyay, P.K. Bharadwaj Laterally non-symmetric aza-cryptands: synthesis, catalysis and derivatization to new receptors Coord. Chem. Rev., 236 (2003), pp. 1–13 K. Ziach, M. Ceborska, J. Jurczak Toward dynamic combinatorial libraries of cryptands Tetrahedron Lett., 52 (2011), pp. 4452–4455 G. Alibrandi, V. Amendola, G. Bergamaschi, L. Fabbrizzi, M. Licchelli Bistren cryptands and cryptates: versatile receptors for anion inclusion and recognition in water Org. Biomol. Chem., 13 (2015), pp. 3510–3524 V. Amendola, L. Fabbrizzi, C. Mangano, P. Pallavicini, A. Poggi, A. Taglietti Anion recognition by dimetallic cryptates Coord. Chem. Rev., 219–221 (2001), pp. 821–837 S.O. Kang, J.M. Llinares, V.W. Day, K. Bowman-James Cryptand-like anion receptors Chem. Soc. Rev., 39 (2010), pp. 3980–4003 L. Fabbrizzi, A. Poggi Anion recognition by coordinative interactions: metal-amine complexes as receptors Chem. Soc. Rev., 42 (2013), pp. 1681–1699 K. Gloe Macrocyclic Chemistry: Current Trends and Future Perspectives Springer (2005) G. Izzet, J. Zeitouny, H. Akdas-Killig, Y. Frapart S.p. Ménage, B.n.d. Douziech, I. Jabin, Y. Le Mest, O. Reinaud, Dioxygen Activation at a Mononuclear Cu(I) Center Embedded in the Calix[6]arene-Tren Core J. Am. Chem. Soc., 130 (2008), pp. 9514–9523 M. Largeron Protocols for the Catalytic Oxidation of Primary Amines to Imines Eur. J. Org. Chem., 2013 (2013), pp. 5225–5235 M. Schatz, M. Becker, O. Walter, G. Liehr, S. Schindler Reactivity towards dioxygen of a copper(I) complex of tris(2-benzylaminoethyl)amine Inorg. Chim. Acta, 324 (2001), pp. 173–179 D. Meyerstein Are M-N bonds indeed inherently weaker when N is a tertiary rather than a primary or secondary nitrogen atom? Coord. Chem. Rev., 185–186 (1999), pp. 141–147 S. Derossi, D.T. Farrell, C.J. Harding, V. McKee, J. Nelson, N-methylation of macrobicycles reduces encapsulation ability, Dalton Trans., DOI 10.1039/b617907j(2007) 1762-1772. A.J. Cresswell, S.G. Davies, P.M. Roberts, J.E. Thomson Beyond the Balz-Schiemann Reaction: The Utility of Tetrafluoroborates and Boron Trifluoride as Nucleophilic Fluoride Sources Chem. Rev., 115 (2014), pp. 566–611 A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn, G.C. Verschoor, Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2[prime or minute]-yl)-2,6-dithiaheptane]copper(II) perchlorate, Dalton Trans., DOI 10.1039/dt9840001349(1984) 1349-1356. J. Reedijk Coordination chemistry beyond Werner: interplay between hydrogen bonding and coordination Chem. Soc. Rev., 42 (2013), pp. 1776–1783 Cambridge Structural database, CSD (version 5.38, May 2017). T. Fujihara, T. Xu, K. Semba, J. Terao, Y. Tsuji Copper-Catalyzed Hydrocarboxylation of Alkynes Using Carbon Dioxide and Hydrosilanes Angew. Chem., Int. Ed., 50 (2011), pp. 523–527 A. Almesaker, P. Gamez, J. Reedijk, J.L. Scott, L. Spiccia, S.J. Teat, Stabilisation of a very short Cu-F bond within the protected cavity of a copper(ii) compound from a tris(2-aminoethyl)amine derivative, Dalton Trans., DOI 10.1039/B902907A(2009) 4077-4080. P. Comba C. Lopez de Laorden, H. Pritzkow, Tuning the Properties of Copper(II) Complexes with Tetra- and Pentadentate Bispidine (=3,7-Diazabicyclo[3.3.1]nonane) Ligands Helv. Chim. Acta, 88 (2005), pp. 647–664 R.R. Jacobson, Z. Tyeklar, K.D. Karlin, J. Zubieta Fluoride as a terminal and bridging ligand for copper: isolation and x-ray crystallographic characterization of copper monomeric and dimeric complexes [CuII(TMPA)F]nn+ (n = 1 or 2; TMPA = tris[(2-pyridyl)methyl]amine) Inorg. Chem., 30 (1991), pp. 2035–2040 D. Wiedemann, E. Świętek, W. Macyk, A. Grohmann Copper(I) and Iron(II) Complexes of a Novel Tris(pyridyl)­ethane-Derived N4 Ligand: Aspects of Redox Behaviour and Bioinorganic Physicochemistry Z. Anorg. Allg. Chem., 639 (2013), pp. 1483–1490 G.A. van Albada, O. Roubeau, I. Mutikainen, U. Turpeinen, J. Reedijk A unique methoxo- and fluoro-bridged triangular trinuclear Cu(ii) species linked in a lattice via mononuclear Cu(ii) units. Synthesis, X-ray structure and magnetism of [Cu4(2-aminopyrimidine)6([small mu ]3-OCH3)2([small mu ]-F)3(F)2](BF4). New J. Chem., 27 (2003), pp. 1693–1697 J. Van Rijn, J. Reedijk, M. Dartmann, B. Krebs, Copper(I) and copper(II) compounds of a dinucleating, octadentate tetrakisbenzimidazole ligand. Crystal and molecular structures of three dihalogeno{1,8-bis[bis(1[prime or minute]-methylbenzimidazol-2[prime or minute]-ylmethyl)amino]-3,6-dioxaoctane}dicopper(II) bis(anion) compounds (halogen = F, Cl, or Br; anion = BF4, CF3SO3, or Cl), Dalton Trans., DOI 10.1039/DT9870002579(1987) 2579-2593. J. Emsley, M. Arif, P.A. Bates, M.B. Hursthouse DIAQUABIS(1,3-DIAMINOPROPANE)COPPER(II) DIFLUORIDE - X-RAY STRUCTURE REVEALS SHORT HYDROGEN-BONDS BETWEEN LIGAND WATERS AND LATTICE FLUORIDES Inorg. Chim. Acta, 154 (1988), pp. 17–20 K. Komiyama, H. Furutachi, S. Nagatomo, A. Hashimoto, H. Hayashi, S. Fujinami, M. Suzuki, T. Kitagawa Dioxygen Reactivity of Copper(I) Complexes with Tetradentate Tripodal Ligands Having Aliphatic Nitrogen Donors: Synthesis, Structures, and Properties of Peroxo and Superoxo Complexes Bull. Chem. Soc. Jpn., 77 (2004), pp. 59–72 D.K. Chand, P.K. Bharadwaj Heteroditopic Cryptands of Tunable Cavity Size: Imposition of Distorted Geometry onto Copper(II) and Nickel(II) and Molecular Recognition of Water Molecules Inorg. Chem., 37 (1998), pp. 5050–5055 D.K. Chand, P.K. Bharadwaj Synthesis of a Heteroditopic Cryptand Capable of Imposing a Distorted Coordination Geometry onto Cu(II): Crystal Structures of the Cryptand (L), [Cu(L)(CN)](picrate), and [Cu(L)(NCS)](picrate) and Spectroscopic Studies of the Cu(II) Complexes Inorg. Chem., 35 (1996), pp. 3380–3387 M. Duggan, N. Ray, B. Hathaway, G. Tomlinson, P. Brint, K. Pelin, Crystal structure and electronic properties of ammine[tris(2-aminoethyl)amine]copper(II) diperchlorate and potassium penta-amminecopper(II) tris(hexafluorophosphate), Dalton Trans., DOI 10.1039/dt9800001342(1980) 1342-1348. R. Barbucci, A. Mastroianni, M.J.M. Campbell The effect of N-Alkylation on the properties of five-coordinate copper(II) complexes of tetra-amine ligands Inorg. Chim. Acta, 27 (1978), pp. 109–114 F. Thaler, C.D. Hubbard, F.W. Heinemann, R. van Eldik, S. Schindler, I. Fábián, A.M. Dittler-Klingemann, F.E. Hahn, C. Orvig Structural, Spectroscopic, Thermodynamic and Kinetic Properties of Copper(II) Complexes with Tripodal Tetraamines Inorg. Chem., 37 (1998), pp. 4022–4029 G.A. McLachlan, G.D. Fallon, R.L. Martin, L. Spiccia Synthesis, Structure and Properties of Five-Coordinate Copper(II) Complexes of Pentadentate Ligands with Pyridyl Pendant Arms Inorg. Chem., 34 (1995), pp. 254–261 G.R. Desiraju, T. Steiner The Weak Hydrogen Bond Oxford University Press, In Structural Chemistry and Biology (1999) S. Itoh Chemical Reactivity of Copper Active-Oxygen Complexes, Copper-Oxygen Chemistry Inc, John Wiley & Sons (2011), pp. 225–282 K. Fagnou, M. Lautens Halide Effects in Transition Metal Catalysis Angew. Chem., Int. Ed., 41 (2002), pp. 26–47 J.M. Berg, J.L. Tymoczko, L. Stryer Biochemistry, Fifth Edition: International Version Freeman, W. H (2002) S. Stoll, A. Schweiger EasySpin, a comprehensive software package for spectral simulation and analysis in EPR J. Magn. Reson., 178 (2006), pp. 42–55 G. Sheldrick A short history of SHELX Acta Crystallographica, Section A: Foundations of Crystallography, 64 (2008), pp. 112–122