[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, pp. 379−423, 623−656, 1948. [2] D. J. C. MacKay and R. M. Neal, “Near Shannon Limit performance of low density parity check codes,” Electronics Letters, vol. 32, no. 18, pp. 1645−1646, 1996. [3] T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 599-618, Feb. 2001. [4] Y. Kou, S. Lin, and M. Fossorier, “Low-density parity-check codes based on finite geometries: A rediscovery and new results,” IEEE Transactions on Information Theory, vol. 47, no. 7, pp. 2711−2736, Nov. 2001. [5] R. Gallager, Low-Density Parity-Check Codes. Cambridge, MA, USA: MIT Press, 1963. [6] D. J. C. Mackay, “Good error-correcting codes based on very sparse matrices,” IEEE Transactions on Information Theory, vol. 45, no. 2, March 1999. [7] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Transactions on Information Theory, vol. 47, pp. 498-519, Feb. 2001. [8] S. Hemati and A. Banihashemi, “Dynamics and performance analysis of analog iterative decoding for low-density parity-check (LDPC) codes,” IEEE Transactions on Communications, vol. 54, no. 1, Jan. 2006. [9] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic, 1970. [10] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations. Philadelphia, PA: SIAM, 1995. [11] H. Xiao, S. Tolouei, and A. H. Banihashemi, “Successive relaxation for decoding of LDPC codes,” 24th Queen’s Biennial Symposium on Communication, Kingston, Ontario, June 2008. [12] N. Mobini, A. Banihashemi, and S. Hemati, “ A differential binary message passing LDPC decoder,” IEEE Transactions on Communication, vol. 57, no. 9, pp. 2518-2523, Sep. 2009. [13] K. Cushon, S. Hemati, C. Leroux, S. Mannor, and W. J. Gross, “High-throughput energy-efficient LDPC decoders using differential binary message passing,” IEEE Transactions on Signal Processing, vol. 62, no. 3, pp. 619-631, February 2014. [14] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions on Information Theory, vol. IT-27, pp. 533-547, Sept. 1981. [15] L. Bazzi, T. Richardson, and R. Urbanke, “Exact thresholds and optimal codes for the binary-symmetric channel and Gallager’s decoding algorithm A,” IEEE Transactions on Information Theory, vol. 50, no. 9, pp. 2010−2021, Sept. 2004. [16] N. Miladinovic and M. Fossorier, “Improved bit-flipping decoding of low-density parity-check codes,” IEEE Transactions on Information Theory, vol. 51, no. 4, pp. 1594-1606, Apr. 2005. [17] P. Zarrinkhat and A. Banihashemi, “Threshold values and convergence properties of majority-based algorithms for decoding regular low-density parity-check codes,” IEEE Transactions on Communication, vol. 52, no. 12, pp. 2087-2097, Dec. 2004. [18] G. Cowan, K. Cushon, and W. Gross, “Mixed-signal implementation of differential decoding using binary message passing algorithms,” IEEE 26th International Conference on Application-specific Systems, Architectures and Processors, Toronto, July 27-29, 2015. [19] S. Hemati, A. H. Banihashemi, and C. Plett, “A 0.18-um CMOS analog min-sum iterative decoder for a (32,8) low-density parity-check (LDPC) code,” IEEE Journal of Solid-State Circuits, vol. 41, no. 11, pp. 2531−2540, 2006. [20] A. Darabiha, A. C. Carusone, and F. R. Kschischang, “Power reduction techniques for LDPC decoders,” IEEE Journal of Solid-State Circuits, vol. 43, no. 8, pp. 1835−1845, August 2008. [21] C. Chen, Y. Lin, H. Chang, and C. Lee, “A 2.37-Gb/s 284.8 mW rate-compatible (491,3,6) LDPC-CC decoder,” IEEE Journal of Solid-State Circuit, vol. 47, no. 4, pp. 817−831, 2012. [22] A. R. Abolfazli, Y. R. Shayan, G. E. R. Cowan, “750Mb/s 17pJ/b 90nm CMOS (120,75) TS-LDPC min-sum based analog decoder,” IEEE Asian Solid-State Circuits Conference, Singapore, Nov. 11-13, 2013. [23] C. Cheng, J. Yang, H. Lee, C. Yang, Y. Ueng, “A fully-parallel LDPC decoder architecture using probabilistic min-sum algorithm for high-throughput applications,” IEEE Transactions on Circuits and Systems I, vol. 61, no. 9, pp. 2738−2746, April 2014. [24] Y. Toriyama and D. Markovic, “A 2.267 Gbps, 93.7 pJ/b non-binary LDPC decoder for storage applications,” IEEE Symposium on VLSI circuits, Kyoto, June 5-8, 2017.