[1] Hull, C. W., 1984. Apparatus for production of three-dimensional objects by stereolithography. United States patent US 4,575,330. [2] Park, J.-R., Slanac, D. A., Leong, T. G., Ye, H., Nelson, D. B., and Gracias, D. H., 2008. “Reconfigurable microfluidics with metallic containers”. Journal of Microelectromechanical Systems, 17(2), April, pp. 265–271. [3] Azam, A., Laflin, K. E., Jamal, M., Fernandes, R., and Gracias, D. H., 2011. “Self-folding micropatterned polymeric containers”. Biomedical Microdevices, 13(1), pp. 51–58. [4] Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., Wang, C. C., Shin, Y. C., Zhang, S., and Zavattieri, P. D., 2015. “The status, challenges, and future of additive manufacturing in engineering”. Comput. Aided Des., 69(C), Dec., pp. 65–89. [5] Lang, R. J., 2011. Origami Design Secrets: Mathematical Methods for an Ancient Art. CRC Press, Boca Raton, FL. [6] Zhang, K., Qiu, C., and Dai, J. S., 2015. “Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators”. Journal of Mechanisms and Robotics, 7(2), p. 021014. [7] Ge, Q., Qi, H. J., and Dunn, M. L., 2013. “Active materials by four-dimension printing”. Applied Physics Letters, 103(13), p. 131901. [8] Tibbits, S., 2014. “4D printing: Multi-material shape change”. Architectural Design, 84(1), pp. 116–21. [9] Deng, D., and Chen, Y., 2015. “Origami-based selffolding structure design and fabrication using projection based stereolithography”. J. Mech. Des., 137(2), p. 021701:12. [10] Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., and Lewis, J. A., 2016. “Biomimetic 4d printing”. Nature Materials, 15(4), pp. 413 – 418. [11] Felton, S., Tolley, M., Demaine, E., Rus, D., and Wood, R., 2014. “A method for building self-folding machines”. Science, 345(6197), pp. 644–646. [12] Na, J.-H., Evans, A. A., Bae, J., Chiappelli, M. C., Santangelo, C. D., Lang, R. J., Hull, T. C., and Hayward, R. C., 2015. “Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers”. Advanced Materials, 27(1), pp. 79–85. [13] Breger, J. C., Yoon, C., Xiao, R., Kwag, H. R., Wang, M. O., Fisher, J. P., Nguyen, T. D., and Gracias, D. H., 2015. “Self-folding thermo-magnetically responsive soft microgrippers”. ACS Applied Materials & Interfaces, 7(5), pp. 3398–3405. [14] Geryak, R., and Tsukruk, V. V., 2014. “Reconfigurable and actuating structures from soft materials”. Soft Matter, 10, pp. 1246–1263. [15] Malachowski, K., Breger, J., Kwag, H. R., Wang, M. O., Fisher, J. P., Selaru, F. M., and Gracias, D. H., 2014. “Stimuli-responsive theragrippers for chemomechanical controlled release”. Angewandte Chemie International Edition, 53(31), pp. 8045–8049. [16] Kwok, T.-H., Wang, C. C. L., Deng, D., Zhang, Y., and Chen, Y., 2015. “Four-dimensional printing for freeform surfaces: Design optimization of origami and kirigami structures”. J. Mech. Des., 131(1), p. 111413:10. [17] Hernandez, E. A. P., Hartl, D. J., Akleman, E., and Lagoudas, D. C., 2016. “Modeling and analysis of origami structures with smooth folds”. ComputerAided Design, 78, pp. 93 – 106. {SPM} 2016. [18] Momeni, F., Hassani.N, S. M., Liu, X., and Ni, J., 2017. “A review of 4d printing”. Materials & Design, 122, pp. 42 – 79. [19] Tibbits, S., 2012. “Design to self-assembly”. Architectural Design, 82(2), pp. 68–73. [20] Khoo, Z. X., Teoh, J. E. M., Liu, Y., Chua, C. K., Yang, S., An, J., Leong, K. F., and Yeong, W. Y., 2015. “3d printing of smart materials: A review on recent progresses in 4d printing”. Virtual and Physical Prototyping, 10(3), pp. 103–122. [21] Choi, J., Kwon, O.-C., Jo, W., Lee, H. J., and Moon, M.-W., 2015. “4d printing technology: A review”. 3D Printing and Additive Manufacturing, 2(4), pp. 159–167. [22] Wang, M.-F., Maleki, T., and Ziaie, B., 2008. “Enhanced 3-D folding of silicon microstructures via thermal shrinkage of a composite organic/inorganic bilayer”. Journal of Microelectromechanical Systems, 17(4), Aug, pp. 882–889. [23] Yasu, K., and Inami, M., 2012. “Popapy: Instant paper craft made up in a microwave oven”. In Advances in Computer Entertainment, A. Nijholt, T. Romo, and D. Reidsma, eds., Vol. 7624 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 406–420. [24] Smela, E., 2003. “Conjugated polymer actuators for biomedical applications”. Advanced Materials, 15(6), pp. 481–494. [25] Ionov, L., 2012. “Biomimetic 3D self-assembling biomicroconstructs by spontaneous deformation of thin polymer films”. J. Mater. Chem., 22, pp. 19366–19375. [26] Peraza-Hernandez, E., Hartl, D., Galvan, E., and Malak, R., 2013. “Design and optimization of a shape memory alloy-based self-folding sheet”. Journal of Mechanical Design, 135, p. 111007. [27] Ionov, L., 2011. “Soft microorigami: self-folding polymer films”. Soft Matter, 7, pp. 6786–6791. [28] Shim, T. S., Kim, S.-H., Heo, C.-J., Jeon, H. C., and Yang, S.-M., 2012. “Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers”. Angewandte Chemie International Edition, 51(6), pp. 1420–1423. [29] Stoychev, G., Turcaud, S., Dunlop, J. W. C., and Ionov, L., 2013. “Hierarchical multi-step folding of polymer bilayers”. Advanced Functional Materials, 23(18), pp. 2295–2300. [30] Ahmed, S., Lauff, C., Crivaro, A., McGough, K., Sheridan, R., Frecker, M., von Lockette, P., Ounaies, Z., Simpson, T., Lien, J.-M., and Strzelec, R., 2013. “Multi-field responsive origami structures: Preliminary modeling and experiments”. In Proceedings of the ASME IDETC/CIE, August 4-7, Portland, Oregon, USA, p. V06BT07A028. [31] Liu, Y., Boyles, J. K., Genzer, J., and Dickey, M. D., 2012. “Self-folding of polymer sheets using local light absorption”. Soft Matter, 8, pp. 1764–1769. [32] Raviv, D., Zhao, W., McKnelly, C., Papadopoulou, A., Kadambi, A., Shi, B., Hirsch, S., Dikovsky, D., Zyracki, M., Olguin, C., Raskar, R., and Tibbits, S., 14. “Active printed materials for complex self-evolving deformations”. Sci. Rep., 4. [33] Schenk, M., and Guest, S. D. ., 2011. “Origami folding: A structural engineering approach”. In Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education, p. 291303. [34] Tachi, T., 2013. “Interactive form-finding of elastic origami”. In the International Association for Shell and Spatial Structures (IASS) Symposium. [35] Zhu, L., Igarashi, T., and Mitani, J., 2013. “Soft folding”. Computer Graphics Forum, 32(7), pp. 167–176. [36] Belcastro, S.-M., and Hull, T. C., 2002. “Modelling the folding of paper into three dimensions using affine transformations”. Linear Algebra and its Applications, 348(13), pp. 273 – 282. [37] Tachi, T., 2010. Advances in Architectural Geometry. Springer Vienna, Vienna, ch. Freeform RigidFoldable Structure using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh, pp. 87–102. [38] Hwang, H.-D., and Yoon, S.-H., 2015. “Constructing developable surfaces by wrapping cones and cylinders”. Computer-Aided Design, 58, pp. 230 – 235. Solid and Physical Modeling 2014. [39] Pan, Y., Zhou, C., and Chen, Y., 2012. “A fast mask projection stereolithography process for fabricating digital models in minutes”. Journal of Manufacturing Science and Engineering, 134(5), pp. 051011 – 9. [40] Zhou, C., Chen, Y., Yang, Z., and Khoshnevis, B., 2013. “Digital material fabrication using maskimageprojectionbased stereolithography”. Rapid Prototyping Journal, 19(3), pp. 153–165. [41] Bodansky, E., and Gribov, A., 2006. Approximation of a Polyline with a Sequence of Geometric Primitives. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 468–478.