[1] Tibbits S, 2014, “4D Printing: Multi-Material Shape Change”, Architectural Design. 84(1):116-21. doi:10.1002/ad.1710 [2] Ge Q, Dunn CK, Qi HJ, Dunn ML, 2014, “Active origami by 4D printing”, Smart Materials and Structures. 23(9):1-15. doi:10.1088/0964-1726/23/9/094007 [3] Kwok TH, Wang CCL, Deng D, Zhang Y, Chen Y, 2015, “4D Printing for Freeform Surfaces: Design Optimization of Origami Structures”, Journal of Mechanical Design. doi:10.1115/1.4031023 [4] Bakarich SE, Gorkin R, Panhuis Mih, Spinks GM, 2015, “4D Printing with Mechanically Robust, Thermally Actuating Hydrogels”, Macromolecular Rapid Communications; 36(12) :1211-1217. doi:10.1002/marc.201500079 [5] Mao Y, Yu K, Isakov MS, Wu J, Dunn ML, and Qi HJ, 2015, “Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers”, Sci. Rep. 5, 13616; doi: 10.1038/srep13616. [6] Randall CL, Kalinin YV, Jamal M, Shah A, Gracias DH, 2011, “Self-folding immunoprotective cell encapsulation devices”, Nanomedicine: Nanotechnology, Biology, and Medicine; 7(6): 686-689. doi:10.1016/j.nano.2011.08.020 [7] Malachowski K, Jamal M, Jin Q, Polat B, Morris CJ, Gracias DH, 2014, “Self-Folding Single Cell Grippers”, Nano Letters. 14(7):4164-4170. doi:10.1021/nl500136a [8] Breger JC, Yoon C, Xiao R, Kwag HR, Wang MO, Fisher JP, et al, 2015, “Self-folding thermomagnetically responsive soft microgrippers”, ACS applied materials & interfaces. 7(5):3398-3405. doi:10.1021/am508621s [9] Guan J, He H, Lee LJ, Hansford DJ, 2007, “Fabrication of particulate reservoir-containing, capsulelike, and self-folding polymer microstructures for drug delivery”, Small. 3(3):412-418. doi:10.1002/smll.200600240 [10] Fernandes R, Gracias DH, 2012, “Self-folding polymeric containers for encapsulation and delivery of drugs”, Advanced Drug Delivery Reviews. 64(14):1579-1589. doi:10.1016/j.addr.2012.02.012 [11] He H., Guan J., Lee JL, 2006, “An oral delivery device based on self-folding hydrogels”, Journal of Controlled Release, 110(2), 339-346. doi:10.1016/j.jconrel.2005.10.017 [12] An B, Benbernou N, Demaine ED, Rus D, 2011, “Planning to fold multiple objects from a single self-folding sheet”, Robotica. 29(1):87-102. doi:10.1017/S0263574710000731 [13] Felton S, Tolley M, Demaine E, Rus D, Wood R, 2014, “Applied origami. A method for building self-folding machines”, Science (New York, N.Y.). 345(6197):644. [14] Sun, X., Felton, S. M., Niiyama, R., Wood, R. J., Kim, S, 2015, “Self-folding and self-actuating robots: A pneumatic approach”, Paper presented at the 2015 IEEE International Conference on Robotics and Automation (ICRA), 3160-3165. doi:10.1109/ICRA.2015.7139634. [15] Miyashita S, Guitron S, Ludersdorfer M, Sung CR, Rus D, 2015, “An untethered miniature origami robot that self-folds, walks, swims, and degrades”, Paper presented at the 2015 IEEE International Conference on Robotics and Automation (ICRA),1490-1496. doi:10.1109/ICRA.2015.7139386. [16] Miyashita S, Meeker L, Tolley MT, Wood RJ, Rus D, 2014, “Self-folding miniature elastic electric devices”, Smart Materials and Structures. 23(9):1-9. doi:10.1088/0964-1726/23/9/094005 [17] Miyashita S, Meeker L, Gouldi M, Kawahara Y, Rus D, 2014, “Self-folding printable elastic electric devices: Resistor, capacitor, and inductor”, Paper presented at the 2014 IEEE International Conference on Robotics and Automation (ICRA), 1446-1453. doi:10.1109/ICRA.2014.6907042. [18] Hayes GJ, Liu Y, Genzer J, Lazzi G, Dickey MD, 2014, “Self-Folding Origami Microstrip Antennas”, IEEE Transactions on Antennas and Propagation. 62(10):5416-5419. doi:10.1109/TAP.2014.2346188 [19] Peraza-Hernandez E, Hartl D, Galvan E, Malak R, 2013, “Design and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet”, Journal of Mechanical Design. 135(11). doi:10.1115/1.4025382 [20] Peraza-Hernandez EA, Hartl DJ, Malak Jr RJ, 2013, “Design and numerical analysis of an SMA mesh-based self-folding sheet”, Smart Materials and Structures. 22(9):094008,1-17. doi:10.1088/0964-1726/22/9/094008 [21] Felton SM, Becker KP, Aukes DM, Wood RJ, 2015, “Self-folding with shape memory composites at the millimeter scale”, Journal of Micromechanics and Microengineering. 25(8). doi:10.1088/0960-1317/25/8/085004 [22] Ding Z, Wei P., Ziaie B, 2010, “Self-folding smart 3D microstructures using a hydrogel-parylene bilayer”, the 18th Biennial University/Government/Industry Micro/Nano Symposium ,doi:10.1109/UGIM.2010.5508914. [23] Guan J, He H, Hansford DJ, Lee LJ, 2005, “Self-folding of three-dimensional hydrogel microstructures”, Journal of Physical Chemistry B 109 (49): 23134-7. doi:10.1021/jp054341g [24] De Leon A, Barnes AC, Thomas P, O'Donnell J, Zorman CA, Advincula RC, 2014, “Transfer printing of self-folding polymer-metal bilayer particles”, ACS Applied Materials & Interfaces 6 (24): 22695-700. doi:10.1021/am5068172 [25] Pickett GT, 2007, “Self-folding origami membranes”, EPL (Europhysics Letters). 78(4):48003. doi:10.1209/0295-5075/78/48003 [26] Guo W, Li M, Zhou J, 2013, “Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels”, Smart Materials and Structures. 22(11):115028,1-6. doi:10.1088/0964-1726/22/11/115028 [27] Liu Y, Boyles JK, Genzer J, Dickey MD, 2012, “Self-folding of polymer sheets using local light absorption”. Soft Matter, 8(6), 1764-1769. doi:10.1039/c1sm06564e [28] Liu Y, Miskewicz M, Ecsuti MJ, Genzer J, Dickey MD, 2014, “Three-dimensional folding of prestrained polymer sheets via absorption of laser light”, J. Appl. Phys., 115, 204911. doi:10.1063/1.4880160 [29] Lee Y, Lee H, Hwang T, Lee J, Cho M, 2015, “Sequential Folding using Light-activated Polystyrene Sheet”, Sci. Rep. 5, 16544; doi: 10.1038/srep16544. [30] Felton SM, Tolley MT, Shin B, Onal CD, Demaine ED, Rus D, Wood RJ, 2013, “Self-folding with shape memory composites”, Soft Matter. 9(32):7688-94. doi:10.1039/c3sm51003d [31] Tolley MT, Felton SM, Miyashita S, Aukes D, Rus D, Wood RJ, 2014, “Self-folding origami: shape memory composites activated by uniform heating”, Smart Materials and Structures. 23(9):1-9. doi:10.1088/0964-1726/23/9/094006 [32] Deng D, Chen Y, 2015, “Origami-Based Self-Folding Structure Design and Fabrication Using Projection Based Stereolithography”, Journal of Mechanical Design (Transactions of the ASME). 137(2). doi:10.1115/1.4029066 [33] Yonekura, K., & Watanabe, O. 2014, “A shape parameterization method using principal component analysis in applications to parametric shape optimization”. Journal of Mechanical Design, 136(12), 121401. doi:10.1115/1.4028273 [34] Murray, A., J. Schmiedeler, and B. Korte, 2008, “Kinematic synthesis of planar, shape-changing rigid-body mechanisms”. ASME Journal of Mechanical Design, DOI: 10.1115/1.2829892 [35] Bouaziz S, Deuss M, Schwartzburg Y, Weise T, Pauly M. 2012. “Shape-up: shaping discrete geometry with projections”. Computer Graphics Forum. 31(5): 1657-1667. doi: 10.1111/j.1467-8659.2012.03171 [36] Xie W, Zhang Y, Wang C, Chung R. 2014. “Surface-from-gradients: an approach based on discrete geometry processing,” IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014, pp. 2203-2210. doi: 10.1109/CVPR.2014.282 [37] Cignoni P, Rocchini C, Scopigno R. 1998. “Metro: Measuring error on simplified surfaces”. Computer Graphics Forum, 17: 167–174. doi:10.1111/1467-8659.00236 [38] Huang P, Deng D, Chen Y, 2013, “Modeling and fabrication of heterogeneous three-dimensional objects based on additive manufacturing”, 24th International SFF Symposium - An Additive Manufacturing Conference, SFF 2013. 2013:215-230 [39] Zhou C, Chen Y, Yang Z, Khoshnevis B, 2013, “Digital material fabrication using mask- mageprojection-based stereolithography”, Rapid Prototyping Journal. 19(3):153-65. doi:10.1108/13552541311312148 [40] Song X, Chen Y, Lee TW, Wu S, Cheng L, 2015, “Ceramic fabrication using Mask-ImageProjection-based Stereolithography integrated with tape-casting”, Journal of Manufacturing Processes. 20:456-64. doi:10.1016/j.jmapro.2015.06.022 [41] Xu K, Chen, Y. 2016, “Photocuring temperature study for curl distortion control in projection based Stereolithography”. Journal of Manufacturing Science and Engineering. 139(2): 021002. doi: 10.1115/1.4034305.