Automation in production is crucial to increase productivity, reduce costs, reduce waste, and to enhance repeatability. Automation in the aerospace industry is being adopted by large original equipment manufacturers in order to meet increasing demands with the use of Automated Fiber Placement (AFP) or Automated Tape Laying (ATP) machines. These machines process conventional pre-impregnated materials which are then processed using large autoclaves. The use of AFP or ATL systems for large structures such as wing skins or fuselages have proven to be effective compared to traditional methods. Autoclave curing systems force manufacturers to invest large amounts of capital and operational costs associated to autoclaves. Out-of-autoclave (OOA) prepreg materials have been developed in order to remove the need for autoclave, however processing these types of materials require longer cure times and extensive debulking, which counters productivity. Dry fiber tapes have been developed by materials suppliers that can be processed using AFP/ATL equipment to manufacture dry preforms. These dry preforms can then be impregnated using a variety of resin transfer molding methods. This work focuses on developing a process window for dry automated fiber placement (DAFP) using an AFP machine equipped with a hot gas torch, impregnation of dry fiber preform using vacuum assisted resin transfer molding (VARTM), and evaluating the laminates quality and mechanical properties. Properties determined show to be in the realms of autoclave curing and OOA curing systems presently qualified in the aerospace industry. In addition, a cost analysis shows DAFP VARTM to be a competitive method of production comparing to current material systems.