UNFCCC Conference of the Parties: Adoption of the Paris Agreement. Proposal by the President, FCCC/CP/2015/L.9/Rev.1, retrieved 12 December (2015). Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–32, https://doi.org/10.1038/nature08047 (2009). Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proceedings of the National Academy of Sciences of the United States of America 106, 16129–16134, https://doi.org/10.1073/pnas.0805800106 (2009). Gillett, N. P., Arora, V. K., Matthews, D. & Allen, M. R. Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. Journal of Climate 26, 6844–6858, https://doi.org/10.1175/JCLI-D-12-00476.1 (2013). Füssel, H. M. How inequitable is the global distribution of responsibility, capability, and vulnerability to climate change: A comprehensive indicator-based assessment. Global Environmental Change 20, 597–611, https://doi.org/10.1016/j.gloenvcha.2010.07.009 (2010). Gignac, R. & Matthews, H. D. Allocating a 2 C cumulative carbon budget to countries. Environmental Research Letters 10, 075004, https://doi.org/10.1088/1748-9326/10/7/075004 (2015). Rogelj, J. et al. Differences between carbon budget estimates unravelled. Nature Clim. Change 6, 245–252, https://doi.org/10.1038/nclimate2868 (2016). Matthews, H. D. et al. Estimating carbon budgets for ambitious climate targets. Current Climate Change Reports 3, 69–77, https://doi.org/10.1007/s40641-017-0055-0 (2017). Alexander, L. et al. Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis Summary for Policymakers. IPCC WGI AR5 1–36 (2013). Millar, R. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nature Geoscience, https://doi.org/10.1038/ngeo3031 (2017). Stocker, T. et al. Climate change 2013: The physical science basis. Working Group 1 (WG1) Contribution to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5). Cambridge, UK and New York, New York, USA (2013). Le Quéré, C. et al. Global Carbon Budget 2016. Earth System Science Data 8, 605, https://doi.org/10.5194/essd-8-605-2016 (2016). Vuuren, D. P. et al. RCP2.6: exploring the possibility to keep global mean temperature increase below 2 C. Climatic Change 109, 95–116, https://doi.org/10.1007/s10584-011-0152-3 (2011). Likhvar, V. N. et al. A multi-scale health impact assessment of air pollution over the 21st century. Science of the Total Environment 514, 439–449, https://doi.org/10.1016/j.scitotenv.2015.02.002 (2015). Pacanowski, R. C. MOM 2 Documentation, users guide and reference manual, GFDL Ocean Group Technical Report 3, Geophys. Fluid Dyn. Lab., Princeton University, Princeton, NJ (1995). Keller, D. P., Oschlies, A. & Eby, M. A new marine ecosystem model for the University of Victoria Earth system climate model. Geoscientific Model Development Discussions 5, 1135–1201, https://doi.org/10.5194/gmdd-5-1135-2012 (2012). Meissner, K. J., Weaver, A. J., Matthews, H. D. & Cox, P. M. The role of land surface dynamics in glacial inception: A study with the UVic Earth System Model. Climate Dynamics 21, 515–537, https://doi.org/10.1007/s00382-003-0352-2 (2003). Bitz, C. M., Holland, M. M., Weaver, A. J. & Eby, M. Simulating the ice-thickness distribution in a coupled. Journal of Geophysical Research 106, 2441–2463, https://doi.org/10.1029/1999JC000113 (2001). Fanning, A. F. & Weaver, A. J. An atmospheric energy-moisture balance model: Climatology, interpentadal climate change, and coupling to an ocean general circulation model. Journal of Geophysical Research 101, 111–115, https://doi.org/10.1029/96JD01017 (1996). Eby, M. et al. Historical and idealized climate model experiments: An intercomparison of Earth system models of intermediate complexity. Climate of the Past 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013 (2013). Matthews, H. D. & Caldeira, K. Stabilizing climate requires near-zero emissions. Geophysical research letters 35, https://doi.org/10.1029/2007GL032388 (2008). Shindell, D. T. et al. Radiative forcing in the ACCMIP historical and future climate simulations. Atmospheric Chemistry and Physics 13, 2939–2974, https://doi.org/10.5194/acp-13-2939-2013 (2013). Apte, J. S., Marshall, J. D., Cohen, A. J. & Brauer, M. Addressing Global Mortality from Ambient PM2.5. Environmental science & technology 49, 8057–8066, https://doi.org/10.1021/acs.est.5b01236 (2015). Simmons, C. & Matthews, H. Assessing the implications of human land-use change for the transient climate response to cumulative carbon emissions. Environmental Research Letters 11, 035001, https://doi.org/10.1088/1748-9326/11/3/035001 (2016).