Abstract Enterprise, project, and workforce selection models for Industry 4.0. Rupinder Kaur The German federal government first coined industry 4.0 in 2011. Industry 4.0 involves the use of advanced technologies such as cyber-physical system, internet of things, cloud computing, and cognitive computing with the aim to revolutionize the current manufacturing practices. Automation and exchange of big data and key characteristics of Industry 4.0. Due to its numerous benefits, industries are readily investing in Industry 4.0, but this implementation is an uphill struggle. In this thesis, we address three key problems related to Industry 4.0 implementation namely Enterprise selection, Project selection and Workforce selection. The first problem involves identification of enterprises suitable for Industry 4.0 implementation. The second problem involves prioritization and selection of Industry 4.0 projects for the chosen digital enterprises. The third and last problem involves workforce selection and assignment for execution of the identified Industry 4.0 projects. Multicriteria solution approaches based on TOPSIS and Genetic Algorithms are proposed to address these problems. Industry experts are involved to prioritize the criteria used for enterprise, project and workforce selection. Numerical applications are provided. The proposed work is innovative and can be useful to manufacturing and service organizations interested in implementing Industry 4.0 projects for performance improvement.