Kwok T.-H., Zhang Y., Wang C.C.L., Liu Y., Tang K. Styling evolution for tight-fitting garments, IEEE Trans Vis Comput Graphics, 22 (5) (2016), pp. 1580-1591 Anguelov D., Srinivasan P., Koller D., Thrun S., Rodgers J., Davis J. SCAPE: Shape completion and animation of people, ACM Trans Graph, 24 (3) (2005), pp. 408-416 Hasler N., Stoll C., Sunkel M., Rosenhahn B., Seidel H.-P. A statistical model of human pose and body shape, Comput Graph Forum, 28 (2) (2009), pp. 337-346 Chu C.-H., Tsai Y.-T., Wang C.C., Kwok T.-H. Exemplar-based statistical model for semantic parametric design of human body, Comput Ind, 61 (6) (2010), pp. 541-549 LeCun Y., Bengio Y., Hinton G. Deep learning Nature, 521 (2015) 436 E Bronstein M.M., Bruna J., LeCun Y., Szlam A., Vandergheynst P. Geometric deep learning: going beyond euclidean data, IEEE Signal Process Mag, 34 (4) (2017), pp. 18-42 Liu B, Wei Y, Zhang Y, Yang Q. Deep neural networks for high dimension, low sample size data. In: Proceedings of the twenty-sixth international joint conference on artificial intelligence; 2017. p. 2287 93. Wang C.C.L. Parameterization and parametric design of mannequins, Comput Aided Des, 37 (1) (2005), pp. 83-98 Wang S., Qin S., Guan C. Feature-based human model for digital apparel design, IEEE Trans Autom Sci Eng, 11 (2) (2014), pp. 620-626 Kwok T.H., Zhang Y., Wang C.C.L. Efficient optimization of common base domains for cross parameterization, IEEE Trans Vis Comput Graphics, 18 (10) (2012), pp. 1678-1692 Wang C.C., Tang K. Pattern computation for compression garment by a physical/geometric approach, Comput Aided Des, 42 (2) (2010), pp. 78-86 Hasler N., Stoll C., Rosenhahn B., Thormählen T., Seidel H.-P. Estimating body shape of dressed humans, Comput Graph, 33 (3) (2009), pp. 211-216 Li J., Ye J., Wang Y., Bai L., Lu G. Fitting 3D garment models onto individual human models, Comput Graph, 34 (6) (2010), pp. 742-755 Pons-Moll G., Pujades S., Hu S., Black M.J. ClothCap: Seamless 4D clothing capture and retargeting, ACM Trans Graph, 36 (4) (2017), pp. 73:1-73:15 Baek S.-Y., Lee K. Parametric human body shape modeling framework for human-centered product design, Comput Aided Des, 44 (1) (2012), pp. 56-67 Au C.K., Ma Y.-S. Garment pattern definition, development and application with associative feature approach, Comput Ind, 61 (6) (2010), pp. 524-531 Chu C.-H., Wang I.-J., Wang J.B., Luh Y.-P. 3D parametric human face modeling for personalized product design: Eyeglasses frame design case, Adv Eng Inf, 32 (Suppl. C) (2017), pp. 202-223 Huang S.-H., Yang Y.-I., Chu C.-H. Human-centric design personalization of 3d glasses frame in markerless augmented reality, Adv Eng Inf, 26 (1) (2012), pp. 35-45 Hasler N., Thormählen T., Rosenhahn B., Seidel H.P. Learning skeletons for shape and pose, Proceedings of the 2010 ACM SIGGRAPH symposium on interactive 3D graphics and games, I3D ’10, ACM, New York, NY, USA (2010), pp. 23-30 Toshev A, Szegedy C. Deep Pose: Human pose estimation via deep neural networks. In The IEEE conference on computer vision and pattern recognition; 2014. Shotton J., Sharp T., Kipman A., Fitzgibbon A., Finocchio M., Blake A., et al. Real-time human pose recognition in parts from single depth images, Commun ACM, 56 (1) (2013), pp. 116-124 Si W., Lee S.-H., Sifakis E., Terzopoulos D. Realistic biomechanical simulation and control of human swimming, ACM Trans Graph, 34 (1) (2014), pp. 10:1-10:15 Ufuk C, O. YI, Tolga C. Example-based retargeting of human motion to arbitrary mesh models. Comput Graph Forum 34(1):216–27. Streuber S., Quiros-Ramirez M.A., Hill M.Q., Hahn C.A., Zuffi S., O’Toole A., et al. Body talk: Crowdshaping realistic 3D avatars with words, ACM Trans Graph, 35 (4) (2016), pp. 54:1-54:14 Allen B., Curless B., Popović Z. The space of human body shapes: Reconstruction and parameterization from range scans, ACM Trans Graph, 22 (3) (2003), pp. 587-594 Saito S., Zhou Z.Y., Kavan L. Computational bodybuilding: Anatomically-based modeling of human bodies, ACM Trans Graph, 34 (4) (2015), pp. 41:1-41:12 Seo H., Magnenat-Thalmann N .An example-based approach to human body manipulation, Graph Models, 66 (1) (2004), pp. 1-23 Boscaini D., Masci J., Rodolà E., Bronstein M. Learning shape correspondence with anisotropic convolutional neural networks, Advances in neural information processing systems (2016), pp. 3189-3197 Nair V., Hinton G.E. Rectified linear units improve restricted boltzmann machines, Proceedings of the 27th international conference on international conference on machine Learning, Omnipress, USA (2010), pp. 807-814 Hinton G.E., Srivastava N., Krizhevsky A., Sutskever I., Salakhutdinov R.R. Improving neural networks by preventing co-adaptation of feature detectors (2012), arXiv preprint arXiv:1207.0580 Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting, J Mach Learn Res, 15 (2014), pp. 1929-1958 Ioffe S., Szegedy C Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015), arXiv preprint arXiv:1502.03167 Kingma D.P., Ba J. Adam: A method for stochastic optimization (2014), arXiv preprint arXiv:1412.6980 Sarris N., Strintzis M.G. 3D modeling and animation: Synthesis and analysis techniques for the human body, IGI Global (2005) Zhang Y., Zheng J., Magnenat-Thalmann N. Example-guided anthropometric human body modeling, Vis Comput, 31 (12) (2015), pp. 1615-1631