1. S. C. Park, M. K. Park, M. G. Kang, "Super-resolution image reconstruction: A technical overview", IEEE Signal Process. Mag., vol. 20, pp. 21-36, May 2003. 2. J. Yang, J. Wright, T. S. Huang, Y. Ma, "Image super-resolution via sparse representation", IEEE Trans. Image Process., vol. 19, no. 11, pp. 2861-2873, Nov. 2010. 3. K.-W. Hung, W.-C. Siu, "Single-image super-resolution using iterative Wiener filter based on nonlocal means", Signal Process. Image Commun., vol. 39, pp. 26-45, Nov. 2015. 4. Y. LeCun, Y. Bengio, G. Hinton, "Deep learning", Nature, vol. 521, no. 7553, pp. 436-444, 2015. 5. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, Cambridge, MA, USA:MIT Press, 2016. 6. K. He, X. Zhang, S. Ren, J. Sun, "Deep residual learning for image recognition", Proc. CVPR, pp. 770-778, 2016. 7. B. Li, Y. He, "An improved ResNet based on the adjustable shortcut connections", IEEE Access, vol. 6, pp. 18967-18974, 2018. 8. O. Russakovsky et al., "ImageNet large scale visual recognition challenge", Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, Dec. 2015. 9. J. Long, E. Shelhamer, T. Darrell, "Fully convolutional networks for semantic segmentation", Proc. CVPR, pp. 3431-3440, 2015. 10. S.-J. Lee, T. Chen, L. Yu, C.-H. Lai, "Image classification based on the boost convolutional neural network", IEEE Access, vol. 6, pp. 12755-12768, 2018. 11. L. Zhang et al., "Improving semantic image segmentation with a probabilistic superpixel-based dense conditional random field", IEEE Access, vol. 6, pp. 15297-15310, 2018. 12. A. Krizhevsky, I. Sutskever, G. E. Hinton, "ImageNet classification with deep convolutional neural networks", Proc. NIPS, pp. 1097-1105, 2012. 13. M. D. Zeiler et al., "On rectified linear units for speech processing", Proc. ICASSP, pp. 3517-3521, 2013. 14. C. Dong, C. C. Loy, K. He, X. Tang, "Image super-resolution using deep convolutional networks", IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 2, pp. 295-307, Feb. 2015. 15. C. Dong, C. C. Loy, X. Tang, "Accelerating the super-resolution convolutional neural network", Proc. ECCV, pp. 391-407, 2016. 16. D. Liu, Z. Wang, B. Wen, J. Yang, W. Han, T. S. Huang, "Robust single image super-resolution via deep networks with sparse prior", IEEE Trans. Image Process., vol. 25, no. 7, pp. 3194-3207, Jul. 2016. 17. K. Gregor, Y. LeCun, "Learning fast approximations of sparse coding", Proc. ICML, pp. 399-406, 2010. 18. D. Liu, Z. Wang, N. Nasrabadi, T. Huang, "Learning a mixture of deep networks for single image super-resolution", Proc. ACCV, pp. 145-156, 2016. 19. J. Kim, J. K. Lee, K. M. Lee, "Accurate image super-resolution using very deep convolutional networks", Proc. CVPR, pp. 1646-1654, 2016. 20. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014, [online] Available: https://arxiv.org/abs/1409.1556. 21. Y. Liang, Z. Yang, K. Zhang, Y. He, J. Wang, N. Zheng, Single image super-resolution via a lightweight residual convolutional neural network, 2017, [online] Available: https://arxiv.org/abs/1703.08173. 22. E. J. Candès, M. B. Wakin, "An introduction to compressive sampling", IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21-30, Mar. 2008. 23. J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, Y. Ma, "Robust face recognition via sparse representation", IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210-227, Feb. 2009. 24. A. Esmaeilzehi, H. A. Moghaddam, "Nonparametric kernel sparse representation-based classifier", Pattern Recognit. Lett., vol. 89, no. 4, pp. 46-52, 2017. 25. T. Peleg, M. Elad, "A statistical prediction model based on sparse representations for single image super-resolution", IEEE Trans. Image Process., vol. 23, no. 6, pp. 2569-2582, Jun. 2014. 26. W. Yang et al., "Deep edge guided recurrent residual learning for image super-resolution", IEEE Trans. Image Process., vol. 26, no. 12, pp. 5895-5907, Dec. 2017. 27. D. Martin, C. Fowlkes, D. Tal, J. Malik, "A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics", Proc. ICCV, pp. 416-423, 2001. 28. Y. Wang, L. Wang, H. Wang, P. Li, End-to-end image super-resolution via deep and shallow convolutional networks, 2016, [online] Available: https://arxiv.org/abs/1607.07680. 29. J. W. Woods, Multidimensional Signal Image and Video Processing and Coding, New York, NY, USA:Academic, 2001. 30. G. Huang, Z. Liu, L. van der Maaten, K. Q. Weinberger, Densely connected convolutional networks, 2018, [online] Available: https://arxiv.org/abs/1608.06993. 31. S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015, [online] Available: https://arxiv.org/abs/1502.03167. 32. R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training recurrent neural networks, 2013, [online] Available: https://arxiv.org/abs/1211.5063. 33. C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, Understanding deep learning requires rethinking generalization, 2017, [online] Available: https://arxiv.org/abs/1611.03530. 34. K. He, X. Zhang, S. Ren, J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification", Proc. ICCV, pp. 1026-1034, 2015. 35. T. Doza, Incorporating Nesterov Momentum Into Adam, Oct. 2018, [online] Available: https://web.stanford.edu/~tdozat/files/TDozat-CS229-Paper.pdf. 36. Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity", IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004. 37. F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, 2016, [online] Available: https://arxiv.org/abs/1511.07122. 38. D.-A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep network learning by exponential linear units (ELUs), 2016, [online] Available: https://arxiv.org/abs/1511.07289. 39. M. Bevilacqua, A. Roumy, C. Guillemot, M.-L. Alberi-Morel, "Low-complexity single-image super-resolution based on nonnegative neighbor embedding", Proc. BMVC, pp. 135.1-135.10, 2012. 40. R. Zeyde, M. Elad, M. Protter, "On single image scale-up using sparse-representations" in Curves and Surfaces, Heidelberg, Germany:Springer, 2012. 41. F. Chollet, Keras, Oct. 2015, [online] Available: https://github.com/keras-team/keras. 42. M. Abadi et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, Oct. 2015, [online] Available: https://www.tensorflow.org. 43. R. Timofte, V. De Smet, L. Van Gool, "A+: Adjusted anchored neighborhood regression for fast super-resolution", Proc. ACCV, pp. 111-126, 2014. 44. S. Schulter, C. Leistner, H. Bischof, "Fast and accurate image upscaling with super-resolution forests", Proc. CVPR, pp. 3791-3799, 2015. 45. B. Lim, S. Son, H. Kim, S. Nah, K. M. Lee, "Enhanced deep residual networks for single image super-resolution", Proc. CVPR, pp. 1132-1140, 2017. 46. C. Ledig et al., "Photo-realistic single image super-resolution using a generative adversarial network", Proc. CVPR, pp. 4681-4690, 2017.